51
|
Post H, Schwarz A, Brandenburger T, Aumüller G, Wilhelm B. Arrangement of PMCA4 in bovine sperm membrane fractions. ACTA ACUST UNITED AC 2010; 33:775-83. [DOI: 10.1111/j.1365-2605.2009.01022.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Zitranski N, Borth H, Ackermann F, Meyer D, Vieweg L, Breit A, Gudermann T, Boekhoff I. The "acrosomal synapse": Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun Integr Biol 2010; 3:513-21. [PMID: 21331227 DOI: 10.4161/cib.3.6.13137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermatozoa are highly polarized cells composed of two morphological and functional units, each optimized for a special task. Although the apparent division into head and tail may as such represent the anatomical basis to avoid random diffusion of their special sets of signaling proteins and lipids, recent findings demonstrate the presence of lipid raft-derived membrane platforms and specific scaffolding proteins, thus indicating that smaller sub-domains exist in the two functional units of male germ cells. The aim of this review is to summarize new insights into the principles of subcellular organization in mammalian spermatozoa. Special emphasis is placed on recent observations indicating that an "acrosomal synapse" is formed by lipid raft-derived membrane micro-environments and multidomain scaffolding proteins. Both mechanisms appear to be responsible for ensuring the attachment of the huge acrosomal vesicle to the overlaying plasma membrane, as well as for preventing an accidental spontaneous loss of the single acrosome.
Collapse
Affiliation(s)
- Nele Zitranski
- Walther-Straub-Institute of Pharmacology and Toxicology; Ludwig-Maximilians-University; Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Characterization of lactoferrin receptor on human spermatozoa. Reprod Biomed Online 2010; 22:155-61. [PMID: 21195028 DOI: 10.1016/j.rbmo.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 01/23/2023]
Abstract
Lactoferrin (LF) is abundant in human seminal plasma and on sperm surfaces. However, lactoferrin receptor (LFR) on human spermatozoa has not yet been reported. To study the expression, localization and characteristics of LFR on human spermatozoa, different experimental approaches were applied: LFR gene was amplified from a human testis cDNA library and recombinant LFR (rLFR) protein was produced in the expression vector Escherichia coli BL21 (DE3); human sperm membrane proteins were extracted and analysed via Western blot; the binding of LF to LFR was investigated by Far-Western blot, immunoprecipitation and autoradiography analysis and the localization of LFR on sperm surfaces was detected using immunofluorescence. LFR gene was amplified from a human testis cDNA library and the molecular weight of rLFR was 34kDa. The native LFR on human spermatozoa was a 136-kDa tetramer which was anchored to the sperm head and mid-piece through glycophosphatidylinositol. LF could bind to LFR competitively in vitro. As far as is known, this study has elucidated for the first time that LFR was expressed at the testis level, was anchored to the sperm membrane by glycophosphatidylinositol during spermatogenesis. LFR may play important roles through binding to and mediating LF.
Collapse
|
54
|
Caballero J, Frenette G, Sullivan R. Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int 2010; 2011:757194. [PMID: 20981306 PMCID: PMC2958493 DOI: 10.4061/2011/757194] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/03/2010] [Indexed: 12/17/2022] Open
Abstract
After spermatogenesis, testicular spermatozoa are not able to fertilize an oocyte, they must undergo sequential maturational processes. Part of these essential processes occurs during the transit of the spermatozoa through the male reproductive tract. Since the sperm become silent in terms of translation and transcription at the testicular level, all the maturational changes that take place on them are dependent on the interaction of spermatozoa with epididymal and accessory gland fluids. During the last decades, reproductive biotechnologies applied to bovine species have advanced significantly. The knowledge of the bull reproductive physiology is really important for the improvement of these techniques and the development of new ones. This paper focuses on the importance of the sperm interaction with the male reproductive fluids to acquire the fertilizing ability, with special attention to the role of the membranous vesicles present in those fluids and the recent mechanisms of protein acquisition during sperm maturation.
Collapse
Affiliation(s)
- Julieta Caballero
- Département d'Obstétrique-Gynéologie, Faculté de Médecine, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ), Université Laval, 2705 Boulevard Laurier, T1-49, Quebec City, QC, Canada G1V 4G2
| | | | | |
Collapse
|
55
|
Pons-Rejraji H, Artonne C, Sion B, Brugnon F, Canis M, Janny L, Grizard G. Prostasomes: inhibitors of capacitation and modulators of cellular signalling in human sperm. ACTA ACUST UNITED AC 2010; 34:568-80. [DOI: 10.1111/j.1365-2605.2010.01116.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Naruse M, Suetomo H, Matsubara T, Sato T, Yanagawa H, Hoshi M, Matsumoto M. Acrosome reaction-related steroidal saponin, Co-ARIS, from the starfish induces structural changes in microdomains. Dev Biol 2010; 347:147-53. [PMID: 20816679 DOI: 10.1016/j.ydbio.2010.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Cofactor for acrosome reaction-inducing substance (Co-ARIS) is a steroidal saponin from the starfish Asterias amurensis. Saponins exist in many plants and few animals as self-defensive chemicals, but Co-ARIS has been identified as a cofactor for inducing the acrosome reaction (AR). In A. amurensis, the AR is induced by the cooperative action of egg coat components (ARIS, Co-ARIS, and asterosap); however, the mechanism of action of Co-ARIS is obscure. In this study we elucidated the membrane dynamics involved in the action of Co-ARIS. We found that cholesterol specifically inhibited the Co-ARIS activity for AR induction and detected the binding of labeled compounds with sperm using radioisotope-labeled Co-ARIS. Co-ARIS treatment did not reduce the content of sperm sterols, however, the condition was changed and localization of GM1 ganglioside on the periacrosomal region disappeared. We then developed a caveola-breaking assay, a novel method to detect the effect of chemicals on microdomains of culture cell, and confirmed the disturbance of somatic cell caveolae in the presence of Co-ARIS. Finally, by atomic force microscopy observations and surface plasmon resonance measurements using an artificial membrane, we revealed that Co-ARIS colocalized with GM1 clusters on the microdomains. Through this study, we revealed a capacitation-like event for AR in starfish sperm.
Collapse
Affiliation(s)
- Masahiro Naruse
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Lafleur M, Courtemanche L, Karlsson G, Edwards K, Schwartz JL, Manjunath P. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes. Biochem Biophys Res Commun 2010; 399:406-11. [DOI: 10.1016/j.bbrc.2010.07.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 07/25/2010] [Indexed: 11/29/2022]
|
58
|
Fraser LR. The "switching on" of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol Reprod Dev 2010; 77:197-208. [PMID: 19908247 DOI: 10.1002/mrd.21124] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Following the discovery of mammalian sperm capacitation and its fundamental importance for the acquisition of fertilizing potential, it has gradually become possible to identify some specific molecules and molecular events that play pivotal roles in the "switching on" of spermatozoa. These are discussed in the context of the promotion and regulation of capacitation, emphasizing differences between commonly used conditions in vitro and the environment in vivo where spermatozoa normally undergo capacitation. Although typical culture media used in vitro do support capacitation, they do not prevent capacitated cells from undergoing spontaneous acrosome reactions and so losing fertilizing potential. This is not a problem in vitro, but could be in vivo where few spermatozoa reach the site of fertilization. Several small molecules, known to be present in vivo, have been shown in vitro to bind to spermatozoa and to regulate capacitation, first accelerating capacitation and then inhibiting spontaneous acrosome reactions, by regulating cAMP production. Since spermatozoa would contact these molecules during and after ejaculation, it is plausible that they serve a similar function in vivo. The mechanisms whereby the presence or absence of decapacitation factors might alter plasma membrane architecture and so alter functionality of a number of membrane-associated enzymes involved in capacitation are also considered. Finally, several unresolved issues relating to events during capacitation are discussed.
