51
|
Muramatsu H, Welsh FA, Karikó K. Cerebral preconditioning using cortical application of hypertonic salt solutions: upregulation of mRNAs encoding inhibitors of inflammation. Brain Res 2006; 1097:31-8. [PMID: 16725117 PMCID: PMC3619415 DOI: 10.1016/j.brainres.2006.04.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 04/14/2006] [Accepted: 04/18/2006] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated that local application of hypertonic KCl or NaCl to the cerebral cortex induces tolerance to a subsequent episode of ischemia. The objective of the present study was to determine whether application of these salts increases the levels of mRNAs encoding inhibitors of inflammation. Hypertonic KCl or NaCl was applied for 2 h to the frontal cortex of Sprague-Dawley rats. After recovery periods up to 24 h, levels of selected mRNAs were measured in samples from frontal and parietal cortex using Northern blots. Application of hypertonic KCl caused a rapid and widespread increase in the levels of mRNA coding for tumor necrosis factor (TNF), tristetraprolin (TTP), suppressor of cytokine signaling-3 (SOCS3), and brain-derived neurotrophic factor (BDNF), and a 24-h delayed induction of ciliary neurotrophic factor (CNTF) mRNA. Application of hypertonic NaCl caused alterations in mRNA levels that were restricted to the frontal cortex. In this region, application of NaCl rapidly increased levels of mRNA encoding TNF, TTP, and SOCS3, but not BDNF, and caused a delayed induction of CNTF mRNA. These results raise the possibility that upregulation of inhibitors of inflammation after preconditioning may contribute to the induction of tolerance to ischemia.
Collapse
Affiliation(s)
- Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 371 Stemmler Hall, Box 44, 36th and Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
52
|
Abstract
Ischaemic preconditioning (IPC), also known as ischaemic tolerance (IT), is a phenomenon whereby tissue is exposed to a brief, sublethal period of ischaemia, which activates endogenous protective mechanisms, thereby reducing cellular injury that may be caused by subsequent lethal ischaemic events. The first description of this phenomenon was in the heart, which was reported by Murry and co-workers in 1986. Subsequent studies demonstrated IPC in lung, kidney and liver tissue, whereas more recent studies have concentrated on the brain. The cellular mechanisms underlying the beneficial effects of IPC remain largely unknown. This phenomenon, which has been demonstrated by using various injury paradigms in both cultured neurons and animal brain tissue, may be utilised to identify and characterise therapeutic targets for small-molecule, antibody, or protein intervention. This review will examine the experimental evidence demonstrating the phenomenon termed IPC in models of cerebral ischaemia, the cellular mechanisms that may be involved and the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Kevin Pong
- Wyeth Research, Department of Neuroscience, Princeton, NJ 08543, USA.
| |
Collapse
|
53
|
Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW. Cyclooxygenase-2 mediates the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Neuroscience 2006; 140:723-30. [PMID: 16567054 DOI: 10.1016/j.neuroscience.2006.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 02/08/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
We examined the role of cyclooxygenase-2 in the development of ischemic tolerance induced by cortical spreading depression against transient, focal brain ischemia. Cortical spreading depression was continuously induced for 2 h with topical KCl (13+/-1 depolarizations/2 h) in male Wistar rats. At 1, 2, 3, 4, and 5 days following recovery, the middle cerebral artery was transiently occluded for 120 min. Four days later, the animals were killed and infarct volume was determined. Additionally, cyclooxygenase-2 levels in the cerebral cortex and 15 deoxy-Delta(12, 14) PGJ2 levels in cerebrospinal fluid were determined at these times with Western blotting and immunoassay, respectively. Infarct volume was reduced compared with non-cortical spreading depression control animals (274.3+/-15.3 mm3) when cortical spreading depression was performed 3 and 4 days before middle cerebral artery occlusion (163.9+/-14.2 mm3, 154.9+/-14.2 mm3) but not at 1, 2 and 5 days (280.4+/-17.3 mm3, 276.3+/-16.9 mm3 and 268.5+/-17.3 mm3). Cyclooxygenase-2 levels increased most dramatically starting at 2 days, peaked at 3 days, and started to return toward baseline at 4 days after cortical spreading depression. 15 Deoxy-Delta(12, 14) PGJ2 levels increased from 134.7+/-83 pg/ml at baseline to 718+/-98 pg/ml at 3 days. Administration of N-[2-cyclohexyloxy-4-nitrophenyl] methanesulphonamide (10 mg/kg, i.v.), a selective cyclooxygenase-2 inhibitor, at 1 h prior to middle cerebral artery occlusion in cortical spreading depression preconditioned animals did not affect infarct volume (162.6+/-62.1 mm3). However, administration of N-[2-cyclohexyloxy-4-nitrophenyl] methanesulphonamide given three times prior to middle cerebral artery occlusion prevented the reduced infarct volume induced by cortical spreading depression preconditioning (272.9+/-63.2 mm3). Administration of L-nitro-arginine methyl ester (4 mg/kg, i.v.) prior to cortical spreading depression blocked increases in cyclooxygenase-2 normally seen at 3 and 4 days. We conclude that NO-mediated cyclooxygenase-2 upregulation by cortical spreading depression protects the brain against ischemic damage.
Collapse
Affiliation(s)
- T Horiguchi
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, USA, and Department of Neurosurgery, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka Meguro-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
54
|
Furuya K, Zhu L, Kawahara N, Abe O, Kirino T. Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. J Neurosurg 2005; 103:715-23. [PMID: 16266055 DOI: 10.3171/jns.2005.103.4.0715] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although brain tissue may be protected by previous preconditioning, the temporal evolution of infarcts in such preconditioned brain tissue during focal cerebral ischemia is largely unknown. Therefore, in this study the authors engaged in long-term observation with magnetic resonance (MR) imaging to clarify the difference in lesion evolution between tolerant and nontolerant conditions. METHODS Bacterial lipopolysaccharide (LPS; 0.9 mg/kg) was administered intravenously to induce cross-ischemic tolerance. Focal cerebral ischemia was induced 72 hours later in spontaneously hypertensive rats. Serial brain MR images were obtained 6 hours, 24 hours, 4 days, 7 days, and 14 days after ischemia by using a 7.05-tesla unit. Lesion-reducing effects were evident 6 hours after ischemia in the LPS group. Preconditioning with LPS does not merely delay but prevents ischemic cell death by reducing lesion size. Lesion reduction was a sustained effect noted up to 14 days after ischemia. Reduction of local cerebral blood flow (ICBF) in the periinfarct area was significantly inhibited in the LPS group, which was correlated with endothelial nitric oxide synthase (eNOS) expression. CONCLUSIONS Significant preservation of ICBF in the periinfarct area, which is relevant to sustained upregulation of eNOS, could be a candidate for the long-term inhibiting effect on infarct evolution in the LPS-induced tolerant state.
Collapse
Affiliation(s)
- Kazuhide Furuya
- Department of Neurosurgery, Faculty of Medicine, University of Tokyo and University Hospital, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
55
|
Burda J, Matiasová M, Gottlieb M, Danielisová V, Némethová M, Garcia L, Salinas M, Burda R. Evidence for a Role of Second Pathophysiological Stress in Prevention of Delayed Neuronal Death in the Hippocampal CA1 Region. Neurochem Res 2005; 30:1397-405. [PMID: 16341936 DOI: 10.1007/s11064-005-8510-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
In ischemic tolerance experiment, when we applied 5-min ischemia 2 days before 30-min ischemia, we achieved a remarkable (95.8%) survival of CA1 neurons. However, when we applied 5-min ischemia itself, without following lethal ischemia, we found out 45.8% degeneration of neurons in the CA1. This means that salvage of 40% CA1 neurons from postischemic degeneration was initiated by the second pathophysiological stress. These findings encouraged us to hypothesize that the second pathophysiological stress used 48 h after lethal ischemia can be efficient in prevention of delayed neuronal death. Our results demonstrate that whereas 8 min of lethal ischemia destroys 49.9% of CAI neurons, 10 min of ischemia destroys 71.6% of CA1 neurons, three different techniques of the second pathophysiological stress are able to protect against both: CA1 damage as well as spatial learning/memory dysfunction. Bolus of norepinephrine (3.1 micromol/kg i.p.) used two days after 8 min ischemia saved 94.2%, 6 min ischemia applied 2 days after 10 min ischemia rescued 89.9%, and an injection of 3-nitropropionic acid (20 mg/kg i.p.) applied two days after 10 min ischemia protected 77.5% of CA1 neurons. Thus, the second pathophysiological stress, if applied at a suitable time after lethal ischemia, represents a significant therapeutic window to opportunity for salvaging neurons in the hippocampal CA1 region against delayed neuronal death.
Collapse
Affiliation(s)
- Jozef Burda
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, Kosice, 040 01, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Thompson CS, Hakim AM. Cortical spreading depression modifies components of the inflammatory cascade. Mol Neurobiol 2005; 32:51-7. [PMID: 16077183 DOI: 10.1385/mn:32:1:051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 11/23/2004] [Indexed: 01/27/2023]
Abstract
As more information becomes available regarding the role of inflammation following stroke, it is apparent that some inflammatory mediators are detrimental and others are beneficial to the progression of ischemic injury. Cortical spreading depression (CSD) is known to impart some degree of ischemic tolerance to the brain and to influence the expression of many genes. Many of the genes whose expression is altered by CSD are associated with inflammation, and it appears likely that modulation of the inflammatory response to ischemia by CSD contributes to ischemic tolerance. Understanding which inflammatory processes are influenced by CSD may lead to the identification of novel targets in the effort to develop an acute treatment for stroke.
