51
|
Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC. Y-family DNA polymerases in mammalian cells. Cell Mol Life Sci 2009; 66:2363-81. [PMID: 19367366 PMCID: PMC11115694 DOI: 10.1007/s00018-009-0024-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Accepted: 03/23/2009] [Indexed: 11/26/2022]
Abstract
Eukaryotic genomes are replicated with high fidelity to assure the faithful transmission of genetic information from one generation to the next. The accuracy of replication relies heavily on the ability of replicative DNA polymerases to efficiently select correct nucleotides for the polymerization reaction and, using their intrinsic exonuclease activities, to excise mistakenly incorporated nucleotides. Cells also possess a variety of specialized DNA polymerases that, by a process called translesion DNA synthesis (TLS), help overcome replication blocks when unrepaired DNA lesions stall the replication machinery. This review considers the properties of the Y-family (a subset of specialized DNA polymerases) and their roles in modulating spontaneous and genotoxic-induced mutations in mammals. We also review recent insights into the molecular mechanisms that regulate PCNA monoubiquitination and DNA polymerase switching during TLS and discuss the potential of using Y-family DNA polymerases as novel targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | | | | | |
Collapse
|
52
|
Akagi JI, Masutani C, Kataoka Y, Kan T, Ohashi E, Mori T, Ohmori H, Hanaoka F. Interaction with DNA polymerase η is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair (Amst) 2009; 8:585-99. [DOI: 10.1016/j.dnarep.2008.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/27/2008] [Accepted: 12/09/2008] [Indexed: 01/26/2023]
|
53
|
Langerak P, Krijger PHL, Heideman MR, van den Berk PCM, Jacobs H. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:621-9. [PMID: 19008189 PMCID: PMC2660925 DOI: 10.1098/rstb.2008.0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations—a phenotype similar to Polη and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Polη probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK164 modification.
Collapse
Affiliation(s)
- Petra Langerak
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
54
|
Insights into the cellular role of enigmatic DNA polymerase ι. DNA Repair (Amst) 2009; 8:420-3. [DOI: 10.1016/j.dnarep.2008.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 12/16/2022]
|
55
|
Repair and tolerance of oxidative DNA damage in plants. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:169-179. [DOI: 10.1016/j.mrrev.2008.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022]
|
56
|
Donny-Clark K, Shapiro R, Broyde S. Accommodation of an N-(deoxyguanosin-8-yl)-2-acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoogsteen or Watson-Crick base pairing? Biochemistry 2009; 48:7-18. [PMID: 19072536 PMCID: PMC2631237 DOI: 10.1021/bi801283d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bypass across DNA lesions by specialized polymerases is essential for maintenance of genomic stability. Human DNA polymerase iota (poliota) is a bypass polymerase of the Y family. Crystal structures of poliota suggest that Hoogsteen base pairing is employed to bypass minor groove DNA lesions, placing them on the spacious major groove side of the enzyme. Primer extension studies have shown that poliota is also capable of error-free nucleotide incorporation opposite the bulky major groove adduct N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF). We present molecular dynamics simulations and free energy calculations suggesting that Watson-Crick base pairing could be employed in poliota for bypass of dG-AAF. In poliota with Hoogsteen-paired dG-AAF the bulky AAF moiety would reside on the cramped minor groove side of the template. The Hoogsteen-capable conformation distorts the active site, disrupting interactions necessary for error-free incorporation of dC opposite the lesion. Watson-Crick pairing places the AAF rings on the spacious major groove side, similar to the position of minor groove adducts observed with Hoogsteen pairing. Watson-Crick-paired structures show a well-ordered active site, with a near reaction-ready ternary complex. Thus our results suggest that poliota would utilize the same spacious region for lesion bypass of both major and minor groove adducts. Therefore, purine adducts with bulk on the minor groove side would use Hoogsteen pairing, while adducts with the bulky lesion on the major groove side would utilize Watson-Crick base pairing as indicated by our MD simulations for dG-AAF. This suggests the possibility of an expanded role for poliota in lesion bypass.
Collapse
Affiliation(s)
- Kerry Donny-Clark
- Department of Biology and Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
57
|
Replication protein A and proliferating cell nuclear antigen coordinate DNA polymerase selection in 8-oxo-guanine repair. Proc Natl Acad Sci U S A 2008; 105:20689-94. [PMID: 19104052 DOI: 10.1073/pnas.0811241106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The adenine misincorporated by replicative DNA polymerases (pols) opposite 7,8-dihydro-8-oxoguanine (8-oxo-G) is removed by a specific glycosylase, leaving the lesion on the DNA. Subsequent incorporation of C opposite 8-oxo-G on the resulting 1-nt gapped DNA is essential for the removal of the 8-oxo-G to prevent G-C to T-A transversion mutations. By using model DNA templates, purified DNA pols beta and lambda and knockout cell extracts, we show here that the auxiliary proteins replication protein A and proliferating cell nuclear antigen act as molecular switches to activate the DNA pol lambda- dependent highly efficient and faithful repair of A:8-oxo-G mismatches in human cells and to repress DNA pol beta activity. By using an immortalized human fibroblast cell line that has the potential to induce cancer in mice, we show that the development of a tumoral phenotype in these cells correlated with a differential expression of DNA pols lambda and beta.
Collapse
|
58
|
Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z. Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta. DNA Repair (Amst) 2008; 7:1636-46. [PMID: 18634905 PMCID: PMC2656611 DOI: 10.1016/j.dnarep.2008.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 01/06/2023]
Abstract
Xeroderma pigmentosum variant (XPV) patients carry germ-line mutations in DNA polymerase eta (poleta), a major translesion DNA synthesis (TLS) polymerase, and exhibit severe sunlight sensitivity and high predisposition to skin cancer. Using a quantitative TLS assay system based on gapped plasmids we analyzed TLS across a site-specific TT CPD (thymine-thymine cyclobutane pyrimidine dimer) or TT 6-4 PP (thymine-thymine 6-4 photoproduct) in three pairs of poleta-proficient and deficient human cells. TLS across the TT CPD lesion was reduced by 2.6-4.4-fold in cells lacking poleta, and exhibited a strong 6-17-fold increase in mutation frequency at the TT CPD. All targeted mutations (74%) in poleta-deficient cells were opposite the 3'T of the CPD, however, a significant fraction (23%) were semi-targeted to the nearest nucleotides flanking the CPD. Deletions and insertions were observed at a low frequency, which increased in the absence of poleta, consistent with the formation of double strand breaks due to defective TLS. TLS across TT 6-4 PP was about twofold lower than across CPD, and was marginally reduced in poleta-deficient cells. TLS across TT 6-4 PP was highly mutagenic (27-63%), with multiple mutations types, and no significant difference between cells with or without poleta. Approximately 50% of the mutations formed were semi-targeted, of which 84-93% were due to the insertion of an A opposite the template G 5' to the 6-4 PP. These results, which are consistent with the UV hyper-mutability of XPV cells, highlight the critical role of poleta in error-free TLS across CPD in human cells, and suggest a potential involvement, although minor, of poleta in TLS across 6-4 PP under some conditions.
Collapse
Affiliation(s)
- Ayal Hendel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Ziv
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Quentin Gueranger
- INSERM U783 Faculte Necker, 156 rue de Vaugirard, 75015 Paris, France
| | - Nicholas Geacintov
- Chemistry Department, New York University, New York, New York 10003-5180, USA
| | - Zvi Livneh
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
59
|
Gueranger Q, Stary A, Aoufouchi S, Faili A, Sarasin A, Reynaud CA, Weill JC. Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair (Amst) 2008; 7:1551-62. [PMID: 18586118 DOI: 10.1016/j.dnarep.2008.05.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 01/24/2023]
Abstract
Genes coding for DNA polymerases eta, iota and zeta, or for both Pol eta and Pol iota have been inactivated by homologous recombination in the Burkitt's lymphoma BL2 cell line, thus providing for the first time the total suppression of these enzymes in a human context. The UV sensitivities and UV-induced mutagenesis on an irradiated shuttle vector have been analyzed for these deficient cell lines. The double Pol eta/iota deficient cell line was more UV sensitive than the Pol eta-deficient cell line and mutation hotspots specific to the Pol eta-deficient context appeared to require the presence of Pol iota, thus strengthening the view that Pol iota is involved in UV damage translesion synthesis and UV-induced mutagenesis. A role for Pol zeta in a damage repair process at late replicative stages is reported, which may explain the drastic UV-sensitivity phenotype observed when this polymerase is absent. A specific mutation pattern was observed for the UV-irradiated shuttle vector transfected in Pol zeta-deficient cell lines, which, in contrast to mutagenesis at the HPRT locus previously reported, strikingly resembled mutations observed in UV-induced skin cancers in humans. Finally, a Pol eta PIP-box mutant (without its PCNA binding domain) could completely restore the UV resistance in a Pol eta deficient cell line, in the absence of UV-induced foci, suggesting, as observed for Pol iota in a Pol eta-deficient background, that TLS may occur without the accumulation of microscopically visible repair factories.
