51
|
Sandner G, Angst MJ, Guiberteau T, Guignard B, Nehlig A. Effects of caffeine or RX821002 in rats with a neonatal ventral hippocampal lesion. Front Behav Neurosci 2014; 8:15. [PMID: 24478661 PMCID: PMC3904090 DOI: 10.3389/fnbeh.2014.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023] Open
Abstract
Rats with a neonatal ventral hippocampal lesion (NVHL) are used to model schizophrenia. They show enhanced locomotion and difficulties in learning after puberty. Such behavioral modifications are strengthened by dopaminergic psychostimulant drugs, which is also relevant for schizophrenia because illustrating its dopaminergic facet. But it remains questionable that only dopaminergic drugs elicit such effects. The behavioral effects could simply represent a non specific arousal, in which case NVHL rats should also be hyper-responsive to other vigilance enhancing drugs. We administered an adenosine (caffeine) or an adrenaline receptor antagonist, (RX821002) at doses documented to modify alertness of rats, respectively 5 mg/kg and 1 mg/kg. Rats were selected prior to the experiments using magnetic resonance imaging (MRI). Each group contained typical and similar NVHL lesions. They were compared to sham lesioned rats. We evaluated locomotion in a new environment and the capacity to remember a visual or acoustic cue that announced the occurrence of food. Both caffeine and RX82100 enhanced locomotion in the novel environment, particularly in NVHL rats. But, RX82100 had a biphasic effect on locomotion, consisting of an initial reduction preceding the enhancement. It was independent of the lesion. Caffeine did not modify the learning performance of NVHL rats. But, RX821002 was found to facilitate learning. Patients tend to intake much more caffeine than healthy people, which has been interpreted as a means to counter some cognitive deficits. This idea was not validated with the present results. But adrenergic drugs could be helpful for attenuating some of their cognitive deficits.
Collapse
Affiliation(s)
- Guy Sandner
- Faculté de Médecine, Université de Strasbourg, U1114 INSERM Strasbourg, France
| | - Marie-Josée Angst
- Faculté de Médecine, Université de Strasbourg, U1114 INSERM Strasbourg, France
| | - Thierry Guiberteau
- Faculté de Médecine, Université de Strasbourg, UMR 7237 CNRS/UdS Strasbourg, France
| | - Blandine Guignard
- Faculté de Médecine, Université de Strasbourg, UMR 7237 CNRS/UdS Strasbourg, France
| | - Astrid Nehlig
- Faculté de Médecine, Université de Strasbourg, U663 INSERM Strasbourg, France
| |
Collapse
|
52
|
Stefanello N, Schmatz R, Pereira LB, Rubin MA, da Rocha JBT, Facco G, Pereira ME, Mazzanti CMDA, Passamonti S, Rodrigues MV, Carvalho FB, da Rosa MM, Gutierres JM, Cardoso AM, Morsch VM, Schetinger MRC. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Mol Cell Biochem 2013; 388:277-86. [DOI: 10.1007/s11010-013-1919-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/06/2013] [Indexed: 01/08/2023]
|
53
|
Khoo WYH, Pumera M, Bonanni A. Graphene platforms for the detection of caffeine in real samples. Anal Chim Acta 2013; 804:92-7. [DOI: 10.1016/j.aca.2013.09.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 01/27/2023]
|
54
|
Twisting the night away: a review of the neurobiology, genetics, diagnosis, and treatment of shift work disorder. CNS Spectr 2013; 18 Suppl 1:45-53; quiz 54. [PMID: 24345709 DOI: 10.1017/s109285291300076x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although not all individuals who work outside of standard daytime hours develop physical and psychiatric issues, there is a substantial portion of shift workers who develop shift work disorder. Shift work disorder is due to a misalignment between an individual's endogenous circadian rhythms and environmental stimuli, and can have potentially serious consequences to an individual's health and quality of life. This article reviews the neurobiological and genetic underpinnings of shift work disorder, and describes how desynchronization of the molecular clock may lead to both physical and psychiatric illnesses. Diagnostic tools and treatment guidelines to address the circadian misalignment, excessive sleepiness, and insomnia experienced by patients with shift work disorder are also discussed.