Collapse
Affiliation(s)
- Charlie S Thompson
- Neuroscience Research Program, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario
| | | |
Collapse
|
57
|
Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW. Cortical spreading depression (CSD)-induced tolerance to transient focal cerebral ischemia in halothane anesthetized rats is affected by anesthetic level but not ATP-sensitive potassium channels. Brain Res 2005; 1062:127-33. [PMID: 16256083 DOI: 10.1016/j.brainres.2005.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/06/2005] [Accepted: 09/25/2005] [Indexed: 11/25/2022]
Abstract
We investigated the participation of ATP-sensitive potassium (K(ATP)) channels, adenosine A1 receptors, and the effects of different levels of halothane anesthesia in the development of CSD-induced ischemic tolerance. To elicit CSD, 0.5 M KCl was applied for 2 h to the right hemisphere of halothane anesthetized male Wistar rats. The inhalation concentration of halothane during CSD was maintained at 0.5% (n = 8), 1.0% (n = 8), or 2.0% (n = 8). For control animals, saline was applied instead of KCl (n = 8). To inhibit K(ATP) channels or adenosine A1 receptors, glibenclamide (0.1 mg/kg icv; n = 8), 5-hydroxydeconaoate (5-HD; 100 mg/kg ip; n = 12), or 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX) (1.0 mg/kg ip; n = 8) was applied before preconditioning during 1.0% halothane anesthesia. Temporary occlusion (120 min) of the right middle cerebral artery was induced 4 days after preconditioning and the infarct volume was measured. Preconditioning elicited under 1.0% halothane reduced cortical infarct volume from 277 +/- 15 mm3 in the control group to 159 +/- 14 mm3 in the CSD group (mean +/- SEM, P < 0.05). In contrast, CSD induced during inhalation of 0.5% or 2.0% halothane did not confer ischemic tolerance. The reduction in infarct area with CSD during inhalation of 1% halothane was not changed in animals treated with glibenclamide or 5-HD or DPCPX. These results uncover a crucial role of halothane level but not of K(ATP) channels or adenosine A1 receptors in the preconditioning effects of CSD.
Collapse
Affiliation(s)
- Takashi Horiguchi
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
Endogenous tolerance to cerebral ischemia is nature's strategy for neuroprotection. Exploring the physiologic and molecular mechanism of this phenomenon may give us new means of protection against ischemia and other degenerative disorders. This article reviews the currently available experimental methods to induce ischemic tolerance in the brain and gives a brief summary of the potential mode of action.
Collapse
Affiliation(s)
- K J Kapinya
- Department of Experimental Neurology, Medical Faculty Charité, Humboldt-University, Berlin, Germany.
| |
Collapse
|
59
|
Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW. The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res 2005; 1039:84-9. [PMID: 15781049 DOI: 10.1016/j.brainres.2005.01.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 11/30/2022]
Abstract
Cortical spreading depression (CSD) has been documented to confer ischemic tolerance on brain. Although nitric oxide (NO) is a crucial mediator in preconditioning under certain circumstances, the role of NO in CSD-induced neuroprotection is unclear. We examined the effect of L-NAME, an inhibitor of NO synthase, on CSD-induced tolerance against transient focal cerebral ischemia. A solution of 0.5 M KCl was applied for 2 h on the right hemisphere to induce CSD. Animals received either vehicle or L-NAME (4 mg/kg, iv) 30 min before CSD. Temporary occlusion (120 min) of the right middle cerebral artery was induced 4 days after preconditioning and the infarct volume was measured. Additionally, ERK 1/2 activation and cyclooxygenase-2 (COX-2) expression in the cerebral cortex were examined by Western blotting analysis immediately after cessation of CSD, or at 1, 2, 4, 8, and 24 h after CSD. CSD reduced infarct volume from 275 +/- 15 mm3 (mean +/- SEM) in the non-CSD group to 155 +/- 14 mm3 in the CSD group (P < 0.05). L-NAME abolished this protection (281 +/- 14 mm3; P < 0.05 vs. CSD group). Elevated ERK activation and COX-2 expression were observed immediately after or 8 h after preconditioning, respectively. Those responses are significantly augmented by L-NAME (3-fold for ERK and 4-fold for COX-2). These results suggest a crucial role of NO in the establishment of preconditioning with CSD.
Collapse
Affiliation(s)
- Takashi Horiguchi
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
60
|
Tauskela JS, Morley P. On the role of Ca2+ in cerebral ischemic preconditioning. Cell Calcium 2005; 36:313-22. [PMID: 15261487 DOI: 10.1016/j.ceca.2004.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 01/15/2023]
Abstract
Cerebral ischemic preconditioning (IPC) represents a potent endogenous method of inducing tolerance to otherwise lethal ischemia, both in in vivo and in vitro models. Investigation into the mechanism of this phenomenon has yet again transformed the way that neuroscientists view Ca2+. Generally viewed as an agent of neuronal death, particularly within an excitotoxic setting of cerebral ischemia, Ca2+ is now regarded as a key mediator of IPC. Classification of the role of Ca2+ in IPC defies simple description, but seems to possess a stimulatory role during the tolerance-inducing ischemia and an inhibitory or modulatory role during or following the second normally lethal ischemia.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Montreal Road Campus, Building M-54, Ottawa, ON, Canada K1A 0R6.
| | | |
Collapse
|
61
|
Mishima Y, Harada H, Sugiyama K, Miyagawa Y, Uehara N, Kano T. Induction of neuronal tolerance by electroconvulsive shock in rats subjected to forebrain ischemia. Kurume Med J 2005; 52:153-60. [PMID: 16639987 DOI: 10.2739/kurumemedj.52.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have examined ischemic tolerance induced by electroconvulsive shock before exposure to forebrain ischemia. Subjects were 40 rats, which were randomly allocated to control, single ECS (sECS), repeated ECS (rECS) or sham group. sECS group and rECS group received ECS only once 2 days before the subsequent 8-min forebrain ischemia and once a day for 9 consecutive days until 2 days before the exposure to ischemia, respectively. Forebrain ischemia was produced by modified bilateral carotid artery occlusion technique. Control group underwent brain ischemia without ECS pretreatment. Sham group received ECS without following exposure to ischemia. Pyramidal cell injury of the hippocampal CA1 sector was microscopically examined on the 7th day after the ischemic exposure or the sham operation. Damage of the pyramidal cells was assessed by the injury ratio, which was ratio of non-viable pyramidal cells to the whole pyramidal cells. The injury ratios of CA1 pyramidal cells in sECS, rECS and control groups were 30.5 +/- 10.8 (n=10), 42.3 +/- 18.4% (n=10) and 90.4 +/- 2.9% (n=9), respectively. The injury ratios in sECS and rECS groups were lower than the ratio in control group (p<0.01), while the ratios of sECS and rECS groups were not different. The pyramidal cells in sham group were intact. Our results indicate that both preconditionings of sECS and rECS have a potency to induce delayed tolerance against temporary forebrain ischemia, though the potency was not different between sECS and rECS. Electroconvulsive shock may be added to the list of preconditioning stimuli to protect brain against ischemic neuronal damage.
Collapse
Affiliation(s)
- Yasunori Mishima
- Department of Anesthesiology, Kurume University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Extracellular [K+] can range within 2.5-3.5 mM under normal conditions to 50-80 mM under ischemic and spreading depression events. Sustained exposure to elevated [K+]o has been shown to cause significant neuronal death even under conditions of abundant glucose supply. Astrocytes are well equipped to buffer this initial insult of elevated [K] through extensive gap junctional coupling, Na+/K+ pump activity (with associated glycogen and glycolytic potential), and endfoot siphoning capability. Their abundant energy availability and alkalinizing mechanisms help sustain Na+/K+ ATPase activity under ischemic conditions. Furthermore, passive K+ uptake mechanisms and water flux mediated through aquaporin-4 channels in endfoot processes are important energy-independent mechanisms. Unfortunately, as the length of ischemic episode is prolonged, these mechanisms increase to a point where they begin to have repercussions on other important cellular functions. Alkalinizing mechanisms induce an elevation of [Na+]i, increasing the energy demand of Na+/K+ ATPase and leading to eventual detrimental reversal of the Na+/glutamate- cotransporter and excitotoxic damage. Prolonged ischemia also results in cell swelling and activates volume regulatory processes that release excessive excitatory amino acids, further exacerbating excitotoxic injury. In the days following ischemic injury, reactive astrocytes demonstrate increased cell size and process thickness, leading to improved spatial buffering capacity in regions outside the lesion core where there is better neuronal survival. There is a substantial heterogeneity among reactive astrocytes, with some close to the lesion showing decreased buffering capacity. However, it appears that both Na+/K+ ATPase activity (along with energy production processes) as well as passive K+ uptake mechanisms are upregulated in gliotic tissue outside the lesion to enhance the above-mentioned homeostatic mechanisms.
Collapse
Affiliation(s)
- Jerome A Leis
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lane K Bekar
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Walz
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
63
|
Muramatsu H, Karikó K, Welsh FA. Induction of tolerance to focal ischemia in rat brain: dissociation between cortical lesioning and spreading depression. J Cereb Blood Flow Metab 2004; 24:1167-71. [PMID: 15529017 DOI: 10.1097/01.wcb.0000134714.38679.2c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cortical application of KCl has previously been shown to induce tolerance to a subsequent episode of cerebral ischemia. KCl triggers recurrent episodes of cortical spreading depression and produces a small lesion at the cortical application site. To determine whether a cortical lesion alone is sufficient to induce tolerance to ischemia, the authors used 5-mol/L NaCl to precondition rat brain 3 days before permanent occlusion of the middle cerebral artery. NaCl produced a small lesion at the application site without evoking cortical spreading depression. Preconditioning with 5-mol/L NaCl significantly attenuated the decrease in CBF after middle cerebral artery occlusion and reduced the volume of cortical infarction by 35%. The results show that a small cortical lesion, by itself, is sufficient to induce tolerance to ischemia.
Collapse
Affiliation(s)
- Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | |
Collapse
|
64
|
Kunkler PE, Hulse RE, Kraig RP. Multiplexed cytokine protein expression profiles from spreading depression in hippocampal organotypic cultures. J Cereb Blood Flow Metab 2004; 24:829-39. [PMID: 15362713 PMCID: PMC2737347 DOI: 10.1097/01.wcb.0000126566.34753.30] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokines are involved in ischemic tolerance, including that triggered by spreading depression (SD), yet their roles in neuroprotection remain incompletely defined. The latter may stem from the pleiotropic nature of these signaling molecules whose complexities for interaction might be better deciphered through simultaneous measurement of multiple targeted proteins. Accordingly, the authors used microsphere-based flow cytometric immunoassays and hippocampal organotypic cultures (HOTCs) to characterize the magnitude, time course, and diversity of cytokine (interleukin [IL] 1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, granulocyte-macrophage colony-stimulating factor [GM-CSF], interferon-gamma [IFN-gamma], and tumor necrosis factor-alpha [TNF-alpha]) response to SD. GM-CSF was not detected in HOTCs or media. However, SD triggered a significant, generalized increase in seven cytokines evident in HOTCs 6 hours later, with the remaining cytokine, IL-1beta, becoming significantly different at 1 and 3 days. Additionally, these changes extended to include surrounding media for IL-6 and TNF-alpha by 1 and 3 days. This increase was localized to microglia via immunostaining for IL-1alpha, IL-1beta, and interferon-y. IL-10, although significantly more abundant in HOTCs 6 hours after SD, was significantly less abundant in surrounding media at that time and at 1 day. Finally, the generalized early increase in tissue cytokines later settled to a pattern at 3 days of recovery centering on changes in IL-1alpha, IL-1beta, and TNF-alpha, cytokines capable of modulating ischemic injury.