Collapse
Affiliation(s)
- Lynn R Fraser
- Division of Reproduction and Endocrinology, School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
59
|
Effects of flaxseed dietary supplementation on sperm quality and on lipid composition of sperm subfractions and prostatic granules in rabbit. Theriogenology 2010; 73:629-37. [DOI: 10.1016/j.theriogenology.2009.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/22/2009] [Accepted: 10/31/2009] [Indexed: 01/19/2023]
|
60
|
Dun MD, Mitchell LA, Aitken RJ, Nixon B. Sperm-zona pellucida interaction: molecular mechanisms and the potential for contraceptive intervention. Handb Exp Pharmacol 2010:139-178. [PMID: 20839091 DOI: 10.1007/978-3-642-02062-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
At the moment of insemination, millions of mammalian sperm cells are released into the female reproductive tract with the single goal of finding the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilization, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, which surrounds the oocyte and orchestrate a cascade of cellular interactions that culminate in fertilization. These exquisitely cell- and species- specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for the etiology of human infertility and the development of novel targets for fertility regulation. Herein we describe our current understanding of the molecular basis of successful sperm-zona pellucida binding.
Collapse
Affiliation(s)
- Matthew D Dun
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
61
|
Dapino DG, Teijeiro JM, Cabada MO, Marini PE. Dynamics of heparin-binding proteins on boar sperm. Anim Reprod Sci 2009; 116:308-17. [DOI: 10.1016/j.anireprosci.2009.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/19/2009] [Accepted: 02/27/2009] [Indexed: 11/16/2022]
|
62
|
Jakop U, Fuchs B, Süss R, Wibbelt G, Braun B, Müller K, Schiller J. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, (31)P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition. Lipids Health Dis 2009; 8:49. [PMID: 19906304 PMCID: PMC2781011 DOI: 10.1186/1476-511x-8-49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 11/11/2009] [Indexed: 11/29/2022] Open
Abstract
Background Detergents are often used to isolate proteins, lipids as well as "detergent-resistant membrane domains" (DRMs) from cells. Different detergents affect different membrane structures according to their physico-chemical properties. However, the effects of different detergents on membrane lysis of boar spermatozoa and the lipid composition of DRMs prepared from the affected sperm membranes have not been investigated so far. Results Spermatozoa were treated with the selected detergents Pluronic F-127, sodium cholate, CHAPS, Tween 20, Triton X-100 and Brij 96V. Different patterns of membrane disintegration were observed by light and electron microscopy. In accordance with microscopic data, different amounts of lipids and proteins were released from the cells by the different detergents. The biochemical methods to assay the phosphorus and cholesterol contents as well as 31P NMR to determine the phospholipids were not influenced by the presence of detergents since comparable amounts of lipids were detected in the organic extracts from whole cell suspensions after exposure to each detergent. However, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry applied to identify phospholipids was essentially disturbed by the presence of detergents which exerted particular suppression effects on signal intensities. After separation of the membrane fractions released by detergents on a sucrose gradient only Triton X-100 and sodium cholate produced sharp turbid DRM bands. Only membrane solubilisation by Triton X-100 leads to an enrichment of cholesterol, sphingomyelin, phosphatidylinositol and phosphatidylethanolamine in a visible DRM band accompanied by a selective accumulation of proteins. Conclusion The boar sperm membranes are solubilised to a different extent by the used detergents. Particularly, the very unique DRMs isolated after Triton X-100 exposure are interesting candidates for further studies regarding the architecture of sperm.
Collapse
Affiliation(s)
- Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
63
|
Lyng R, Shur BD. Mouse oviduct-specific glycoprotein is an egg-associated ZP3-independent sperm-adhesion ligand. J Cell Sci 2009; 122:3894-906. [PMID: 19808884 DOI: 10.1242/jcs.058776] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse sperm-egg binding requires a multiplicity of receptor-ligand interactions, including an oviduct-derived, high molecular weight, wheat germ agglutinin (WGA)-binding glycoprotein that associates with the egg coat at ovulation. Herein, we report the purification and identification of this sperm-binding ligand. WGA-binding, high molecular weight glycoproteins isolated from hormonally primed mouse oviduct lysates competitively inhibit sperm-egg binding in vitro. Within this heterogeneous glycoprotein preparation, a distinct 220 kDa protein selectively binds to sperm surfaces, and was identified by sequence analysis as oviduct-specific glycoprotein (OGP). The sperm-binding activity of OGP was confirmed by the loss of sperm-binding following immunodepletion of OGP from oviduct lysates, and by the ability of both immunoprecipitated OGP and natively purified OGP to competitively inhibit sperm-egg binding. As expected, OGP is expressed by the secretory cells of the fimbriae and infundibulum; however, in contrast to previous reports, OGP is also associated with both the zona pellucida and the perivitelline space of mouse oocytes. Western blot analysis and lectin affinity chromatography demonstrate that whereas the bulk of OGP remains soluble in the ampullar fluid, distinct glycoforms associate with the cumulus matrix, zona pellucida and perivitelline space. The sperm-binding activity of OGP is carbohydrate-dependent and restricted to a relatively minor peanut agglutinin (PNA)-binding glycoform that preferentially associates with the sperm surface, zona pellucida and perivitelline space, relative to other more abundant glycoforms. Finally, pretreatment of two-cell embryos, which do not normally bind sperm, with PNA-binding OGP stimulates sperm binding.
Collapse
Affiliation(s)
- Robert Lyng
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
64
|
Buffone MG, Doncel GF, Calamera JC, Verstraeten SV. Capacitation-associated changes in membrane fluidity in asthenozoospermic human spermatozoa. ACTA ACUST UNITED AC 2009; 32:360-75. [DOI: 10.1111/j.1365-2605.2008.00874.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
65
|
Tsai PS, De Vries KJ, De Boer-Brouwer M, Garcia-Gil N, Van Gestel RA, Colenbrander B, Gadella BM, Van Haeften T. Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells. Mol Membr Biol 2009; 24:313-24. [PMID: 17520487 DOI: 10.1080/09687860701228692] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sperm cells represent a special exocytotic system since mature sperm cells contain only one large secretory vesicle, the acrosome, which fuses with the overlying plasma membrane during the fertilization process. Acrosomal exocytosis is believed to be regulated by activation of SNARE proteins. In this paper, we identified specific members of the SNARE protein family, i.e., the t-SNAREs syntaxin1 and 2, and the v-SNARE VAMP, present in boar sperm cells. Both syntaxins were predominantly found in the plasma membrane whereas v-SNAREs are mainly located in the outer acrosomal membrane of these cells. Under non-capacitating conditions both syntaxins and VAMP are scattered in well-defined punctate structures over the entire sperm head. Bicarbonate-induced in vitro activation in the presence of BSA causes a relocalization of these SNAREs to a more homogeneous distribution restricted to the apical ridge area of the sperm head, exactly matching the site of sperm zona binding and subsequent induced acrosomal exocytosis. This redistribution of syntaxin and VAMP depends on cholesterol depletion and closely resembles the previously reported redistribution of lipid raft marker proteins. Detergent-resistant membrane isolation and subsequent analysis shows that a significant proportion of syntaxin emerges in the detergent-resistant membrane (raft) fraction under such conditions, which is not the case under those conditions where cholesterol depletion is blocked. The v-SNARE VAMP displays a similar cholesterol depletion-dependent lateral and raft redistribution. Taken together, our results indicate that redistribution of syntaxin and VAMP during capacitation depends on association of these SNAREs with lipid rafts and that such a SNARE-raft association may be essential for spatial control of exocytosis and/or regulation of SNARE functioning.
