51
|
Das >UN. Lipoxins, resolvins, protectins, maresins and nitrolipids, and their clinical implications with specific reference to diabetes mellitus and other diseases: part II. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Martinez-Rubio L, Morais S, Evensen Ø, Wadsworth S, Vecino JG, Ruohonen K, Bell JG, Tocher DR. Effect of functional feeds on fatty acid and eicosanoid metabolism in liver and head kidney of Atlantic salmon (Salmo salar L.) with experimentally induced heart and skeletal muscle inflammation. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1533-1545. [PMID: 23567858 DOI: 10.1016/j.fsi.2013.03.363] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/04/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
Heart and Skeletal Muscle Inflammation (HSMI) is an emerging viral disease caused by a novel Atlantic salmon reovirus (ASRV) affecting farmed fish. Primary symptoms associated with HSMI include myocardial and skeletal muscle necrosis indicating a severe inflammatory process. Recently, we applied the concept of clinical nutrition to moderate the long-term inflammatory process associated with HSMI in salmon subjected to experimental ASRV challenge. The use of functional feeds with lower lipid (hence energy) content reduced the inflammatory response to ASRV infection and the severity of associated heart lesions. The aim of the present study was to elucidate possible mechanisms underpinning the observed effects of the functional feeds, focussing on eicosanoid and fatty acid metabolism in liver and head kidney. Here we show that liver was also a site for histopathological lesions in HSMI showing steatosis reflecting impaired lipid metabolism. This study is also the first to evaluate the expression of a suite of key genes involved in pathways relating diet and membrane phospholipid fatty acid compositions, and the inflammatory response after ASRV infection. The expression of hepatic Δ6 and Δ5 desaturases was higher in fish fed the functional feeds, potentially increasing their capacity for endogenous production and availability of anti-inflammatory EPA. Effects on mobilization of lipids and changes in the LC-PUFA composition of membrane phospholipids, along with significant changes in the expression of the genes related to eicosanoid pathways, showed the important role of the head kidney in inflammatory diseases caused by viral infections. The results from the present study suggest that clinical nutrition through functional feeding could be an effective complementary therapy for emerging salmon viral diseases associated with long-term inflammation.
Collapse
Affiliation(s)
- Laura Martinez-Rubio
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Eynard AR, Navarro A. Crosstalk among dietary polyunsaturated fatty acids, urolithiasis, chronic inflammation, and urinary tract tumor risk. Nutrition 2013; 29:930-8. [PMID: 23594581 DOI: 10.1016/j.nut.2012.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 01/04/2023]
Abstract
Based on a consistent bulk of experimental and epidemiologic works, we proposed that abnormal metabolism and/or dietary deprivation of essential polyunsaturated fatty acids by inducing a chronic and subclinical essential fatty acid deficiency (EFAD) in urothelial cell membranes may enhance the risk for urinary tract tumor (UTT) development. This threat may be enhanced by the unusual fact that the fatty-acid profile of the normal urothelium is similar to that reported in EFAD. The risk for UTT may be worsened when coexisting with a low-grade chronic inflammation (LGCI) state induced by urolithiasis or disbalance management of peroxides, free radical molecules, and their quenchers. There is cumulative evidence linking the LGCI of the urinary tract mucosa, calculi, and UTT, due to the long-standing release of promitotic, promutagen, and pro-inflammatory antiapoptotic cytokines in these conditions. The dual role played by pro- and anti-inflammatory eicosanoids and bioactive lipids, cytokines, and the disbalance of lipid peroxidation is discussed, concluding that the moderate, long-standing consumption or dietary supplementation of ω-3 PUFAs may improve the chances of avoiding UTT development.
Collapse
Affiliation(s)
- Aldo R Eynard
- Instituto de Biología Celular, INICSA, Córdoba, Argentina.
| | | |
Collapse
|
54
|
Bansah AK, Holben DH, Basta T. Food Insecurity is Associated with Household Utility Insecurity among Individuals Living with HIV/AIDS in Rural Appalachia. JOURNAL OF HUNGER & ENVIRONMENTAL NUTRITION 2013. [DOI: 10.1080/19320248.2013.786662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
55
|
Das UN. Is multiple sclerosis a proresolution deficiency disorder? Nutrition 2012; 28:951-8. [DOI: 10.1016/j.nut.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/26/2011] [Accepted: 12/26/2011] [Indexed: 12/31/2022]
|
56
|
Abstract
BACKGROUND After trauma and hemorrhagic shock (T/HS), a variety of inflammatory mediators enter the systemic circulation through mesenteric lymph ducts, leading to acute lung injury and multiple-organ dysfunction syndrome. Recent studies have demonstrated that post-HS mesenteric lymph (PHSML) activates polymorphonuclear leukocytes (PMNs) and causes vascular endothelial cell and red blood cell dysfunction. Furthermore, PHSML contains proinflammatory mediators, such as biologically active lipids. The purpose of this study was to identify the lipid mediators in PHSML and plasma by liquid chromatography/electrospray ionization mass spectrometry and then estimate the biologic activities of the identified lipids on PMNs. METHODS PHSML was collected from male Sprague-Dawley rats undergoing trauma (laparotomy) plus HS (40 mm Hg, 30 minutes) or sham shock (SS). The lipids in PHSML and plasma were extracted using the methods of Bligh and Dyer, and liquid chromatography/electrospray ionization mass spectrometry was performed. The biologic activities (superoxide production and elastase release) of identified lipids on human PMNs were tested. RESULTS Phosphatidylcholine, lysophosphatidylcholine (LPC), phosphatidylethanolamine, lysophosphatidylethanolamine (LPE), and sphingomyelin were detected in the PHSML. Furthermore, linoleoyl, arachidonoyl, and docosahexaenoyl LPCs and LPEs significantly increased in the PHSML of the T/HS group as compared with those of the T/SS group. In the plasma, arachidonoyl and docosahexaenoyl LPCs of the T/HS group also significantly increased in comparison with that of the T/SS group. Linoleoyl and arachidonoyl LPCs and LPEs showed the priming activity on N-formyl-methionyl-leucyl-phenylalanine-activated PMNs. The elastase release was also induced by linoleoyl and arachidonoyl LPCs. CONCLUSION Mesenteric lymph after T/HS contains biologically active lipids, such as LPCs and LPEs with polyunsaturated fatty acids, which may be involved in the pathogenesis of acute lung injury/multiple-organ dysfunction syndrome.
Collapse
|
57
|
Ababneh MM, Troedsson MHT. Ovarian steroid regulation of endometrial phospholipase A2 isoforms in horses. Reprod Domest Anim 2012; 48:311-6. [PMID: 22882596 DOI: 10.1111/j.1439-0531.2012.02151.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Real-time PCR was used to investigate the role of progesterone (P4) and oestradiol (E2) in regulation of endometrial cytosolic, secretory and calcium-independent phospholipase A2 (PLA2G4A, PLA2G2A and PLA2G6, respectively) gene expression. Ovariectomized mares underwent 6 days of E2 pre-treatment followed by 14 days of P4 supplementation. At the start of P4 treatment (Day 1), mares were assigned in a 2 × 2 factorial design to receive either E2 or vehicle starting on Day 11 and endometrial biopsy collection on either Day 14 when P4 concentrations remained high (>4 ng/ml) or Day 16 when P4 concentrations had declined (0.5-2 ng/ml). Additional biopsies were collected from ovariectomized mares on Day 8, which served as control. Blood samples were collected for P4 determination. PLA2G4A expression was higher (p < 0.05) on Day 14 compared with Day 8. In contrast, PLA2G2A did not change significantly (p < 0.12). PLA2G4A and PLA2G2A gene expression increased (p < 0.05), as P4 concentration dropped, on Day 16. In contrast, PLA2G6 gene expression did not show differences between days. Treatment with oestradiol did not increase PLA2 isoforms expression when compared to treatment with the vehicle. PLA2G4A and PLA2G2A were positively correlated with each other and negatively correlated with P4 concentrations. In conclusion, P4 withdrawal upregulated PLA2G4A and PLA2G2A gene expression, and this was not affected by E2. PLA2G4A and PLA2G2A but not PLA2G6 gene expression may be involved in controlling prostaglandin F2 alpha synthesis and luteolysis.