Collapse
Affiliation(s)
- Phillip E Kunkler
- Department of Neurology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
65
|
Kiss C, Shepard PD, Bari F, Schwarcz R. Cortical spreading depression augments kynurenate levels and reduces malonate toxicity in the rat cortex. Brain Res 2004; 1002:129-35. [PMID: 14988042 DOI: 10.1016/j.brainres.2004.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/25/2022]
Abstract
Cortical spreading depression (CSD) is characterized by slowly propagating neuronal and astrocytic depolarization, resulting in transient, heightened resistance to subsequent neuronal injury. This study was designed to examine a possible role of the endogenous neuroprotective agent kynurenate (KYNA) in this phenomenon. Unilateral, consecutive CSDs, induced by topical application of 2 M KCl to the cortical surface of adult male rats, resulted in an ipsilateral increase (201-222% compared to controls) in KYNA levels, which was observed in the frontal, parietal and occipital cortex but not in other brain areas. This effect peaked on day 3 after CSD, and KYNA levels returned to normal on day 7. In separate rats, the lesion caused by an intracortical microinjection of the indirect excitotoxin malonate (500 nmol/0.5 microl) on days 1, 3 or 7 after CSD was reduced by 56-75% in the ipsilateral hemisphere. In normal rats, single or multiple injections of the kynurenine 3-hydroxylase inhibitor 4,5-dichlorobenzoylalanine (PNU 156561; 50 mg/kg, i.p.), which results in selective increases in brain KYNA levels, failed to protect cortical neurons against a focal malonate injection. Taken together, these findings indicate that the observed increase in brain KYNA is not responsible for CSD-induced tolerance to malonate-induced neuronal damage.
Collapse
Affiliation(s)
- Csaba Kiss
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA
| | | | | | | |
Collapse
|
66
|
Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Pérez-Pinzón MA. Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 2004; 24:636-45. [PMID: 15181371 DOI: 10.1097/01.wcb.0000121235.42748.bf] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ischemic preconditioning (IPC) promotes brain tolerance against subsequent ischemic insults. Using the organotypic hippocampal slice culture, we conducted the present study to investigate (1) the role of adenosine A1 receptor (A1AR) activation in IPC induction, (2) whether epsilon protein kinase C (epsilonPKC) activation after IPC is mediated by the phosphoinositol pathway, and (3) whether epsilonPKC protection is mediated by the extracellular signal-regulated kinase (ERK) pathway. Our results demonstrate that activation of A1AR emulated IPC, whereas blockade of the A1AR during IPC diminished neuroprotection. The neuroprotection promoted by the A1AR was also reduced by the epsilonPKC antagonist. To determine whether epsilonPKC activation in IPC and A1AR preconditioning is mediated by activation of the phosphoinositol pathway, we incubated slices undergoing IPC or adenosine treatment with a phosphoinositol phospholipase C inhibitor. In both cases, preconditioning neuroprotection was significantly attenuated. To further characterize the subsequent signal transduction pathway that ensues after epsilonPKC activation, mitogen-activated protein kinase kinase was blocked during IPC and pharmacologic preconditioning (PPC) (with epsilonPKC, NMDA, or A1AR agonists). This treatment significantly attenuated IPC- and PPC-induced neuroprotection. In conclusion, we demonstrate that epsilonPKC activation after IPC/PPC is essential for neuroprotection against oxygen/glucose deprivation in organotypic slice cultures and that the ERK pathway is downstream to epsilonPKC.
Collapse
Affiliation(s)
- Christian Lange-Asschenfeldt
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
67
|
Selman WR, Lust WD, Pundik S, Zhou Y, Ratcheson RA. Compromised metabolic recovery following spontaneous spreading depression in the penumbra. Brain Res 2004; 999:167-74. [PMID: 14759495 DOI: 10.1016/j.brainres.2003.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2003] [Indexed: 11/20/2022]
Abstract
Spreading depression (SD) has been demonstrated following focal ischemia, and the additional workload imposed by SD on a tissue already compromised by a marked reduction in blood flow may contribute to the evolution of irreversible damage in the ischemic penumbra. SD was elicited in one group of rats by injecting KCl directly into a frontal craniectomy and the wave of depolarization was recorded in two craniectomies 3 and 6 mm posterior to the first one. In a second group, the middle cerebral artery was occluded using the monofilament technique and a recording electrode was placed 5 mm lateral to the midline and 0.2 mm posterior to bregma. To determine the metabolic response in the penumbral region of the cortex ipsilateral to the occlusion, brains from both groups were frozen in situ when the deflection of the SD was maximal. The spatial metabolic response of SD in the ischemic cortex was compared to that in the non-ischemic cortex. Coronal sections of the brains were lyophilized, pieces of the dorsolateral cortex were dissected and weighed, and analyzed for ATP, P-creatine, inorganic phosphate (Pi), glucose, glycogen and lactate at varying distances anterior and posterior to the recording electrode. ATP and P-creatine levels were significantly decreased at the wavefront in both groups and the levels recovered after passage of the wavefront in the normal brain, but not in the ischemic brain. Glucose and glycogen levels were significantly decreased and lactate levels significantly increased in the tissue after the passage of the wavefront. While the changes in the glucose-related metabolites persisted during recovery even in anterior portions of the cortex in both groups in the aftermath of the SD, the magnitude of the changes was greater in the penumbra than in the normal cortex. SD appears to impose an equivalent increase in energy demands in control and ischemic brain, but the ability of the penumbra to recover from the insult is compromised. Thus, increasing the energy imbalance in the penumbra after multiple SDs may hasten the deterioration of the energy status of the tissue and eventually contribute to terminal depolarization and cell death, particularly in the penumbra.
Collapse
Affiliation(s)
- Warren R Selman
- Department of Neurological Surgery, School of Medicine, Case Western Reserve University, The Research Institute of University Hospitals of Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106-4939, USA
| | | | | | | | | |
Collapse
|
68
|
Schneider A, Fischer A, Krüger C, Aronowski J. Identification of regulated genes during transient cortical ischemia in mice by restriction-mediated differential display (RMDD). ACTA ACUST UNITED AC 2004; 124:20-8. [PMID: 15093682 DOI: 10.1016/j.molbrainres.2004.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2004] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes in the cortex after 150 min of focal cortical ischemia and 2 and 6 h reperfusion in the mouse by a fragment display technique (restriction-mediated differential display, RMDD). We identified 57 transcriptionally altered genes, of which 46 were known genes, and 11 unknown sequences. Of note, 14% of the regulated genes detected at 2 h reperfusion time were co-regulated in the contralateral cortex. Four genes were verified to be upregulated by quantitative PCR. These were Metallothionein-II (mt2), Receptor (calcitonin)-activity modifying protein 2 (ramp2), Mitochondrial phosphoprotein 65 (MIPP65), and the transcription elongation factor B2/elongin B (tceb). We could identify several genes that are known to be induced by cerebral ischemia, such as the metallothioneins and c-fos. Many of the genes identified provide hints to potential new mechanisms in ischemic pathophysiology. We discuss the identity of the regulated genes in view of their possible usefulness for pharmacological intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology and Technology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
69
|
Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 2004. [PMID: 14684862 DOI: 10.1523/jneurosci.23-37-11602.2003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In focal cerebral ischemia, peri-infarct depolarizations (PIDs) cause an expansion of core-infarcted tissue into adjacent penumbral regions of reversible injury and have been shown to occur through 6 hr after injury. However, infarct maturation proceeds through 24 hr. Therefore, we studied PID occurrence through 72 hr after both transient and permanent middle cerebral artery occlusion (MCAo) via continuous DC recordings in nonanesthetized rats. PIDs occurred an average 13 times before reperfusion at 2 hr and then ceased for an average approximately 8 hr. After this quiescent period, PID activity re-emerged in a secondary phase, which reached peak incidence at 13 hr and consisted of a mean 52 PIDs over 2-24 hr. This phase corresponded to the period of infarct maturation; rates of infarct growth through 24 hr coincided with changes in PID frequency and peaked at 13 hr. In permanent MCAo, PIDs also occurred in a biphasic pattern with a mean of 78 events over 2-24 hr. Parameters of secondary phase PID incidence correlated with infarct volumes in transient and permanent ischemia models. The role of secondary phase PIDs in infarct development was further investigated in transient MCAo by treating rats with a high-affinity NMDA receptor antagonist at 8 hr after injury, which reduced post-treatment PID incidence by 57% and provided 37% neuroprotection. Topographic mapping with multielectrode recordings revealed multiple sources of PID initiation and patterns of propagation. These results suggest that PIDs contribute to the recruitment of penumbral tissue into the infarct core even after the restoration of blood flow and throughout the period of infarct maturation.
Collapse
|
70
|
Wiggins AK, Shen PJ, Gundlach AL. Neuronal-NOS adaptor protein expression after spreading depression: implications for NO production and ischemic tolerance. J Neurochem 2003; 87:1368-80. [PMID: 14713293 DOI: 10.1046/j.1471-4159.2003.02099.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical spreading depression (CSD) is characterized by slowly propagating waves of neuronal/astrocytic depolarization and metabolic changes, followed by a period of quiescent neuronal and electroencephalographic activity. CSD acts as a preconditioning stimulus in brain, reducing cell death when elicited up to several days prior to an ischemic insult. Precise mechanisms associated with this neuroprotection are not known, although CSD increases the expression of a number of potentially neuroprotective genes/proteins. The nitric oxide (NO) system may be of particular importance, as it is acutely activated and chronically up-regulated in cerebral cortex by CSD, and NO can ameliorate and exacerbate cell death under different conditions. Several molecules have recently been identified that modulate the production and/or cellular actions of NO, but it is not known whether their expression is altered by CSD. Therefore, the present study examined the effect of CSD on the spatiotemporal expression of PIN, CAPON, PSD-95, Mn-SOD and Cu/Zn-SOD mRNA in the rat brain. In situ hybridization using specific [35S]-labelled oligonucleotides revealed that levels of PIN mRNA were significantly increased in the cortex and claustrum ( approximately 30-180%; p </= 0.01) after 6 h and 1 and 2 days, but were again equivalent to contralateral (control) cortical values at 7, 14 and 28 days. CAPON mRNA levels were increased ( approximately 30-180%; p </= 0.05) in the ipsilateral cortical hemisphere at 6 h and 2 days post treatment, but not at the other times examined. In contrast, levels of PSD-95, Mn- and Cu/Zn-SOD mRNA were not altered at any time after CSD. These results suggest that following CSD, nNOS activity and NO levels may be tightly regulated by both transcriptional and translational alterations in a range of nNOS adaptor proteins, which may contribute to CSD-induced neuroprotection against subsequent ischemia.