Collapse
Affiliation(s)
- Pei-Shiue Tsai
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University. Utrecht. The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Rodríguez H, Silva I, Jiménez L, Sánchez C, Espinoza-Navarro O, Boarelli P, Fornés M. Presencia cualitativa y distribución de caveolina 1 (cav-1) en la celularidad y estadios del ciclo de la espermatogénesis. Rev Int Androl 2009. [DOI: 10.1016/s1698-031x(09)71613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
67
|
Gavella M, Garaj-Vrhovac V, Lipovac V, Antica M, Gajski G, Car N. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage. ACTA ACUST UNITED AC 2009; 33:536-44. [PMID: 19490186 DOI: 10.1111/j.1365-2605.2009.00962.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.
Collapse
Affiliation(s)
- Mirjana Gavella
- Department for Cell Biochemistry, Vuk Vrhovac University Clinic for Diabetes, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
68
|
Muratori M, Luconi M, Marchiani S, Forti G, Baldi E. Molecular markers of human sperm functions. ACTA ACUST UNITED AC 2009; 32:25-45. [DOI: 10.1111/j.1365-2605.2008.00875.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
69
|
Girouard J, Frenette G, Sullivan R. Compartmentalization of proteins in epididymosomes coordinates the association of epididymal proteins with the different functional structures of bovine spermatozoa. Biol Reprod 2009; 80:965-72. [PMID: 19164173 DOI: 10.1095/biolreprod.108.073551] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epididymosomes are small membranous vesicles secreted by epithelial cells within the luminal compartment of the epididymis. In bovine, many proteins are associated with epididymosomes, and some of them, such as the glycosylphosphatidylinositol (GPI)-anchored protein P25b, macrophage migration inhibitory factor (MIF), and aldose reductase (AKR1B1), are transferred to spermatozoa during the epididymal maturation process. P25b is associated with detergent-resistant membrane (DRM) domains of epididymal spermatozoa, whereas MIF and AKR1B1 are cytosolic proteins associated with detergent-soluble fractions. In this study, we tested the hypothesis that DRM domains are also present in the epididymosomes and that P25b DRM-associated proteins in these vesicles are transferred to the DRMs of spermatozoa. The presence of DRMs in epididymosomes was confirmed by their insolubility in cold Triton X-100 and their low buoyant density in sucrose gradient. Furthermore, DRMs isolated from epididymosomes are characterized by the exclusive presence of ganglioside GM1 and by high levels of cholesterol and sphingomyelin. Biochemical analysis indicated that P25b is linked to DRM in epididymosomes, whereas MIF and AKR1B1 are completely excluded from these membrane domains. Proteolytic treatment of epididymosomes and immunoblotting studies showed that P25b is affected by trypsin or pronase proteolysis. In contrast, MIF and AKR1B1 are not degraded by proteases, suggesting that they are localized within epididymosomes. Interaction studies between epididymosomes and epididymal spermatozoa demonstrated that P25b is transferred from the DRM of epididymosomes to the DRM of the caput epididymal spermatozoa as a GPI-anchored protein. Together, these data suggest that specific localization and compartmentalization of proteins in the epididymosomes coordinate the association of epididymal proteins with the different functional structures of spermatozoa.
Collapse
Affiliation(s)
- Julie Girouard
- Département d'Obstétrique-Gynécologie, Université Laval, Québec City, Québec, Canada
| | | | | |
Collapse
|
70
|
Miranda PV, Allaire A, Sosnik J, Visconti PE. Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol Reprod 2009; 80:897-904. [PMID: 19144954 PMCID: PMC2804839 DOI: 10.1095/biolreprod.108.075242] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian sperm become fertile after completing capacitation, a process associated with cholesterol loss and changes in the biophysical properties of the sperm membranes that prepares the sperm to undergo the acrosome reaction. Different laboratories have hypothesized that cholesterol efflux can influence the extent and/or movement of lipid raft microdomains. In a previous study, our laboratory investigated the identity of sperm proteins putatively associated with rafts. After extraction with Triton X-100 and ultracentrifugation in sucrose gradients, proteins distributing to the light buoyant-density fractions were cored from polyacrylamide gels and microsequenced. In this study, a subset of these proteins (TEX101, basigin, hexokinase 1, facilitated glucose transporter 3, IZUMO, and SPAM1) and other molecules known to be enriched in membrane rafts (caveolin 2, flotillin 1, flotillin 2, and the ganglioside GM3) were selected to investigate their localization in the sperm and their behavior during capacitation and the acrosome reaction. These molecules localize to multiple sperm domains, including the acrosomal cap (IZUMO, caveolin 2, and flotillin 2), equatorial segment (GM3), cytoplasmic droplet (TEX101), midpiece (basigin, facilitated glucose transporter 3, and flotillin 2), and principal piece (facilitated glucose transporter 3). Some of these markers modified their immunofluorescence pattern after sperm incubation under capacitating conditions, and these changes correlated with the occurrence of the acrosome reaction. While GM3 and caveolin 2 were not detected after the acrosome reaction, flotillin 2 was found in the equatorial segment of acrosome-reacted sperm, and IZUMO distributed along the sperm head, reaching the post- and para-acrosomal areas. Taking into consideration the requirement of the acrosome reaction for sperm to become fusogenic, these results suggest that membrane raft dynamics may have a role in sperm-egg membrane interaction.
Collapse
Affiliation(s)
- Patricia V Miranda
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | | |
Collapse
|
71
|
Abstract
BACKGROUND The epididymis performs an important role in the maturation of spermatozoa including their acquisition of progressive motility and fertilizing ability. However, the molecular mechanisms that govern these maturational events are still poorly defined. This review focuses on recent progress in our understanding of epididymal function including its development, role of the luminal microenvironment in sperm maturation, regulation and novel mechanisms the epididymis utilizes to carry out some of its functions. METHODS A systematic search of Pubmed was carried out using the search term 'epididymis'. Articles that were published in the English language until the end of August 2008 and that focused on the specific topics described above were included. Additional papers cited in the primary reference were also included. RESULTS While the majority of these findings were the result of studies in animal models, recent studies in the human epididymis are also presented including gene profiling studies to examine regionalized expression in normal epididymides as well as in those from vasectomized patients. CONCLUSIONS Significant progress has been made in our understanding of epididymal function providing new insights that ultimately could improve human health. The data also indicate that the human epididymis plays an important role in sperm maturation but has unique properties compared with animal models.
Collapse
Affiliation(s)
- Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, 79430, USA.
