51
|
Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, Steinberg GK. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 2002; 52:160-7. [PMID: 12210785 DOI: 10.1002/ana.10264] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated whether HSV gene transfer of HSP72 in vivo and in vitro: (1) protected cornu ammonis 1 region of the hippocampus neurons from global cerebral ischemia; and (2) affected Bcl-2 expression. HSV vectors expressing HSP72 and beta-galactosidase (reporter) or beta-galactosidase only (control vector) were injected into cornu ammonis 1 region of the hippocampus 15 hours before induction of global cerebral ischemia (n = 10) and sham-operated rats (n = 8). HSP72 vector-treated rats displayed significantly more surviving transfected neurons (X-gal-positive, 31 +/- 8) compared with control vector-treated rats (10 +/- 4) after global cerebral ischemia. Sham-operated rats displayed similar numbers of X-gal-positive neurons (HSP72 vector 18 +/- 8 vs control vector 20 +/- 7). The percentage of beta-galactosidase and Bcl-2 coexpressing neurons in HSP72-treated rats after global cerebral ischemia (84 +/- 4%) was greater than that in control vector-treated rats (58 +/- 9%). The percentage of beta-galactosidase and Bcl-2 coexpressing neurons in sham-operated rats was similar in HSP72 (93 +/- 7%) and in control vector-treated rats (88 +/- 12%). HSP72 vector transfection led to 12 times as much Bcl-2 expression as the control vector in uninjured hippocampal neuronal cultures. In injured (oxygen-glucose deprivation) hippocampal neuron cultures, HSP72 vector transfection led to 2.8 times as much Bcl-2 expression as control vector. We show that HSP72 overexpression protects cornu ammonis 1 region of the hippocampus neurons from global cerebral ischemia, and that this protection may be mediated in part by increased Bcl-2 expression.
Collapse
Affiliation(s)
- Stephen Kelly
- Department of Neurosurgery, Stanford University, Stanford, CA 94305-5327, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Lesuisse C, Martin LJ. Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J Cereb Blood Flow Metab 2002; 22:935-50. [PMID: 12172379 DOI: 10.1097/00004647-200208000-00005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors used cultured mouse cortical neurons to study mechanisms of DNA damage-induced apoptosis in immature and mature neurons. Neurons were maintained viably for 60 days in vitro (DIV60). The increased levels of glutamate receptors, synaptic proteins, and glycolytic enzyme were used to track maturation. Exposure of neurons to the DNA-damaging agent camptothecin induced apoptosis in immature (DIV5) and mature (DIV25-30) neurons. Internucleosomal fragmentation of DNA emerged more rapidly in mature neurons than in immature neurons. Immunoblotting revealed that cleaved caspase-3 increased in apoptotic DIV5 neurons but not in DIV30 neurons, but immunolocalization showed accumulation of cleaved caspase-3 in DIV5 and DIV30 neurons. A reversible caspase-3 inhibitor blocked apoptosis in DIV5 neurons but not in DIV30 neurons. Phosphorylation of extracellular signal-regulated kinase/mitogen-activated protein kinase (Erk/MAP kinase)-42/44 occurred preapoptotically in mature but not immature neurons, while Erk54 nuclear translocation and MAP kinase kinase kinase-1 cleavage into putative caspase-3-generated proapoptotic fragments occurred in DIV5 but not DIV30 neurons. Inhibition of Erk activation with MAP kinase kinase inhibitor blocked apoptosis at both ages. The results show that immature and mature cortical neurons engage different signaling mechanisms in MAP kinase and caspase pathways during apoptosis; thus, neuron age influences the mechanisms and progression of apoptosis.