Collapse
Affiliation(s)
- Quentin Gueranger
- Institut National de la Santé et de la Recherche Médicale U783 (Développement du Système Immunitaire), Université Paris Descartes, Faculté de Médecine René Descartes, Site Necker-Enfants Malades, Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Lee DH, Pfeifer GP. Translesion synthesis of 7,8-dihydro-8-oxo-2'-deoxyguanosine by DNA polymerase eta in vivo. Mutat Res 2008; 641:19-26. [PMID: 18359049 PMCID: PMC2410043 DOI: 10.1016/j.mrfmmm.2008.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/10/2008] [Accepted: 02/07/2008] [Indexed: 12/20/2022]
Abstract
7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) is one of the most common DNA lesions induced by oxidative stress. This lesion can be bypassed by DNA polymerase eta (Pol eta) using in vitro translesion synthesis (TLS) reactions. However, the role that Pol eta plays in vivo contributing to 8-oxo-dG mutagenesis remains unclear. To clarify the role of Pol eta in 8-oxo-dG mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector (pSP189) which replicates in mammalian cells. The pSP189 plasmid was treated with methylene blue plus light (MBL), which produces predominantly 8-oxo-dG in DNA, and was then replicated in GM637 cells in presence of siRNA that knocks down the expression of Pol eta, or in XP-V cells, which lack functional Pol eta. The mutant frequencies were increased in the Pol eta siRNA knockdown cells and in XP-V cells relative to control, meaning that Pol eta plays an important role in preventing 8-oxo-dG mutagenesis. In the same system, knockdown of OGG1 also led to an increase in mutagenesis. Neither the type of mutations nor their distribution along the supF gene were significantly different between control and target specific siRNA-transfected cells (or XP-V cells) and were predominantly G to T transversions. These results show that Pol eta has an important role in error-free 8-oxo-dG lesion bypass and avoidance of oxidative stress-induced mutagenesis in vivo.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Gerd P. Pfeifer
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| |
Collapse
|
61
|
Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. DNA adduct structure-function relationships: comparing solution with polymerase structures. Chem Res Toxicol 2007; 21:45-52. [PMID: 18052109 DOI: 10.1021/tx700193x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has now been nearly two decades since the first solution structures of DNA duplexes covalently damaged by metabolically activated polycyclic aromatic hydrocarbons and amines were determined by NMR. Dozens of such high-resolution structures are now available, and some broad structural themes have been uncovered. It has been hypothesized that the solution structures are relevant to the biochemical processing of the adducts. The structural features of the adducts are considered to determine their mutational properties in DNA polymerases and their repair susceptibilities. In recent years, a number of crystal structures of DNA adducts of interest to our work have been determined in DNA polymerases. Accordingly, it is now timely to consider how NMR solution structures relate to structures within DNA polymerases. The NMR solution structural themes for polycyclic aromatic adducts are often observed in polymerase crystal structures. While the polymerase interactions can on occasion override the solution preferences, intrinsic adduct conformations favored in solution are often manifested within polymerases and likely play a significant role in lesion processing.
Collapse
Affiliation(s)
- Suse Broyde
- Department of Biology, New York University, New York NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
62
|
García-Ortiz MV, Roldán-Arjona T, Ariza RR. The noncatalytic C-terminus of AtPOLK Y-family DNA polymerase affects synthesis fidelity, mismatch extension and translesion replication. FEBS J 2007; 274:3340-50. [PMID: 17550419 DOI: 10.1111/j.1742-4658.2007.05868.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell survival depends not only on the ability to repair damaged DNA but also on the capability to perform DNA replication on unrepaired or imperfect templates. Crucial to this process are specialized DNA polymerases belonging to the Y family. These enzymes share a similar catalytic fold in their N-terminal region, and most of them have a less-well-conserved C-terminus which is not required for catalytic activity. Although this region is essential for appropriate localization and recruitment in vivo, its precise role during DNA synthesis remains unclear. Here we have compared the catalytic properties of AtPOLK, an Arabidopsis orthologue of mammalian pol kappa, and a truncated version lacking 193 amino acids from its C-terminus. We found that C-terminally truncated AtPOLK is a high-efficiency mutant protein, the DNA-binding capacity of which is not affected but it has higher catalytic efficiency and fidelity than the full-length enzyme. The truncated protein shows increased propensity to extend mispaired primer termini through misalignment and enhanced error-free bypass activity on DNA templates containing 7,8-dihydro-8-oxoGuanine. These results suggest that, in addition to facilitating recruitment to the replication fork, the C-terminus of Y-family DNA polymerases may also play a role in the kinetic control of their enzymatic activity.
Collapse
|
63
|
Wang H, Yadav JS. Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways. Apoptosis 2006; 12:535-48. [PMID: 17186382 DOI: 10.1007/s10495-006-0008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
The overall mechanism(s) underlying macrophage apoptosis caused by the toxins of the indoor mold Stachybotrys chartarum (SC) are not yet understood. In this direction, we report a microarray-based global gene expression profiling on the murine alveolar macrophage cell line (MH-S) treated with SC toxins for short (2 h) and long (24 h) periods, coinciding with the pre-apoptotic (<3 h) and progressed apoptotic stages of the treated cells, respectively. Microarray results on differential expression were validated by real-time RT-PCR analysis using representative gene targets. The toxin-regulated genes corresponded to multiple cellular processes, including cell growth, proliferation and death, inflammatory/immune response, genotoxic stress and oxidative stress, and to the underlying multiple signal transduction pathways involving MAPK-, NF-kB-, TNF-, and p53-mediated signaling. Transcription factor NF-kB showed dynamic temporal changes, characterized by an initial activation and a subsequent inhibition. Up-regulation of a battery of DNA damage-responsive and DNA repair genes in the early stage of the treatment suggested a possible role of genotoxic stress in the initiation of apoptosis. Simultaneous expression changes in both pro-survival genes and pro-apoptotic genes indicated the role of a critical balance between the two processes in SC toxin-induced apoptosis. Taken together, the results imply that multiple signaling pathways underlie the SC toxin-induced apoptosis in alveolar macrophages.
Collapse
Affiliation(s)
- Huiyan Wang
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | |
Collapse
|
64
|
Ito A, Koshikawa N, Mochizuki S, Omura K, Takenaga K. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells. Biochem Biophys Res Commun 2006; 351:306-11. [PMID: 17056006 DOI: 10.1016/j.bbrc.2006.10.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/16/2022]
Abstract
Hypoxia generated in tumors has been shown to contribute to mutations and genetic instability. However, the molecular mechanisms remain incompletely defined. Since reactive oxygen species (ROS) are overproduced immediately after reoxygenation of hypoxic cells and generate oxidized guanine, we assumed that the mechanisms might involve translesion DNA polymerases that can bypass oxidized guanine. We report here that hypoxia as well as hypoxia mimetics, desferrioxamine, and CoCl(2), enhanced the expression of DNA polymerase iota (pol iota) in human tumor cell lines. Searching the consensus sequence of hypoxia response element to which HIF-1 binds revealed that it locates in the intron 1 of the pol iota gene. These results suggest that HIF-1-mediated pol iota gene expression may be involved in the generation of translesion mutations during DNA replication after hypoxia followed by reoxygenation, thereby contributing to the accumulation of genetic changes in tumor cells.
Collapse
Affiliation(s)
- Akiko Ito
- Division of Chemotherapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan
| | | | | | | | | |
Collapse
|
65
|
Ohkumo T, Kondo Y, Yokoi M, Tsukamoto T, Yamada A, Sugimoto T, Kanao R, Higashi Y, Kondoh H, Tatematsu M, Masutani C, Hanaoka F. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota. Mol Cell Biol 2006; 26:7696-706. [PMID: 17015482 PMCID: PMC1636855 DOI: 10.1128/mcb.01076-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Ohkumo
- Cellular Biology Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wang Y, Wang Y. Synthesis and thermodynamic studies of oligodeoxyribonucleotides containing tandem lesions of thymidine glycol and 8-oxo-2'-deoxyguanosine. Chem Res Toxicol 2006; 19:837-43. [PMID: 16780363 PMCID: PMC2533691 DOI: 10.1021/tx060032l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thymidine glycol (Tg), which is also known as 5,6-dihydroxy-5,6-dihydrothymidine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) are two major types of DNA damage products induced by reactive oxygen species (ROS). Here, we report the synthesis of oligodeoxyribonucleotides (ODNs) containing both Tg and 8-oxodG. The dual incorporation of the two single-base lesions was achieved by using a phosphoramidite building block of 8-oxodG with ultramild base protecting group and a building block of Tg whose nucleobase hydroxyl groups were protected with acetyl functionality. The availability of ODNs carrying neighboring 8-oxodG and Tg provided authentic substrates for assessing the formation and examining the replication and repair of this kind of tandem lesions. In addition, thermodynamic parameters derived from melting temperature data revealed that tandem lesions destabilized the double helix to a greater extent than either of the two single-base lesions alone. The thermodynamic results could offer a basis for understanding the repair of the tandem base lesions.