Collapse
|
55
|
Mustard JA. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms. Cell Mol Life Sci 2013; 71:1375-82. [PMID: 24162934 DOI: 10.1007/s00018-013-1497-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion and sleep in both invertebrates and mammals. Furthermore, as in mammals, caffeine appears to have complex effects on learning and memory. However, the underlying mechanisms for these effects may differ between invertebrates and vertebrates. While caffeine's ability to cause release of intracellular calcium stores via ryanodine receptors and its actions as a phosphodiesterase inhibitor have been clearly established in invertebrates, its ability to interact with invertebrate adenosine receptors remains an important open question. Initial studies in insects and mollusks suggest an interaction between caffeine and the dopamine signaling pathway; more work needs to be done to understand the mechanisms by which caffeine influences signaling via biogenic amines. As of yet, little is known about whether other actions of caffeine in vertebrates, such as its effects on GABAA and glycine receptors, are conserved. Furthermore, the pharmacokinetics of caffeine remains to be elucidated. Overall behavioral responses to caffeine appear to be conserved amongst organisms; however, we are just beginning to understand the mechanisms underlying its effects across animal phyla.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA,
| |
Collapse
|
56
|
|
57
|
Meikle MN, Prieto JP, Urbanavicius J, López X, Abin-Carriquiry JA, Prunell G, Scorza MC. Anti-aggressive effect elicited by coca-paste in isolation-induced aggression of male rats: Influence of accumbal dopamine and cortical serotonin. Pharmacol Biochem Behav 2013; 110:216-23. [DOI: 10.1016/j.pbb.2013.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 07/09/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
|
58
|
Franklin KM, Hauser SR, Bell RL, Engleman EA. Caffeinated Alcoholic Beverages - An Emerging Trend in Alcohol Abuse. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; Suppl 4. [PMID: 25419478 PMCID: PMC4238293 DOI: 10.4172/2155-6105.s4-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol use disorders are pervasive in society and their impact affects quality of life, morbidity and mortality, as well as individual productivity. Alcohol has detrimental effects on an individual’s physiology and nervous system, and is associated with disorders of many organ and endocrine systems impacting an individual’s health, behavior, and ability to interact with others. Youth are particularly affected. Unfortunately, adolescent usage also increases the probability for a progression to dependence. Several areas of research indicate that the deleterious effects of alcohol abuse may be exacerbated by mixing caffeine with alcohol. Some behavioral evidence suggests that caffeine increases alcohol drinking and binge drinking episodes, which in turn can foster the development of alcohol dependence. As a relatively new public health concern, the epidemiological focus has been to establish a need for investigating the effects of caffeinated alcohol. While the trend of co-consuming these substances is growing, knowledge of the central mechanisms associated with caffeinated ethanol has been lacking. Research suggests that caffeine and ethanol can have additive or synergistic pharmacological actions and neuroadaptations, with the adenosine and dopamine systems in particular implicated. However, the limited literature on the central effects of caffeinated ethanol provides an impetus to increase our knowledge of the neuroadaptive effects of this combination and their impact on cognition and behavior. Research from our laboratories indicates that an established rodent animal model of alcoholism can be extended to investigate the acute and chronic effects of caffeinated ethanol.