Collapse
Affiliation(s)
- Christian Lesuisse
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
53
|
Guerguerian AM, Brambrink AM, Traystman RJ, Huganir RL, Martin LJ. Altered expression and phosphorylation of N-methyl-D-aspartate receptors in piglet striatum after hypoxia-ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:66-80. [PMID: 12117552 DOI: 10.1016/s0169-328x(02)00285-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanisms for the profound degeneration of striatal neurons after hypoxia-ischemia in newborns are not understood. We hypothesized that this striatal neurodegeneration is related to N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. Using a 1-week-old piglet model of hypoxia-ischemia, we evaluated whether the expression and phosphorylation of NMDA receptor subunits in striatum are modified with severity of evolving neuronal injury after hypoxia-ischemia. Protein levels of NR1, phosphorylated NR1 897serine, NR2A and NR2B in striatum were measured by immunoblotting after piglets underwent hypoxic-asphyxic cardiac arrest, cardiopulmonary resuscitation, and recovery for 3, 6, 12 or 24 h. In membrane fractions isolated from total striatum, mean NR1 and NR2A levels did not change significantly with time after hypoxia-ischemia compared to control; however, the levels of both NR1 and phosphorylated NR1 897serine correlated with neuronal injury in putamen, with higher levels associated with greater neuronal injury in individual animals. NR2B levels were increased at 24 h after hypoxia-ischemia. Astrocyte expression of NR2B was prominent after hypoxia-ischemia. We conclude that NMDA receptors are changed in striatum after neonatal hypoxia-ischemia and that abnormal NMDA receptor potentiation through increased NR1 phosphorylation may participate in the mechanisms of striatal neuron degeneration after hypoxia-ischemia.
Collapse
Affiliation(s)
- Anne Marie Guerguerian
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
54
|
Mizushima H, Zhou CJI, Dohi K, Horai R, Asano M, Iwakura Y, Hirabayashi T, Arata S, Nakajo S, Takaki A, Ohtaki H, Shioda S. Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 2002; 448:203-16. [PMID: 12012430 DOI: 10.1002/cne.10262] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cytokine interleukin-1 (IL-1) has been implicated in ischemic brain damage, because the IL-1 receptor antagonist markedly inhibits experimentally induced neuronal loss. However, to date, no studies have demonstrated the involvement of endogenous IL-1alpha and IL- 1beta in neurodegeneration. We report here, for the first time, that mice lacking IL-1alpha/beta (double knockout) exhibit markedly reduced neuronal loss and apoptotic cell death when exposed to transient cardiac arrest. Furthermore, we show that, despite the reduced neuronal loss, phosphorylation of JNK/SAPK (c-Jun NH2- terminal protein kinase/stress activated protein kinase) and p38 enzymes remain elevated in IL-1 knockout mice. In contrast, the inducible nitric oxide (iNOS) immunoreactivity after global ischemia was reduced in IL-1 knockout mice as compared with wild-type mice. The levels of nitrite (NO(2) (-)) and nitrate (NO(3) (-)) in the hippocampus of wild-type mice were increased with time after ischemia-reperfusion, whereas the increase was significantly inhibited in IL-1 knockout mice. These observations strongly suggest that endogenous IL-1 contributes to ischemic brain damage, and this influence may act through the release of nitric oxide by iNOS.
Collapse
Affiliation(s)
- Hidekatsu Mizushima
- Department of Anatomy, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Niu A, Shimazaki K, Sugawara Y, Mizui T, Kawai N. Heterotopic graft of infant rat brain as an ischemic model for prolonged whole-brain ischemia. Neurosci Lett 2002; 325:37-41. [PMID: 12023062 DOI: 10.1016/s0304-3940(02)00213-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
By using a heterotopic brain graft model, we have made histological and electrophysiological studies of the infant rat brain after prolonged ischemia. An infant rat head which had undergone ischemia for more than 90 min, was grafted onto an adult rat by anastomosing the thoracic vessels to the femoral vessels of the host rat. Histological and histochemical studies carried out 10 days after the operation showed that the development of the hippocampus and cerebellum in the grafted brain appeared to be normal. Interneuron growth in the hippocampus and migration of the granule cells in the cerebellum had occurred to a similar extent as in control rats. Extracellular recordings in the hippocampus showed normal characteristics of the postsynaptic potentials including long-term potentiation. This heterotopic graft model would be useful for studying brain function after long periods of ischemia.