Collapse
Affiliation(s)
- M M Ababneh
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
58
|
Das UN. Infection, inflammation, and polyunsaturated fatty acids. Nutrition 2012; 27:1080-4. [PMID: 21907900 DOI: 10.1016/j.nut.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 12/14/2022]
|
59
|
Kwon HS, Bae YJ, Moon KA, Lee YS, Lee T, Lee KY, Kim TB, Park CS, Moon HB, Cho YS. Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity. Life Sci 2012; 90:502-8. [PMID: 22285837 DOI: 10.1016/j.lfs.2012.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/20/2011] [Accepted: 01/09/2012] [Indexed: 01/02/2023]
Abstract
AIMS Oxidative stress is involved in the pathogenesis of asthma, and peroxiredoxins (PRDX) may be critical in controlling intracellular oxidative stress. The aim of this study was to evaluate expressions of PRDX and their hyperoxidized forms in asthmatic individuals. MAIN METHODS The levels of expression of PRDX1, PRDX2, PRDX3, and PRDX6 and their hyperoxidized forms (PRDX-SO(3)) were measured in PBMCs from asthma patients and control subjects. In addition, cells from these subjects were treated with hydrogen peroxide (H(2)O(2)) and their intracellular concentrations of reactive oxygen species (ROS) were measured. KEY FINDINGS The ratios of hyperoxidized to total PRDX (PRDX-SO(3/)PRDX) in PBMCs were significantly higher in asthma patients than in normal subjects and were correlated with disease severity, with the highest ratio seen in patients with severe asthma. Furthermore, H(2)O(2) treatment of PBMCs, particularly lymphocytes, increased intracellular ROS concentrations with greater and more persistent increases observed in cells from asthmatic than from control subjects. SIGNIFICANCE Hyperoxidation of PRDX may serve as a biomarker of asthma severity and may predict enhanced susceptibility to oxidative stress load in PBMCs of asthmatics.
Collapse
Affiliation(s)
- Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Doyle TJ, Kaur G, Putrevu SM, Dyson EL, Dyson M, McCunniff WT, Pasham MR, Kim KH, Dufour JM. Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege. Biol Reprod 2012; 86:1-14. [PMID: 21900683 DOI: 10.1095/biolreprod.110.089425] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary Sertoli cells isolated from mouse testes survive when transplanted across immunological barriers and protect cotransplanted allogeneic and xenogeneic cells from rejection in rodent models. In contrast, the mouse Sertoli cell line (MSC-1) lacks immunoprotective properties associated with primary Sertoli cells. In this study, enriched primary Sertoli cells or MSC-1 cells were transplanted as allografts into the renal subcapsular area of naive BALB/c mice, and their survival in graft sites was compared. While Sertoli cells were detected within the grafts with 100% graft survival throughout the 20-day study, MSC-1 cells were rejected between 11 and 14 days, with 0% graft survival at 20 days posttransplantation. Nonetheless, the mechanism for primary Sertoli cell survival and immunoprotection remains unresolved. To identify immune factors or functional pathways potentially responsible for immune privilege, gene expression profiles of enriched primary Sertoli cells were compared with those of MSC-1 cells. Microarray analysis identified 2369 genes in enriched primary Sertoli cells that were differentially expressed at ±4-fold or higher levels than in MSC-1 cells. Ontological analyses identified multiple immune pathways, which were used to generate a list of 340 immune-related genes. Three functions were identified in primary Sertoli cells as potentially important for establishing immune privilege: suppression of inflammation by specific cytokines and prostanoid molecules, slowing of leukocyte migration by controlled cell junctions and actin polymerization, and inhibition of complement activation and membrane-associated cell lysis. These results increase our understanding of testicular immune privilege and, in the long-term, could lead to improvements in transplantation success.
Collapse
Affiliation(s)
- Timothy J Doyle
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Das UN. A defect in the activities of Δ and Δ desaturases and pro-resolution bioactive lipids in the pathobiology of non-alcoholic fatty liver disease. World J Diabetes 2011; 2:176-88. [PMID: 22087354 PMCID: PMC3215767 DOI: 10.4239/wjd.v2.i11.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/28/2011] [Accepted: 10/31/2011] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a low-grade systemic inflammatory condition, since liver and adipose tissue tumor necrosis factor-α (TNF-α) and TNF receptor 1 transcripts and serum TNF-α levels are increased and IL-6(-/-) mice are less prone to NAFLD. Fatty liver damage caused by high-fat diets is associated with the generation of pro-inflammatory prostaglandin E(2) (PGE(2)). A decrease in the levels of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the usefulness of EPA and DHA both in the prevention and management of NAFLD has been reported. AA, EPA and DHA and their anti-inflammatory products lipoxins (LXs), resolvins and protectins suppress IL-6 and TNF-α and PGE(2) production. These results suggest that the activities of Δ(6) and Δ(5) desaturases are reduced in NAFLD and hence, the dietary essential fatty acids, linoleic acid (LA) and α-linolenic acid (ALA) are not metabolized to their long-chain products AA, EPA and DHA, the precursors of anti-inflammatory molecules, LXs, resolvins and protectins that could pre vent NAFLD. This suggests that an imbalance between pro- and anti-inflammatory bioactive lipids contribute to NAFLD. Hence, it is proposed that plasma and tissue levels of AA, EPA, DHA and LXs, resolvins and protectins could be used as predictors and prognostic biomarkers of NAFLD. It is suggested that the synthesis and use of more stable analogues of LXs, resolvins and protectins need to be explored in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Undurti N Das
- Undurti N Das, UND Life Sciences, 13800 Fairhill Road, 321, Shaker Heights, OH 44120, United States
| |
Collapse
|
62
|
Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat 2011; 96:27-36. [PMID: 21864702 PMCID: PMC4051344 DOI: 10.1016/j.prostaglandins.2011.08.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022]
Abstract
Inflammation in the tumor microenvironment is now recognized as one of the hallmarks of cancer. Endogenously produced lipid autacoids, locally acting small molecule lipid mediators, play a central role in inflammation and tissue homeostasis, and have recently been implicated in cancer. A well-studied group of autacoid mediators that are the products of arachidonic acid metabolism include: the prostaglandins, leukotrienes, lipoxins and cytochrome P450 (CYP) derived bioactive products. These lipid mediators are collectively referred to as eicosanoids and are generated by distinct enzymatic systems initiated by cyclooxygenases (COX 1 and 2), lipoxygenases (5-LOX, 12-LOX, 15-LOXa, 15-LOXb), and cytochrome P450s, respectively. These pathways are the target of approved drugs for the treatment of inflammation, pain, asthma, allergies, and cardiovascular disorders. Beyond their potent anti-inflammatory and anti-cancer effects, non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 specific inhibitors have been evaluated in both preclinical tumor models and clinical trials. Eicosanoid biosynthesis and actions can also be directly influenced by nutrients in the diet, as evidenced by the emerging role of omega-3 fatty acids in cancer prevention and treatment. Most research dedicated to using eicosanoids to inhibit tumor-associated inflammation has focused on the COX and LOX pathways. Novel experimental approaches that demonstrate the anti-tumor effects of inhibiting cancer-associated inflammation currently include: eicosanoid receptor antagonism, overexpression of eicosanoid metabolizing enzymes, and the use of endogenous anti-inflammatory lipid mediators. Here we review the actions of eicosanoids on inflammation in the context of tumorigenesis. Eicosanoids may represent a missing link between inflammation and cancer and thus could serve as therapeutic target(s) for inhibiting tumor growth.
Collapse
Affiliation(s)
- Emily R. Greene
- Vascular Biology Program, Children’s Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Canada
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA.
| | - Dipak Panigrahy
- Vascular Biology Program, Children’s Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
63
|
Ghosh SS, Krieg R, Massey HD, Sica DA, Fakhry I, Ghosh S, Gehr TWB. Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase. Am J Physiol Renal Physiol 2011; 302:F439-54. [PMID: 22031851 DOI: 10.1152/ajprenal.00356.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previously, we showed that curcumin prevents chronic kidney disease (CKD) development in ⅚ nephrectomized (Nx) rats when given within 1 wk after Nx (Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, Fakhry I, Gehr TW. Am J Physiol Renal Physiol 296: F1146-F1157, 2009). To better mimic the scenario for renal disease in humans, we began curcumin and enalapril therapy when proteinuria was already established. We hypothesized that curcumin, by blocking the inflammatory mediators TNF-α and IL-1β, could also reduce cyclooxygenase (COX) and phospholipase expression in the kidney. Nx animals were divided into untreated Nx, curcumin-treated, and enalapril-treated groups. Curcumin (75 mg/kg) and enalapril (10 mg/kg) were administered for 10 wk. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was comparably reduced by curcumin and enalapril, with only enalapril significantly lowering blood pressure. Compared with controls, Nx animals had higher plasma/kidney TNF-α and IL-1β, which were reduced by curcumin and enalapril treatment. Nx animals had significantly elevated kidney levels of cytosolic PLA(2), calcium-independent intracellular PLA(2), COX 1, and COX 2, which were comparably reduced by curcumin and enalapril. Studies in mesangial cells and macrophages were carried out to establish that the in vivo increase in PLA(2) and COX were mediated by TNF-α and IL-1β and that curcumin, by antagonizing the cytokines, could significantly reduce both PLA(2) and COX. We conclude that curcumin ameliorates CKD by blocking inflammatory signals even if it is given at a later stage of the disease.