Collapse
Affiliation(s)
- Kelle M Franklin
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
59
|
Frau L, Simola N, Morelli M. Contribution of Caffeine to the Psychostimulant, Neuroinflammatory and Neurotoxic Effects of Amphetamine-Related Drugs. JOURNAL OF CAFFEINE RESEARCH 2013. [DOI: 10.1089/jcr.2013.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Frau
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
- CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
60
|
Müller CP. Episodic memories and their relevance for psychoactive drug use and addiction. Front Behav Neurosci 2013; 7:34. [PMID: 23734106 PMCID: PMC3661997 DOI: 10.3389/fnbeh.2013.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023] Open
Abstract
The majority of adult people in western societies regularly consume psychoactive drugs. While this consumption is integrated in everyday life activities and controlled in most consumers, it may escalate and result in drug addiction. Non-addicted drug use requires the systematic establishment of highly organized behaviors, such as drug-seeking and -taking. While a significant role for classical and instrumental learning processes is well established in drug use and abuse, declarative drug memories have largely been neglected in research. Episodic memories are an important part of the declarative memories. Here a role of episodic drug memories in the establishment of non-addicted drug use and its transition to addiction is suggested. In relation to psychoactive drug consumption, episodic drug memories are formed when a person prepares for consumption, when the drug is consumed and, most important, when acute effects, withdrawal, craving, and relapse are experienced. Episodic drug memories are one-trial memories with emotional components that can be much stronger than "normal" episodic memories. Their establishment coincides with drug-induced neuronal activation and plasticity. These memories may be highly extinction resistant and influence psychoactive drug consumption, in particular during initial establishment and at the transition to "drug instrumentalization." In that, understanding how addictive drugs interact with episodic memory circuits in the brain may provide crucial information for how drug use and addiction are established.
Collapse
Affiliation(s)
- Christian P. Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-NurembergErlangen, Germany
| |
Collapse
|
61
|
Seibyl J, Russell D, Jennings D, Marek K. Neuroimaging over the course of Parkinson's disease: from early detection of the at-risk patient to improving pharmacotherapy of later-stage disease. Semin Nucl Med 2013; 42:406-14. [PMID: 23026362 DOI: 10.1053/j.semnuclmed.2012.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brain imaging of striatal dopamine terminal degeneration serves an important role in the clinical management of Parkinson's disease (PD). Imaging biomarkers for interrogating dopaminergic systems are used for clarifying diagnosis when only subtle motor symptoms are present. However, motor dysfunction is not the earliest symptom of PD. There is increasing interest in identifying premotor PD patients, particularly because potential disease-modifying therapies are developed and the clinical imperative becomes early and accurate diagnosis. On the other end of the spectrum of the disease course, during later stages of PD, significant clinical challenges like levo-dopa-induced dyskinesias and medication on-off phenomenon become more prevalent. In this instance, better understanding of altered PD motor pathways suggests the potential utility of novel treatments targeting neuronal systems that are impacted by degenerating dopamine neurons and chronic dopamine replacement treatment. Molecular neuroimaging serves unique roles in both very early PD and later-stage disease, in the former, potentially pushing back the time of diagnosis, and in the latter, elucidating pathology relevant to new drug development.
Collapse
Affiliation(s)
- John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA.
| | | | | | | |
Collapse
|
62
|
López-Cruz L, Salamone JD, Correa M. The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. JOURNAL OF CAFFEINE RESEARCH 2013; 3:9-21. [PMID: 24761272 PMCID: PMC3643311 DOI: 10.1089/jcr.2013.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of caffeine on the behavioral effects of ethanol, including ethanol consumption and abuse, has become a topic of great interest due to the rise in popularity of the so-called energy drinks. Energy drinks high in caffeine are frequently taken in combination with ethanol under the popular belief that caffeine can offset some of the intoxicating effects of ethanol. However, scientific research has not universally supported the idea that caffeine can reduce the effects of ethanol in humans or in rodents, and the mechanisms mediating the caffeine-ethanol interactions are not well understood. Caffeine and ethanol have a common biological substrate; both act on neurochemical processes related to the neuromodulator adenosine. Caffeine acts as a nonselective adenosine A1 and A2A receptor antagonist, while ethanol has been demonstrated to increase the basal adenosinergic tone via multiple mechanisms. Since adenosine transmission modulates multiple behavioral processes, the interaction of both drugs can regulate a wide range of effects related to alcohol consumption and the development of ethanol addiction. In the present review, we discuss the relatively small number of animal studies that have assessed the interactions between caffeine and ethanol, as well as the interactions between ethanol and subtype-selective adenosine receptor antagonists, to understand the basic findings and determine the possible mechanisms of action underlying the caffeine-ethanol interactions.