Collapse
Affiliation(s)
- Yuesong Wang
- Department of Chemistry, University of California at Riverside, 92521-0403, USA
| | | |
Collapse
|
67
|
Venkatesan RN, Bielas JH, Loeb LA. Generation of mutator mutants during carcinogenesis. DNA Repair (Amst) 2006; 5:294-302. [PMID: 16359931 DOI: 10.1016/j.dnarep.2005.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 09/07/2005] [Accepted: 10/26/2005] [Indexed: 01/16/2023]
Abstract
Mutations are rare in normal cells. In contrast, multiple mutations are characteristic in most tumors. Previously we proposed a "mutator phenotype" hypothesis to explain how pre-cancer cells may acquire large number of mutations during carcinogenesis. Here we extend the "mutator phenotype" hypothesis considering recently discovered biochemical activities whose aberrant expression may result in genome-wide random mutations. The scope of this article is to emphasize that simple random point mutations can drive carcinogenesis and highlight new emerging pathways that generate these mutations. We focus specifically on random point mutations generated by replication errors, oxidative base damage, covalent base modifications by enzymes, and spontaneously generated abasic sites as a source of mutator mutants.
Collapse
Affiliation(s)
- Ranga N Venkatesan
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA
| | | | | |
Collapse
|
68
|
Seki M, Gearhart PJ, Wood RD. DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Rep 2006; 6:1143-8. [PMID: 16319960 PMCID: PMC1369213 DOI: 10.1038/sj.embor.7400582] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/17/2005] [Indexed: 11/08/2022] Open
Abstract
Somatic hypermutation of immunoglobulin variable genes, which increases antibody diversity, is initiated by the activation-induced cytosine deaminase (AID) protein. The current DNA-deamination model posits that AID deaminates cytosine to uracil in DNA, and that mutations are generated by DNA polymerases during replication or repair of the uracil residue. Mutations could arise as follows: by DNA replicating past the uracil; by removing the uracil with a uracil glycosylase and replicating past the resulting abasic site with a low-fidelity polymerase; or by repairing the uracil and synthesizing a DNA-repair patch downstream using a low-fidelity polymerase. In this review, we summarize the biochemical properties of specialized DNA polymerases in mammalian cells and discuss their participation in the mechanisms of hypermutation. Many recent studies have examined mice deficient in the genes that encode various DNA polymerases, and have shown that DNA polymerase H (POLH) contributes to hypermutation, whereas POLI, POLK and several other enzymes do not have major roles. The low-fidelity enzyme POLQ has been proposed as another candidate polymerase because it can efficiently bypass abasic sites and recent evidence indicates that it might participate in hypermutation.
Collapse
Affiliation(s)
- Mineaki Seki
- Suite 2.6, Research Pavilion, Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | - Richard D Wood
- Suite 2.6, Research Pavilion, Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
- Tel: +1 412 623 7766; Fax: +1 412 623 7761; E-mail:
| |
Collapse
|
69
|
Choi JH, Besaratinia A, Lee DH, Lee CS, Pfeifer GP. The role of DNA polymerase iota in UV mutational spectra. Mutat Res 2006; 599:58-65. [PMID: 16472831 DOI: 10.1016/j.mrfmmm.2006.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 01/07/2006] [Accepted: 01/10/2006] [Indexed: 11/20/2022]
Abstract
UVB (280-320 nm) and UVC (200-280 nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is a DNA damage-tolerant and error-prone DNA polymerase encoded by the POLH (XPV) gene in humans. Another member of the Y family of error-prone DNA polymerases is POLI encoding DNA polymerase iota (Pol iota). In order to clarify the specific role of Pol iota in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells, similar as we have previously done for Pol eta. Synthetic RNA duplexes were used to efficiently inhibit Pol iota expression in 293 T cells. The supF shuttle vector was irradiated with 254 nm UVC and replicated in 293 T cells in presence of anti-Pol iota siRNA. Surprisingly, there was a consistent reduction of recovered plasmid from cells with Pol iota knockdown and this was independent of UV irradiation of the plasmid. The supF mutant frequency was unchanged in the siRNA knockdown cells relative to control cells confirming that Pol iota does not play an important role in UV mutagenesis. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Neither the type of mutations nor their distribution along the supF gene were significantly different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. These results show that Pol iota has no significant role in UV lesion bypass and mutagenesis in vivo and provides some initial data suggesting that this polymerase may be involved in replication of extrachromosomal DNA.
Collapse
Affiliation(s)
- Jun-Hyuk Choi
- Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
70
|
Wang L, Broyde S. A new anti conformation for N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) allows Watson-Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Nucleic Acids Res 2006; 34:785-95. [PMID: 16452300 PMCID: PMC1360743 DOI: 10.1093/nar/gkj479] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primer extension studies have shown that the Y-family DNA polymerase IV (Dpo4) from Sulfolobus solfataricus P2 can preferentially insert C opposite N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) [F. Boudsocq, S. Iwai, F. Hanaoka and R. Woodgate (2001) Nucleic Acids Res., 29, 4607–4616]. Our goal is to elucidate on a structural level how AAF-dG can be harbored in the Dpo4 active site opposite an incoming dCTP, using molecular modeling and molecular dynamics simulations, since AAF-dG prefers the syn glycosidic torsion. Both anti and syn conformations of the templating AAF-dG in a Dpo4 ternary complex were investigated. All four dNTPs were studied. We found that an anti glycosidic torsion with C1′-exo deoxyribose conformation allows AAF-dG to be Watson–Crick hydrogen-bonded with dCTP with modest polymerase perturbation, but other nucleotides are more distorting. The AAF is situated in the Dpo4 major groove open pocket with fluorenyl rings 3′- and acetyl 5′-directed along the modified strand, irrespective of dNTP. With AAF-dG syn, the fluorenyl rings are in the small minor groove pocket and the active site region is highly distorted. The anti-AAF-dG conformation with C1′-exo sugar pucker can explain the preferential incorporation of dC by Dpo4. Possible relevance of our new major groove structure for AAF-dG to other polymerases, lesion repair and solution conformations are discussed.
Collapse
Affiliation(s)
| | - Suse Broyde
- To whom all correspondence should be addressed. Tel: +1 212 998 8231; Fax: +1 212 995 4015;
| |
Collapse
|
71
|
Krutyakov VM. Eukaryotic error-prone DNA polymerases: The presumed roles in replication, repair, and mutagenesis. Mol Biol 2006. [DOI: 10.1134/s0026893306010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Xie Z, Zhang Y, Guliaev AB, Shen H, Hang B, Singer B, Wang Z. The p-benzoquinone DNA adducts derived from benzene are highly mutagenic. DNA Repair (Amst) 2005; 4:1399-409. [PMID: 16181813 DOI: 10.1016/j.dnarep.2005.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzene is a human leukemia carcinogen, resulting from its cellular metabolism. A major benzene metabolite is p-benzoquinone (pBQ), which can damage DNA by forming the exocyclic base adducts pBQ-dC, pBQ-dA, and pBQ-dG in vitro. To gain insights into the role of pBQ in benzene genotoxicity, we examined in vitro translesion synthesis and in vivo mutagenesis of these pBQ adducts. Purified REV1 and Polkappa were essentially incapable of translesion synthesis in response to the pBQ adducts. Opposite pBQ-dA and pBQ-dC, purified human Poliota was capable of error-prone nucleotide insertion, but was unable to perform extension synthesis. Error-prone translesion synthesis was observed with Poleta. However, DNA synthesis largely stopped opposite the lesion. Consistent with in vitro results, replication of site-specifically damaged plasmids was strongly inhibited by pBQ adducts in yeast cells, which depended on both Polzeta and Poleta. In wild-type cells, the majority of translesion products were deletions at the site of damage, accounting for 91%, 90%, and 76% for pBQ-dA, pBQ-dG, and pBQ-dC, respectively. These results show that the pBQ-dC, pBQ-dA, and pBQ-dG adducts are strong blocking lesions, and are highly mutagenic by predominantly inducing deletion mutations. These results are consistent with the lesion structures predicted by molecular dynamics simulation. Our results led to the following model. Translesion synthesis normally occurs by directly copying the lesion site through base insertion and extension synthesis. When the lesion becomes incompatible in accommodating a base opposite the lesion in DNA, translesion synthesis occurs by a less efficient lesion loop-out mechanism, resulting in avoiding copying the damaged base and leading to deletion.