Collapse
Affiliation(s)
- S S Ghosh
- Virginia Commonwealth Univ., Dept. of Internal Medicine/Nephrology, 1101 E. Marshall St., Sanger Hall, Rm. 8-059, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
64
|
Nievergelt A, Marazzi J, Schoop R, Altmann KH, Gertsch J. Ginger phenylpropanoids inhibit IL-1beta and prostanoid secretion and disrupt arachidonate-phospholipid remodeling by targeting phospholipases A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4140-50. [PMID: 21908733 DOI: 10.4049/jimmunol.1100880] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.
Collapse
Affiliation(s)
- Andreas Nievergelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
65
|
Lee CW, Lin CC, Lee IT, Lee HC, Yang CM. Activation and induction of cytosolic phospholipase A2 by TNF-α mediated through Nox2, MAPKs, NF-κB, and p300 in human tracheal smooth muscle cells. J Cell Physiol 2011; 226:2103-14. [PMID: 21520062 DOI: 10.1002/jcp.22537] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| | | | | | | | | |
Collapse
|
66
|
Knight PA, Griffith SE, Pemberton AD, Pate JM, Guarneri L, Anderson K, Talbot RT, Smith S, Waddington D, Fell M, Archibald AL, Burgess STG, Smith DW, Miller HRP, Morrison IW. Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta. Vet Res 2011; 42:78. [PMID: 21682880 PMCID: PMC3135528 DOI: 10.1186/1297-9716-42-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 06/17/2011] [Indexed: 12/14/2022] Open
Abstract
Infection of sheep with the gastric nematode Teladorsagia circumcincta results in distinct Th2-type changes in the mucosa, including mucous neck cell and mast cell hyperplasia, eosinophilia, recruitment of IgA/IgE producing cells and neutrophils, altered T-cell subsets and mucosal hypertrophy. To address the protective mechanisms generated in animals on previous exposure to this parasite, gene expression profiling was carried out using samples of abomasal mucosa collected pre- and post- challenge from animals of differing immune status, using an experimental model of T. circumcincta infection. Recently developed ovine cDNA arrays were used to compare the abomasal responses of sheep immunised by trickle infection with worm-naïve sheep, following a single oral challenge of 50 000 T. circumcincta L3. Key changes were validated using qRT-PCR techniques. Immune animals demonstrated highly significant increases in levels of transcripts normally associated with cytotoxicity such as granulysin and granzymes A, B and H, as well as mucous-cell derived transcripts, predominantly calcium-activated chloride channel 1 (CLCA1). Challenge infection also induced up-regulation of transcripts potentially involved in initiating or modulating the immune response, such as heat shock proteins, complement factors and the chemokine CCL2. In contrast, there was marked infection-associated down-regulation of gene expression of members of the gastric lysozyme family. The changes in gene expression levels described here may reflect roles in direct anti-parasitic effects, immuno-modulation or tissue repair.
Collapse
Affiliation(s)
- Pamela A Knight
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Susan E Griffith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Alan D Pemberton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Judith M Pate
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Lauren Guarneri
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Katherine Anderson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Richard T Talbot
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Sarah Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - David Waddington
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Mark Fell
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Alan L Archibald
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Stewart TG Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, Scotland, UK
| | - David W Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, Scotland, UK
| | - Hugh RP Miller
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | - Ivan W Morrison
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
67
|
Ganea D, Kocieda V, Kong W, Yen JH. Modulation of dendritic cell function by PGE2 and DHA: a framework for understanding the role of dendritic cells in neuroinflammation. ACTA ACUST UNITED AC 2011; 6:277-291. [PMID: 21804863 DOI: 10.2217/clp.11.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammation characterizes various neurological disorders. Peripheral immune cells and CNS-resident glia contribute to neuroinflammation and impact CNS degeneration, recovery and regeneration. Recently, the role of dendritic cells in neuroinflammation received special attention. The function of infiltrating immune cells and resident glia is affected by various factors, including lipid mediators. Polyunsaturated fatty acids, especially n-6 arachidonic acid and n-3 docosahexaenoic acid (DHA), the most abundant in the CNS, play an important role in neuroinflammation. The major arachidonic acid bioactive derivative in immune cells, PGE2, and DHA have been reported to have opposite effects on dendritic cells in terms of cytokine production and activation/differentiation of CD4(+) T cells. Here we review the existing information on PGE2 and DHA modulation of dendritic cell function and the potential impact of these lipid mediators of dendritic cells in CNS inflammatory disorders.
Collapse
Affiliation(s)
- Doina Ganea
- Department of Microbiology & Immunology, Temple University School of Medicine, 3500 N Broad Sreet, PA 19140, USA
| | | | | | | |
Collapse
|
68
|
Norling LV, Spite M, Yang R, Flower RJ, Perretti M, Serhan CN. Cutting edge: Humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5543-7. [PMID: 21460209 PMCID: PMC3145138 DOI: 10.4049/jimmunol.1003865] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endogenous microparticles (MPs) were systematically profiled during the time course of self-limited inflammation. Precursors for specialized proresolving lipid mediators were identified in MPs from inflammatory exudates using liquid chromatography tandem mass spectrometry-based metabolomics. Hence, we postulated that formation of anti-inflammatory and proresolving lipid mediators could underlie beneficial effects attributed to MPs and that this process could serve as a basis for biomimicry. Using human neutrophil-derived MPs, we constructed novel nanoparticles (NPs) containing aspirin-triggered resolvin D1 or a lipoxin A(4) analog. Enriched NPs dramatically reduced polymorphonuclear cell influx in murine peritonitis, shortened resolution intervals, and exhibited proresolving actions accelerating keratinocyte healing. The enriched NPs protected against inflammation in the temporomandibular joint. These findings indicate that humanized NPs, termed nano-proresolving medicines, are mimetics of endogenous resolving mechanisms, possess potent beneficial bioactions, can reduce nanotoxicity, and offer new therapeutic approaches.
Collapse
Affiliation(s)
- Lucy V. Norling
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rong Yang
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Roderick J Flower
- William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London EC1M 6BQ, UK
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
69
|
Das UN. Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis 2011; 10:76. [PMID: 21569625 PMCID: PMC3114772 DOI: 10.1186/1476-511x-10-76] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 12/13/2022] Open
Abstract
Inflammatory events persist in systemic lupus erythematosus (lupus) despite the use of anti-inflammatory (both steroidal and non-steroidal) and immunosuppressive drugs leading to delay in the healing/repair process and so tissue/organ damage continues. The continuation of inflammation in lupus could be attributed to failure of the resolution process due to deficiency of potent endogenous pro-resolution-inducing molecules such as lipoxin A4 (LXA4). It is likely that progression and flares of lupus and lupus nephritis are due to decreased formation and release of LXA4. Hence, administration of LXA4 and its analogues could be of benefit in lupus. Furthermore, plasma and urinary measurement of lipoxins may be used to predict prognosis and response to therapy. It is likely that lipoxins and other bioactive anti-inflammatory lipids such as resolvins, protectins, maresins and nitrolipids play a significant role in other auto-immune diseases such as rheumatoid arthritis, type 1 diabetes mellitus and multiple sclerosis and hence, could be of significant benefit in these diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321 Shaker Heights, OH 44120, USA.
| |
Collapse
|
70
|
Secretory phospholipase A₂-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2. Toxicol Appl Pharmacol 2011; 251:173-80. [PMID: 21277885 DOI: 10.1016/j.taap.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 02/05/2023]
Abstract
We have previously reported that among the other death proteins, hepatic secretory phospholipase A₂ (sPLA₂) is a leading mediator of progression of liver injury initiated by CCl₄ in rats. The aim of our present study was to test the hypothesis that increased hepatic sPLA₂ released after acetaminophen (APAP) challenge mediates progression of liver injury in wild type (WT) and COX-2 knockout (KO) mice. COX-2 WT and KO mice were administered a normally non lethal dose (400 mg/kg) of acetaminophen. The COX-2 KO mice suffered 60% mortality compared to 100% survival of the WT mice, suggesting higher susceptibility of COX-2 KO mice to sPLA₂-mediated progression of acetaminophen hepatotoxicity. Liver injury was significantly higher at later time points in the KO mice compared to the WT mice indicating that the abatement of progression of injury requires the presence of COX-2. This difference in hepatotoxicity was not due to increased bioactivation of acetaminophen as indicated by unchanged cyp2E1 protein and covalently bound ¹⁴C-APAP in the livers of KO mice. Hepatic sPLA₂ activity and plasma TNF-α were significantly higher after APAP administration in the KO mice. This was accompanied by a corresponding fall in hepatic PGE₂ and lower compensatory liver regeneration and repair (³H-thymidine incorporation) in the KO mice. These results suggest that hindered compensatory tissue repair and poor resolution of inflammation for want of beneficial prostaglandins render the liver very vulnerable to sPLA₂-mediated progression of liver injury. These findings are consistent with the destructive role of sPLA₂ in the progression and expansion of tissue injury as a result of continued hydrolytic breakdown of plasma membrane phospholipids of perinecrotic hepatocytes unless mitigated by sufficient co-induction of COX-2.