Collapse
Affiliation(s)
| | - John D. Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
63
|
Caffeine in the treatment of pain. Rev Bras Anestesiol 2012; 62:387-401. [PMID: 22656684 DOI: 10.1016/s0034-7094(12)70139-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/29/2011] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Caffeine is a widely used substance with effects on several systems, presenting characteristic of pharmacokinetic and pharmacodynamic which cause interactions with several drugs. This study's objective is to review the effects caused by caffeine. CONTENT This review assesses the caffeine pharmacology, its action mechanisms, indications, contraindications, doses, interactions and adverse effects. CONCLUSIONS There are insufficient double-blind randomized controlled studies that assess the analgesic effect of caffeine on several painful syndromes. Patients presenting chronic pain need caution when it comes to tolerance development, abstinence and drug interaction from chronic caffeine use.
Collapse
|
64
|
Vanattou-Saïfoudine N, McNamara R, Harkin A. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators. Br J Pharmacol 2012; 167:946-59. [PMID: 22671762 PMCID: PMC3492978 DOI: 10.1111/j.1476-5381.2012.02065.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/04/2012] [Accepted: 05/18/2012] [Indexed: 11/27/2022] Open
Abstract
Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption.
Collapse
Affiliation(s)
- N Vanattou-Saïfoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
65
|
Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee. Talanta 2012; 93:122-8. [DOI: 10.1016/j.talanta.2012.01.058] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/17/2011] [Accepted: 01/30/2012] [Indexed: 11/17/2022]
|
66
|
Bodenmann S, Hohoff C, Freitag C, Deckert J, Rétey JV, Bachmann V, Landolt HP. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Br J Pharmacol 2012; 165:1904-1913. [PMID: 21950736 PMCID: PMC3372839 DOI: 10.1111/j.1476-5381.2011.01689.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/10/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Prolonged wakefulness impairs sustained vigilant attention, measured with the psychomotor vigilance task (PVT), and induces a compensatory increase in sleep intensity in recovery sleep, quantified by slow-wave activity (SWA) in the sleep electroencephalogram (EEG). These effects of sleep deprivation are counteracted by the adenosine receptor antagonist caffeine, implying involvement of the adenosine neuromodulator/receptor system. To examine a role for adenosine A(2A) receptors, we investigated whether variation of the A(2A) receptor gene (ADORA2A) modified effects of caffeine on PVT and SWA after sleep deprivation. EXPERIMENTAL APPROACH A haplotype analysis of eight single-nucleotide polymorphisms of ADORA2A was performed in 82 volunteers. In 45 young men carrying five different allele combinations, we investigated the effects of prolonged waking and 2 × 200 mg caffeine or 2 × 100 mg modafinil on psychomotor vigilance, sleepiness, and the waking and sleep EEG. KEY RESULTS Throughout extended wakefulness, the carriers of haplotype HT4 performed faster on the PVT than carriers of non-HT4 haplotype alleles. In haplotype HT4, caffeine failed to counteract the waking-induced impairment of PVT performance and the rebound of SWA in recovery sleep. However, caffeine was effective in non-HT4 allele carriers, and modafinil reduced the consequences of prolonged waking, independently of ADORA2A haplotype. CONCLUSIONS AND IMPLICATIONS Common genetic variation of ADORA2A is an important determinant of psychomotor vigilance in rested and sleep-deprived state. It also modulates individual responses to caffeine after sleep deprivation. These findings demonstrate a role for adenosine A(2A) receptors in the effects of prolonged wakefulness on vigilant attention and the sleep EEG.