Collapse
Affiliation(s)
- Atsushi Niu
- Department of Surgery, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
56
|
Leonard SE, Kirby R. The role of glutamate, calcium and magnesium in secondary brain injury. J Vet Emerg Crit Care (San Antonio) 2002. [DOI: 10.1046/j.1534-6935.2002.00003.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
57
|
Mills CD, Johnson KM, Hulsebosch CE. Group I metabotropic glutamate receptors in spinal cord injury: roles in neuroprotection and the development of chronic central pain. J Neurotrauma 2002; 19:23-42. [PMID: 11852976 DOI: 10.1089/089771502753460213] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of biochemical events that leads to an increase in extracellular excitatory amino acid (EAA) concentrations, which results in glutamate receptor-mediated excitotoxic events. An important division of these glutamate receptors is the metabotropic glutamate receptor (mGluR) class, which is divided into three groups. Of these three groups, group I (mGluR1 and mGluR5) activation can initiate a number of intracellular pathways that lead to increased extracellular EAA concentrations. To evaluate subtypes of group I mGluRs in SCI, we administered AIDA (group I antagonist), LY 367385 (mGluR1 specific antagonist), or MPEP (mGluR5 specific antagonist) by interspinal injection to adult male Sprague-Dawley rats (175-200 g) immediately following injury at T10 with an NYU impactor (12.5-mm drop, 10-g rod, 2 mm in diameter). AIDA- and LY 367385-treated subjects had improved locomotor scores and demonstrated an attenuation in the development of mechanical allodynia as measured by von Frey stimulation of the forelimbs; however, LY 367385 potentiated the development of thermal hyperalgesia. MPEP had no effect on locomotor recovery or mechanical allodynia, but attenuated the development of thermal hyperalgesia. AIDA and LY 367385 treatment resulted in a significant increase in tissue sparing compared to the vehicle-treated group at 4 weeks following SCI. These results suggest that mGluRs play an important role in EAA toxicity and have different acute pathophysiological roles following spinal cord injury.
Collapse
Affiliation(s)
- Charles D Mills
- Department of Anatomy and Neurosciences, University of Texas Medical Branch at Galveston, 77555-1043, USA
| | | | | |
Collapse
|
58
|
Kundrotiené J, Wägner A, Liljequist S. Extradural compression of sensorimotor cortex: a useful model for studies on ischemic brain damage and neuroprotection. J Neurotrauma 2002; 19:69-84. [PMID: 11852980 DOI: 10.1089/089771502753460259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioral and morphological changes were examined for up to 9 days after moderate cerebral ischemia caused by slow compression of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. Functional deficits after the cerebral ischemia were assessed by daily beam-walking tests, whereas morphological changes were verified using Nissl staining on day 1, 2, 3, 5, and 9, respectively. Rats exposed to cerebral ischemia displayed impaired beam walking performance. Mild hypothermia prevented both the compression-produced functional deficits and the brain damage. Younger (5 weeks) animals showed less neurological deficits than older (9 weeks) animals. Histological examination revealed a pronounced increase in the number of injured pyramidal neurons from day 1 to day 3 in the primarily damaged brain region. Between day 3 and day 5, the number of injured cells remained constant, whereafter there was a slow decline of thionin-positive neurons as examined on day 9. The noncompetitive NMDA receptor antagonist, dizocilpine (MK-801; 3 mg/kg, i.p.), did not alter the neurological impairment on day 1, but improved thereafter the rate of functional recovery and reduced the number of damaged cells. The AMPA receptor antagonist, LY326325 (15 or 30 mg/kg; i.p.), dose-dependently diminished the neurological deficits on day 1, enhanced the rate of recovery, and reduced the number of injured neurons over time. Our data suggest that short-lasting extradural compression of a well-defined brain area in the sensorimotor cortex is a highly reproducible model with a high success rate for the study of functional and morphological consequences after cerebral ischemia as well as for the evaluation of the therapeutic potential of novel, neuroprotective pharmacological agents.
Collapse
|
59
|
De Vry J, Horváth E, Schreiber R. Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620. Eur J Pharmacol 2001; 428:203-14. [PMID: 11675037 DOI: 10.1016/s0014-2999(01)01296-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study characterized the neuroprotective and behavioral effects of (3aS,6aS)-6a-naphtalen-2-ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-on (BAY 36-7620), a novel, selective and systemically active metabotropic glutamate (mGlu)(1) receptor antagonist. In the rat, neuroprotective effects were obtained in the acute subdural hematoma model (efficacy of 40-50% at 0.01 and 0.03 mg/kg/h, i.v. infusion during the 4 h following surgery); whereas in the middle cerebral artery occlusion model, a trend for a neuroprotective effect was obtained after triple i.v. bolus application of 0.03-3 mg/kg, given immediately, 2 and 4 h after occlusion. Hypothermic effects were mild and only obtained at doses which were considerably higher than those at which maximal neuroprotective efficacy was obtained, indicating that the neuroprotective effects are not a consequence of hypothermia. BAY 36-7620 protected against pentylenetetrazole-induced convulsions in the mouse (MED: 10 mg/kg, i.v.). As assessed in rats, BAY 36-7620 was devoid of the typical side-effects of the ionotropic glutamate (iGlu) receptor antagonists phencyclidine and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801). Thus, BAY 36-7620 did not disrupt sensorimotor gating, induce phencyclidine-like discriminative effects or stereotypical behavior, or facilitate intracranial self-stimulation behavior. Although behavioral stereotypies and disruption of sensorimotor gating induced by amphetamine or apomorphine were not affected by BAY 36-7620, the compound attenuated some behavioral effects of iGlu receptor antagonists, such as excessive grooming or licking, and their facilitation of intracranial self-stimulation behavior. It is concluded that mGlu(1) receptor antagonism results in neuroprotective and anticonvulsive effects in the absence of the typical side-effects resulting from antagonism of iGlu receptors.