Collapse
|
71
|
Abstract
Phospholipase A(1) (PLA(1)) is an enzyme that hydrolyzes phospholipids and produces 2-acyl-lysophospholipids and fatty acids. This lipolytic activity is conserved in a wide range of organisms but is carried out by a diverse set of PLA(1) enzymes. Where their function is known, PLA(1)s have been shown to act as digestive enzymes, possess central roles in membrane maintenance and remodeling, or regulate important cellular mechanisms by the production of various lysophospholipid mediators, such as lysophosphatidylserine and lysophosphatidic acid, which in turn have multiple biological functions.
Collapse
Affiliation(s)
- Gregory S. Richmond
- Agilent Technologies, Molecular Separations, Santa Clara, CA 95051, USA; E-Mail:
| | - Terry K. Smith
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, KY16 9ST, Scotland, UK
- To whom correspondence should be addressed; E-Mail: ; Tel.: +44-1334-463412; Fax: +44-1334-462595
| |
Collapse
|
72
|
|
73
|
Fèvre C, Bellenger S, Pierre AS, Minville M, Bellenger J, Gresti J, Rialland M, Narce M, Tessier C. The metabolic cascade leading to eicosanoid precursors--desaturases, elongases, and phospholipases A2--is altered in Zucker fatty rats. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:409-17. [PMID: 21172452 DOI: 10.1016/j.bbalip.2010.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/18/2010] [Accepted: 12/10/2010] [Indexed: 11/15/2022]
Abstract
Metabolic syndrome characterized by insulin resistance and obesity is accompanied by severe lipid metabolism perturbations and chronic low-grade inflammation. However, many unresolved questions remained regarding the regulation that underlie dyslipidemia, particularly the regulation of the metabolic cascade (synthesis and release) leading to eicosanoid precursors release. This study was undertaken to investigate the regulation of desaturases/elongases and phospholipases A(2) during the establishment of metabolic syndrome. Our results showed that delta-6 desaturase as well as elongase-6 expressions were upregulated in 3-month-old Zucker fatty rats as compared to lean littermates, independently of SREBP-1c activation. We also demonstrated for the first time an increase of liver group VII phospholipase A(2) gene expression in the obese animals together with a strong specific inhibition of type IVA and VIA phospholipases A(2). These results suggest that the regulation of unsaturated fatty acids biosynthesis and signalling cascade could contribute to the development of liver lipid dysregulation related to metabolic syndrome and may be considered as new potential targets in such pathological conditions.
Collapse
Affiliation(s)
- Cécile Fèvre
- INSERM UMR 866/Université de Bourgogne, Lipides Nutrition Cancer, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Yano T, Fujioka D, Saito Y, Kobayashi T, Nakamura T, Obata JE, Kawabata K, Watanabe K, Watanabe Y, Mishina H, Tamaru S, Kugiyama K. Group V secretory phospholipase A2 plays a pathogenic role in myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 90:335-43. [PMID: 21169294 DOI: 10.1093/cvr/cvq399] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Group V secretory phospholipase A(2) (sPLA(2)-V) is highly expressed in the heart. This study examined (i) the role of sPLA(2)-V in myocardial ischaemia-reperfusion (I/R) injury and (ii) the cooperative action of sPLA(2)-V and cytosolic PLA(2) (cPLA(2)) in myocardial I/R injury, using sPLA(2)-V knockout (sPLA(2)V(-/-)) mice. METHODS AND RESULTS Myocardial I/R injury was created by 1 h ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. The sPLA(2)V(-/-) mice had a 44% decrease in myocardial infarct size, a preservation of echocardiographic LV function (%fractional shortening: 40 ± 3.5 vs. 21 ± 4.6, respectively), and lower content of leucotriene B(4) (LTB(4)) and thromboxane B(2) (TXB(2)) (40 and 37% lower, respectively) in the ischaemic myocardium after I/R compared with wild-type (WT) mice. Intraperitoneal administration of AACOCF3 or MAFP, inhibitors of cPLA(2) activity, decreased myocardial infarct size and myocardial content of LTB(4) and TXB(2) in both genotyped mice. The decrease in myocardial infarct size and content of LTB(4) and TXB(2) after cPLA(2) inhibitor administration was greater in WT mice than in sPLA(2)V(-/-) mice. I/R increased phosphorylation of extracellular signal-related kinase 1/2, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in the ischaemic myocardium in association with cPLA(2) phosphorylation. The I/R-induced increase in the phosphorylation of p38 and cPLA(2) was less in sPLA(2)-V(-/-) mice than in WT mice. Pretreatment with the p38 inhibitor SB202190 suppressed an increase in cPLA(2) phosphorylation after I/R in WT mice. CONCLUSION sPLA(2)-V plays an important role in the pathogenesis of myocardial I/R injury partly in concert with the activation of cPLA(2).
Collapse
Affiliation(s)
- Toshiaki Yano
- Department of Internal Medicine II, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Yamanashi, Chuo 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Das UN. Current and emerging strategies for the treatment and management of systemic lupus erythematosus based on molecular signatures of acute and chronic inflammation. J Inflamm Res 2010; 3:143-70. [PMID: 22096364 PMCID: PMC3218729 DOI: 10.2147/jir.s9425] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lupus is a chronic, systemic inflammatory condition in which eicosanoids, cytokines, nitric oxide (NO), a deranged immune system, and genetics play a significant role. Our studies revealed that an imbalance in the pro- and antioxidants and NO and an alteration in the metabolism of essential fatty acids exist in lupus. The current strategy of management includes administration of nonsteroidal anti-inflammatory drugs such as hydroxychloroquine and immunosuppressive drugs such as corticosteroids. Investigational drugs include the following: 1) belimumab, a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, also known as B-cell-activation factor of the TNF family; 2) stem cell transplantation; 3) rituximab, a chimeric monoclonal antibody against CD20, which is primarily found on the surface of B-cells and can therefore destroy B-cells; and 4) IL-27, which has potent anti-inflammatory actions. Our studies showed that a regimen of corticosteroids and cyclophosphamide, and methods designed to enhance endothelial NO synthesis and augment antioxidant defenses, led to induction of long-lasting remission of the disease. These results suggest that methods designed to modulate molecular signatures of the disease process and suppress inflammation could be of significant benefit in lupus. Some of these strategies could be vagal nerve stimulation, glucose-insulin infusion, and administration of lipoxins, resolvins, protectins, and nitrolipids by themselves or their stable synthetic analogs that are known to suppress inflammation and help in the resolution and healing of the inflammation-induced damage. These strategies are likely to be useful not only in lupus but also in other conditions, such as rheumatoid arthritis, scleroderma, ischemia-reperfusion injury to the myocardium, ischemic heart disease, and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; UND Life Sciences, Shaker Heights, OH, USA
| |
Collapse
|
76
|
Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:1260-73. [PMID: 20708099 PMCID: PMC2994245 DOI: 10.1016/j.bbalip.2010.08.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/23/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
Abstract
A new genus of specialized pro-resolving mediators (SPM) which include several families of distinct local mediators (lipoxins, resolvins, protectins, and maresins) are actively involved in the clearance and regulation of inflammatory exudates to permit restoration of tissue homeostasis. Classic lipid mediators that are temporally regulated are formed from arachidonic acid, and novel local mediators were uncovered that are biosynthesized from ω-3 poly-unsaturated fatty acids, such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid. The biosynthetic pathways for resolvins are constituted by fatty acid lipoxygenases and cyclooxygenase-2 via transcellular interactions established by innate immune effector cells which migrate from the vasculature to inflamed tissue sites. SPM provide local control over the execution of an inflammatory response towards resolution, and include recently recognized actions of SPM such as tissue protection and host defense. The structural families of the SPM do not resemble classic eicosanoids (PG or LT) and are novel structures that function uniquely via pro-resolving cellular and molecular targets. The extravasation of inflammatory cells expressing SPM biosynthetic routes are matched by the temporal provision of essential fatty acids from circulation needed as substrate for the formation of SPM. The present review provides an update and overview of the biosynthetic pathways and actions of SPM, and examines resolution as an integrated component of the inflammatory response and its return to homeostasis via biochemically active resolution mechanisms.