Collapse
Affiliation(s)
- Zhongwen Xie
- Graduate Center for Toxicology, University of Kentucky, Lexington, 40536, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Watson NB, Mukhopadhyay S, McGregor WG. Translesion DNA replication proteins as molecular targets for cancer prevention. Cancer Lett 2005; 241:13-22. [PMID: 16303242 DOI: 10.1016/j.canlet.2005.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 01/10/2023]
Abstract
Mutations in DNA are generally considered to have an etiologic role in the development of cancer. If so, it follows that reducing the frequency of such mutations will reduce the incidence of cancer induced by mutagens. Recent advances in elucidating the molecular mechanisms of carcinogen-induced mutagenesis indicate that replication of DNA templates that contain replication-blocking adducts is accomplished with error-prone DNA polymerases. These polymerases have relaxed base-pairing requirements, and can insert bases across from adducted templates, but with potentially mutagenic consequences. In principle, these proteins present new and attractive molecular targets to reduce mutagenesis. If this can be done in vivo without increasing cytotoxic responses to carcinogens, then novel chemopreventive strategies can be designed to reduce the risk of cancer in exposed populations prior to the appearance of disease symptoms.
Collapse
Affiliation(s)
- Nicholas B Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
74
|
Zan H, Shima N, Xu Z, Al-Qahtani A, Evinger III AJ, Zhong Y, Schimenti JC, Casali P. The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO J 2005; 24:3757-69. [PMID: 16222339 PMCID: PMC1276717 DOI: 10.1038/sj.emboj.7600833] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/12/2005] [Indexed: 11/08/2022] Open
Abstract
Immunoglobulin (Ig) somatic hypermutation (SHM) critically underlies the generation of high-affinity antibodies. Mutations can be introduced by error-prone polymerases such as polymerase zeta (Rev3), a mispair extender, and polymerase eta, a mispair inserter with a preference for dA/dT, while repairing DNA lesions initiated by AID-mediated deamination of dC to yield dU:dG mismatches. The partial impairment of SHM observed in the absence of these polymerases led us to hypothesize a main role for another translesion DNA polymerase. Here, we show that deletion in C57BL/6J mice of the translesion polymerase theta, which possesses a dual nucleotide mispair inserter-extender function, results in greater than 60% decrease of mutations in antigen-selected V186.2DJ(H) transcripts and greater than 80% decrease in mutations in the Ig H chain intronic J(H)4-iEmu sequence, together with significant alterations in the spectrum of the residual mutations. Thus, polymerase theta plays a dominant role in SHM, possibly by introducing mismatches while bypassing abasic sites generated by UDG-mediated deglycosylation of AID-effected dU, by extending DNA past such abasic sites and by synthesizing DNA during dU:dG mismatch repair.
Collapse
Affiliation(s)
- Hong Zan
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Naoko Shima
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhenming Xu
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Ahmed Al-Qahtani
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Albert J Evinger III
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - Yuan Zhong
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Paolo Casali
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
75
|
Wang L, Wu M, Yan SF, Patel DJ, Geacintov NE, Broyde S. Accommodation of a 1S-(-)-benzo[c]phenanthrenyl-N6-dA adduct in the Y-family Dpo4 DNA polymerase active site: structural insights through molecular dynamics simulations. Chem Res Toxicol 2005; 18:441-56. [PMID: 15777084 PMCID: PMC4696753 DOI: 10.1021/tx049786v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular modeling and molecular dynamics simulations have been performed to elucidate feasible structures in the Y-family Dpo4 DNA polymerase for the 1S-(-)-trans-anti-B[c]Ph-N6-dA adduct, derived from the fjord region polycyclic aromatic hydrocarbon (PAH) benzo[c]phenanthrene. Three types of models were delineated as follows: an intercalation model, a model with the aromatic ring system in the polymerase major groove open pocket, and a -1 deletion major groove model. All four 2'-deoxyribonucleoside 5'-triphosphates (dNTPs) were considered in the first two cases, and a normal Watson-Crick partner positioned to have skipped the modified template was employed as the incoming dNTP in the -1 deletion case. The trajectories derived from the dynamics simulations were analyzed in detail to evaluate the extents of distortion for each system. Overall, our results suggest that the major groove model is the least distorted, followed by the -1 deletion model, while the intercalation model is perturbed the most. The syn-dGTP and syn-dATP mismatches opposite the lesion are well-accommodated in the major groove model, as is the normal Watson-Crick partner dTTP. The intercalation model appears most likely to impede the polymerase. More broadly, these models look reasonable for other PAH metabolite-derived adducts to adenine with similar 1S stereochemistry. Furthermore, these models suggest how error-prone translesion synthesis by Y-family polymerases might produce mutations that may play a role in the initiation of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Suse Broyde
- To whom correspondence should be addressed. Tel: 212-998-8231. Fax: 212-995-4015.
| |
Collapse
|
76
|
Nohmi T, Kim SR, Yamada M. Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Mutat Res 2005; 591:60-73. [PMID: 16081110 DOI: 10.1016/j.mrfmmm.2005.03.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/24/2005] [Accepted: 03/25/2005] [Indexed: 11/15/2022]
Abstract
Chromosome DNA is continuously exposed to various endogenous and exogenous mutagens. Among them, oxidation is one of the most common threats to genetic stability, and multiple DNA repair enzymes protect chromosome DNA from the oxidative damage. In Escherichia coli, three repair enzymes synergistically reduce the mutagenicity of oxidized base 8-hydroxy-guanine (8-OH-G). MutM DNA glycosylase excises 8-OH-G from 8-OH-G:C pairs in DNA and MutY DNA glycosylase removes adenine incorporated opposite template 8-OH-G during DNA replication. MutT hydrolyzes 8-OH-dGTP to 8-OH-dGMP in dNTP pool, thereby reducing the chance of misincorporation of 8-OH-dGTP by DNA polymerases. Simultaneous inactivation of MutM and MutY dramatically increases the frequency of spontaneous G:C to T:A mutations, and the deficiency of MutT leads to the enhancement of T:A to G:C transversions more than 1000-fold over the control level. In humans, the functional homologues of MutM, MutY and MutT, i.e., OGG1, MUTYH (MYH) and MTH1, contribute to the protection of genomic DNA from oxidative stress. Interestingly, several polymorphic forms of these proteins exist in human populations, and some of them are suggested to be associated with cancer susceptibility. Here, we review the polymorphic forms of OGG1, MUTYH and MTH1 involved in repair of 8-OH-G and 8-OH-dGTP, and discuss the significance of the polymorphisms in the maintenance of genomic integrity. We also summarize the polymorphic forms of human DNA polymerase eta, which may be involved in damage tolerance and mutagenesis induced by oxidative stress.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | |
Collapse
|
77
|
Lee GH, Matsushita H. Genetic linkage between Pol iota deficiency and increased susceptibility to lung tumors in mice. Cancer Sci 2005; 96:256-9. [PMID: 15904465 PMCID: PMC11158430 DOI: 10.1111/j.1349-7006.2005.00042.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pol iota is a member of the Y-family DNA polymerases, characterized by their capacity for translesion DNA synthesis and low fidelity base incorporation, and has therefore been assumed to play important roles in mutagenesis and carcinogenesis. In fact, the mouse Pol iota gene is located within the Par2 (pulmonary adenoma resistance 2) locus on distal chromosome 18, which we have identified as a major susceptibility locus regarding urethane induction of pulmonary adenomas. Indeed, Pol iota has been suggested to be a candidate for Par2 from both the genetic and biological standpoints. Taking advantage of 129X1/SvJ mice naturally deficient in Pol iota due to a nonsense mutation within the coding region of the gene, we here analyzed urethane-treated (A/J x 129X1/SvJ)F(1) x A/J backcross and (A/J x 129X1/SvJ)F(2) intercross mice and observed the defective 129X1/SvJ Pol iota allele to be genetically linked with an increased susceptibility to lung tumors relative to the A/J allele. Thus, among the already known mouse Pol iota alleles, the defective 129X1/SvJ allele is associated exclusively with the highest susceptibility to lung tumors. The result indicates a possibility that the Pol iota gene may participate in error-free repair of damaged DNA and prevention of lung tumor development.