Collapse
Affiliation(s)
- S Bodenmann
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - C Hohoff
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - C Freitag
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - J Deckert
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - J V Rétey
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - V Bachmann
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - H-P Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, SwitzerlandDepartment of Psychiatry, University of Münster, Münster, GermanyDepartment of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Johann-Wolfgang Goethe University, Frankfurt am Main, GermanyDepartment of Psychiatry, University of Würzburg, Würzburg, GermanyZürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
67
|
Misra JR, Horner MA, Lam G, Thummel CS. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 2011; 25:1796-806. [PMID: 21896655 DOI: 10.1101/gad.17280911] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Living organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects. Here we show that the Drosophila Nrf2 (NF-E2-related factor 2) ortholog CncC (cap 'n' collar isoform-C) is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf (muscle aponeurosis fibromatosis) is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds: phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC or its negative regulator, Keap1 (Kelch-like ECH-associated protein 1), lead to predictable changes in xenobiotic-inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the lethal effects of the pesticide malathion. These studies establish a molecular mechanism for the regulation of xenobiotic detoxification in Drosophila and have implications for controlling insect populations and the spread of insect-borne human diseases.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
68
|
Rizkallah E, Bélanger M, Stavro K, Dussault M, Pampoulova T, Chiasson JP, Potvin S. Could the use of energy drinks induce manic or depressive relapse among abstinent substance use disorder patients with comorbid bipolar spectrum disorder? Bipolar Disord 2011; 13:578-80. [PMID: 22017226 DOI: 10.1111/j.1399-5618.2011.00951.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The potential harmful effects of excessive caffeine consumption remain largely unknown among psychiatric populations. Energy drinks have particularly high levels of caffeine content and have previously been shown to induce psychotic relapse. Clinical observations of three bipolar disorder patients with comorbid substance use disorder revealed an excessive consumption of energy drinks prior to manic or depressive relapse. BACKGROUND Three patients with bipolar spectrum disorder and comorbid substance use disorder were assessed by a psychiatrist upon re-admission to a rehabilitation centre following manic or depressive relapse. The assessment was based on DSM-IV criteria and performed by a psychiatrist who specialized in bipolar spectrum disorder and comorbidities to determine the presence of manic or depressive relapse. Two patients were diagnosed with bipolar disorder type I, and the third with bipolar disorder type II. All three patients were diagnosed with comorbid substance use disorders and all three abused cocaine. RESULTS In all three cases, relapse occurred following at least one week of excessive binging on energy drinks, with a maximum daily consumption of nine cans. Following cessation of energy drink consumption, two of the patients remained abstinent from drug use and maintained psychiatric stability. One patient relapsed three months post-treatment and resumed consuming cocaine and energy drinks. CONCLUSIONS These clinical observations support other case reports that suggest the existence of a potential correlation between excessive energy drink consumption and relapse among psychiatric populations.
Collapse
|
69
|
Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant. Behav Brain Res 2011; 221:134-41. [PMID: 21392540 DOI: 10.1016/j.bbr.2011.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/21/2022]
Abstract
Coca-paste (CP) is a drug of abuse that so far has not been extensively characterized. CP is an intermediate product of the cocaine alkaloid extraction process from coca leaves, hence it has a high content of cocaine base mixed with other chemical substances (impurities) and it is probably adulterated when it reaches the consumers. Despite its high prevalence and distribution through South America, little is known about its effects on the central nervous system. In the present study, a chemical analysis of CP samples from different police seizures was performed to determine the cocaine base content and the presence and content of impurities and adulterants. Some CP representative samples were selected to study the effects on the locomotor activity induced after acute systemic administration in rats as a measure of its stimulant action. The behavioral response was compared to equivalent doses of cocaine. As expected, cocaine was the main component in most of the CP samples assayed. Caffeine was the only active adulterant detected. Interestingly, several CP samples elicited a higher stimulant effect compared to that observed after cocaine when administered at equivalent doses of cocaine base. Combined treatment of cocaine and caffeine, as surrogate of different CP samples mimicked their stimulant effect. We demonstrated that cocaine and caffeine are the main components responsible for the CP-induced stimulant action while the contribution of the impurities was imperceptible.