Collapse
Affiliation(s)
- Gerard Bannenberg
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| | | |
Collapse
|
77
|
Hurley BP, Pirzai W, Mumy KL, Gronert K, McCormick BA. Selective eicosanoid-generating capacity of cytoplasmic phospholipase A2 in Pseudomonas aeruginosa-infected epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 300:L286-94. [PMID: 21097525 DOI: 10.1152/ajplung.00147.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airway neutrophil infiltration is a pathological hallmark observed in multiple lung diseases including pneumonia and cystic fibrosis. Bacterial pathogens such as Pseudomonas aeruginosa instigate neutrophil recruitment to the air space. Excessive accumulation of neutrophils in the lung often contributes to tissue destruction. Previous studies have unveiled hepoxilin A(3) as the key molecular signal driving neutrophils across epithelial barriers. The eicosanoid hepoxilin A(3) is a potent neutrophil chemoattractant produced by epithelial cells in response to infection with P. aeruginosa. The enzyme phospholipase A(2) liberates arachidonic acid from membrane phospholipids, the rate-limiting step in the synthesis of all eicosanoids, including hepoxilin A(3). Once generated, aracidonic acid is acted upon by multiple cyclooxygenases and lipoxygenases producing an array of functionally diverse eicosanoids. Although there are numerous phospholipase A(2) isoforms capable of generating arachidonic acid, the isoform most often associated with eicosanoid generation is cytoplasmic phospholipase A(2)α. In the current study, we observed that the cytoplasmic phospholipase A(2)α isoform is required for mediating P. aeruginosa-induced production of certain eicosanoids such as prostaglandin E(2). However, we found that neutrophil transepithelial migration induced by P. aeruginosa does not require cytoplasmic phospholipase A(2)α. Furthermore, P. aeruginosa-induced hepoxilin A(3) production persists despite cytoplasmic phospholipase A(2)α suppression and generation of the 12-lipoxygenase metabolite 12-HETE is actually enhanced in this context. These results suggest that alterative phospholipase A(2) isoforms are utilized to synthesize 12-lipoxygenase metabolites. The therapeutic implications of these findings are significant when considering anti-inflammatory therapies based on targeting eicosanoid synthesis pathways.
Collapse
Affiliation(s)
- Bryan P Hurley
- Mucosal Immunology, Massachusetts General Hospital, Charlestown, 02129, USA.
| | | | | | | | | |
Collapse
|
78
|
Stables MJ, Newson J, Ayoub SS, Brown J, Hyams CJ, Gilroy DW. Priming innate immune responses to infection by cyclooxygenase inhibition kills antibiotic-susceptible and -resistant bacteria. Blood 2010; 116:2950-9. [PMID: 20606163 PMCID: PMC5362071 DOI: 10.1182/blood-2010-05-284844] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inhibition of cyclooxygenase (COX)-derived prostaglandins (PGs) by nonsteroidal anti-inflammatory drugs (NSAIDs) mediates leukocyte killing of bacteria. However, the relative contribution of COX1 versus COX2 to this process, as well as the mechanisms controlling it in mouse and humans, are unknown. Indeed, the potential of NSAIDs to facilitate leukocyte killing of drug-resistant bacteria warrants investigation. Therefore, we carried out a series of experiments in mice and humans, finding that COX1 is the predominant isoform active in PG synthesis during infection and that its prophylactic or therapeutic inhibition primes leukocytes to kill bacteria by increasing phagocytic uptake and reactive oxygen intermediate-mediated killing in a cyclic adenosine monophosphate (cAMP)-dependent manner. Moreover, NSAIDs enhance bacterial killing in humans, exerting an additive effect when used in combination with antibiotics. Finally, NSAIDs, through the inhibition of COX prime the innate immune system to mediate bacterial clearance of penicillin-resistant Streptococcus pneumoniae serotype 19A, a well-recognized vaccine escape serotype of particular concern given its increasing prevalence and multi-antibiotic resistance. Therefore, these data underline the importance of lipid mediators in host responses to infection and the potential of inhibitors of PG signaling pathways as adjunctive therapies, particularly in the con-text of antibiotic resistance.
Collapse
Affiliation(s)
- Melanie J Stables
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
79
|
Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1576-91. [PMID: 20813960 PMCID: PMC2947253 DOI: 10.2353/ajpath.2010.100322] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 01/08/2023]
Abstract
Because inflammation is appreciated as a unifying basis of many widely occurring diseases, the mechanisms involved in its natural resolution are of considerable interest. Using contained, self-limited inflammatory exudates and a systems approach, novel lipid-derived mediators and pathways were uncovered in the resolution of inflammatory exudates. These new families of local mediators control both the duration and magnitude of acute inflammation as well as the return of the site to homeostasis in the process of catabasis. This new genus of specialized proresolving mediators (SPM) includes essential fatty acid-derived lipoxins, resolvins, protectins, and, most recently, maresins. These families were named based on their unique structures and potent stereoselective actions. The temporally initiated biosynthesis of SPM and their direct impact on leukocyte trafficking and macrophage-directed clearance mechanisms provide clear evidence that resolution is an active, programmed response at the tissue level. Moreover, SPM that possess anti-inflammatory (ie, limiting PMN infiltration) and proresolving (enhance macrophage uptake and clearance of apoptotic PMN and microbial particles) actions as well as stimulating mucosal antimicrobial responses demonstrate that anti-inflammation and proresolution are different responses of the host and novel defining properties of these molecules. The mapping of new resolution circuits has opened the possibility for understanding mechanisms that lead from acute to chronic inflammation, or to the resolution thereof, as well as to potential, resolution-based immunopharmacological therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Director, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, HIM 8, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue. PLoS One 2010; 5:e11671. [PMID: 20652028 PMCID: PMC2907396 DOI: 10.1371/journal.pone.0011671] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/22/2010] [Indexed: 12/14/2022] Open
Abstract
Background Deciphering host responses contributing to dengue shock syndrome (DSS), the life-threatening form of acute viral dengue infections, is required to improve both the differential prognosis and the treatments provided to DSS patients, a challenge for clinicians. Methodology/Principal Findings Based on a prospective study, we analyzed the genome-wide expression profiles of whole blood cells from 48 matched Cambodian children: 19 progressed to DSS while 16 and 13 presented respectively classical dengue fever (DF) or dengue hemorrhagic fever grades I/II (DHF). Using multi-way analysis of variance (ANOVA) and adjustment of p-values to control the False Discovery Rate (FDR<10%), we identified a signature of 2959 genes differentiating DSS patients from both DF and DHF, and showed a strong association of this DSS-gene signature with the dengue disease phenotype. Using a combined approach to analyse the molecular patterns associated with the DSS-gene signature, we provide an integrative overview of the transcriptional responses altered in DSS children. In particular, we show that the transcriptome of DSS children blood cells is characterized by a decreased abundance of transcripts related to T and NK lymphocyte responses and by an increased abundance of anti-inflammatory and repair/remodeling transcripts. We also show that unexpected pro-inflammatory gene patterns at the interface between innate immunity, inflammation and host lipid metabolism, known to play pathogenic roles in acute and chronic inflammatory diseases associated with systemic vascular dysfunction, are transcriptionnally active in the blood cells of DSS children. Conclusions/Significance We provide a global while non exhaustive overview of the molecular mechanisms altered in of DSS children and suggest how they may interact to lead to final vascular homeostasis breakdown. We suggest that some mechanisms identified should be considered putative therapeutic targets or biomarkers of progression to DSS.