Collapse
Affiliation(s)
- Gang-Hong Lee
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan.
| | | |
Collapse
|
78
|
Shimizu T, Azuma T, Ishiguro M, Kanjo N, Yamada S, Ohmori H. Normal immunoglobulin gene somatic hypermutation in Polκ–Polι double-deficient mice. Immunol Lett 2005; 98:259-64. [PMID: 15860226 DOI: 10.1016/j.imlet.2004.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/25/2022]
Abstract
Somatic hypermutation (SHM) occurs in the variable region of immunoglobulin genes in germinal center B cells where it plays an important role in affinity maturation of the T cell-dependent immune response. Although the precise mechanism of SHM is still unknown, it has been suggested that error-prone DNA polymerases (Pol) are involved in SHM. Poliota is a member of the error-prone Y-family of DNA polymerases which exhibit translesion synthesis activity in vitro and are highly mutagenic when replicating on non-damaged DNA templates. In BL2 cell line stimulated to induce SHM, the induction is Poliota-dependent. However, in 129-derived strains of mice deficient in Poliota, SHM is normal. One possible explanation for this discrepancy is that a Poliota deficiency in mice might be compensated for by another error-prone DNA polymerase, such as Polkappa, which also belongs to the Y-family of DNA polymerases. Although SHM in Polkappa-deficient mice is normal, their deficiency might be compensated for by Poliota. In this study, we generated Polkappa-Poliota double-deficient mice and examined them for SHM. We found that the double-deficient mice had the normal SHM frequency and profile, rendering them indistinguishable from Polkappa-deficient mice and thus conclude that Poliota and Polkappa are dispensable for SHM in mice.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Division of Biosignaling, Research Institute for Biological Sciences (RIBS), Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Tissier A, Kannouche P, Reck MP, Lehmann AR, Fuchs RPP, Cordonnier A. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein. DNA Repair (Amst) 2005; 3:1503-14. [PMID: 15380106 DOI: 10.1016/j.dnarep.2004.06.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/13/2004] [Accepted: 06/15/2004] [Indexed: 11/17/2022]
Abstract
The progress of replicative DNA polymerases along the replication fork may be impeded by the presence of lesions in the genome. One way to circumvent such hurdles involves the recruitment of specialized DNA polymerases that perform limited incorporation of nucleotides in the vicinity of the damaged site. This process entails DNA polymerase switch between replicative and specialized DNA polymerases. Five eukaryotic proteins can carry out translesion synthesis (TLS) of damaged DNA in vitro, DNA polymerases zeta, eta, iota, and kappa, and REV1. To identify novel proteins that interact with hpol eta, we performed a yeast two-hybrid screen. In this paper, we show that hREV1 interacts with hpol eta as well as with hpol kappa and poorly with hpol iota. Furthermore, cellular localization analysis demonstrates that hREV1 is present, with hpol eta in replication factories at stalled replication forks and is tightly associated with nuclear structures. This hREV1 nuclear localization occurs independently of the presence of hpol eta. Taken together, our data suggest a central role for hREV1 as a scaffold that recruits DNA polymerases involved in TLS.
Collapse
Affiliation(s)
- Agnès Tissier
- UPR9OO3 - CNRS, Cancérogenèse et Mutagenèse Moléculaire et Structurale, ESBS, Pole API/Bd Sébastien Brant BP 10413, F-67412 - ILLKIRCH, France.
| | | | | | | | | | | |
Collapse
|
80
|
Seki M, Masutani C, Yang LW, Schuffert A, Iwai S, Bahar I, Wood RD. High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J 2004; 23:4484-94. [PMID: 15496986 PMCID: PMC526458 DOI: 10.1038/sj.emboj.7600424] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 08/27/2004] [Indexed: 01/03/2023] Open
Abstract
Endogenous DNA damage arises frequently, particularly apurinic (AP) sites. These must be dealt with by cells in order to avoid genotoxic effects. DNA polymerase theta; is a newly identified enzyme encoded by the human POLQ gene. We find that POLQ has an exceptional ability to bypass an AP site, inserting A with 22% of the efficiency of a normal template, and continuing extension as avidly as with a normally paired base. POLQ preferentially incorporates A opposite an AP site and strongly disfavors C. On nondamaged templates, POLQ makes frequent errors, incorporating G or T opposite T about 1% of the time. This very low fidelity distinguishes POLQ from other A-family polymerases. POLQ has three sequence insertions between conserved motifs in its catalytic site. One insert of approximately 22 residues into the tip of the polymerase thumb subdomain is predicted to confer considerable flexibility and additional DNA contacts to affect enzyme fidelity. POLQ is the only known enzyme that efficiently carries out both the insertion and extension steps for bypass of AP sites, commonly formed as endogenous genomic lesions.
Collapse
Affiliation(s)
- Mineaki Seki
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Pittsburgh, PA, USA
| | - Chikahide Masutani
- Graduate School of Frontier Biosciences, Osaka University and CREST, Japan Science and Technology Corporation, Suita, Osaka, Japan
| | - Lee Wei Yang
- Department of Molecular Genetics & Biochemistry, Center for Computational Biology and Bioinformatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Schuffert
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Pittsburgh, PA, USA
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ivet Bahar
- Department of Molecular Genetics & Biochemistry, Center for Computational Biology and Bioinformatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard D Wood
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Pittsburgh, PA, USA
| |
Collapse
|
81
|
Hsu GW, Kiefer JR, Burnouf D, Becherel OJ, Fuchs RPP, Beese LS. Observing Translesion Synthesis of an Aromatic Amine DNA Adduct by a High-fidelity DNA Polymerase. J Biol Chem 2004; 279:50280-5. [PMID: 15385534 DOI: 10.1074/jbc.m409224200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic amines have been studied for more than a half-century as model carcinogens representing a class of chemicals that form bulky adducts to the C8 position of guanine in DNA. Among these guanine adducts, the N-(2'-deoxyguanosin-8-yl)-aminofluorene (G-AF) and N-2-(2'-deoxyguanosin-8-yl)-acetylaminofluorene (G-AAF) derivatives are the best studied. Although G-AF and G-AAF differ by only an acetyl group, they exert different effects on DNA replication by replicative and high-fidelity DNA polymerases. Translesion synthesis of G-AF is achieved with high-fidelity polymerases, whereas replication of G-AAF requires specialized bypass polymerases. Here we have presented structures of G-AF as it undergoes one round of accurate replication by a high-fidelity DNA polymerase. Nucleotide incorporation opposite G-AF is achieved in solution and in the crystal, revealing how the polymerase accommodates and replicates past G-AF, but not G-AAF. Like an unmodified guanine, G-AF adopts a conformation that allows it to form Watson-Crick hydrogen bonds with an opposing cytosine that results in protrusion of the bulky fluorene moiety into the major groove. Although incorporation opposite G-AF is observed, the C:G-AF base pair induces distortions to the polymerase active site that slow translesion synthesis.
Collapse
Affiliation(s)
- Gerald W Hsu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
82
|
Yang J, Chen Z, Liu Y, Hickey RJ, Malkas LH. Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res 2004; 64:5597-607. [PMID: 15313897 DOI: 10.1158/0008-5472.can-04-0603] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recently discovered human enzyme DNA polymerase iota (pol iota) has been shown to have an exceptionally high error rate on artificial DNA templates. Although there is a considerable body of in vitro evidence for a role for pol iota in DNA lesion bypass, there is no in vivo evidence to confirm this action. We report here that pol iota expression is elevated in breast cancer cells and correlates with a significant decrease in DNA replication fidelity. We also demonstrate that UV treatment of breast cancer cells additionally increases pol iota expression with a peak occurring between 30 min and 2 h after cellular insult. This implies that the change in pol iota expression is an early event after UV-mediated DNA damage. That pol iota may play a role in the higher mutation frequencies observed in breast cancer cells was suggested when a reduction in mutation frequency was found after pol iota was immunodepleted from nuclear extracts of the cells. Analysis of the UV-induced mutation spectra revealed that > 90% were point mutations. The analysis also demonstrated a decreased C --> T nucleotide transition and an increased C --> A transversion rate. Overall, our data strongly suggest that pol iota may be involved in the generation of both increased spontaneous and translesion mutations during DNA replication in breast cancer cells, thereby contributing to the accumulation of genetic damage.
Collapse
Affiliation(s)
- Jin Yang
- Department of Medicine, Division of Hematology/Oncology, Cancer Research Institute, Indiana University of School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
83
|
Zhao B, Xie Z, Shen H, Wang Z. Role of DNA polymerase eta in the bypass of abasic sites in yeast cells. Nucleic Acids Res 2004; 32:3984-94. [PMID: 15284331 PMCID: PMC506798 DOI: 10.1093/nar/gkh710] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abasic (AP) sites are major DNA lesions and are highly mutagenic. AP site-induced mutagenesis largely depends on translesion synthesis. We have examined the role of DNA polymerase eta (Poleta) in translesion synthesis of AP sites by replicating a plasmid containing a site-specific AP site in yeast cells. In wild-type cells, AP site bypass resulted in preferred C insertion (62%) over A insertion (21%), as well as -1 deletion (3%), and complex event (14%) containing multiple mutations. In cells lacking Poleta (rad30), Rev1, Polzeta (rev3), and both Poleta and Polzeta, translesion synthesis was reduced to 30%, 30%, 15% and 3% of the wild-type level, respectively. C insertion opposite the AP site was reduced in rad30 mutant cells and was abolished in cells lacking Rev1 or Polzeta, but significant A insertion was still detected in these mutant cells. While purified yeast Polalpha effectively inserted an A opposite the AP site in vitro, purified yeast Poldelta was much less effective in A insertion opposite the lesion due to its 3'-->5' proofreading exonuclease activity. Purified yeast Poleta performed extension synthesis from the primer 3' A opposite the lesion. These results show that Poleta is involved in translesion synthesis of AP sites in yeast cells, and suggest that an important role of Poleta is to catalyze extension following A insertion opposite the lesion. Consistent with these conclusions, rad30 mutant cells were sensitive to methyl methanesulfonate (MMS), and rev1 rad30 or rev3 rad30 double mutant cells were synergistically more sensitive to MMS than the respective single mutant strains.