| |
Collapse
|
72
|
Kawano N, Yoshida K, Iwamoto T, Yoshida M. Ganglioside GM1 Mediates Decapacitation Effects of SVS2 on Murine Spermatozoa1. Biol Reprod 2008; 79:1153-9. [DOI: 10.1095/biolreprod.108.069054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
73
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
74
|
Zhang N, Shaw ARE, Li N, Chen R, Mak A, Hu X, Young N, Wishart D, Li L. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes. Anal Chim Acta 2008; 627:82-90. [PMID: 18790130 DOI: 10.1016/j.aca.2008.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
Abstract
Lipid rafts are dynamic assemblies of cholesterol and glycolipid that form detergent-insoluble microdomains within membrane lipid bilayers. Because rafts can be separated by flotation on sucrose gradients, interrogation by mass spectrometry (MS) provides a valuable new insight into lipid raft function. Here we combine liquid chromatography (LC) electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) MS/MS to corroborate and extend our previous description of lipid raft proteomes derived from the monocytic cell line THP-1. Interestingly, LC-ESI and MALDI MS/MS identify largely non-overlapping, and therefore, potentially complementary protein populations. Using the combined approach, we detected 277 proteins compared to 52 proteins obtained with the original gel-based MALDI MS. We confirmed the presence of 47 of the original 52 proteins demonstrating the consistency of the lipid raft preparations. We demonstrated by immunoblotting that Rac 1 and Rac 2, two of the 52 proteins we failed to confirm, were indeed absent from the lipid raft fractions. The majority of new proteins were cytoskeletal proteins and their regulators, proteins implicated in membrane fusion and vesicular trafficking or signaling molecules. Our results therefore, confirm and extend previous evidence indicating lipid rafts of monocytic cells are specialized for cytoskeletal assembly and vesicle trafficking. Of particular interest, we detected SNAP-23, basigin, Glut-4 and pantophysin in lipid rafts. Since these proteins are implicated in both vesicular trafficking and gamete fusion, lipid rafts may play a common role in these processes. It is evident that the combination of LC-ESI and LC-MALDI MS/MS increases the proteome coverage which allows better understanding of the lipid raft function.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Girouard J, Frenette G, Sullivan R. Seminal Plasma Proteins Regulate the Association of Lipids and Proteins Within Detergent-Resistant Membrane Domains of Bovine Spermatozoa1. Biol Reprod 2008; 78:921-31. [DOI: 10.1095/biolreprod.107.066514] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
76
|
Binding of bovine seminal plasma protein BSP-A1/-A2 to model membranes: Lipid specificity and effect of the temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:502-13. [DOI: 10.1016/j.bbamem.2007.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/12/2007] [Accepted: 10/29/2007] [Indexed: 11/20/2022]
|
77
|
Jiménez-González MC, Gu Y, Kirkman-Brown J, Barratt CLR, Publicover S. Patch-clamp 'mapping' of ion channel activity in human sperm reveals regionalisation and co-localisation into mixed clusters. J Cell Physiol 2007; 213:801-8. [PMID: 17516540 PMCID: PMC3549611 DOI: 10.1002/jcp.21153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ion channels are pivotal to many aspects of sperm physiology and function. We have used the patch clamp technique to investigate the distribution of ion channels in the plasma membrane of the head of human spermatozoa. We report that three types of activity are common in the equatorial and acrosomal regions of the sperm head. Two of these (a chloride-permeable anion channel showing long stable openings and a second channel which flickered between open and closed states and was dependent upon cytoplasmic factors for activity) were localised primarily to the equatorial segment. A third type, closely resembling the flickering activity but with different voltage sensitivity of P(open), was more widely distributed but was not detectable over the anterior acrosome. In the anterior acrosomal area channels were present but showed very low levels of spontaneous activity. A unique feature of channel activity in the sperm equatorial region was co-localisation into mixed clusters, most patches were devoid of activity but 'active' patches typically contained two or more types of activity (in a single 200-300 nM diameter patch). We conclude that ion channels in the sperm membrane show regionalisation of type and activity and that the channels are clustered into functional groups, possibly interacting through local effects on membrane potential.
Collapse
|
78
|
Companyó M, Iborra A, Villaverde J, Martínez P, Morros A. Membrane fluidity changes in goat sperm induced by cholesterol depletion using beta-cyclodextrin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2246-55. [PMID: 17669356 DOI: 10.1016/j.bbamem.2007.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
Cholesterol efflux from membranes promotes acrosome reaction in goat spermatozoa. In 1 h of incubation of sperm in the presence of beta-cyclodextrin (beta CD), all the interchangeable cholesterol is desorbed from sperm membranes, although acrosome reaction is fully accomplished only after 3-4 h of incubation, as previously published. In the present paper we investigate the effect of cholesterol removal from mature goat spermatozoa on the overall membrane "fluidity" of live cell membranes and of liposomes from sperm lipid extracts. Using steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), we studied the average thermotropic behaviour of membrane lipids, after incubation of live sperm for 1 h in BSA-free medium with the presence/absence of 8 mM beta-cyclodextrin, as a cholesterol acceptor. Unimodal and bimodal theoretical sigmoids fitted best to the experimental thermotropic profiles of liposomes and whole cells, respectively. In the case of whole sperm, two phase transitions, attributable to different lipid domains, were clearly separated by using the fitting parameters. After cholesterol removal, important changes in the relative anisotropy range of the two transitions were found, indicating an increase in the "fluidity" of some of the lipid microdomains of sperm membranes. These changes in sperm lipid dynamics are produced before the onset of sperm acrosome reaction.
Collapse
Affiliation(s)
- Mònica Companyó
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
79
|
Vadnais ML, Galantino-Homer HL, Althouse GC. Current concepts of molecular events during bovine and porcine spermatozoa capacitation. ACTA ACUST UNITED AC 2007; 53:109-23. [PMID: 17612869 DOI: 10.1080/01485010701329386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Spermatozoa are required to undergo the processes of capacitation before they obtain fertilizing ability. The molecular changes of capacitation are still not fully understood. However, it is accepted that capacitation is a sequential process involving numerous physiological changes including destabilization of the plasma membrane, alterations of intracellular ion concentrations and membrane potential, and protein phosphorylation. There are no known morphological changes that occur to the spermatozoon during capacitation. The purpose of this review is to summarize current evidence on the molecular aspects of capacitation both in vivo and in vitro in bovine and porcine spermatozoa. For the purpose of this review, the process of sperm capacitation will encompass maturational events that occur following ejaculation up to binding to the zona pellucida, that triggers acrosomal exocytosis and initiates fertilization.
Collapse
Affiliation(s)
- Melissa L Vadnais
- Department of Urologic Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
80
|
Jones R, James PS, Howes L, Bruckbauer A, Klenerman D. Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl 2007; 9:438-44. [PMID: 17589780 DOI: 10.1111/j.1745-7262.2007.00282.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. METHODS Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. RESULTS Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. CONCLUSION A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.
Collapse
Affiliation(s)
- Roy Jones
- The Babraham Institute, Cambridge, CB2 4AT, UK.
| | | | | | | | | |
Collapse
|
81
|
van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. ACTA ACUST UNITED AC 2007; 13:445-54. [PMID: 17483085 DOI: 10.1093/molehr/gam030] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
An important step in fertilization is the recognition and primary binding of the sperm cell to the zona pellucida (ZP). Primary ZP binding proteins are located at the apical plasma membrane of the sperm head. In order to exclusively study primary zona binding proteins, plasma membranes of sperm heads were isolated, highly purified and subsequently solubilized with a mild or a strong solubilization procedure. Native, highly purified ZP ghosts were used as the binding substrate for solubilized sperm plasma membrane proteins, and a proteomic approach was employed to identify ZP binding proteins. Two-dimensional gel electrophoresis of ZP fragments with bound sperm proteins showed very reproducibly 24 sperm protein spots to be associated to the zona ghosts after mild plasma membrane solubilization whereas only three protein spots were detected after strong plasma membrane solubilization. This indicates the involvement of multiple sperm proteins in ZP binding. The three persistently bound proteins were identified by a tandem mass spectrometry as isoforms of AQN-3 and probably represent the main sperm protein involved in ZP binding. P47, fertilin beta and peroxiredoxin 5 were also conclusively identified. None of the identified proteins has a known acrosomal origin, which further indicated that there was no sample contamination with secondary ZP binding proteins from the acrosomal matrix. In this study, we showed and identified multiple zona binding proteins involved in primary sperm-zona binding. Although we were not able to identify all of the proteins involved, this is a first step in understanding the event of primary sperm-zona interactions and the relevance of this for fertilization is discussed.