Collapse
Affiliation(s)
- Amanda K Wiggins
- Howard Florey Institute of Experimental Physiology and Medicine, Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Brain ischemia is responsible for significant morbidity and mortality associated with cardiovascular surgery, and is the end result of multiple disease states, including cardiac arrest, stroke, and traumatic brain injury. Despite significant resources dedicated to developing neuroprotective strategies, little progress has been made in this regard. Neuronal ischemic preconditioning is an endogenous neuroprotective strategy that provides sustained and robust ischemic tolerance. Identification of the mechanisms responsible for mediating the preconditioning response may offer novel therapeutic targets and further our understanding of the natural adaptations to brain injury. RECENT FINDINGS Recent research efforts have elucidated many intracellular signaling pathways that ultimately lead to ischemic tolerance after a preconditioning stimulus. Most of these are associated with glutamate receptor signal transduction, the intracellular kinases, and several transcription regulators. Microarray analysis has identified several gene families that warrant further investigation to identify novel candidates for neuroprotective therapies. These include genes involved in synaptic architecture and signal propagation, cell cycle and transcription regulators, and mediators of apoptosis such as the heat shock proteins and anti-apoptotic mitochondrial proteins. SUMMARY Neuronal ischemic preconditioning is an endogenous mechanism that leads to robust neuroprotection from ischemia. Identification of the upstream pathways that initiate preconditioning and candidate genes that mediate this phenomenon may offer novel therapeutic targets, with applicability to a variety of disease states and perioperative complications.
Collapse
Affiliation(s)
- Daniel P Davis
- Department of Emergency Medicine, University of California, San Diego, California, USA
| | | |
Collapse
|
72
|
Hsu JC, Lee YS, Chang CN, Ling EA, Lan CT. Sleep deprivation prior to transient global cerebral ischemia attenuates glial reaction in the rat hippocampal formation. Brain Res 2003; 984:170-81. [PMID: 12932851 DOI: 10.1016/s0006-8993(03)03128-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was aimed to ascertain the effect of sleep deprivation on subsequent cerebral ischemia in the rat hippocampal formation. Seven days after transient global cerebral ischemia induced by four-vessel occlusion method, most of the pyramidal cells in the hippocampal CA1 subfield underwent disruption and pyknosis as detected by cresyl violet staining. With OX-42, OX-18, OX-6 and ED1 immunohistochemistry, robust microglia/macrophage reactions were observed in the CA1 and dentate hilus. The majority of reactive microglia was rod-shaped, bushy or amoeboidic cells bearing hypertrophic processes. Astrocytes also displayed hypertrophic processes, whose immunostaining for glial fibrillary acidic protein was markedly enhanced. The ischemia-induced neuronal damage and glial reactions, however, were noticeably attenuated in rats subjected to pretreatment with sleep deprivation for five consecutive days. The most drastic effect was the diminution of OX-18, OX-6 and ED1 immunoreactivities, suggesting that the immune potentiality and/or phagocytosis of these cells was suppressed by prolonged sleep deprivation prior to ischemic insult. It is postulated that sleep deprivation may have a preconditioning influence on subsequent lethal cerebral ischemia. Hence, sleep deprivation may be considered as a therapeutic strategy in brain ischemic damage.
Collapse
Affiliation(s)
- Jee-Ching Hsu
- Department of Anesthesiology, Chang-Gung Memorial Hospital, Taipai, Taiwan.
| | | | | | | | | |
Collapse
|
73
|
Wiggins AK, Shen PJ, Gundlach AL. Atrial natriuretic peptide expression is increased in rat cerebral cortex following spreading depression: possible contribution to sd-induced neuroprotection. Neuroscience 2003; 118:715-26. [PMID: 12710979 DOI: 10.1016/s0306-4522(03)00006-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cortical spreading depression (CSD) is characterised by slowly propagating waves of cellular depolarization and depression and involves transient changes in blood flow, ion balance and metabolism. In cerebral ischaemia, peri-infarct CSD-like depolarization potentiates infarct growth, whereas preconditioning with a CSD episode protects against subsequent ischaemic insult. Thus, many of the long-lasting molecular changes that occur in CSD-affected tissue are presumed to be part of a 'neuroprotective cascade.' 3',5'-Cyclic guanosine monophosphate (cGMP) has been shown to be a neuroprotective mediator and the nitric oxide system, which increases cGMP production by soluble guanylate cyclase, is up-regulated by CSD. Atrial and C-type natriuretic peptide (ANP/CNP) are present in cerebral cortex and their actions are mediated via particulate guanylate cyclase receptors and cGMP production. Therefore, in further efforts to characterise the role of cGMP-related systems in CSD and neuroprotection, this study investigated possible changes in cortical natriuretic peptide expression following acute, unilateral CSD in rats. Using in situ hybridisation, significant 20-80% increases in ANP mRNA were detected in layers II and VI of ipsilateral cortex at 6 h and 1-14 days after CSD. Ipsilateral cortical levels were again equivalent to control contralateral values after 28 days. Assessment of cortical concentrations of ANP immunoreactivity by radioimmunoassay revealed a significant 57% increase at 7 days after CSD. Despite using a sensitive signal-amplification protocol, authentic ANP-like immunostaining was readily detected in subcortical nerve fibres, but was not reliably detected in normal or CSD-affected neocortex, suggesting the presence of very low levels, and/or active or differential processing of the peptide. Cortical CNP mRNA levels are not altered by CSD, indicating the specificity of the observed effects.Overall, these novel findings demonstrate a prolonged increase in cortical ANP expression after an acute episode of CSD. The overlap between the described time course of CSD-induced protection against ischaemic insult and demonstrated increases in ANP levels, suggest that ANP (like nitric oxide) may contribute to CSD-induced neuroprotection, via effects on cGMP production and other signal-transduction pathways.
Collapse
Affiliation(s)
- A K Wiggins
- Howard Florey Institute of Experimental Physiology and Medicine, Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
74
|
Burda J, Hrehorovská M, Bonilla LG, Danielisová V, Cízková D, Burda R, Némethová M, Fando JL, Salinas M. Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 2003; 28:1213-9. [PMID: 12834261 DOI: 10.1023/a:1024232513106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode. In addition, the rate of protein synthesis in vitro and expression of the 72-kD heat shock protein (hsp) were determined under the different experimental conditions. Our results suggest that two different mechanisms are essential for the acquisition of ischemic tolerance, at least in the CA1 sector of hippocampus. The first mechanism implies a highly significant reduction in translation inhibition after lethal ischemia, especially at an early time of reperfusion, in both vulnerable and nonvulnerable neurons. For the acquisition of full tolerance, a second mechanism, highly dependent on the time interval between preconditioning (sublethal ischemia) and lethal ischemia, is absolutely necessary; this second mechanism involves synthesis of protective proteins, which prevent the delayed death of vulnerable neurons.
Collapse
Affiliation(s)
- Jozef Burda
- Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wang M, Obrenovitch TP, Urenjak J. Effects of the nitric oxide donor, DEA/NO on cortical spreading depression. Neuropharmacology 2003; 44:949-57. [PMID: 12726826 DOI: 10.1016/s0028-3908(03)00082-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cortical spreading depression (CSD) is a transient disruption of local ionic homeostasis that may promote migraine attacks and the progression of stroke lesions. We reported previously that the local inhibition of nitric oxide (NO) synthesis with Nomega-nitro-L-arginine methyl ester (L-NAME) delayed markedly the initiation of the recovery of ionic homeostasis from CSD. Here we describe a novel method for selective, controlled generation of exogenous NO in a functioning brain region. It is based on microdialysis perfusion of the NO donor, 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO). As DEA/NO does not generate NO at alkaline pH, and as the brain has a strong acid-base buffering capacity, DEA/NO was perfused in a medium adjusted at alkaline (but unbuffered) pH. Without DEA/NO, such a microdialysis perfusion medium did not alter CSD. DEA/NO (1, 10 and 100 microM) had little effect on CSD by itself, but it reversed in a concentration-dependent manner the effects of NOS inhibition by 1 mM L-NAME. These data demonstrate that increased formation of endogenous NO associated with CSD is critical for subsequent, rapid recovery of cellular ionic homeostasis. In this case, the molecular targets for NO may be located either on brain cells to suppress mechanisms directly involved in CSD genesis, or on local blood vessels to couple flow to the increased energy demand associated with CSD.
Collapse
Affiliation(s)
- M Wang
- Pharmacology, School of Pharmacy, University of Bradford, Bradford BD7 1DP, UK
| | | | | |
Collapse
|
76
|
Wiggins AK, Shen PJ, Gundlach AL. Delayed, but prolonged increases in astrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat: evidence for a role of clusterin in ischemic tolerance. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:20-30. [PMID: 12782389 DOI: 10.1016/s0169-328x(03)00124-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clusterin is a sulfated glycoprotein produced by neurons and by resting and activated astrocytes that has several putative functions, including protective responses to brain injury. Cortical spreading depression (CSD) is a powerful yet largely benign stimulus that acutely is capable of providing long-lasting ischemic tolerance. The current study investigated possible alterations in expression of clusterin mRNA in the cerebral cortex of the rat at various times after unilateral CSD. Using semiquantitative in situ hybridization histochemistry, significant increases (30-100%; P< or =0.05) in clusterin mRNA were detected in layers I-III and IV-VI of the ipsilateral cortex at 1, 2, 7 and 14 (layers I-III only) days after CSD. Transcript levels in the ipsilateral cortex were again equivalent to contralateral (control) levels at 28 days after CSD. These molecular anatomical studies also revealed that both neurons and nonneuronal cells (presumed reactive astrocytes) increased their expression of clusterin mRNA following CSD. Notably the time-course of increases in clusterin mRNA after CSD (1-14 days) overlaps that during which CSD reportedly provides neuroprotection against subsequent cerebral ischemia. These findings along with other evidence suggest that increased clusterin production and secretion, particularly by astrocytes, could be neuroprotective-perhaps via one or more of its putative actions that include inhibition of complement activation and cytolysis, effects on chemotaxis and apoptosis, and actions as an anti-stress protein chaperone.