Collapse
Affiliation(s)
- Bo Zhao
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
84
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
85
|
Vaisman A, Frank EG, Iwai S, Ohashi E, Ohmori H, Hanaoka F, Woodgate R. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota. DNA Repair (Amst) 2003; 2:991-1006. [PMID: 12967656 DOI: 10.1016/s1568-7864(03)00094-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Humans possess four Y-family polymerases: pols eta, iota, kappa and the Rev1 protein. The pivotal role that pol eta plays in protecting us from UV-induced skin cancers is unquestioned given that mutations in the POLH gene (encoding pol eta), lead to the sunlight-sensitive and cancer-prone xeroderma pigmentosum variant phenotype. The roles that pols iota, kappa and Rev1 play in the tolerance of UV-induced DNA damage is, however, much less clear. For example, in vitro studies in which the ability of pol iota to bypass UV-induced cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-pyrimidone (6-4PP) lesions has been assayed, are somewhat varied with results ranging from limited misinsertion opposite CPDs to complete lesion bypass. We have tested the hypothesis that such discrepancies might have arisen from different assay conditions and local sequence contexts surrounding each UV-photoproduct and find that pol iota can facilitate significant levels of unassisted highly error-prone bypass of a T-T CPD, particularly when the lesion is located in a 3'-A[T-T]A-5' template sequence context and the reaction buffer contains no KCl. When encountering a T-T 6-4PP dimer under the same assay conditions, pol iota efficiently and accurately inserts the correct base, A, opposite the 3'T of the 6-4PP by factors of approximately 10(2) over the incorporation of incorrect nucleotides, while incorporation opposite the 5'T is highly mutagenic. Pol kappa has been proposed to function in the bypass of UV-induced lesions by helping extend primers terminated opposite CPDs. However, we find no evidence that the combined actions of pol iota and pol kappa result in a significant increase in bypass of T-T CPDs when compared to pol iota alone. Our data suggest that under certain conditions and sequence contexts, pol iota can bypass T-T CPDs unassisted and can efficiently incorporate one or more bases opposite a T-T 6-4PP. Such biochemical activities may, therefore, be of biological significance especially in XP-V cells lacking the primary T-T CPD bypassing enzyme, pol eta.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Building 6, Room 1A13, 9000 Rockville Pike, Bethesda, MD 20892-2725,USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Lee GH, Nishimori H, Sasaki Y, Matsushita H, Kitagawa T, Tokino T. Analysis of lung tumorigenesis in chimeric mice indicates the Pulmonary adenoma resistance 2 (Par2) locus to operate in the tumor-initiation stage in a cell-autonomous manner: detection of polymorphisms in the Poli gene as a candidate for Par2. Oncogene 2003; 22:2374-82. [PMID: 12700672 DOI: 10.1038/sj.onc.1206387] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Pulmonary adenoma resistance 2 (Par2) locus of the BALB/cByJ mouse, located within 0.5 cM of chromosome 18, is responsible for reducing the mean multiplicity of urethane-induced lung tumors relative to those in C57BL/6J, A/J and C3H/HeJ mice. Thus, BALB/B6-Par2 congenic strain genetically identical to BALB/cByJ except carrying C57BL/6J Par2 alleles develops seven times more tumors than BALB/cByJ. To gain clues for identification of Par2 candidate genes, we analysed lung tumorigenesis in BALB/cByJ<-->BALB.B6-Par2 chimeric animals. Of 100 tumors induced by urethane in 16 chimeras, 82 originated from BALB.B6-Par2 cells, indicating the Par2 phenotype to be cell-autonomous. In addition, the BALB.B6-Par2- and BALB/cByJ-derived tumors were similar in mean size, implying that the phenotype is primarily expressed during initiation rather than in the promotion stage of carcinogenesis. Given these results, we surveyed a comprehensive mouse genome database and physically mapped Par2 within a 2.3 Mbp segment containing three known genes, Poli, Mbd2 and Dcc. Among those, the Poli seemed to be the most reasonable Par2 candidate, since it encodes an extremely error-prone DNA polymerase preferentially incorporating G or T opposite template T in vitro, reminiscent of the Kras2 activation because of an A to G or T point mutation within codon 61 with which most urethane-induced lung tumors are initiated. Indeed, our sequencing of Poli cDNAs from BALB/cByJ, C57BL/6J, A/J and C3H/HeJ lungs revealed 21 BALB/cByJ-specific single-nucleotide polymorphisms in the coding region accompanied by seven amino-acid substitutions and an elevated frequency of alternative splicing, while no polymorphisms associated with tumor susceptibility were found for either Mbd2 or Dcc. Notably, we obtained evidence that BALB/cByJ Par2 alleles may selectively decrease the frequency of Kras2-mutated tumors compared with C57BL/6J alleles. Consequently, the Poli is an intriguing Par2 candidate clearly deserving further evaluation.
Collapse
MESH Headings
- Adenoma/chemically induced
- Adenoma/genetics
- Alleles
- Alternative Splicing
- Amino Acid Substitution
- Animals
- Animals, Congenic
- Chimera
- Codon/genetics
- DNA, Complementary/genetics
- DNA-Directed DNA Polymerase/chemistry
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/physiology
- Female
- Genes, ras
- Genetic Predisposition to Disease
- Genome
- Immunity, Innate
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Male
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred Strains/genetics
- Neoplasms, Multiple Primary/chemically induced
- Neoplasms, Multiple Primary/genetics
- Phenotype
- Physical Chromosome Mapping
- Point Mutation
- Polymorphism, Single Nucleotide
- Reverse Transcriptase Polymerase Chain Reaction
- Urethane
- DNA Polymerase iota
Collapse
Affiliation(s)
- Gang-Hong Lee
- Department of Pathology, Toramomon Hospital and Okinaka Memorial Institute for Medical Research 2-2-2 Toranomon, Minatoku, Tokyo 105-8470, Japan.
| | | | | | | | | | | |
Collapse
|
87
|
Kannouche P, Fernández de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 2003; 22:1223-33. [PMID: 12606586 PMCID: PMC150329 DOI: 10.1093/emboj/cdf618] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Y-family DNA polymerases can replicate past a variety of damaged bases in vitro but, with the exception of DNA polymerase eta (poleta), which is defective in xeroderma pigmentosum variants, there is little information on the functions of these polymerases in vivo. Here, we show that DNA polymerase iota (poliota), like poleta, associates with the replication machinery and accumulates at stalled replication forks following DNA-damaging treatment. We show that poleta and poliota foci form with identical kinetics and spatial distributions, suggesting that localization of these two polymerases is tightly co-ordinated within the nucleus. Furthermore, localization of poliota in replication foci is largely dependent on the presence of poleta. Using several different approaches, we demonstrate that poleta and poliota interact with each other physically and that the C-terminal 224 amino acids of poliota are sufficient for both the interaction with poleta and accumulation in replication foci. Our results provide strong evidence that poleta targets poliota to the replication machinery, where it may play a general role in maintaining genome integrity as well as participating in translesion DNA synthesis.
Collapse
Affiliation(s)
- Patricia Kannouche
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Antonio R. Fernández de Henestrosa
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Barry Coull
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Antonio E. Vidal
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Colin Gray
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Daniel Zicha
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Roger Woodgate
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Alan R. Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| |
Collapse
|
88
|
Shcherbakova PV, Bebenek K, Kunkel TA. Functions of eukaryotic DNA polymerases. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:RE3. [PMID: 12844548 DOI: 10.1126/sageke.2003.8.re3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A major function of DNA polymerases is to accurately replicate the six billion nucleotides that constitute the human genome. This task is complicated by the fact that the genome is constantly challenged by a variety of endogenous and exogenous DNA-damaging agents. DNA damage can block DNA replication or alter base coding potential, resulting in mutations. In addition, the accumulation of damage in nonreplicating DNA can affect gene expression, which leads to the malfunction of many cellular processes. A number of DNA repair systems operate in cells to remove DNA lesions, and several DNA polymerases are known to be the key components of these repair systems. In the past few years, a number of novel DNA polymerases have been discovered that likely function in replicative bypass of DNA damage missed by DNA repair enzymes or in specialized forms of repair. Furthermore, DNA polymerases can act as sensors in cell cycle checkpoint pathways that prevent entry into mitosis until damaged DNA is repaired and replication is completed. The list of DNA template-dependent eukaryotic DNA polymerases now consists of 14 enzymes with amazingly different properties. In this review, we discuss the possible functions of these polymerases in DNA damage repair, the replication of intact and damaged chromosomes, and cell cycle checkpoints.