Collapse
Affiliation(s)
- Renske A van Gestel
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
82
|
Furland NE, Oresti GM, Antollini SS, Venturino A, Maldonado EN, Aveldaño MI. Very long-chain polyunsaturated fatty acids are the major acyl groups of sphingomyelins and ceramides in the head of mammalian spermatozoa. J Biol Chem 2007; 282:18151-18161. [PMID: 17392275 DOI: 10.1074/jbc.m700709200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Very long-chain (C24 to C34) polyunsaturated fatty acids (VLCPUFA) are important constituents of sphingomyelin (SM) and ceramide (Cer) in testicular germ cells. In the present paper we focused on the SM and Cer and their fatty acids in spermatozoa and their main regions, heads and tails. In bull and ram spermatozoa, SM was the third most abundant phospholipid and VLCPUFA were the major acyl groups ( approximately 70%) of SM and Cer. In rat epididymal spermatozoa the SM/Cer ratio was low in the absence of and could be maintained high in the presence of the cation chelator EDTA, added to the medium used for sperm isolation. This fact points to the occurrence of an active divalent cation-dependent sphingomyelinase. Bull and rat sperm had an uneven head-tail distribution of phospholipid, with virtually all the VLCPUFA-rich SM located at the head, the lower SM content in the rat being determined by the lower sperm head/tail size ratio. Most of the SM from bull sperm heads was readily solubilized with 1% Triton X-100 at 4 degrees C. The detergent-soluble SM fraction was richer in VLCPUFA than the nonsoluble fraction and richer in saturated fatty acids. Cer was produced at the expense of SM, thus decreasing severalfold the SM/Cer ratio in rat spermatozoa incubated for 2 h in presence of the sperm-capacitating agents, calcium, bicarbonate, and albumin. The generation of Cer from SM in the sperm head surface may be an early step among the biochemical and biophysical changes known to take place in the spermatozoon in the physiological events preceding fertilization.
Collapse
Affiliation(s)
- Natalia E Furland
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina
| | - Andrés Venturino
- Laboratorio de Teriogenología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, 8300-Neuquén, Argentina
| | - Eduardo N Maldonado
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina
| | - Marta I Aveldaño
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina.
| |
Collapse
|
83
|
Mahbub Hasan AKM, Ou Z, Sakakibara K, Hirahara S, Iwasaki T, Sato KI, Fukami Y. Characterization of Xenopus egg membrane microdomains containing uroplakin Ib/III complex: roles of their molecular interactions for subcellular localization and signal transduction. Genes Cells 2007; 12:251-67. [PMID: 17295843 DOI: 10.1111/j.1365-2443.2007.01048.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A single-transmembrane protein uroplakin III (UPIII) and its tetraspanin binding-partner uroplakin Ib (UPIb) are members of the UP proteins that were originally identified in mammalian urothelium. In Xenopus laevis eggs, these proteins: xUPIII and xUPIb, are components of the cholesterol-enriched membrane microdomains or "rafts" and involved in the sperm-egg membrane interaction and subsequent egg activation signaling via Src tyrosine kinase at fertilization. Here, we investigate whether the xUPIII-xUPIb complex is in close proximity to CD9, a tetraspanin that has been implicated in the sperm-egg fusion in the mouse and GM1, a ganglioside typically enriched in egg rafts. Preparation of the egg membrane microdomains using different non-ionic detergents (Brij 98 and Triton X-100), chemical cross-linking, co-immunoprecipitation, in vitro kinase assay and in vitro fertilization experiments demonstrated that GM1, but not CD9, is in association with the xUPIII-xUPIb complex and contributes to the sperm-dependent egg activation. Transfection experiments using HEK293 cells demonstrated that xUPIII and xUPIb localized efficiently to the cholesterol-dependent membrane microdomains when they were co-expressed, whereas co-expression of xUPIII and CD9, instead of xUPIb, did not show this effect. Furthermore, xUPIII and xUPIb were shown to suppress kinase activity of the wild type, but not a constitutively active form of, Xenopus Src protein co-expressed in HEK293 cells. These results provide novel insight into the molecular architecture of the egg membrane microdomains containing xUPIII, xUPIb and Src, which may contribute to the understanding of sperm-egg interaction and signaling during Xenopus fertilization.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
84
|
Calcium and fertilization. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
85
|
Tanphaichitr N, Faull KF, Yaghoubian A, Xu H. Lipid Rafts and Sulfogalactosylglycerolipid (SGG) in Sperm Functions: Consensus and Controversy. TRENDS GLYCOSCI GLYC 2007. [DOI: 10.4052/tigg.19.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
86
|
Ackermann F, Zitranski N, Heydecke D, Wilhelm B, Gudermann T, Boekhoff I. The Multi-PDZ domain protein MUPP1 as a lipid raft-associated scaffolding protein controlling the acrosome reaction in mammalian spermatozoa. J Cell Physiol 2007; 214:757-68. [PMID: 17894389 DOI: 10.1002/jcp.21272] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The success of acrosomal exocytosis, a complex process with a variety of interrelated steps, relies on the coordinated interaction of participating signaling molecules. Since scaffolding proteins are known to spatially organize sequential signaling pathways, we examined whether the Multi-PDZ domain protein MUPP1, recently identified in mammalian spermatozoa, is functionally active in controlling acrosomal secretion in mammalian sperm cells. To address this question, permeabilized mouse sperm were loaded with inhibitory antibodies against MUPP1 as well as with a photosensitive Ca(2+) chelator which allows a controlled release of acrosomal Ca(2+). The results revealed that MUPP1 controls initial tethering and docking of the acrosomal vesicle, whereas syntaxin 2, a t-SNARE protein also expressed in the acrosomal cap of mammalian spermatozoa, appears to take part in the final process of acrosomal fusion. Interestingly, using immunogold electron microscopy, it was found that MUPP1 is detectable in the region of the periacrosomal membrane. Furthermore, in isolated detergent-insoluble glycolipid-enriched membrane domains from epididymal spermatozoa, MUPP1 was found to show a striking association with the Triton X-100 insoluble membrane fraction, which did not change significantly upon sperm capacitation or partial chemical extraction of cholesterol. This evidence points to a role of MUPP1 as a membrane raft-associated molecular organizer, and suggests that mammalian spermatozoa may use a scaffolding protein and distinct membrane subdomains to spatially organize components involved in the process of acrosomal exocytosis.
Collapse
Affiliation(s)
- Frauke Ackermann
- Department of Pharmacology and Toxicology, Philipps-University Marburg, Germany
| | | | | | | | | | | |
Collapse
|
87
|
Kawano N, Yoshida M. Semen-coagulating protein, SVS2, in mouse seminal plasma controls sperm fertility. Biol Reprod 2006; 76:353-61. [PMID: 17123940 DOI: 10.1095/biolreprod.106.056887] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian seminal plasma is known to contain a decapacitation factor(s) that prevents capacitation and thus, the fertility of sperm. This phenomenon has been observed in experiments conducted in vitro that assessed the inhibition of epididymal sperm fertility by seminal plasma or by the purified decapacitation factor. However, the phenomenon of decapacitation has not yet been characterized in vivo. In the present study, we demonstrate that seminal vesicle protein secretion 2 (SVS2), which is a 40-kDa basic protein and a major component of the copulatory plug, enters the uterus and interacts with ejaculated sperm heads after copulation. The SVS2-binding region of sperm changed from the postacrosomal region to the equatorial segment, while the sperm migrated through the uterus and finally disappeared in the oviduct. Furthermore, SVS2 reduced the fertility of epididymal sperm. The sperm treated with SVS2 decreased the percentage of fertilized oocytes from 60% to 10%. The capacitation state was assessed by protein tyrosine phosphorylation and the comprehensiveness of the acrosome reaction. SVS2 functioned to maintain sperm in the uncapacitated state and to reverse capacitated sperm to the uncapacitated state. We found that the fertility of ejaculated sperm is associated with SVS2 distribution in the female reproductive tract. These results indicate that SVS2 functions as a decapacitation factor for mouse sperm.