Collapse
|
70
|
Arab L, Biggs ML, O'Meara ES, Longstreth WT, Crane PK, Fitzpatrick AL. Gender differences in tea, coffee, and cognitive decline in the elderly: the Cardiovascular Health Study. J Alzheimers Dis 2011; 27:553-66. [PMID: 21841254 PMCID: PMC3577072 DOI: 10.3233/jad-2011-110431] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although caffeine can enhance cognitive function acutely, long-term effects of consumption of caffeine-containing beverages such as tea and coffee are uncertain. Data on 4,809 participants aged 65 and older from the Cardiovascular Health Study (CHS) were used to examine the relationship of consumption of tea and coffee, assessed by food frequency questionnaire, on change in cognitive function by gender. Cognitive performance was assessed using serial Modified Mini-Mental State (3MS) examinations, which were administered annually up to 9 times. Linear mixed models were used to estimate rates of change in standard 3MS scores and scores modeled using item response theory (IRT). Models were adjusted for age, education, smoking status, clinic site, diabetes, hypertension, stroke, coronary heart disease, depression score, and APOE genotype. Over the median 7.9 years of follow-up, participants who did not consume tea or coffee declined annually an average of 1.30 points (women) and 1.11 points (men) on standard 3MS scores. In fully adjusted models using either standard or IRT 3MS scores, we found modestly reduced rates of cognitive decline for some, but not all, levels of coffee and tea consumption for women, with no consistent effect for men. Caffeine consumption was also associated with attenuation in cognitive decline in women. Dose-response relationships were not linear. These longitudinal analyses suggest a somewhat attenuated rate of cognitive decline among tea and coffee consumers compared to non-consumers in women but not in men. Whether this association is causal or due to unmeasured confounding requires further study.
Collapse
Affiliation(s)
- Lenore Arab
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Kale PP, Addepalli V, Bafna PA, Prabhavalkar KS. Caffeine-induced Augmentation of Antidepressant Therapy. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.jecm.2010.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Vanattou-Saïfoudine N, McNamara R, Harkin A. Mechanisms mediating the ability of caffeine to influence MDMA ('Ecstasy')-induced hyperthermia in rats. Br J Pharmacol 2010; 160:860-77. [PMID: 20590585 DOI: 10.1111/j.1476-5381.2010.00660.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Caffeine exacerbates the hyperthermia associated with an acute exposure to 3,4 methylenedioxymethamphetamine (MDMA, 'Ecstasy') in rats. The present study investigated the mechanisms mediating this interaction. EXPERIMENTAL APPROACH Adult male Sprague-Dawley rats were treated with caffeine (10 mg x kg(-1); i.p.) and MDMA (15 mg x kg(-1); i.p.) alone and in combination. Core body temperatures were monitored before and after drug administration. KEY RESULTS Central catecholamine depletion blocked MDMA-induced hyperthermia and its exacerbation by caffeine. Caffeine provoked a hyperthermic response when the catecholamine releaser d-amphetamine (1 mg x kg(-1)) was combined with the 5-HT releaser D-fenfluramine (5 mg x kg(-1)) or the non-selective dopamine receptor agonist apomorphine (1 mg x kg(-1)) was combined with the 5-HT(2) receptor agonist DOI (2 mg x kg(-1)) but not following either agents alone. Pretreatment with the dopamine D(1) receptor antagonist Schering (SCH) 23390 (1 mg x kg(-1)), the 5-HT(2) receptor antagonist ketanserin (5 mg x kg(-1)) or alpha(1)-adreno- receptor antagonist prazosin (0.2 mg x kg(-1)) blocked MDMA-induced hyperthermia and its exacerbation by caffeine. Co-administration of a combination of MDMA with the PDE-4 inhibitor rolipram (0.025 mg x kg(-1)) and the adenosine A(1/2) receptor antagonist 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-C]quinazolin-5-amine 15943 (10 mg x kg(-1)) or the A(2A) receptor antagonist SCH 58261 (2 mg x kg(-1)) but not the A(1) receptor antagonist DPCPX (10 mg x kg(-1)) exacerbated MDMA-induced hyperthermia. CONCLUSIONS AND IMPLICATIONS A mechanism comprising 5-HT and catecholamines is proposed to mediate MDMA-induced hyperthermia. A combination of adenosine A(2A) receptor antagonism and PDE inhibition can account for the exacerbation of MDMA-induced hyperthermia by caffeine.