Collapse
Affiliation(s)
- Polina V Shcherbakova
- Laboratory of Molecular Genetics at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
89
|
Abstract
Based upon phylogenetic relationships, the broad Y-family of DNA polymerases can be divided into various subfamilies consisting of UmuC (polV)-like; DinB (polIV/polkappa)-like; Rev1-like, Rad30A (poleta)-like and Rad30B (poliota)-like polymerases. The polIV/polkappa-like polymerases are most ubiquitous, having been identified in bacteria, archaea and eukaryotes. In contrast, the polV-like polymerases appear restricted to bacteria (both Gram positive and Gram negative). Rev1 and poleta-like polymerases are found exclusively in eukaryotes, and to date, poliota-like polymerases have only been identified in higher eukaryotes. In general, the in vitro properties of polymerases characterized within each sub-family are quite similar. An exception to this rule occurs with the poliota-like polymerases, where the enzymatic properties of Drosophila melanogaster poliota are more similar to that of Saccharomyces cerevisiae and human poleta than to the related human poliota. For example, like poleta, Drosophila poliota can bypass a cis-syn thymine-thymine dimer both accurately and efficiently, while human poliota bypasses the same lesion inefficiently and with low-fidelity. Even in cases where human poliota can efficiently insert a base opposite a lesion (such as a synthetic abasic site, the 3'T of a 6-4-thymine-thymine pyrimidine-pyrimidone photoproduct or opposite benzo[a]pyrene diol epoxide deoxyadenosine adducts), further extension is often limited. Thus, although poliota most likely arose from a genetic duplication of poleta millions of years ago as eukaryotes evolved, it would appear that poliota from humans (and possibly all mammals) has been further subjected to evolutionary pressures that have "tailored" its enzymatic properties away from lesion bypass and towards other function(s) specific for higher eukaryotes. The identification of such functions and the role that mammalian poliota plays in lesion bypass in vivo, should hopefully be forthcoming with the construction of human cell lines deleted for poliota and the identification of mice deficient in poliota.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Building 6, Room 1A13, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA
| | | | | | | | | |
Collapse
|
90
|
Taylor JS. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions. Mutat Res 2002; 510:55-70. [PMID: 12459443 DOI: 10.1016/s0027-5107(02)00252-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The A-rule in mutagenesis was originally proposed to explain the preponderance of X-->T mutations observed for abasic sites and UV damaged sites. It was deduced that when a polymerase was faced with a non-instructional lesion, typified by an abasic site, it would preferentially incorporate an A. In the absence of any other compelling explanation, any lesion causing an X-->T mutation has often been classified as non-instructional to account for its apparent lack of instructional ability. The A-rule and the classification of lesions as non-instructional were formulated before the active sites of any polymerases or the mechanism by which they synthesized DNA were known. Since then, much structural and kinetic data on DNA polymerases has emerged to suggest mechanistic explanations for the A-rule and the instructive and non-instructive behavior of lesions such as cis-syn dimers. Polymerases involved in the replication of undamaged DNA have highly constrained active sites that evolved to only accommodate the templating base and the complementary nucleotide and as a result are relatively intolerant of modifications that alter the size and shape of the nascent base pair. On the other hand, DNA damage bypass polymerases have much more open and less constrained active sites, which are much more tolerant of modifications. An otherwise instructional lesion would become non-instructional if it were unable to fit into the active site, and thereby behave transiently like an abasic site, leading to the insertion of whichever nucleotide is favored by the polymerase, generally an A. In this review, what is known about the active sites and mechanisms of replicative and DNA damage bypass polymerases will be discussed with regard to the A-rule and non-instructive behavior of lesions, typified by dipyrimidine photoproducts.
Collapse
|
91
|
Servant L, Cazaux C, Bieth A, Iwai S, Hanaoka F, Hoffmann JS. A role for DNA polymerase beta in mutagenic UV lesion bypass. J Biol Chem 2002; 277:50046-53. [PMID: 12388548 DOI: 10.1074/jbc.m207101200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability.
Collapse
Affiliation(s)
- Laurence Servant
- Group "Genetic instability and cancer" at the Institut de Pharmacologie et Biologie Structurale, UMR CNRS 5089, 31077 Toulouse cédex 4, France
| | | | | | | | | | | |
Collapse
|
92
|
Otsuka C, Sanadai S, Hata Y, Okuto H, Noskov VN, Loakes D, Negishi K. Difference between deoxyribose- and tetrahydrofuran-type abasic sites in the in vivo mutagenic responses in yeast. Nucleic Acids Res 2002; 30:5129-35. [PMID: 12466536 PMCID: PMC137977 DOI: 10.1093/nar/gkf666] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have analyzed the mutagenic specificity of an abasic site in DNA using the yeast oligonucleotide transformation assay. Oligonucleotides containing an abasic site or its analog were introduced into B7528 or its derivatives, and nucleotide incorporation opposite abasic sites was analyzed. Cytosine was most frequently incorporated opposite a natural abasic site (O) ('C-rule'), followed by thymine. Deletion of REV1 decreased the transformation efficiency and the incorporation of cytosine nearly to a background level. In contrast, deletion of RAD30 did not affect them. We compared the mutagenic specificity with that of a tetrahydrofuran abasic site (F), an abasic analog used widely. Its mutation spectrum was clearly different from that of O. Adenine, not cytosine, was most favorably incorporated. However, deletion of REV1 decreased the transformation efficiency with F-containing oligonucleotide as in the case of O. These results suggest that the bypass mechanism of F is different from that of O, although the bypasses in both cases are dependent on REV1. We also found that the mutagenic specificity of F can be affected by not only the adjacent bases, but also a base located two positions away from F.
Collapse
Affiliation(s)
- Chie Otsuka
- Gene Research Center, Okayama University, Tsushima, Okayama 700-8530, Japan, National Cancer Institute, Bethesda, MD 20892, USA and. Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
All cells need not only to remove damage from their DNA, but also to be able to replicate DNA containing unrepaired damage. In mammalian cells, the major process by which cells are able to replicate damaged templates is translesion synthesis, the direct synthesis of DNA past altered bases. Crucial to this process is a series of recently discovered DNA polymerases. Most of them belong to a new family of polymerases designated the Y-family, which have conserved sequences in the catalytic N-terminal half of the proteins. These polymerases have different efficiencies and specificities in vitro depending on the type of damage in the template.One of them, DNA polymerase eta, is defective in xeroderma pigmentosum variants, and overwhelming evidence suggests that this is the polymerase that carries out translesion synthesis past UV-induced cyclobutane pyrimidine dimers in vivo. DNA polymerase eta is localised in replication factories during DNA replication and accumulates at sites of stalled replication forks. Many studies have been carried out on the properties of the other polymerases in vitro, but there is as yet very little evidence for their specific roles in vivo.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
94
|
Abstract
DNA repair is crucial to the well-being of all organisms from unicellular life forms to humans. A rich tapestry of mechanistic studies on DNA repair has emerged thanks to the recent discovery of Y-family DNA polymerases. Many Y-family members carry out aberrant DNA synthesis-poor replication accuracy, the favored formation of non-Watson-Crick base pairs, efficient mismatch extension, and most importantly, an ability to replicate through DNA damage. This review is devoted primarily to a discussion of Y-family polymerase members that exhibit error-prone behavior. Roles for these remarkable enzymes occur in widely disparate DNA repair pathways, such as UV-induced mutagenesis, adaptive mutation, avoidance of skin cancer, and induction of somatic cell hypermutation of immunoglobulin genes. Individual polymerases engaged in multiple repair pathways pose challenging questions about their roles in targeting and trafficking. Macromolecular assemblies of replication-repair "factories" could enable a cell to handle the complex logistics governing the rapid migration and exchange of polymerases.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratory, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
95
|
Abstract
Any living cell is faced with the fundamental task of keeping the genome intact in order to develop in an organized manner, to function in a complex environment, to divide at the right time, and to die when it is appropriate. To achieve this goal, an efficient machinery is required to maintain the genetic information encoded in DNA during cell division, DNA repair, DNA recombination, and the bypassing of damage in DNA. DNA polymerases (pols) alpha, beta, gamma, delta, and epsilon are the key enzymes required to maintain the integrity of the genome under all these circumstances. In the last few years the number of known pols, including terminal transferase and telomerase, has increased to at least 19. A particular pol might have more than one functional task in a cell and a particular DNA synthetic event may require more than one pol, which suggests that nature has provided various safety mechanisms. This multi-functional feature is especially valid for the variety of novel pols identified in the last three years. These are the lesion-replicating enzymes pol zeta, pol eta, pol iota, pol kappa, and Rev1, and a group of pols called pol theta;, pol lambda, pol micro, pol sigma, and pol phi that fulfill a variety of other tasks.