Collapse
Affiliation(s)
- Natsuko Kawano
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Kanagawa 238-0225, Japan
| | | |
Collapse
|
88
|
Lalancette C, Faure RL, Leclerc P. Identification of the proteins present in the bull sperm cytosolic fraction enriched in tyrosine kinase activity: a proteomic approach. Proteomics 2006; 6:4523-40. [PMID: 16847872 DOI: 10.1002/pmic.200500578] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Numerous sperm proteins have been identified on the basis of their increase in tyrosine phosphorylation during capacitation. However, the tyrosine kinases present in spermatozoa that are responsible for this phosphorylation remain unknown. As spermatozoa are devoid of transcriptional and translational activities, molecular biology approaches might not reflect the transcriptional pattern in mature spermatozoa. Working directly with the proteins present in ejaculated spermatozoa is the most reliable approach to identify the tyrosine kinases potentially involved in the capacitation-associated increase in protein tyrosine phosphorylation. A combination of tyrosine kinase assays and proteomic identification tools were used as an approach to identify sperm protein tyrosine kinases. Fractionation by nitrogen cavitation showed that the majority of tyrosine kinase activity is present in the cytosolic fraction of bovine spermatozoa. By the use of Poly-Glu:Tyr(4:1)-agarose affinity chromatography, we isolated a fraction enriched in tyrosine kinase activity. Proteomics approaches permitted the identification of tyrosine kinases from three families: Src (Lyn), Csk, and Tec (Bmx, Btk). We also identified proteins implicated in different cellular events associated with sperm capacitation and acrosome reaction. These results confirm the implication of tyrosine phosphorylation in some aspects of capacitation/acrosome reaction and reveal the identity of new players potentially involved in these processes.
Collapse
Affiliation(s)
- Claudia Lalancette
- Département d'Obstétrique/Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval and Ontogénie et Reproduction, Centre de recherche du CHUQ, Ste-Foy, QC, Canada
| | | | | |
Collapse
|
89
|
Huang YH, Wei CC, Su YH, Wu BT, Ciou YY, Tu CF, Cooper TG, Yeung CH, Chu ST, Tsai MT, Yang RB. Localization and characterization of an orphan receptor, guanylyl cyclase-G, in mouse testis and sperm. Endocrinology 2006; 147:4792-800. [PMID: 16857755 DOI: 10.1210/en.2005-1476] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently identified a novel testis-enriched receptor guanylyl cyclase (GC) in the mouse, designated mGC-G. To further investigate its protein expression and function, we generated a neutralizing antibody specifically against the extracellular domain of this receptor. RT-PCR and immunohistochemical analyses show that mGC-G is predominantly expressed from round spermatids to spermatozoa in mouse testis at both the mRNA and protein levels. Flow cytometry and confocal immunofluorescence reveal that mGC-G is a cell surface protein restricted to the plasma membrane overlying the acrosome and midpiece of the flagellum in mature sperm. Interestingly, Western blot analysis demonstrates that testicular mGC-G is approximately 180 kDa but is subject to limited proteolysis during epididymal sperm transport, resulting in a smaller fragment tethered on the mature sperm surface. On Fluo-3 cytometrical analysis and computer-assisted sperm assay, we found that serum albumin-induced elevation of sperm intracellular Ca(2+) concentration, protein tyrosine phosphorylation, and progressive motility associated with capacitation are markedly reduced by preincubation of the anti-mGC-G neutralizing antibody. Together, these results indicate that mGC-G is proteolytically modified in mature sperm membrane and suggest that mGC-G-mediated signaling may play a critical role in gamete/reproductive biology.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biochemistry and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Thaler CD, Thomas M, Ramalie JR. Reorganization of mouse sperm lipid rafts by capacitation. Mol Reprod Dev 2006; 73:1541-9. [PMID: 16897730 DOI: 10.1002/mrd.20540] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One of the hallmarks of mammalian sperm capacitation is the loss of cholesterol from the plasma membrane. Cholesterol has been associated with the formation of detergent insoluble membrane microdomains in many cell types, and sperm from several mammalian species have been shown to contain detergent-resistant membranes (DRMs). The change in cholesterol composition of the sperm plasma membrane during capacitation raises the question of whether the contents of DRMs are altered during this process. In this study, we investigated changes in protein composition of DRMs isolated from uncapacitated or capacitated mouse sperm. TX-100 insoluble membranes were fractionated by sucrose flotation gradient centrifugation and analyzed by Western and lectin blotting, and capacitation-related differences in protein composition were identified. Following capacitation, the detergent insoluble fractions moved to lighter positions on the sucrose gradients, reflecting a global change in density or composition. We identified several individual proteins that either became enriched or depleted in DRM fractions following capacitation. These data suggest that the physiological changes in sperm motility, ability to penetrate the zona pellucida (ZP), ZP responsiveness, and other capacitation-dependent changes, may be due in part to a functional reorganization of plasma membrane microdomains.
Collapse
|
91
|
Rejraji H, Sion B, Prensier G, Carreras M, Motta C, Frenoux JM, Vericel E, Grizard G, Vernet P, Drevet JR. Lipid Remodeling of Murine Epididymosomes and Spermatozoa During Epididymal Maturation1. Biol Reprod 2006; 74:1104-13. [PMID: 16510839 DOI: 10.1095/biolreprod.105.049304] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have isolated vesicular structures from mouse epididymal fluid, referred to as epididymosomes. Epididymosomes have a roughly spherical aspect and a bilayer membrane, and they are heterogeneous in size and content. They originate from the epididymal epithelium, notably from the caput region, and are emitted in the epididymal lumen by way of apocrine secretion. We characterized their membranous lipid profiles in caput and cauda epididymidal fluid samples and found that epididymosomes were particularly rich in sphingomyelin (SM) and arachidonic acid. The proportion of SM increased markedly during epididymal transit and represented half the total phospholipids in cauda epididymidal epididymosomes. The cholesterol:phospholipid ratio increased from 0.26 in the caput to 0.48 in the cauda epididymidis. Measures of epididymosomal membrane anisotropy revealed that epididymosomes became more rigid during epididymal transit, in agreement with their lipid composition. In addition, we have characterized the membrane lipid pattern of murine epididymal spermatozoa during their maturation. Here, we have shown that mouse epididymal spermatozoa were distinguished by high percentages of SM and polyunsaturated membranous fatty acids (PUFAs), principally represented by arachidonic, docosapentanoic, and docosahexanoic acids. Both SM and PUFA increased throughout the epididymal tract. In particular, we observed a threefold rise in the ratio of docosapentanoic acid. Epididymal spermatozoa had a constant cholesterol:phospholipid ratio (average, 0.30) during epididymal transit. These data suggest that in contrast with epididymosomes, spermatozoal membranes seem to become more fluid during epididymal maturation.