Collapse
Affiliation(s)
- Amanda K Wiggins
- Howard Florey Institute of Experimental Physiology and Medicine and Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
77
|
Kametsu Y, Osuga S, Hakim AM. Apoptosis occurs in the penumbra zone during short-duration focal ischemia in the rat. J Cereb Blood Flow Metab 2003; 23:416-22. [PMID: 12679718 DOI: 10.1097/01.wcb.0000052281.23292.7c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the appearance of apoptosis in short-duration focal ischemia, the authors induced left middle cerebral artery (MCA) occlusion in male rats by insertion of an intraluminal suture. The total number of apoptotic cells was determined by hematoxylin-eosin staining and TUNEL labeling and confirmed by gel electrophoresis. The data indicate that the total number of apoptotic cells increased with ischemia duration (P = 0.0006), with most apoptotic cells located in the striatum of the ischemic hemisphere. As the duration of ischemia lengthened, necrosis became more prevalent and apoptosis receded to the periphery of the infarct. Using iodo[14C]-antipyrine to correlate the distribution of apoptosis to regional CBF (rCBF), the authors found that rCBF in the ischemic dorsolateral striatum was compatible with penumbra flow and significantly lower than the ventromedial striatum and frontoparietal cortex. This difference disappeared after 45 minutes of reperfusion. The authors conclude that focal ischemia of short duration results in changes compatible with apoptosis in regions of low rCBF, and this can occur without necrosis. This model is relevant to transient ischemic attack in the human and may suggest that, in addition to being a harbinger of stroke, transient ischemic attacks may cause histopathologic changes not yet clinically detectable.
Collapse
Affiliation(s)
- Yutaka Kametsu
- Department of Neurology, School of Medicine, University of Tokai Isehara, Kanagawa, Japan
| | | | | |
Collapse
|
78
|
Grabb MC, Lobner D, Turetsky DM, Choi DW. Preconditioned resistance to oxygen-glucose deprivation-induced cortical neuronal death: alterations in vesicular GABA and glutamate release. Neuroscience 2003; 115:173-83. [PMID: 12401332 DOI: 10.1016/s0306-4522(02)00370-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Central neurons exposed to several types of sublethal stress, including ischemia, acquire resistance to injury induced by subsequent ischemic insults, a phenomenon called ischemic preconditioning. We modeled this phenomenon in vitro, utilizing exposure to 45 mM KCl to reduce the vulnerability of cultured murine cortical neurons to subsequent oxygen-glucose deprivation. Twenty-four hours after preconditioning, cultures exhibited enhanced depolarization-induced, tetanus toxin-sensitive GABA release and a modest decrease in glutamate release. Total cellular GABA levels were unaltered. Inhibition of GABA degradation with the GABA transaminase inhibitor (+/-)-gamma-vinyl GABA, or addition of low levels of GABA, muscimol, or chlormethiazole to the bathing medium, mimicked the neuroprotective effect of preconditioning against oxygen-glucose deprivation-induced death. However, neuronal death was enhanced by higher levels of these manipulations, as well as by prior selective destruction of GABAergic neurons by kainate. Finally, selective blockade of GABA(A) receptors during oxygen-glucose deprivation or removal of GABAergic neurons eliminated the neuroprotective effects of prior preconditioning. Taken together, these data predict that presynaptic alterations, specifically enhanced GABA release together with reduced glutamate release, may be important mediators of ischemic preconditioning, but suggest caution in regard to interventions aimed at increasing GABA(A) receptor activation.
Collapse
Affiliation(s)
- M C Grabb
- Center for the Study of Nervous System Injury, Washington University School of Medicine, Box 8111, 660 S. Euclid, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
79
|
Iqbal Chowdhury GM, Liu Y, Tanaka M, Fujioka T, Ishikawa A, Nakamura S. Cortical spreading depression affects Fos expression in the hypothalamic paraventricular nucleus and the cerebral cortex of both hemispheres. Neurosci Res 2003; 45:149-55. [PMID: 12573461 DOI: 10.1016/s0168-0102(02)00207-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present experiments were performed to clarify the brain sites whose activity is affected exclusively by cortical spreading depression (CoSD). For this purpose, Fos protein, a product of an immediate early gene, was used as a marker of neuronal activation. Because Fos can be induced by many manipulations such as stress stimuli, we verified CoSD-induced Fos expression by excluding the influence of other factors such as anaesthesia and surgical manipulation. CoSD was induced by applying a KCl solution directly to the dura mater over the cerebral cortex, and Fos expression in the brain was assessed by immunohistochemistry using antibodies against Fos protein. We found that during CoSD, Fos expression was increased specifically in the magnocellular region of the hypothalamic paraventricular nucleus (PVN), as well as in the ipsilateral cortex, whereas reduced Fos expression was observed in both the parvocellular region of the PVN and the whole cortex contralateral to the CoSD site. Consistent with the reduced Fos expression, approximately 40% of neurons in the contralateral cortex revealed a suppression of electrical activity during CoSD. These results suggest that in addition to the ipsilateral cortex, CoSD affects Fos expression exclusively in the PVN and the contralateral cortex.
Collapse
|
80
|
Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 2003. [PMID: 12533598 DOI: 10.1523/jneurosci.23-02-00384.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate receptors and calcium have been implicated as triggering factors in the induction of tolerance by ischemic preconditioning (IPC) in the brain. However, little is known about the signal transduction pathway that ensues after the IPC induction pathway. The main goals of the present study were to determine whether NMDA induces preconditioning via a calcium pathway and promotes translocation of the protein kinase C epsilon (epsilonPKC) isozyme and whether this PKC isozyme is key in the IPC signal transduction pathway. We corroborate here that IPC and a sublethal dose of NMDA were neuroprotective, whereas blockade of NMDA receptors during IPC diminished IPC-induced neuroprotection. Calcium chelation blocked the protection afforded by both NMDA and ischemic preconditioning significantly, suggesting a significant role of calcium. Pharmacological preconditioning with the nonselective PKC isozyme activator phorbol myristate acetate could not emulate IPC, but blockade of PKC activation with chelerythrine during IPC blocked its neuroprotection. These results suggested that there might be a dual involvement of PKC isozymes during IPC. This was corroborated when neuroprotection was blocked when we inhibited epsilonPKC during IPC and NMDA preconditioning, and IPC neuroprotection was emulated with the activator of epsilonPKC. The possible correlation between NMDA, Ca2+, and epsilonPKC was found when we emulated IPC with the diacylglycerol analog oleoylacetyl glycerol, suggesting an indirect pathway by which Ca2+ could activate the calcium-insensitive epsilonPKC isozyme. These results demonstrated that the epsilonPKC isozyme played a key role in both IPC- and NMDA-induced tolerance.
Collapse
|
81
|
Otori T, Greenberg JH, Welsh FA. Cortical spreading depression causes a long-lasting decrease in cerebral blood flow and induces tolerance to permanent focal ischemia in rat brain. J Cereb Blood Flow Metab 2003; 23:43-50. [PMID: 12500090 DOI: 10.1097/01.wcb.0000035180.38851.38] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cortical spreading depression (CSD) has previously been shown to induce tolerance to a subsequent episode of transient cerebral ischemia. The objective of the present study was to determine whether CSD also induces tolerance to permanent focal ischemia and, if so, whether tolerance may be mediated by alterations in cerebral blood flow (CBF). Sprague-Dawley rats were preconditioned by applying potassium chloride to one hemisphere for 2 hours, evoking 19 +/- 5 episodes of CSD (mean +/- SD, n = 19). Three days later, the middle cerebral artery (MCA) was permanently occluded using an intraluminal suture. In a subset of animals, laser Doppler blood flow (LDF) was monitored over the parietal cortex before and during the first 2 hours of MCA occlusion. Preconditioning with CSD reduced the hemispheric volume of infarction from 248 +/- 115 mm3 (n = 18) in sham-conditioned animals to 161 +/- 81 mm3 (n = 19, P< 0.02). Similarly, CSD reduced the neocortical volume of infarction from 126 +/- 82 mm3 to 60 +/- 61 mm3 (P < 0.01). Moreover, preconditioning with CSD significantly improved LDF during MCA occlusion from 21% +/- 7% (n = 9) of preischemic baseline in sham-conditioned animals to 29% +/- 9% (n = 7, P< 0.02). Preconditioning with CSD therefore preserved relative levels of CBF during focal ischemia and reduced the extent of infarction resulting from permanent MCA occlusion. To determine whether CSD may have altered preischemic baseline CBF, [14 C]iodoantipyrine was used in additional animals to measure CBF 3 days after CSD conditioning or sham conditioning. CSD, but not sham conditioning, significantly reduced baseline CBF in the ipsilateral neocortex to values 67% to 75% of those in the contralateral cortex. Therefore, CSD causes a long-lasting decrease in baseline CBF that is most likely related to a reduction in metabolic rate. A reduction in the rate of metabolism may contribute to the induction of tolerance to ischemia after preconditioning with CSD.
Collapse
Affiliation(s)
- Tatsuo Otori
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104-6070, USA
| | | | | |
Collapse
|
82
|
Chazot PL, Godukhin OV, McDonald A, Obrenovitch TP. Spreading depression-induced preconditioning in the mouse cortex: differential changes in the protein expression of ionotropic nicotinic acetylcholine and glutamate receptors. J Neurochem 2002; 83:1235-8. [PMID: 12437595 DOI: 10.1046/j.1471-4159.2002.01240.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preconditioning of the cerebral cortex was induced in mice by repeated cortical spreading depression (CSD), and the major ionotropic glutamate (GluRs) and nicotinic acetylcholine receptor (nAChRs) subunits were compared by quantitative immunoblotting between sham- and preconditioned cortex, 24 h after treatment. A 30% reduction in alpha-amino-3-hydroxy-5-methyl-4-iso- xazolepropionate (AMPA) GluR1 and 2 subunit immunoreactivities was observed in the preconditioned cortex (p < 0.03), but there was no significant change in the NMDA receptor subunits, NR1, NR2A and NR2B. A 12-15-fold increase in alpha7 nAChR subunit expression following in vivo CSD (p < 0.001) was by far the most remarkable change associated with preconditioning. In contrast, the alpha4 nAChR subunit was not altered. These data point to the alpha7 nAChR as a potential new target for neuroprotection because preconditioning increases consistently the tolerance of the brain to acute insults such as ischaemia. These data complement recent studies implicating alpha7 nAChR overexpression in the amelioration of chronic neuropathologies, notably Alzheimer's disease (AD).