Collapse
Affiliation(s)
- Ulrich Hubscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
96
|
Zhang Y, Wu X, Guo D, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z. Lesion bypass activities of human DNA polymerase mu. J Biol Chem 2002; 277:44582-7. [PMID: 12228225 DOI: 10.1074/jbc.m207297200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase mu (Polmu) is a newly discovered member of the polymerase X family with unknown cellular function. The understanding of Polmu function should be facilitated by an understanding of its biochemical activities. By using purified human Polmu for biochemical analyses, we discovered the lesion bypass activities of this polymerase in response to several types of DNA damage. When it encountered a template 8-oxoguanine, abasic site, or 1,N(6)-ethenoadenine, purified human Polmu efficiently bypassed the lesion. Even bulky DNA adducts such as N-2-acetylaminofluorene-adducted guanine, (+)- and (-)-trans-anti-benzo[a]pyrene-N(2)-dG were unable to block the polymerase activity of human Polmu. Bypass of these simple base damage and bulky adducts was predominantly achieved by human Polmu through a deletion mechanism. The Polmu specificity of nucleotide incorporation indicates that the deletion resulted from primer realignment before translesion synthesis. Purified human Polmu also effectively bypassed a template cis-syn TT dimer. However, this bypass was achieved in a mainly error-free manner with AA incorporation opposite the TT dimer. These results provide new insights into the biochemistry of human Polmu and show that efficient translesion synthesis activity is not strictly confined to the Y family polymerases.
Collapse
Affiliation(s)
- Yanbin Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Kannouche P, Fernández de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D, Woodgate R, Lehmann AR. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 2002; 21:6246-56. [PMID: 12426396 PMCID: PMC137208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Y-family DNA polymerases can replicate past a variety of damaged bases in vitro but, with the exception of DNA polymerase eta (poleta), which is defective in xeroderma pigmentosum variants, there is little information on the functions of these polymerases in vivo. Here, we show that DNA polymerase iota (poliota), like poleta, associates with the replication machinery and accumulates at stalled replication forks following DNA-damaging treatment. We show that poleta and poliota foci form with identical kinetics and spatial distributions, suggesting that localization of these two polymerases is tightly co-ordinated within the nucleus. Furthermore, localization of poliota in replication foci is largely dependent on the presence of poleta. Using several different approaches, we demonstrate that poleta and poliota interact with each other physically and that the C-terminal 224 amino acids of poliota are sufficient for both the interaction with poleta and accumulation in replication foci. Our results provide strong evidence that poleta targets poliota to the replication machinery, where it may play a general role in maintaining genome integrity as well as participating in translesion DNA synthesis.
Collapse
Affiliation(s)
- Patricia Kannouche
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Antonio R. Fernández de Henestrosa
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Barry Coull
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Antonio E. Vidal
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Colin Gray
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Daniel Zicha
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Roger Woodgate
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| | - Alan R. Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, Cancer Research UK London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3PX, UK and Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA Present address: Unitat de Microbiologia, Departament de Genètica i de Microbiologia Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain Corresponding author e-mail:
| |
Collapse
|
98
|
Simhadri S, Kramata P, Zajc B, Sayer JM, Jerina DM, Hinkle DC, Wei CSJ. Benzo[a]pyrene diol epoxide-deoxyguanosine adducts are accurately bypassed by yeast DNA polymerase zeta in vitro. Mutat Res 2002; 508:137-45. [PMID: 12379469 DOI: 10.1016/s0027-5107(02)00211-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The possible role of bypass DNA polymerase zeta in mutagenic translesion synthesis past benzo[a]pyrene (BP) 7,8-diol-9,10-epoxide (DE) N(2)-deoxyguanosine (dG) adducts has been examined. We prepared 59-mer DNA templates containing dG adducts derived from trans opening of enantiomers of BP DE-2, in which the 7-hydroxyl group and epoxide oxygen are trans. The 10S-BP DE-dG and 10R-BP DE-dG adducts derive from the (+)- and (-)-DE-2 enantiomers, respectively. The adducted dG is located at a site identified as a G-->T mutational hotspot in random mutagenesis studies of (+)-BP DE-2 in Chinese hamster V-79 cells. Yeast pol zeta (complex of Gst-Rev3p and Rev7p) formed extension products (total of all lengths) of 71, 74 and 88% of a primer annealed to the 10S-BP DE-dG, 10R-BP DE-dG and non-adducted 59-mer templates, respectively. However, only 18 and 19% of the primer was extended to the full-length product on 10S-BP DE-dG and 10R-BP DE-dG adducted templates compared to 55% of the primer on the non-adducted template. A major 34-mer product corresponding to primer elongation up to and including the base before the adduct indicated that nucleotide incorporation opposite both adducts was strongly blocked. Full-length products were isolated from gels and subjected to PCR amplification and cloning. Sequence analysis of more than 300 clones of these full-length products on each template showed that only the correct dCMP was incorporated opposite both the adducted and non-adducted G-hotspot in the template. This corresponds to a probability of mutation lower than 0.3%, the limit of detection, and demonstrates the remarkable fidelity of yeast pol zeta in translesion synthesis past these BP DB-dG lesions in vitro.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, College of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Rechkoblit O, Zhang Y, Guo D, Wang Z, Amin S, Krzeminsky J, Louneva N, Geacintov NE. trans-Lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases. J Biol Chem 2002; 277:30488-94. [PMID: 12063247 DOI: 10.1074/jbc.m201167200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The effectiveness of in vitro primer elongation reactions catalyzed by human bypass DNA polymerases kappa (hDinB1), pol eta (hRad30A), pol iota (hRad30B), and yeast pol zeta (Rev3 and Rev7) in site-specifically modified template oligonucleotide strands were studied in vitro. The templates contained single bulky lesions derived from the trans-addition of the mutagenic (+)- or (-)-enantiomers of r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (a metabolite of the environmental carcinogen benzo[a]pyrene), to the exocyclic amino groups of guanine or adenine in oligonucleotide templates 33, or more, bases long. In "running start" primer extension reactions, pol kappa effectively bypassed both the stereoisomeric (+)- and (-)-trans-guanine adducts but not the analogous adenine adducts. In sharp contrast, pol eta, which exhibits considerable sequence homology with pol kappa (both belong to the group of Y family polymerases), is partially blocked by the guanine adducts and the (-)-trans-adenine adduct, although the stereoisomeric (+)-trans-adenine adduct is more successfully bypassed. Neither pol iota nor pol zeta, either alone or in combination, were effective in trans-lesion synthesis past the same adducts. In all cases, the fidelity of insertion is dependent on adduct stereochemistry and structure. Generally, error-free nucleotide insertion opposite the lesions tends to depend more on adduct stereochemistry than error-prone insertion. None of the polymerases tested are a universal bypass polymerase for the stereoisomeric bulky polycyclic aromatic hydrocarbon-DNA adducts derived from anti-BPDE.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Chemistry Department, New York University, 29 Washington Place, New York, NY 10003-5180, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Parlanti E, Fortini P, Macpherson P, Laval J, Dogliotti E. Base excision repair of adenine/8-oxoguanine mispairs by an aphidicolin-sensitive DNA polymerase in human cell extracts. Oncogene 2002; 21:5204-12. [PMID: 12149642 DOI: 10.1038/sj.onc.1205561] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 03/06/2002] [Accepted: 03/28/2002] [Indexed: 11/08/2022]
Abstract
Replication of DNA containing 8-oxo-7,8-dihydroguanine (8oxoG) can generate 8oxoG/A base pairs which, if uncorrected, lead to G-->T transversions. It is generally accepted that the repair of these promutagenic base pairs in human cells is initiated by the MutY DNA glycosylase homolog (hMYH). Here we provide biochemical evidence that human cell extracts perform base excision repair (BER) on both DNA strands of an 8oxoG/A mismatch. At early repair times the specificity of nucleotide incorporation indicates a preferential insertion of C opposite 8oxoG leading to the formation of 8oxoG/C pairs. This is followed by repair synthesis on the opposite DNA strand that is consistent with hOGG1-mediated correction of 8oxoG/C to G/C. Repair synthesis on either strand is completely inhibited by aphidicolin suggesting that a replicative DNA polymerase is involved in the gap filling. This is the first demonstration that repair of 8oxoG/A base pairs is by two BER events likely mediated by Poldelta/epsilon. We suggest that the Poldelta/epsilon-mediated BER is the general mode of repair when BER lesions are formed at replication forks.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|