Collapse
Affiliation(s)
- Hanae Rejraji
- Laboratoire Epididyme et Maturation des Gamètes, Université Blaise Pascal, CNRS UMR 6547 GEEM, 63177 Aubière, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Selvaraj V, Asano A, Buttke DE, McElwee JL, Nelson JL, Wolff CA, Merdiushev T, Fornés MW, Cohen AW, Lisanti MP, Rothblat GH, Kopf GS, Travis AJ. Segregation of micron-scale membrane sub-domains in live murine sperm. J Cell Physiol 2006; 206:636-46. [PMID: 16222699 DOI: 10.1002/jcp.20504] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipid rafts, membrane sub-domains enriched in sterols and sphingolipids, are controversial because demonstrations of rafts have often utilized fixed cells. We showed in living sperm that the ganglioside G(M1) localized to a micron-scale membrane sub-domain in the plasma membrane overlying the acrosome. We investigated four models proposed for membrane sub-domain maintenance. G(M1) segregation was maintained in live sperm incubated under non-capacitating conditions, and after sterol efflux, a membrane alteration necessary for capacitation. The complete lack of G(M1) diffusion to the post-acrosomal plasma membrane (PAPM) in live cells argued against the transient confinement zone model. However, within seconds after cessation of sperm motility, G(M1) dramatically redistributed several microns from the acrosomal sub-domain to the post-acrosomal, non-raft sub-domain. This redistribution was not accompanied by movement of sterols, and was induced by the pentameric cholera toxin subunit B (CTB). These data argued against a lipid-lipid interaction model for sub-domain maintenance. Although impossible to rule out a lipid shell model definitively, mice lacking caveolin-1 maintained segregation of both sterols and G(M1), arguing against a role for lipid shells surrounding caveolin-1 in sub-domain maintenance. Scanning electron microscopy of sperm freeze-dried without fixation identified cytoskeletal structures at the sub-domain boundary. Although drugs used to disrupt actin and intermediate filaments had no effect on the segregation of G(M1), we found that disulfide-bonded proteins played a significant role in sub-domain segregation. Together, these data provide an example of membrane sub-domains extreme in terms of size and stability of lipid segregation, and implicate a protein-based membrane compartmentation mechanism.
Collapse
Affiliation(s)
- Vimal Selvaraj
- The James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Buttke DE, Nelson JL, Schlegel PN, Hunnicutt GR, Travis AJ. Visualization of GM1 with cholera toxin B in live epididymal versus ejaculated bull, mouse, and human spermatozoa. Biol Reprod 2006; 74:889-95. [PMID: 16452464 DOI: 10.1095/biolreprod.105.046219] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The organization of membrane subdomains in mammalian sperm has recently generated controversy, with several reports describing widely differing localization patterns for the ganglioside GM1. Using the pentameric B subunit of cholera toxin (CTB), we found GM1 to be restricted to the plasma membrane overlying the acrosome in the heads of live murine sperm. Interestingly, CTB had minimal binding to live bovine and human sperm. To investigate whether this difference in GM1 localization was because of species differences or differences between collection from the epididymis (mouse) or an ejaculate (bull, human), we examined epididymal bovine and human sperm. We found that GM1 localized to the plasma membrane overlying the acrosome in sperm from these species. To determine whether some component of seminal plasma was interfering with the ability of CTB to access GM1, we incubated epididymal mouse sperm with fluid from murine seminal vesicles and epididymal bull sperm with bovine seminal plasma. This treatment largely abolished the ability of the CTB to bind to GM1, producing a fluorescence pattern similar to that reported for the human. The most abundant seminal plasma protein, PDC-109, was not responsible for this loss. As demonstration that the seminal plasma was not removing GM1, sperm exposed to seminal plasma were fixed before CTB addition, and again displayed fluorescence over the acrosome. These observations reconcile inconsistencies reported for the localization of GM1 in sperm of different species, and provide evidence for the segregation of GM1 to a stable subdomain in the plasma membrane overlying the acrosome.
Collapse
Affiliation(s)
- Danielle E Buttke
- The James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
94
|
Bou Khalil M, Chakrabandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, Carmona E, Vuong N, Kumarathasan P, Wong PTT, Carrier D, Tanphaichitr N. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol 2006; 290:220-35. [PMID: 16387295 DOI: 10.1016/j.ydbio.2005.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 01/13/2023]
Abstract
Sperm gain full ability to bind to the zona(e) pellucida(e) (ZP) during capacitation. Since lipid rafts are implicated in cell adhesion, we determined whether capacitated sperm lipid rafts had affinity for the ZP. We demonstrated that lipid rafts, isolated as low-density detergent resistant membranes (DRMs), from capacitated pig sperm had ability to bind to homologous ZP. This binding was dependent on pig ZPB glycoprotein, a major participant in sperm binding. Capacitated sperm DRMs were also enriched in the male germ cell specific sulfogalactosylglycerolipid (SGG), which contributed to DRMs-ZP binding. Furthermore, SGG may participate in the formation of sperm DRMs due to its interaction with cholesterol, an integral component of lipid rafts, as shown by infrared spectroscopic studies. Since sperm capacitation is associated with cholesterol efflux from the sperm membrane, we questioned whether the formation of DRMs was compromised in capacitated sperm. Our studies indeed revealed that capacitation induced increased levels of sperm DRMs, with an enhanced ZP affinity. These results corroborated the implication of lipid rafts and SGG in cell adhesion and strongly suggested that the enhanced ZP binding ability of capacitated sperm may be attributed to increased levels and a greater ZP affinity of lipid rafts in the sperm plasma membrane.
Collapse
Affiliation(s)
- Maroun Bou Khalil
- Hormones/Growth/Development Group, Ottawa Health Research Institute, Ottawa, ON, Canada K1Y 4E9
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Qin X, Dobarro M, Bedford SJ, Ferris S, Miranda PV, Song W, Bronson RT, Visconti PE, Halperin JA. Further characterization of reproductive abnormalities in mCd59b knockout mice: a potential new function of mCd59 in male reproduction. THE JOURNAL OF IMMUNOLOGY 2006; 175:6294-302. [PMID: 16272280 DOI: 10.4049/jimmunol.175.10.6294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD59 is a GPI-linked membrane protein that inhibits formation of the membrane attack complex of complement. We reported recently that mice have two CD59 genes (termed mCd59a and mCd59b), and that the targeted deletion of mCd59b (mCd59b-/-) results in spontaneous hemolytic anemia and progressive loss of male fertility. Further studies of the reproductive abnormalities in mCd59b-/- mice reported in this study revealed the presence of abnormal multinucleated cells and increased apoptotic cells within the walls of the seminiferous tubules, and a decrease in the number, motility, and viability of sperm associated with a significant increase in abnormal sperm morphologies. Both the capacitation-associated tyrosine phosphorylation and the ionophore-induced acrosome reaction as well as luteinizing hormone, follicle-stimulating hormone, and testosterone serum levels were similar in mCd59b-/- and mCd59b+/+. Surprisingly, the functional deficiency of the complement protein C3 did not rescue the abnormal reproductive phenotype of mCd59b-/-, although it was efficient in rescuing their hemolytic anemia. These results indicate that the male reproductive abnormalities in mCd59b-/- are complement-independent, and that mCd59 may have a novel function in spermatogenesis that is most likely unrelated to its function as an inhibitor of membrane attack complex formation.
Collapse
Affiliation(s)
- Xuebin Qin
- Department of Medicine, Division of Hematology and Oncology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Ermini L, Secciani F, La Sala GB, Sabatini L, Fineschi D, Hale G, Rosati F. Different glycoforms of the human GPI-anchored antigen CD52 associate differently with lipid microdomains in leukocytes and sperm membranes. Biochem Biophys Res Commun 2005; 338:1275-83. [PMID: 16266689 DOI: 10.1016/j.bbrc.2005.10.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
CD52 is a human GPI-anchored antigen, expressed exclusively in the immune system and part of the reproductive system (epididymal cells). Sperm cells acquire the antigen from the epididymal secretions when transiting in the epididymal corpus and cauda. The peptide backbone of CD52, consisting of only 12 aminoacids, is generally considered no more than a scaffold for post-translational modifications, such as GPI-anchor and especially N-glycosylation which occur at the third asparagine. The latter modification is highly heterogeneous, especially in the reproductive system, giving rise to many different glycoforms, some of which are tissue specific. A peculiar O-glycan-containing glycoform is also found in reproductive and immune systems. We determined to locate CD52 in microdomains of leukocytes and sperm membranes using two antibodies: (1) CAMPATH-1G, the epitope of which includes the last three aminoacids and part of the GPI-anchor of glycoforms present in leukocytes and sperm cells; (2) anti-gp20, the epitope of which belongs to the unique O-glycan-bearing glycoform also present in both cell types. Using a Brij 98 solubilization protocol and sucrose gradient partition we demonstrated that the CD52 glycoforms recognized by both antibodies are markers of typical raft microdomains in leukocytes, whereas in capacitated sperm the O-glycoform is included in GM3-rich microdomains different from the cholesterol and GM1-rich lipid rafts with which CAMPATH antigen is stably associated. The importance of the association between GM3 and O-glycans for formation of specialized microdomains was confirmed by heterologous CD52 insertion experiments. When prostasomes from human seminal fluid were incubated with rat sperm from different epididymal regions, the CD52 glycoform recognized by anti-gp20 decorated rat epididymal corpus and cauda sperm, associated with the same low-cholesterol GM3-rich sperm membrane fractions as in human sperm. The glycoforms recognized by CAMPATH-1G were not found in rat sperm. The relationship between this differential insertion and differences in glycosylation of rat and human CD52 is discussed.