Collapse
Affiliation(s)
- J De Vry
- CNS Research, Bayer AG, Aprather Weg 18a, D-42096, Wuppertal, Germany.
| | | | | |
Collapse
|
60
|
Yano T, Nakayama R, Imaizumi T, Terasaki H, Ushijima K. Dantrolene ameliorates delayed cell death and concomitant DNA fragmentation in the rat hippocampal CA1 neurons subjected to mild ischemia. Resuscitation 2001; 50:117-25. [PMID: 11719138 DOI: 10.1016/s0300-9572(00)00369-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study investigated whether dantrolene, which inhibits the Ca(2+) release from the intracellular Ca(2+) store sites, reduced nuclear DNA fragmentation and produced neuronal protection in a model of global forebrain ischemia. Male Wistar rats were subjected to four-vessel occlusion (4VO) for 5 min and then infused continuously with dantrolene or vehicle into the cerebral ventricle for 3 days. The intact rats did not undergo any intervention. The number of viable and DNA nick-end-labeled neurons in the hippocampal CA1 were evaluated 4 days after the ischemia. The number of viable neurons in the dantrolene-treated rats was significantly higher than that in the vehicle-treated rats and lower than that in the intact animals (P<0.01 and <0.05, respectively). The number of DNA nick-end-labeled nuclei was significantly lower in dantrolene-treated rats compared with the vehicle-treated animals (P<0.0001). No nick-end labeling was observed in the intact animals. A linear correlation was found between the number of viable cells and nick-end labeled nuclei in the CA1 (r=0.91, P<0.0001). These results suggest that the postischemic intraventricular dantrolene is effective in precluding neuronal death and concomitant nuclear DNA fragmentation following transient global ischemia.
Collapse
Affiliation(s)
- T Yano
- Surgical Center, Kumamoto University Hospital, Kumamoto 860-8556, Japan.
| | | | | | | | | |
Collapse
|
61
|
Martin LJ, Kaiser A, Yu JW, Natale JE, Al-Abdulla NA. Injury-induced apoptosis of neurons in adult brain is mediated by p53-dependent and p53-independent pathways and requires Bax. J Comp Neurol 2001; 433:299-311. [PMID: 11298357 DOI: 10.1002/cne.1141] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mechanisms of injury-induced apoptosis of neurons within the CNS are not understood. We used a model of cortical injury in rat and mouse to induce retrograde neuronal apoptosis in thalamus. In this animal model, unilateral ablation of the occipital cortex causes unequivocal apoptosis of corticopetal projection neurons in the dorsal lateral geniculate nucleus (LGN) by 7 days postlesion. We tested the hypothesis that p53 and Bax regulate this retrograde neuronal apoptosis. We found, by using immunocytochemistry, that p53 accumulates in nuclei of neurons destined to undergo apoptosis. By immunoblotting, p53 levels increase ( approximately 150% of control) in nuclear-enriched fractions of the ipsilateral LGN by 5 days after occipital cortex ablation. p53 is functionally activated in nuclear fractions of the ipsilateral LGN at 5 days postlesion, as shown by DNA binding assay (approximately fourfold increase) and by immunodetection of phosphorylated p53. The levels of procaspase-3 increase at 4 days postlesion, and caspase-3 is activated prominently at 5 days postlesion. To identify whether neuronal apoptosis in the adult brain is dependent on p53 and Bax, cortical ablations were done on p53 and bax null mice. Neuronal apoptosis in the dorsal LGN is significantly attenuated (approximately 34%) in p53(-/-) mice. In lesioned p53(+/+) mice, Bax immunostaining is enhanced in the ipsilateral dorsal LGN and Bax immunoreactivity accumulates at perinuclear locations in dorsal LGN neurons. The enhancement and redistribution of Bax immunostaining is attenuated in lesioned p53(-/-) mice. Neuronal apoptosis in the dorsal LGN is blocked completely in bax(-/-) mice. We conclude that neuronal apoptosis in the adult thalamus after cortical injury requires Bax and is modulated by p53.