Collapse
|
81
|
Song H, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA(2)beta. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:547-58. [PMID: 20132906 PMCID: PMC2848069 DOI: 10.1016/j.bbalip.2010.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
Over the past decade, important roles for the 84-88kDa Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) in various organs have been described. We demonstrated that iPLA(2)beta participates in insulin secretion, insulinoma cells and native pancreatic islets express full-length and truncated isoforms of iPLA(2)beta, and certain stimuli promote perinuclear localization of iPLA(2)beta. To gain a better understanding of its mobilization, iPLA(2)beta was expressed in INS-1 cells as a fusion protein with EGFP, enabling detection of subcellular localization of iPLA(2)beta by monitoring EGFP fluorescence. Cells stably-transfected with fusion protein expressed nearly 5-fold higher catalytic iPLA(2)beta activity than control cells transfected with EGFP cDNA alone, indicating that co-expression of EGFP does not interfere with manifestation of iPLA(2)beta activity. Dual fluorescence monitoring of EGFP and organelle Trackers combined with immunoblotting analyses revealed expression of truncated iPLA(2)beta isoforms in separate subcellular organelles. Exposure to secretagogues and induction of ER stress are known to activate iPLA(2)beta in beta-cells and we find here that these stimuli promote differential localization of iPLA(2)beta in subcellular organelles. Further, mass spectrometric analyses identified iPLA(2)beta variants from which N-terminal residues were removed. Collectively, these findings provide evidence for endogenous proteolytic processing of iPLA(2)beta and redistribution of iPLA(2)beta variants in subcellular compartments. It might be proposed that in vivo processing of iPLA(2)beta facilitates its participation in multiple biological processes.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Shunzhong Bao
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Xiaoyong Lei
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Chun Jin
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sheng Zhang
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - John Turk
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| |
Collapse
|
82
|
Lee IT, Lee CW, Tung WH, Wang SW, Lin CC, Shu JC, Yang CM. Cooperation of TLR2 with MyD88, PI3K, and Rac1 in lipoteichoic acid-induced cPLA2/COX-2-dependent airway inflammatory responses. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1671-84. [PMID: 20167866 DOI: 10.2353/ajpath.2010.090714] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipoteichoic acid (LTA) plays a role in the pathogenesis of severe inflammatory responses induced by Gram-positive bacterial infection. Cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), and interleukin (IL)-6 have been demonstrated to engage in airway inflammation. In this study, LTA-induced cPLA(2) and COX-2 expression and PGE(2) or IL-6 synthesis were attenuated by transfection with siRNAs of TLR2, MyD88, Akt, p42, p38, JNK2, and p65 or pretreatment with the inhibitors of PI3K (LY294002), p38 (SB202190), MEK1/2 (U0126), JNK1/2 (SP600125), and NF-kappaB (helenalin) in human tracheal smooth muscle cells (HTSMCs). LTA also induced cPLA(2) and COX-2 expression and leukocyte count in bronchoalveolar lavage fluid in mice. LTA-regulated PGE(2) or IL-6 production was inhibited by pretreatment with the inhibitors of cPLA(2) (AACOCF(3)) and COX-2 (NS-398) or transfection with cPLA(2) siRNA or COX-2 siRNA, respectively. LTA-stimulated NF-kappaB translocation or cPLA(2) phosphorylation was attenuated by pretreatment with LY294002, SB202190, U0126, or SP600125. Furthermore, LTA could stimulate TLR2, MyD88, PI3K, and Rac1 complex formation. We also demonstrated that Staphylococcus aureus could trigger these responses through a similar signaling cascade in HTSMCs. It was found that PGE(2) could directly stimulate IL-6 production in HTSMCs or leukocyte count in bronchoalveolar lavage fluid in mice. These results demonstrate that LTA-induced MAPKs activation is mediated through the TLR2/MyD88/PI3K/Rac1/Akt pathway, which in turn initiates the activation of NF-kappaB, and ultimately induces cPLA(2)/COX-2-dependent PGE(2) and IL-6 generation.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
83
|
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010; 92:627-37. [PMID: 20083151 DOI: 10.1016/j.biochi.2010.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Medicine, Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
84
|
Doyle TJ, Oudes AJ, Kim KH. Temporal profiling of rat transcriptomes in retinol-replenished vitamin A-deficient testis. Syst Biol Reprod Med 2010; 55:145-63. [PMID: 19886770 DOI: 10.3109/19396360902896844] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
At least in mammals, retinoic acid is a pivotal factor in maintaining the functionality of the testis, in particular, for the progression of germ cells from mitosis to meiosis. Removal of dietary vitamin A or a targeted deletion of retinoic acid receptor alpha gene (Rara), the receptor for retinoic acid, in mice, led to testicular degeneration by a dramatic loss of germ cells and a loss of control of the spermatogenic cycle. The germ cells that remained in the vitamin A deficient (VAD) rat testis were spermatogonia and a few preleptotene spermatocytes. Spermatogenesis can be reinitiated by injection of VAD rats with retinol, the metabolic precursor of retinoic acid, but to date, the functions of retinoic acid in the testis remain elusive. We have applied DNA microarray technology to investigate the time-dependent transcriptome changes that occur 4 to 24 h after retinol replenishment in the VAD rat testis. The retinol-regulated gene expression occurred both in germ cells and Sertoli cells. Bioinformatic analyses revealed time-dependent clusters of genes and canonical pathways that may have critical functions for proper progression through spermatogenesis. In particular, gene clusters that emerged dealt with: (1) cholesterol and oxysterol homeostasis, * (2) the regulation of steroidogenesis, (3) glycerophospholipid metabolism, (4) the regulation of acute inflammation, (5) the regulation of the cell cycle including ubiquitin-mediated degradation of cell cycle proteins and control of centrosome and genome integrity, and (6) the control of membrane scaffolding proteins that can integrate multiple small GTPase signals within a cell. These results provide insights into the potential role of retinoic acid in the testis.
Collapse
Affiliation(s)
- Timothy J Doyle
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | |
Collapse
|
85
|
Ayilavarapu S, Kantarci A, Fredman G, Turkoglu O, Omori K, Liu H, Iwata T, Yagi M, Hasturk H, Van Dyke TE. Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. THE JOURNAL OF IMMUNOLOGY 2010; 184:1507-15. [PMID: 20053941 DOI: 10.4049/jimmunol.0901219] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neutrophils from people with poorly controlled diabetes present a primed phenotype and secrete excessive superoxide. Phospholipase A(2) (PLA(2))-derived arachidonic acid (AA) activates the assembly of NADPH oxidase to generate superoxide anion. There is a gap in the current literature regarding which PLA(2) isoform regulates NADPH oxidase activation. The aim of this study was to identify the PLA(2) isoform involved in the regulation of superoxide generation in neutrophils and investigate if PLA(2) mediates priming in response to pathologic hyperglycemia. Neutrophils were isolated from people with diabetes mellitus and healthy controls, and HL60 neutrophil-like cells were grown in hyperglycemic conditions. Incubating neutrophils with the Ca(2+)-independent PLA(2) (iPLA(2)) inhibitor bromoenol lactone (BEL) completely suppressed fMLP-induced generation of superoxide. The nonspecific actions of BEL on phosphatidic acid phosphohydrolase-1, p47(phox) phosphorylation, and apoptosis were ruled out by specific assays. Small interfering RNA knockdown of iPLA(2) inhibited superoxide generation by neutrophils. Neutrophils from people with poorly controlled diabetes and in vitro incubation of neutrophils with high glucose and the receptor for advanced glycation end products ligand S100B greatly enhanced superoxide generation compared with controls, and this was significantly inhibited by BEL. A modified iPLA(2) assay, Western blotting, and PCR confirmed that there was increased iPLA(2) activity and expression in neutrophils from people with diabetes. AA (10 microM) partly rescued the inhibition of superoxide generation mediated by BEL, confirming that NADPH oxidase activity is, in part, regulated by AA. This study provides evidence for the role of iPLA(2) in enhanced superoxide generation in neutrophils from people with diabetes mellitus and presents an alternate pathway independent of protein kinase C and phosphatidic acid phosphohydrolase-1 hydrolase signaling.
Collapse
Affiliation(s)
- Srinivas Ayilavarapu
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Inflammation has long been thought to contribute to the development of cancer; however there is also clear evidence that the immune system can recognize and eliminate cancer cells. Current research suggests that cancer-associated inflammation has a dual role in tumor progression; inflammatory mediators promote the malignant activity of cancer cells by acting as growth factors and also stimulate angiogenesis, however, cancer-associated inflammation is also linked with immune-suppression that allows cancer cells to evade detection by the immune system. In this review we will discuss the dual role of inflammation in cancer and how endogenous anti-inflammatory mechanisms may equally be important in carcinogenesis.