Collapse
Affiliation(s)
- P L Chazot
- Institute of Pharmacy, Chemistry and Biomedical Sciences, School of Health, Natural and Social Sciences, University of Sunderland, Sunderland, UK.
| | | | | | | |
Collapse
|
83
|
Abstract
A brief period of cerebral ischemia confers transient tolerance to a subsequent ischemic challenge in the brain. This phenomenon of ischemic tolerance has been confirmed in various animal models of forebrain ischemia and focal cerebral ischemia. Since the ischemic tolerance afforded by preceding ischemia can bring about robust protection of the brain, the mechanism of tolerance induction has been extensively studied. It has been elucidated that ischemic tolerance protects neurons, and at the same time, it preserves brain function. Further experiments have shown that metabolic and physical stresses can also induce cross-tolerance to cerebral ischemia, but the protection by cross-tolerance is relatively modest. The underlying mechanism of ischemic tolerance still is not fully understood. Potential mechanisms may be divided into two categories: (1) A cellular defense function against ischemia may be enhanced by the mechanisms inherent to neurons. They may arise by posttranslational modification of proteins or by expression of new proteins via a signal transduction system to the nucleus. These cascades of events may strengthen the influence of survival factors or may inhibit apoptosis. (2) A cellular stress response and synthesis of stress proteins may lead to an increased capacity for health maintenance inside the cell. These proteins work as cellular "chaperones" by unfolding misfolded cellular proteins and helping the cell to dispose of unneeded denatured proteins. Recent experimental data have demonstrated the importance of the processing of unfolded proteins for cell survival and cell death. The brain may be protected from ischemia by using multiple mechanisms that are available for cellular survival. If tolerance induction can be manipulated and accelerated by a drug treatment that is safe and effective enough, it could greatly improve the treatment of stroke.
Collapse
Affiliation(s)
- Takaaki Kirino
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Japan.
| |
Collapse
|
84
|
Krueger-Naug AMR, Plumier JCL, Hopkins DA, Currie RW. Hsp27 in the nervous system: expression in pathophysiology and in the aging brain. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:235-51. [PMID: 11908063 DOI: 10.1007/978-3-642-56348-5_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A M R Krueger-Naug
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
85
|
Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 2002; 22:393-403. [PMID: 11919510 DOI: 10.1097/00004647-200204000-00003] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tolerance to cerebral ischemia is achieved by preconditioning sublethal stresses, such as ischemia or hypoxia, paradigms in which the decrease of O2 availability may constitute an early signal inducing tolerance. In accordance with this concept, this study shows that hypoxia induces tolerance against focal permanent ischemia in adult mice. Normobaric hypoxia (8% O2 of 1-hour, 3-hour, or 6-hour duration), performed 24 hours before ischemia, reduces infarct volume by approximately 30% when compared with controls. To elucidate the mechanisms underlying this neuroprotection, the authors investigated the effects of preconditioning on cerebral expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, erythropoietin and vascular endothelial growth factor (VEGF). Hypoxia, whatever its duration (1 hour, 3 hours, 6 hours), rapidly increases the nuclear content of HIF-1alpha as well as the mRNA levels of erythropoietin and VEGF. Furthermore, erythropoietin and VEGF are upregulated at the protein level 24 hours after 6 hours of hypoxia. The authors' findings show that (1) hypoxia elicits a delayed, short-lasting (<72 hours) tolerance to focal permanent ischemia in the adult mouse brain; (2) HIF-1 target genes could contribute to the establishment of tolerance; and (3) this model might be a useful paradigm to further study the mechanisms of ischemic tolerance, to identify new therapeutic targets for stroke.
Collapse
Affiliation(s)
- Myriam Bernaudin
- Unité Mixte de Recherche 6551-Centre National de la Recherche Scientifique, Université de Caen, Institut Fédératif de Recherche 47, Caen, France
| | | | | | | | | | | |
Collapse
|
86
|
Chow AK, Thompson CS, Hogan MJ, Banner D, Sabourin LA, Hakim AM. Cortical spreading depression transiently activates MAP kinases. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 99:75-81. [PMID: 11869811 DOI: 10.1016/s0169-328x(02)00106-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cortical spreading depression (CSD) has been shown to have neuroprotective effects when administered in advance of cerebral ischemia. The mechanism by which CSD induces its neuroprotective effect however remains to be elucidated. Since MAP kinases have been shown to impart neuroprotection in ischemic preconditioning paradigms, we attempted to determine the role CSD may have in the activation of MAPK. We show that CSD is capable of increasing the phosphorylation of ERK in a MEK-dependent manner. This phosphorylation is, however, transient, as phosphorylated ERK levels return to control levels 45 min after 2 h of CSD elicitation. Immunohistochemical analysis reveals that the phosphorylated form of ERK is located ubiquitously in cells of the CSD-treated cortex while CSD-elicited MEK phosphorylation resides solely in the nuclei. These data suggest that CSD may act via the MAP kinase pathways to mediate preconditioning.
Collapse
Affiliation(s)
- Ava K Chow
- Neuroscience Research Institute, Faculty of Medicine, University of Ottawa, 451 Smyth, Ontario, Ottawa, Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
87
|
Holmin S, Mathiesen T, Langmoen IA, Sandberg Nordqvist AC. Depolarization induces insulin-like growth factor binding protein-2 expression in vivo via NMDA receptor stimulation. Growth Horm IGF Res 2001; 11:399-406. [PMID: 11914028 DOI: 10.1054/ghir.2001.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of depolarization and N-methyl-D-aspartate (NMDA) receptor blockade on insulin-like growth factor-I (IGF-I), IGF binding protein-2 (IGFBP-2) and IGFBP-4 expression was analysed in vivo. Depolarization was induced in adult rat brains by applying 3 M KCl to the exposed cortex for 10 min. A subgroup of animals also received daily injections of MK-801. Four days after KCl exposure, the brains were analysed by in situ hybridization, immunohistochemistry and TUNEL. A significant upregulation of IGFBP-2 mRNA and protein was detected in astrocytes after KCl exposure This upregulation was reduced by MK-801 treatment. No alterations in IGF-I or IGFBP-4 mRNA levels were noted. We did not detect TUNEL positive cells, morphological signs of necrosis or apoptosis, or neuronal loss in the depolarized zone. Taken together, these findings indicate that upregulation of IGFBP-2 by depolarization is mediated by NMDA receptors, and, as no neuronal damage was detected, astrocytic NMDA receptors may be responsible for this upregulation.
Collapse
Affiliation(s)
- S Holmin
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
88
|
Mitchell K, Karikó K, Harris VA, Rangel Y, Keller JM, Welsh FA. Preconditioning with cortical spreading depression does not upregulate Cu/Zn-SOD or Mn-SOD in the cerebral cortex of rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:50-8. [PMID: 11731008 DOI: 10.1016/s0169-328x(01)00266-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that preconditioning the brain with cortical spreading depression (CSD) induces tolerance to a subsequent episode of ischemia. In other models of preconditioning, induction of ischemic tolerance has been associated with increased expression of the antioxidant enzyme, superoxide dismutase (SOD). The objective of the present study was to determine whether CSD upregulates Cu/Zn-SOD or Mn-SOD. CSD was induced in one hemisphere by applying 2 M KCl to the frontal cortex in Wistar rats. After 2 or 24 h of recovery, Cu/Zn-SOD and Mn-SOD mRNA levels were determined in both hemispheres using Northern blot analysis. In separate rats, Cu/Zn-SOD and Mn-SOD protein levels were determined 24 and 72 h after CSD using Western blot analysis. In addition, total SOD, Cu/Zn-SOD and Mn-SOD enzymatic activities were measured 24 and 72 h after CSD using spectrophotometric and zymographic assays. At the times investigated, no significant differences in mRNA or protein levels for Cu/Zn-SOD or Mn-SOD were observed between the ipsilateral and contralateral cortex. Further, there were no significant differences in Cu/Zn-SOD or Mn-SOD enzymatic activities between the two hemispheres at 24 or 72 h after CSD. In addition, CSD did not alter the activities of Cu/Zn-SOD or Mn-SOD in either hemisphere, relative to those in unoperated animals. Taken together, these results fail to support the hypothesis that CSD-induced tolerance is mediated through the upregulation of Cu/Zn-SOD or Mn-SOD.
Collapse
Affiliation(s)
- K Mitchell
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 371 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6070, USA
| | | | | | | | | | | |
Collapse
|
89
|
Holmin S, von Gertten C, Sandberg-Nordqvist AC, Lendahl U, Mathiesen T. Induction of astrocytic nestin expression by depolarization in rats. Neurosci Lett 2001; 314:151-5. [PMID: 11704306 DOI: 10.1016/s0304-3940(01)02292-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nestin is expressed in central nervous system (CNS) progenitor cells and its expression in mature cells represents transition to a less differentiated cellular state under cellular stress. This study was performed to corroborate the hypothesis that nestin synthesis is induced by depolarization and dependent on N-methyl-D-aspartate (NMDA)-receptor activation. Depolarization was induced with application of potassium chloride on the exposed rat cortex and nestin expression was evaluated by immunohistochemistry. Depolarization induced astrocytic nestin expression that was local, or evident in the entire ipsilateral cortex depending on the time of exposure. Nestin expression was NMDA-receptor-dependent since MK-801 treatment abolished the response. Understanding the mechanisms for nestin expression is important since this protein is expressed in reactive and less differentiated CNS cell states and also in neural stem cells. Insights into the control of nestin expression may also provide means for controlling differentiation of CNS cells either post-trauma/ischemia or in transplantation strategies.