Collapse
Affiliation(s)
- L J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
62
|
Zhan RZ, Wu C, Fujihara H, Taga K, Qi S, Naito M, Shimoji K. Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c From mitochondria in a rat forebrain ischemia model. J Cereb Blood Flow Metab 2001; 21:529-40. [PMID: 11333363 DOI: 10.1097/00004647-200105000-00007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a rat forebrain ischemia model, the authors examined whether loss of cytochrome c from mitochondria correlates with ischemic hippocampal CA1 neuronal death and how cytochrome c release may shape neuronal death. Forebrain ischemia was induced by bilateral common carotid artery occlusion with simultaneous hypotension for 10 minutes. After reperfusion, an early rapid depletion of mitochondrial cytochrome c and a late phase of diffuse redistribution of cytochrome c occurred in the hippocampal CA1 region, but not in the dentate gyrus and CA3 regions. Intracerebroventricular administration of Z-DEVD-FMK, a relatively selective caspase-3 inhibitor, provided limited but significant protection against ischemic neuronal damage on day 7 after reperfusion. Treatment with 3 minutes of ischemia (ischemic preconditioning) 48 hours before the 10-minute ischemia attenuated both the early and late phases of cytochrome c redistribution. In another subset of animals treated with cycloheximide, a general protein synthesis inhibitor, the late phase of cytochrome c redistribution was inhibited, whereas most hippocampal CA1 neurons never regained mitochondrial cytochrome c. Examination of neuronal survival revealed that ischemic preconditioning prevents, whereas cycloheximide only delays, ischemic hippocampal CA1 neuronal death. DNA fragmentation detected by terminal deoxytransferase-mediated dUTP-nick end labeling (TUNEL) in situ was largely attenuated by ischemic preconditioning and moderately reduced by cycloheximide. These results indicate that the loss of cytochrome c from mitochondria correlates with hippocampal CA1 neuronal death after transient cerebral ischemia in relation to both caspase-dependent and -independent pathways. The amount of mitochondrial cytochrome c regained may determine whether ischemic hippocampal CA1 neurons survive or succumb to late-phase death.
Collapse
Affiliation(s)
- R Z Zhan
- Department of Anesthesiology, Niigata University School of Medicine, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
63
|
|
64
|
Abstract
This review examines the appearance of hallmarks of apoptosis following experimental stroke. The reviewed literature leaves no doubt that ischemic cell death in the brain is active, that is, requires energy; is gene directed, that is, requires new gene expression; and is capase-mediated, that is, uses apoptotic proteolytic machinery. However, sufficient differences to both classical necrosis and apoptosis exist which prevent easy mechanistic classification. It is concluded that ischemic cell death in the brain is neither necrosis nor apoptosis but is a chimera which appears on a continuum that has apoptosis and necrosis at the poles. The position on this continuum could be modulated by the intensity of the ischemic injury, the consequent availability of ATP and new protein synthesis, and both the age and context of the neuron in question. Thus the ischemic neuron may look necrotic but have actively died in an energy dependent manner with new gene expression and destruction via the apoptotic proteolytic machinery.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | |
Collapse
|
65
|
Abstract
Mitochondria play critical roles in cerebral energy metabolism and in the regulation of cellular Ca2+ homeostasis. They are also the primary intracellular source of reactive oxygen species, due to the tremendous number of oxidation-reduction reactions and the massive utilization of O2 that occur there. Metabolic trafficking among cells is also highly dependent upon normal, well-controlled mitochondrial activities. Alterations of any of these functions can cause cell death directly or precipitate death indirectly by compromising the ability of cells to withstand stressful stimuli. Abnormal accumulation of Ca2+ by mitochondria in response to exposure of neurons to excitotoxic levels of excitatory neurotransmitters, for example, glutamate, is a primary mediator of mitochondrial dysfunction and delayed cell death. Excitoxicity, along with inflammatory reactions, mechanical stress, and altered trophic signal transduction, all likely contribute to mitochondrial damage observed during the evolution of traumatic brain injury. The release of apoptogenic proteins from mitochondria into the cytosol serves as a primary mechanism responsible for inducing apoptosis, a form of cell death that contributes significantly to neurologic impairment following neurotrauma. Although several signals for the release of mitochondrial cell death proteins have been identified, the mechanisms by which these signals increase the permeability of the mitochondrial outer membrane to apoptogenic proteins is controversial. Elucidation of the precise biochemical mechanisms responsible for mitochondrial dysfunction during neurotrauma and the roles that mitochondria play in both necrotic and apoptotic cell death should provide new molecular targets for neuroprotective interventions.