Collapse
Affiliation(s)
- L Ermini
- Department of Evolutionary Biology, University of Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
97
|
London E. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:203-20. [PMID: 16225940 DOI: 10.1016/j.bbamcr.2005.09.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 02/07/2023]
Abstract
Sphingolipid and cholesterol-rich liquid ordered lipid domains (lipid rafts) have been studied in both eukaryotic cells and model membranes. However, while the coexistence of ordered and disordered liquid phases can now be easily demonstrated in model membranes, the situation in cell membranes remains ambiguous. Unlike the usual situation in model membranes, under most conditions, cell membranes rich in sphingolipid and cholesterol may have a "granular" organization in which the size of ordered and/or disordered domains is extremely small and domains may be of borderline stability. This review attempts to explain the origin of the divergence between of our understanding of rafts in model membranes and in cells, and how the physical properties of model membranes can help explain many of the ambiguities concerning raft formation and properties in cells. How physical principles of ordered domain formation relate to limitations of detergent insolubility and cholesterol depletion methods used to infer the presence of rafts in cells is also discussed. Possible modifications of these techniques that may increase their reliability are considered. It will be necessary to study model membrane systems more closely approximating cell membranes in order gain a complete understanding of raft properties in cells. Very high concentrations of membrane cholesterol and proteins may explain key physical characteristics of domains in cellular membranes, and are the two of the most obvious factors requiring additional study.
Collapse
Affiliation(s)
- Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, S.U.N.Y., Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
98
|
Gibbons R, Adeoya-Osiguwa SA, Fraser LR. A mouse sperm decapacitation factor receptor is phosphatidylethanolamine-binding protein 1. Reproduction 2005; 130:497-508. [PMID: 16183867 DOI: 10.1530/rep.1.00792] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capacitation is a pivotal event for mammalian spermatozoa, involving the loss of surface proteins known as decapacitation factors (DF) and consequent acquisition of fertilizing ability. Earlier studies showed that a mouse sperm DF binds to a receptor, DF-R, whose attachment to the sperm plasma membrane appears to involve a glycosylphosphatidylinositol (GPI) anchor. In the present study, purification and subsequent sequencing of DF-R has identified this ~23 kDa protein as phosphatidyletha-nolamine-binding protein 1 (PEBP 1). To obtain functional evidence that supports sequence homology data, purified recombinant PEBP 1 and PEBP 2 were evaluated for biological activity. While PEBP 1 was able to remove DF activity in solution at concentrations above ~1 nmol/l, PEBP 2 was ineffective, even at 600 nmol/l; this confirmed that DF-R is PEBP 1. Anti-PEBP 1 antiserum recognized recombinant PEBP 1 and a ~23 kDa protein in both mouse and human sperm lysates. Immunolocalization studies revealed that DF-R/PEBP 1 is located on the acrosomal cap, the post-acrosomal region and the flagellum of both mouse and human spermatozoa, with epitope accessibility being capacitation state-dependent and reversible. Treatment of cells with a phospholipase able to cleave GPI anchors essentially abolished immunostaining, thus confirming the extracellular location of DF-R/PEBP 1. We suggest that DF-R/PEBP 1 plays its fundamental role in capacitation by causing alterations in the sperm plasma membrane in both head and flagellum, with functional consequences for membrane-associated proteins. Obtaining more detail about DF ↔ DF-R interactions could lead to useful applications in both fertility treatments and new contraceptive approaches.
Collapse
Affiliation(s)
- Rachel Gibbons
- Reproduction and Rhythms Group, School of Biomedical Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
99
|
Belmonte SA, López CI, Roggero CM, De Blas GA, Tomes CN, Mayorga LS. Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Dev Biol 2005; 285:393-408. [PMID: 16099449 DOI: 10.1016/j.ydbio.2005.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 06/08/2005] [Accepted: 07/06/2005] [Indexed: 02/01/2023]
Abstract
The acrosome is an exocytic granule that overlies the spermatozoan nucleus. In response to different stimuli, it undergoes calcium-regulated exocytosis. Freshly ejaculated mammalian sperm are not immediately capable of undergoing acrosome reaction. The acquisition of this ability is called capacitation and involves a series of still not well-characterized changes in the sperm physiology. Plasma membrane cholesterol removal is one of the sperm modifications that are associated with capacitation. However, how sterols affect acrosomal exocytosis is unknown. Here, we show that short incubations with cyclodextrin, a cholesterol removal agent, just before stimulation promote acrosomal exocytosis. Moreover, the effect was also observed in permeabilized cells stimulated with calcium, indicating that cholesterol plays a direct role in the calcium-dependent exocytosis associated with acrosome reaction. Using a photo-inhibitable calcium chelator, we show that cholesterol affects an early event of the exocytic cascade rather than the lipid bilayers mixing. Functional data indicate that one target for the cholesterol effect is Rab3A. The sterol content does not affect the Rab3A activation-deactivation cycle but regulates its membrane anchoring. Western blot analysis and immunoelectron microscopy confirmed that cholesterol efflux facilitates Rab3A association to sperm plasma membrane. Our data indicate that the cholesterol efflux occurring during capacitation optimizes the conditions for the productive assembly of the fusion machinery required for acrosome reaction.
Collapse
Affiliation(s)
- S A Belmonte
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
100
|
Nixon B, Asquith KL, John Aitken R. The role of molecular chaperones in mouse sperm-egg interactions. Mol Cell Endocrinol 2005; 240:1-10. [PMID: 16043280 DOI: 10.1016/j.mce.2005.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/20/2005] [Accepted: 06/22/2005] [Indexed: 11/15/2022]
Abstract
Fertilization is a unique and exquisitely choreographed cellular interaction between the male and female gamete that results in the creation of a genetically unique individual. Despite the fundamental importance of fertilization, there remains a dearth of information about the basic biochemical mechanisms that underpin this process. One of the key issues that remain unresolved is the molecular basis of sperm-egg recognition. From the female perspective, it is well established that the sperm recognition sites reside in the zona pellucida (ZP), an acellular coat that surrounds the oocyte. In contrast, numerous studies into the cognate zona receptors residing on the sperm surface have failed to shed significant light on the biochemical identity of these molecules. Such difficulties may, in part, have arisen because investigations have traditionally been based on the precept that the zona receptor represents a single molecular entity that is constitutively expressed on the sperm surface. While such a view holds obvious appeal, it fails to account for growing evidence that gamete interaction is not mediated by a simple lock-and-key mechanism. In this review, we present a novel hypothesis in which the zona recognition site is portrayed as a multimeric molecular structure that is assembled into a functional complex during a maturation process known as 'capacitation'. Furthermore, we consider the possibility that this previously cryptic complex is assembled and delivered to the outer surface of the sperm plasma membrane through the concerted action of several members of the molecular chaperone family of proteins.
Collapse
Affiliation(s)
- Brett Nixon
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|