Collapse
Affiliation(s)
- S Holmin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
90
|
Abstract
The transcription factor nuclear factor-kappaB (NFkappaB) is an ubiquitously expressed inducible regulator of a broad range of genes and plays a pivotal role in cell death and survival pathways. Three models of brain tolerance (ischemic, epileptic, and polyunsaturated fatty acid-induced preconditioning), known to confer resistance to neurons against ischemia or status epilepticus, were used to determine whether NFkappaB mediated the late preconditioning. A sublethal 3 min ischemia, a dose of 5 mg/kg kainic acid (KA5) or 500 nmol of linolenic acid (LIN500) led to a rapid increase of NFkappaB DNA-binding activity and nuclear translocation of p65 and p50 subunits of NFkappaB in neurons. Pretreatment with the NFkappaB inhibitor diethyldithiocarbamate or kappaB decoy DNA blocked the increased DNA-binding activity and the nuclear translocation of NFkappaB and abolished the neuroprotective effects of different delayed preconditionings against severe ischemia or epilepsy. The inhibition of NFkappaB observed in rats preconditioned with 3 min ischemia, KA5 or LIN500 treatments compared with ischemic or epileptic controls was correlated with the prevention of the inducible degradation of the inhibitory protein IkappaBalpha. Preconditioning probably inhibits the activation of NFkappaB by interfering with a pathway that leads to the direct transcriptional activation of IkappaBalpha by NFkappaB itself. The present work provides evidence that activation of NFkappaB is a crucial step in the signal transduction pathway that underlies the development of brain tolerance and may open new strategies in the prevention of cerebral diseases, such as ischemia or epilepsy.
Collapse
|
91
|
Rangel YM, Karikó K, Harris VA, Duvall ME, Welsh FA. Dose-dependent induction of mRNAs encoding brain-derived neurotrophic factor and heat-shock protein-72 after cortical spreading depression in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:103-12. [PMID: 11295236 DOI: 10.1016/s0169-328x(01)00037-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Previous studies have demonstrated that cortical spreading depression (CSD) increases the expression of putative neuroprotective proteins. The objective of the present study was to elucidate the relationship between the number of episodes of CSD and steady-state levels of mRNAs encoding brain-derived neurotrophic factor (BDNF), heat-shock protein-72 (hsp72) and c-fos. Wistar rats were administered one, five, or twenty-five episodes of CSD evoked by application of 2 M KCl to the frontal cortex of one hemisphere. Animals were permitted to recover for 30 min, 2 h or 24 h prior to sacrifice. Total RNA was isolated from the parietal cortex of each hemisphere and analyzed using Northern blots. At 30 min recovery, levels of BDNF mRNA were not significantly elevated after 1 episode of CSD, but were increased 4-fold after five episodes of CSD and 11-fold after twenty-five episodes of CSD, relative to levels in the contralateral hemisphere. At 2 h recovery, BDNF mRNA levels increased 2-, 3- and 9-fold, respectively. At 24 h, BDNF mRNA had returned to control levels in all groups. Thus, CSD increased levels of BDNF mRNA in a dose-dependent fashion at the early recovery times. Hsp72 mRNA was below the level of detection after 1 and 5 episodes of CSD. However, after twenty-five episodes of CSD, hsp72 mRNA levels were increased in the ipsilateral hemisphere at 30 min and 2 h recovery. Unlike levels of BDNF and hsp72 mRNA, levels of c-fos mRNA were increased nearly to the same extent at 30 min and 2 h after one, five or twenty-five episodes of CSD before returning to control by 24 h recovery. These results demonstrate that CSD triggers a dose-dependent increase in the expression of genes encoding neuroprotective proteins, which may mediate tolerance to ischemia induced by CSD.
Collapse
Affiliation(s)
- Y M Rangel
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6070, USA
| | | | | | | | | |
Collapse
|
92
|
Kitagawa K, Matsumoto M, Hori M. Protective and regenerative response endogenously induced in the ischemic brain. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y00-118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal cells are highly vulnerable to ischemic insult. Because adult neurons are highly differentiated and cannot self-propagate, loss of neurons often results in functional deficits in mammalian brains. However, it has recently been shown that neurons and neuronal circuits exhibit protective and regenerative responses in a rodent model of experimental ischemia. At first, neurons respond by producing several protective proteins such as heat shock proteins (HSPs) after sublethal ischemia and then acquire tolerance against a subsequent ischemic insult (ischemic tolerance). Once neurons suffer irreversible injury, two repair processes, neurogenesis and synaptogenesis, are endogenously induced. Neuronal stem and (or) progenitor cells can proliferate in two brain areas in adult animals: the subventricular zone and the subgranular zone in the dentate gyrus. After ischemic insult, these stem (progenitor) cells proliferate and differentiate into neurons in the dentate gyrus of the hippocampus. Reactive synaptogenesis has been also observed in the injured brain following a period of long-term infarction, but it is unclear if it can compensate for disconnected circuits. Understanding the molecular mechanism underlying these protective and regenerative responses will be important in developing a new strategy for aimed at the augmentation of resistance against ischemic insult and the replacement of injured neurons and neuronal circuits.Key words: ischemic tolerance, neurogenesis, synaptogenesis.
Collapse
|
93
|
Transient NMDA receptor inactivation provides long-term protection to cultured cortical neurons from a variety of death signals. J Neurosci 2001. [PMID: 11007874 DOI: 10.1523/jneurosci.20-19-07183.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor antagonists, such as (+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801), potently block glutamate-induced neuronal death in myriad in vitro cell models and effectively attenuate ischemic damage in vivo. In this report, a novel role for MK-801 and other NMDA receptor antagonists in preconditioning neurons to withstand a wide range of subsequent lethal insults is described. A brief 30 min exposure to 0.1 microM MK-801, applied up to 96 hr before a "lethal" insult, protected primary cortical neurons from a diverse group of neurotoxic agents, including NMDA, beta-amyloid, staurosporine, etoposide, and oxygen-glucose deprivation. This neuroprotective preconditioning by MK-801 arose from transient NMDA receptor inactivation, because the noncompetitive NMDA receptor antagonists memantine and nylindin and the competitive antagonist AP-5 gave similar effects. MK-801 protection was dependent on new protein synthesis during the first 2 hr, but not from 2 to 5 hr, after MK-801 exposure. The MK-801 transient did not alter the ability of NMDA to trigger normally lethal [Ca(2+)](i) influx 48 hr later, but it did block early downstream signaling events coupled to NMDA neurotoxicity, including PKC inactivation and the activation of calpain. Moreover, MK-801 protected neurons from staurosporine-induced apoptosis, although caspase activation in these cells was unimpeded. It is likely that the stress associated with transient inactivation of NMDA receptors triggered a rapid compensatory survival response that provided long-term protection from a spectrum of insults, inducing apoptotic and nonapoptotic death. The possibility that MK-801 preconditioning blocks an event common to seemingly diverse death mechanisms suggests it will be an important tool for obtaining a clearer understanding of the salient molecular events at work in neuronal death and survival pathways.
Collapse
|
94
|
Kitahara Y, Taga K, Abe H, Shimoji K. The effects of anesthetics on cortical spreading depression elicitation and c-fos expression in rats. J Neurosurg Anesthesiol 2001; 13:26-32. [PMID: 11145474 DOI: 10.1097/00008506-200101000-00005] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of anesthetics on the generation of cortical spreading depression (CSD) were investigated. Volatile anesthetics halothane, isoflurane, sevoflurane (0.5, 1.0, and 2.0 MAC), and the intravenous anesthetic pentobarbital were studied. Cortical spreading depression was induced by 3M-KCl applied to a surface of brain cortex for 30 minutes. Direct current (DC) potential was recorded, and the number, amplitude, and duration of CSDs were observed. With increasing concentrations of each volatile anesthetic, there was a dose-related reduction in CSD frequency but not in CSD amplitude. At 2.0 MAC of sevoflurane the suppression of CSD was less than with the other volatile anesthetics. In addition, the influence of anesthetics on expression of c-fos mRNA was investigated. Additional animals anesthetized by isoflurane or sevoflurane were studied. Five CSDs were elicited by electric stimulation (0.5 mV, 1 second) in each animal. In situ hybridization with 35S-labeled oligonucleotides was used to evaluate the level of c-fos mRNA. The expression of c-fos was observed in the hemisphere in which CSD was elicited, but there was no difference in expression of c-fos among the groups. We conclude that volatile anesthetics can induce suppression of CSD elicitation in a dose dependent manner, but that at high concentrations sevoflurane is significantly less effective than other volatile agents. Pentobarbital has the least effect on KCl-induced CSD. These data suggest that the choice of anesthetics can impact the results of studies examining membrane depolarization and the ionic changes initiated by CSD.
Collapse
Affiliation(s)
- Y Kitahara
- Department of Anesthesiology, Brain Research Institute, Niigata University School of Medicine, Japan
| | | | | | | |
Collapse
|
95
|
Yenari MA, Onley D, Hedehus M, deCrespigny A, Sun GH, Moseley ME, Steinberg GK. Diffusion- and perfusion-weighted magnetic resonance imaging of focal cerebral ischemia and cortical spreading depression under conditions of mild hypothermia. Brain Res 2000; 885:208-19. [PMID: 11102575 DOI: 10.1016/s0006-8993(00)02942-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In a model of experimental stroke, we characterize the effects of mild hypothermia, an effective neuroprotectant, on fluid shifts, cerebral perfusion and spreading depression (SD) using diffusion- (DWI) and perfusion-weighted MRI (PWI). Twenty-two rats underwent 2 h of middle cerebral artery (MCA) occlusion and were either kept normothermic or rendered mildly hypothermic shortly after MCA occlusion for 2 h. DWI images were obtained 0.5, 2 and 24 h after MCA occlusion, and maps of the apparent diffusion coefficient (ADC) were generated. SD-like transient ADC decreases were also detected using DWI in animals subjected to topical KCl application (n=4) and ischemia (n=6). Mild hypothermia significantly inhibited DWI lesion growth early after the onset of ischemia as well as 24 h later, and improved recovery of striatal ADC by 24 h. Mild hypothermia prolonged SD-like ADC transients and further decreased the ADC following KCl application and immediately after MCA occlusion. Cerebral perfusion, however, was not affected by temperature changes. We conclude that mild hypothermia is neuroprotective and suppresses infarct growth early after the onset of ischemia, with better ADC recovery. The ADC decrease during SD was greater during mild hypothermia, and suggests that the source of the ADC is more complex than previously believed.