Collapse
Affiliation(s)
- G Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore School of Medicine, 21201, USA.
| |
Collapse
|
66
|
Liu J, Ying W, Massa S, Duriez PJ, Swanson RA, Poirier GG, Sharp FR. Effects of transient global ischemia and kainate on poly(ADP-ribose) polymerase (PARP) gene expression and proteolytic cleavage in gerbil and rat brains. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:7-16. [PMID: 11039724 DOI: 10.1016/s0169-328x(00)00122-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is involved in various cellular functions, including DNA repair, the cell cycle and cell death. While PARP activation could play a critical role in repairing ischemic brain damage, PARP inactivation caused by caspase 3-cleavage may also be important for apoptotic execution. In this study we investigated the effects of transient global ischemia and kainic acid (KA) neurotoxicity, in gerbil and rat brains, respectively, on PARP gene expression and protein cleavage. PARP mRNA increased in the dentate gyrus of gerbil brains 4 h after 10 min of global ischemia, which returned to basal levels 8 h after ischemia. KA injection (10 mg/kg) also induced a marked elevation in PARP mRNA level selectively in the dentate gyrus of rat brains 1 h following the injection, which returned to basal levels 4 h after the injection. These observations provide the first evidence of altered PARP gene expression in brains subjected to ischemic and excitotoxic insults. Using both monoclonal and polyclonal antibodies to PARP cleavage products, little evidence of significant PARP cleavage was found in gerbil brains within the first 3 days after 10 min of global ischemia. In addition, there was little evidence of significant PARP cleavage in rat brains within 2 days after kainate (KA) injection. Though these findings show that caspase induced PARP cleavage is not substantially activated by global ischemia and excitotoxicity in whole brain, the PARP mRNA induction could suggest a role for PARP in repairing DNA following brain injury.
Collapse
Affiliation(s)
- J Liu
- Department of Neurosurgery, University of California at San Francisco, 94121, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Martin LJ, Brambrink AM, Price AC, Kaiser A, Agnew DM, Ichord RN, Traystman RJ. Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiol Dis 2000; 7:169-91. [PMID: 10860783 DOI: 10.1006/nbdi.2000.0282] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms for neurodegeneration after hypoxia-ischemia (HI) in newborns are not understood. We tested the hypothesis that striatal neuron death is necrosis and evolves with oxidative stress and selective organelle damage. Piglets ( approximately 1 week old) were used in a model of hypoxia-asphyxia and survived for 3, 6, 12, or 24 h. Neuronal death was progressive over 3-24 h recovery, with approximately 80% of putaminal neurons dead at 24 h. Striatal DNA was digested randomly at 6-12 h. Ultrastructurally, dying neurons were necrotic. Damage to the Golgi apparatus and rough endoplasmic reticulum occurred at 3-12 h, while most mitochondria appeared intact until 12 h. Mitochondria showed early suppression of activity, then a transient burst of activity at 6 h, followed by mitochondrial failure (determined by cytochrome c oxidase assay). Cytochrome c was depleted at 6 h after HI and thereafter. Damage to lysosomes occurred within 3-6 h. By 3 h recovery, glutathione levels were reduced, and peroxynitrite-mediated oxidative damage to membrane proteins, determined by immunoblots for nitrotyrosine, occurred at 3-12 h. The Golgi apparatus and cytoskeleton were early targets for extensive tyrosine nitration. Striatal neurons also sustained hydroxyl radical damage to DNA and RNA within 6 h after HI. We conclude that early glutathione depletion and oxidative stress between 3 and 6 h reperfusion promote damage to membrane and cytoskeletal proteins, DNA and RNA, as well as damage to most organelles, thereby causing neuronal necrosis in the striatum of newborns after HI.
Collapse
Affiliation(s)
- L J Martin
- Department of Pathology, Division of Neuropathy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|