Collapse
|
87
|
Armugam A, Cher CDN, Lim K, Koh DCI, Howells DW, Jeyaseelan K. A secretory phospholipase A2-mediated neuroprotection and anti-apoptosis. BMC Neurosci 2009; 10:120. [PMID: 19775433 PMCID: PMC2758888 DOI: 10.1186/1471-2202-10-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/23/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Phospholipase A2 liberates free fatty acids and lysophospholipids upon hydrolysis of phospholipids and these products are often associated with detrimental effects such as inflammation and cerebral ischemia. The neuroprotective effect of neutral phospholipase from snake venom has been investigated. RESULTS A neutral anticoagulant secretory phospholipase A2 (nPLA) from the venom of Naja sputatrix (Malayan spitting cobra) has been found to reduce infarct volume in rats subjected to focal transient cerebral ischemia and to alleviate the neuronal damage in organotypic hippocampal slices subjected to oxygen-glucose deprivation (OGD). Real-time PCR based gene expression analysis showed that anti-apoptotic and pro-survival genes have been up-regulated in both in vivo and in vitro models. Staurosporine or OGD mediated apoptotic cell death in astrocytoma cells has also been found to be reduced by nPLA with a corresponding reduction in caspase 3 activity. CONCLUSION We have found that a secretory phospholipase (nPLA) purified from snake venom could reduce infarct volume in rodent stroke model. nPLA, has also been found to reduce neuronal cell death, apoptosis and promote cell survival in vitro ischemic conditions. In all conditions, the protective effects could be seen at sub-lethal concentrations of the protein.
Collapse
Affiliation(s)
- Arunmozhiarasi Armugam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
88
|
Yang CS, Yuk JM, Shin DM, Kang J, Lee SJ, Jo EK. Secretory phospholipase A2 plays an essential role in microglial inflammatory responses to Mycobacterium tuberculosis. Glia 2009; 57:1091-103. [PMID: 19115385 DOI: 10.1002/glia.20832] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous studies, we have shown that reactive oxygen species (ROS)-mediated inflammatory signaling is essential for microglial proinflammatory responses to Mycobacterium tuberculosis (Mtb). To further investigate the molecular mechanisms governing these processes, we sought to describe the role of phospholipase A(2) (PLA(2)) in Mtb-induced ROS generation and inflammatory mediator release by microglia. Inhibition of secretory PLA(2) (sPLA(2)), but not cytosolic PLA(2) (cPLA(2)), profoundly abrogated Mtb-mediated ROS release, the generation of various inflammatory mediators (tumor necrosis factor, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-2 and -9), and the activation of nuclear factor (NF)-kappaB and MAPKs (ERK1/2, p38, and JNK/SAPK) by murine microglial BV-2 cells or primary mixed glial cells. Interruption of the Ras/Raf-1/MEK1/ERK1/2 pathway abolished Mtb-induced sPLA(2) activity, whereas the blockage of JNK/SAPK or p38 activity had no effect. Specific inhibition of sPLA(2), but not cPLA(2), suppressed the upregulation of ERK1/2 phosphorylation by Mtb stimulation, suggesting the existence of a mutual dependency between the ERK1/2 and sPLA(2) pathways. Moreover, examination of the protein kinase C (PKC) family revealed that classical PKCs are involved in Mtb-induced sPLA(2) activation by microglia. Taken together, our results demonstrate for the first time that sPLA(2), either through pathways comprising Ras/Raf-1/MEK1/ERK1/2 or the classical PKC family, plays an essential role in Mtb-mediated ROS generation and inflammatory mediator release by microglial cells.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
89
|
Cheng SE, Luo SF, Jou MJ, Lin CC, Kou YR, Lee IT, Hsieh HL, Yang CM. Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human tracheal smooth muscle cells. Free Radic Biol Med 2009; 46:948-60. [PMID: 19280714 DOI: 10.1016/j.freeradbiomed.2009.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Up-regulation of cytosolic phospholipase A2 (cPLA2) by cigarette smoke extract (CSE) may play a critical role in airway inflammatory diseases. However, the mechanisms underlying CSE-induced cPLA2 expression in human tracheal smooth muscle cells (HTSMCs) remain unknown. CSE induced cPLA2 protein and mRNA expression, and ROS generation was attenuated by pretreatment with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), or inhibitors of NADPH oxidase (diphenyleneiodonium chloride, apocynin) and transfection with p47phox siRNA, suggesting that CSE-induced cPLA2 expression was mediated through NADPH oxidase activation and ROS production in HTSMCs. Furthermore, CSE-induced cPLA2 expression was attenuated by pretreatment with the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), which were further confirmed by transfection with siRNAs of JNK1, p42, and p38 to down-regulate the expression of respective proteins and reduce cPLA2 expression. Induction of cPLA2 by CSE was attenuated by selective inhibitors of NF-kappaB (helenalin) and AP-1 (curcumin). Moreover, promoter assays revealed that increases of cPLA2, NF-kappaB, and AP-1 luciferase activities stimulated by CSE were attenuated by these inhibitors. These results suggest that in HTSMCs, CSE induced NADPH oxidase activation leading to phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK. These reactions induced nuclear transcription NF-kappaB and AP-1 activities which were essential for CSE-induced cPLA2 gene expression.
Collapse
Affiliation(s)
- Shin-Ei Cheng
- Department of Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Herath S, Lilly ST, Fischer DP, Williams EJ, Dobson H, Bryant CE, Sheldon IM. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2alpha to prostaglandin E2 in bovine endometrium. Endocrinology 2009; 150:1912-20. [PMID: 19056817 PMCID: PMC2706387 DOI: 10.1210/en.2008-1379] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escherichia coli infection of the endometrium causes uterine disease after parturition and is associated with prolonged luteal phases of the ovarian cycle in cattle. Termination of the luteal phase is initiated by prostaglandin F(2alpha) (PGF) from oxytocin-stimulated endometrial epithelial cells. Compared with normal animals, the peripheral plasma of animals with E. coli infection of the endometrium had higher concentrations of lipopolysaccharide (LPS) and prostaglandin E(2) (PGE) but not PGF. Endometrial explants accumulated predominantly PGE in the culture medium in response to LPS, and this effect was not reversed by oxytocin. Endometrial cells expressed the Toll-like receptor 4/CD14/MD-2 receptor complex necessary to detect LPS. Epithelial and stromal cells treated with LPS had higher steady-state media concentrations of PGE rather than PGF. Arachadonic acid is liberated from cell membranes by phospholipase 2 (PLA2) enzymes and converted to prostaglandins by synthase enzymes. Treatment of epithelial and stromal cells with LPS did not change the levels of PGE or PGF synthase enzymes. However, LPS stimulated increased levels of PLA2 group VI but not PLA2 group IV C immunoreactive protein in epithelial cells. Endometrial cells expressed the E prostanoid 2 and E prostanoid 4 receptors necessary to respond to PGE, which regulates inflammation as well as being luteotropic. In conclusion, LPS detection by endometrial cells stimulated the accumulation of PGE rather than PGF, providing a mechanism to explain prolonged luteal phases in animals with uterine disease, and this PGE may also be important for regulating inflammatory responses in the endometrium.
Collapse
Affiliation(s)
- Shan Herath
- Department of Veterinary Clinical Sciences, Royal Veterinary College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
91
|
Kalyvas A, Baskakis C, Magrioti V, Constantinou-Kokotou V, Stephens D, López-Vales R, Lu JQ, Yong VW, Dennis EA, Kokotos G, David S. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2009; 132:1221-35. [PMID: 19218359 DOI: 10.1093/brain/awp002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phospholipase A(2) (PLA(2)) superfamily hydrolyzes phospholipids to release free fatty acids and lysophospholipids, some of which can mediate inflammation and demyelination, hallmarks of the CNS autoimmune disease multiple sclerosis. The expression of two of the intracellular PLA(2)s (cPLA(2) GIVA and iPLA(2) GVIA) and two of the secreted PLA(2)s (sPLA(2) GIIA and sPLA(2) GV) are increased in different stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We show using small molecule inhibitors, that cPLA(2) GIVA plays a role in the onset, and iPLA(2) GVIA in the onset and progression of EAE. We also show a potential role for sPLA(2) in the later remission phase. These studies demonstrate that selective inhibition of iPLA(2) can ameliorate disease progression when treatment is started before or after the onset of symptoms. The effects of these inhibitors on lesion burden, chemokine and cytokine expression as well as on the lipid profile provide insights into their potential modes of action. iPLA(2) is also expressed by macrophages and other immune cells in multiple sclerosis lesions. Our results therefore suggest that iPLA(2) might be an excellent target to block for the treatment of CNS autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Athena Kalyvas
- Center for Research in Neuroscience, McGill University Health Center Research Institute, Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
93
|
Kasuga K, Yang R, Porter TF, Agrawal N, Petasis NA, Irimia D, Toner M, Serhan CN. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8677-87. [PMID: 19050288 PMCID: PMC2664686 DOI: 10.4049/jimmunol.181.12.8677] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resolution of inflammation is essential. Although supplementation of omega-3 fatty acids is widely used, their availability at sites of inflammation is not known. To this end, a multidisciplinary approach was taken to determine the relationship of circulating omega-3 to inflammatory exudates and the generation of resolution signals. In this study, we monitored resolvin precursors in evolving exudates, which initially paralleled increases in edema and infiltrating neutrophils. We also prepared novel microfluidic chambers to capture neutrophils from a drop of blood within minutes that permitted single-cell monitoring. In these, docosahexaenoic acid-derived resolvin D1 rapidly stopped neutrophil migration, whereas precursor docosahexaenoic acid did not. In second organ injury via ischemia-reperfusion, resolvin metabolically stable analogues were potent organ protectors reducing neutrophils. Together, these results indicate that circulating omega-3 fatty acids rapidly appear in inflammatory sites that require conversion to resolvins that control excessive neutrophil infiltration, protect organs, and foster resolution.