Collapse
Affiliation(s)
- M A Yenari
- Department of Neurosurgery, Stanford University Medical Center, 120 Welch Road, HSLS Bldg. P304, Stanford, CA 94305-5487, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Shen PJ, Gundlach AL. Differential modulatory effects of alpha- and beta-adrenoceptor agonists and antagonists on cortical immediate-early gene expression following focal cerebrocortical lesion-induced spreading depression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 83:133-44. [PMID: 11072104 DOI: 10.1016/s0169-328x(00)00216-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Unilateral, focal cerebrocortical lesion (FCL) and associated spreading depression (SD) increase immediate-early gene (IEG) expression throughout the ipsilateral hemisphere. Noradrenergic transmission is involved in the regulation of basal- and stimulation-induced expression of IEGs in cerebral cortex; and is modulated by both injury and SD. The present study further investigated the association between the noradrenergic system and cortical adaptive responses, by examining basal and FCL(SD)-induced cortical IEG expression following acute treatment with alpha(1)-, alpha(2)- and beta(1/2)-adrenoceptor (AR) agonists or antagonists. Activation of alpha(1)-ARs by NVI-085, or beta-ARs by salbutamol, increased cortical NGFI-A, c-jun and c-fos mRNA levels, whereas inhibition of alpha(1)-ARs by prazosin, or beta-ARs by propranolol, had no marked effect. The alpha(2)-AR agonists, clonidine and UK14304 also had no effect on basal IEG levels, while blockade of alpha(2)-ARs by methoxyidazoxan significantly increased NGFI-A and c-fos expression, but decreased c-jun mRNA levels. This latter effect confirms the complex and differential nature of IEG regulation in brain. In FCL(SD) rats, all AR agonists generally produced a supra-additive (synergistic) effect on expression of the examined IEGs, compared with drug-treatment or FCL alone. Prazosin reduced FCL(SD)-induced elevations of c-jun and c-fos, but not NGFI-A, mRNA. Methoxyidazoxan enhanced NGFI-A and c-fos mRNA expression after FCL(SD), but reduced c-jun. Propranolol enhanced all lesion-induced IEG levels. These results confirm that alpha(1)- and beta-ARs normally mediate a stimulatory, and alpha(2)-ARs a net inhibitory, influence on cortical cell activity (reflected by NGFI-A, c-fos expression); and demonstrate that alterations in noradrenergic tone modulate the level of cellular activation during and after SD, which is primarily elicited by K(+)/glutamate via NMDA receptors and Ca(2+)-associated mechanisms. In turn, noradrenergic transmission and interactions with excitatory systems are likely to be important in responses to brain injury, including regulation of IEGs and their downstream target genes.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, 3084, Victoria, Australia
| | | |
Collapse
|
97
|
Allen GV, Gerami D, Esser MJ. Conditioning effects of repetitive mild neurotrauma on motor function in an animal model of focal brain injury. Neuroscience 2000; 99:93-105. [PMID: 10924955 DOI: 10.1016/s0306-4522(00)00185-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A weight drop model of brain injury was used to determine the effects of repetitive mild brain injury on motor function, heat shock protein and glial fibrillary acidic protein expression in the anesthetized, adult male, Sprague-Dawley rat. Repetitive mild brain injury was produced when animals received a series of three mild injuries spaced three days apart. A separate group of repetitive mild injured animals also received a subsequent severe brain injury between three and five days after the last mild injury. All animals were trained on a beam-walking test prior to surgery. The mild, repetitive mild and repetitive mild plus severe brain injury groups showed no motor deficits in the beam-walking test, whereas the animals with only severe brain injury showed significant motor deficits (increase in number of footslips) in the beam-walking test that recovered within eight days after injury. Both repetitive mild plus severe injury and severe injury only animals had cortical necrotic cavities of similar size in the region of the hindlimb motor cortex. Both the repetitive mild and severe brain-injured animals had marked heat shock protein 27kDa and glial fibrillary acidic protein staining in the cerebral cortex. Fluoro-Jade, heat shock protein 27kDa and 72kDa labeling indicated that there were widespread effects on cortical, subcortical and spinal neurons and glial cells after repetitive mild brain injury. These results suggest that repetitive mild brain injury conditions the brain so that subsequent brain injury at the same site has no effect on motor function. Furthermore, repetitive mild injury-induced activation of processes distant to the primary injury site may have a role in activation of secondary sites involved in recovery of motor function.
Collapse
Affiliation(s)
- G V Allen
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Nova Scotia, B3H 4H7, Halifax, Canada.
| | | | | |
Collapse
|
98
|
Douen AG, Akiyama K, Hogan MJ, Wang F, Dong L, Chow AK, Hakim A. Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebal cortex plasma membranes. J Neurochem 2000; 75:812-8. [PMID: 10899959 DOI: 10.1046/j.1471-4159.2000.0750812.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported a 50% reduction in cortical infarct volume following transient focal cerebral ischemia in rats preconditioned 3 days earlier with cortical spreading depression (CSD). The mechanism of the protective effect of prior CSD remains unknown. Recent studies demonstrate reversal of excitatory amino acid transporters (EAATs) to be a principal cause for elevated extracellular glutamate levels during cerebral ischemia. The present study measured the effect of CSD preconditioning on (a) intraischemic glutamate levels and (b) regulation of glutamate transporters within the ischemic cortex of the rat. Three days following either CSD or sham preconditioning, rats were subjected to 200 min of focal cerebral ischemia, and extracellular glutamate concentration was measured by in vivo microdialysis. Cortical glutamate exposure decreased 70% from 1,772.4 +/- 1,469.2 microM-min in sham-treated (n = 8) to 569.0 +/- 707.8 microM-min in CSD-treated (n = 13) rats (p <0.05). The effect of CSD preconditioning on glutamate transporter levels in plasma membranes (PMs) prepared from rat cerebral cortex was assessed by western blot analysis. Down-regulation of the glial glutamate transporter isoforms EAAT2 and EAAT1 from the PM fraction was observed at 1, 3, and 7 days but not at 0 or 21 days after CSD. Semiquantitative lane analysis showed a maximal decrease of 90% for EAAT2 and 50% for EAAT1 at 3 days post-CSD. The neuronal isoform EAAT3 was unaffected by CSD. This period of down-regulation coincides with the time frame reported for induced ischemic tolerance. These data are consistent with reversal of glutamate transporter function contributing to glutamate release during ischemia and suggest that down-regulation of these transporters may contribute to ischemic tolerance induced by CSD.
Collapse
Affiliation(s)
- A G Douen
- Neuroscience Research Institute, University of Ottawa, Ottawa, Ontario, Canada. Tokai University, Isehara, Japan
| | | | | | | | | | | | | |
Collapse
|
99
|
Kuge Y, Hasegawa Y, Yokota C, Minematsu K, Hashimoto N, Miyake Y, Yamaguchi T. Effects of single and repetitive spreading depression on cerebral blood flow and glucose metabolism in cats: a PET study. J Neurol Sci 2000; 176:114-23. [PMID: 10930593 DOI: 10.1016/s0022-510x(00)00327-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the effects of spreading depression (SD) on cerebral circulation and metabolism, we elicited a single or repetitive episode of SD and evaluated CBF and CMRglc three-dimensionally in normal cats (n=4, in each group) using a high-resolution positron emission tomography (PET) scanner. SD was evoked by applying KCl to the left occipital cortex. We then monitored DC potential changes with tungsten electrodes inserted into the left temporal cortex. CBF was measured twice before and three times (immediately, 30-60 min, and 60-120 min) following KCl application using [15O]H(2)O, and CMRglc was determined using 2-[18F]fluoro-2-deoxy-D-glucose immediately following the last CBF measurement. The following results were obtained: (1) a single episode of SD produced a temporary CBF increase, followed by a long-lasting hypoperfusion in the cortex, with no significant changes to CBF observed in the subcortex; (2) no significant CMRglc changes were observed in either cortical or subcortical regions following a single episode of SD; (3) a flow-metabolism uncoupling was observed in the cortical regions concurrently with persistent hypoperfusion; (4) repetitive SD produced significant CBF changes in the cortex; and (5) the cortical CMRglc increased as a result of repeated episodes of SD, with no significant changes observed in the subcortex. Thus, we succeeded in determining three-dimensionally the effects of single and repetitive SD on CBF and CMRglc in cats using a high-resolution PET scanner. The present study provides the first direct evidence of CBF-CMRglc uncoupling occurring concurrently with persistent hypoperfusion following SD.
Collapse
Affiliation(s)
- Y Kuge
- Institute for Biofunctional Research Co., Inc., Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Our previous studies have shown that prior intracerebral infusion of a low dose of thrombin (thrombin preconditioning; TPC) reduces the brain edema that follows a subsequent intracerebral infusion of a high dose of thrombin or an intracerebral hemorrhage. In vitro studies have also demonstrated that low concentrations of thrombin protect neurons and astrocytes from hypoglycemia and oxidative stress-induced damage. This study, therefore, examines the hypothesis that TPC would offer protection from ischemic brain damage in vivo. This was a blinded design study. The rat brain was preconditioned with 1 U thrombin by direct infusion into the left caudate nucleus. Seven days after thrombin pretreatment, permanent middle cerebral artery occlusion (MCAO) was induced. Twenty-four hours post-ischemia, neurological deficit was evaluated and infarction volume, brain water and ion contents were measured. Compared to saline-treated rats, thrombin pretreatment significantly attenuated brain infarction in cortex (90+/-33 vs. 273+/-22 mm(3); P<0.05) and basal ganglia (56+/-17 vs. 119+/-12 mm(3); P<0.05) that followed 24 h of permanent MCAO. TPC also reduced the brain edema in cortex and basal ganglia by 50 and 53% (P<0.05). Neurological deficit was improved in thrombin pretreatment group (P<0.05). These effects of TPC were, in part, prevented by co-injection of hirudin, a thrombin inhibitor, indicating that the protection was indeed thrombin mediated. Cerebral TPC significantly reduces ischemic brain damage, perhaps by activation of the thrombin receptor. This finding provides a new mechanism by which to study ischemic tolerance.
Collapse
Affiliation(s)
- T Masada
- Department of Surgery (Neurosurgery), University of Michigan, R5550 Kresge I, Ann Arbor, MI 48109-0532, USA
| | | | | | | |
Collapse
|