Collapse
Affiliation(s)
- Kie Kasuga
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Burstein S. The elmiric acids: biologically active anandamide analogs. Neuropharmacology 2008; 55:1259-64. [PMID: 18187165 PMCID: PMC2621443 DOI: 10.1016/j.neuropharm.2007.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/20/2007] [Accepted: 11/19/2007] [Indexed: 01/01/2023]
Abstract
As chemical entities, lipoamino acids have been known for some time. However, more recently their occurrence and importance in mammalian species has been discovered. They appear to have close relationships with the endocannabinoids not only structurally but also in terms of biological actions. The latter include analgesia, anti-inflammatory effects, inhibition of cell proliferation and calcium ion mobilization. To date about 40 naturally occurring members of this family have been identified and, additionally, several synthetic analogs have been prepared and studied. To facilitate their identity, a nomenclature system has been suggested based on the name elmiric acid (EMA). The prototypic example, N-arachidonoyl glycine, does not bind to CB1, however it does inhibit the glycine transporter GLYT2a and also appears to be a ligand for the orphan G-protein-coupled receptor GPR18. It may also have a role in regulating tissue levels of anandamide by virtue of its inhibitory effect on FAAH the enzyme that mediates inactivation of anandamide. Its concentration in rat brain is several-fold higher than anandamide supporting its possible role as a physiological mediator. Future studies should be aimed at elucidating the actions of all of the members of this interesting family of molecules.
Collapse
Affiliation(s)
- Sumner Burstein
- Department of Biochemistry & Molecular Pharmacology, The University of Massachusetts Medical School Worcester, MA 01605, USA.
| |
Collapse
|
95
|
Abstract
The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase A(2) (PLA(2)), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of PLA(2) to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of PLA(2), the diverse sources of ROS, and the lack of specific PLA(2) inhibitors. In this review, we summarize the role of PLA(2) in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Cardiovascular Research Center, Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
96
|
Innate immune response mechanisms in the intestinal epithelium: potential roles for mast cells and goblet cells in the expulsion of adult Trichinella spiralis. Parasitology 2008; 135:655-70. [PMID: 18413001 DOI: 10.1017/s0031182008004319] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARYGastrointestinal infection with the nematode Trichinella spiralis is accompanied by a rapid and reversible expansion of the mucosal mast cell and goblet cell populations in the intestinal epithelium, which is associated with the release of their mediators into the gut lumen. Both goblet cell and mast cell hyperplasia are highly dependent on mucosal T-cells and augmented by the cytokines IL-4 and IL-13. However, the contribution of both mast and goblet cells, and the mediators they produce, to the expulsion of the adults of T. spiralis is only beginning to be elucidated through studies predominantly employing T. spiralis-mouse models. In the present article, we review the factors proposed to control T. spiralis-induced mucosal mast cell (MMC) and goblet cell differentiation in the small intestine, and focus on some key MMC and goblet cell effector molecules which may contribute to the expulsion of adult worms and/or inhibition of larval development.
Collapse
|
97
|
Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun 2008; 76:2259-72. [PMID: 18411286 DOI: 10.1128/iai.00059-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
98
|
Abstract
Acute inflammation is traditionally described as the influx of polymorphonuclear leukocytes (PMNs) followed by monocyte-derived macrophages, leading to resolution. This is a classic view, and despite subpopulations of lymphocytes possessing innate immune-regulatory properties, seldom is their role in acute inflammation and its resolution discussed. To redress this we show, using lymphocyte-deficient RAG1(-/-) mice, that peritoneal T/B lymphocytes control PMN trafficking by regulating cytokine synthesis. Once inflammation ensues in normal mice, lymphocytes disappear in response to DP1 receptor activation by prostaglandin D(2). However, upon resolution, lymphocytes repopulate the cavity comprising B1, natural killer (NK), gamma/delta T, CD4(+)/CD25(+), and B2 cells. Repopulating lymphocytes are dispensable for resolution, as inflammation in RAG1(-/-) and wild-type mice resolve uniformly. However, repopulating lymphocytes are critical for modulating responses to superinfection. Thus, in chronic granulomatous disease using gp91phox(-/-) mice, not only is resolution delayed compared with wild-type, but there is a failure of lymphocyte re-appearance predisposing to exaggerated immune responses upon secondary challenge that is rescued by resolution-phase lymphocytes. In conclusion, as lymphocyte repopulation is also evident in human peritonitis, we hereby describe a transition in T/B cells from acute inflammation to resolution, with a central role in modulating the severity of early onset and orchestrating responses to secondary infection.
Collapse
|
99
|
Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyDelta12 14 PGJ2. Proc Natl Acad Sci U S A 2007; 104:20979-84. [PMID: 18077391 DOI: 10.1073/pnas.0707394104] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hematopoietic prostaglandin D(2) synthase (hPGD(2)S) metabolizes cyclooxygenase (COX)-derived PGH(2) to PGD(2) and 15-deoxyDelta(12-14) PGJ(2) (15d-PGJ(2)). Unlike COX, the role of hPGD(2)S in host defense is ambiguous. PGD(2) can be either pro- or antiinflammatory depending on disease etiology, whereas the existence of 15d-PGJ(2) and its relevance to pathophysiology remain controversial. Herein, studies on hPGD(2)S KO mice reveal that 15d-PGJ(2) is synthesized in a self-resolving peritonitis, detected by using liquid chromatography-tandem MS. Together with PGD(2) working on its DP1 receptor, 15d-PGJ(2) controls the balance of pro- vs. antiinflammatory cytokines that regulate leukocyte influx and monocyte-derived macrophage efflux from the inflamed peritoneal cavity to draining lymph nodes leading to resolution. Specifically, inflammation in hPGD(2)S KOs is more severe during the onset phase arising from a substantial cytokine imbalance resulting in enhanced polymorphonuclear leukocyte and monocyte trafficking. Moreover, resolution is impaired, characterized by macrophage and surprisingly lymphocyte accumulation. Data from this work place hPGD(2)S at the center of controlling the onset and the resolution of acute inflammation where it acts as a crucial checkpoint controller of cytokine/chemokine synthesis as well as leukocyte influx and efflux. Here, we provide definitive proof that 15d-PGJ(2) is synthesized during mammalian inflammatory responses, and we highlight DP1 receptor activation as a potential antiinflammatory strategy.
Collapse
|
100
|
Cummings BS. Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol 2007; 74:949-59. [PMID: 17531957 DOI: 10.1016/j.bcp.2007.04.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 02/04/2023]
Abstract
Phospholipase A(2) (PLA(2)) are esterases that cleave glycerophospholipids to release fatty acids and lysophospholipids. Inhibition of PLA(2) alters cancer cell growth and death in vitro and PLA(2) expression is increased in breast, lung, and prostate cancers compared to control tissues. Thus, PLA(2) may be novel targets for chemotherapeutics. However, PLA(2) are a diverse family of enzymes, encompassing 19 members. The selectivity of these individual PLA(2) for phospholipids varies, as does their location within the cell, and tissue expression. Thus, their role in cancer may also vary. This review summarizes the expression of individual PLA(2) in cancers, focuses on the potential mechanisms by which these esterases mediate carcinogenesis, and suggests that select PLA(2) isoforms may be targets for anti-cancer drugs.
Collapse
Affiliation(s)
- Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|