Collapse
Affiliation(s)
- N Vanattou-Saïfoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
73
|
A role for adenosine A(1) receptor blockade in the ability of caffeine to promote MDMA "Ecstasy"-induced striatal dopamine release. Eur J Pharmacol 2010; 650:220-8. [PMID: 20951694 DOI: 10.1016/j.ejphar.2010.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/10/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
Abstract
Co-administration of caffeine profoundly enhances the acute toxicity of 3,4 methylenedioxymethamphetamine (MDMA) in rats. The aim of this study was to determine the ability of caffeine to impact upon MDMA-induced dopamine release in superfused brain tissue slices as a contributing factor to this drug interaction. MDMA (100 and 300μM) induced a dose-dependent increase in dopamine release in striatal and hypothalamic tissue slices preloaded with [(3)H] dopamine (1μM). Caffeine (100μM) also induced dopamine release in the striatum and hypothalamus, albeit to a much lesser extent than MDMA. When striatal tissue slices were superfused with MDMA (30μM) in combination with caffeine (30μM), caffeine enhanced MDMA-induced dopamine release, provoking a greater response than that obtained following either caffeine or MDMA applications alone. The synergistic effects in the striatum were not observed in hypothalamic slices. As adenosine A(1) receptors are, one of the main pharmacological targets of caffeine, which are known to play an important role in the regulation of dopamine release, their role in the modulation of MDMA-induced dopamine release was investigated. 1μM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A(1) antagonist, like caffeine, enhanced MDMA-induced dopamine release from striatal slices while 1μM 2,chloro-N(6)-cyclopentyladenosine (CCPA), a selective adenosine A(1) receptor agonist, attenuated this. Treatment with either SCH 58261, a selective A(2A) receptor antagonist, or rolipram, a selective PDE-4 inhibitor, failed to reproduce a caffeine-like effect on MDMA-induced dopamine release. These results suggest that caffeine regulates MDMA-induced dopamine release in striatal tissue slices, via inhibition of adenosine A(1) receptors.
Collapse
|
74
|
Price SR, Hilchey CA, Darredeau C, Fulton HG, Barrett SP. Energy drink co-administration is associated with increased reported alcohol ingestion. Drug Alcohol Rev 2010; 29:331-3. [PMID: 20565526 DOI: 10.1111/j.1465-3362.2009.00163.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND AIMS While energy drinks (EDs) and alcohol have been reported to be frequently co-administered, little is known about the effect of this co-administration on alcohol drinking patterns. The purpose of the present research was to characterise patterns of ED and alcohol co-administration. DESIGN AND METHODS Seventy-two ED users were recruited from the Halifax university community. Participants provided information about their lifetime ED and other substance use, in addition to detailing instances of their ED and alcohol use during the previous week using a timeline follow-back interview. RESULTS Seventy-six per cent of participants reported ever deliberately mixing alcohol with EDs and 19% reported doing so during the previous week. Relative to alcohol drinking sessions in which EDs were not used, participants reported drinking significantly more alcohol when it was co-administered with EDs. DISCUSSION AND CONCLUSIONS Alcohol and ED co-administration is relatively common among ED users and seems to be associated with increased alcohol ingestion. It is recommended that this matter receive more clinical and research attention.
Collapse
Affiliation(s)
- Stephen R Price
- Department of Psychology, Dalhousie University, Halifax, Canada
| | | | | | | | | |
Collapse
|
75
|
Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 2010; 211:245-57. [PMID: 20532872 PMCID: PMC4242593 DOI: 10.1007/s00213-010-1900-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
Abstract
RATIONALE Caffeine is widely consumed in foods and beverages and is also used for a variety of medical purposes. Despite its widespread use, relatively little is understood regarding how genetics affects consumption, acute response, or the long-term effects of caffeine. OBJECTIVE This paper reviews the literature on the genetics of caffeine from the following: (1) twin studies comparing heritability of consumption and of caffeine-related traits, including withdrawal symptoms, caffeine-induced insomnia, and anxiety, (2) association studies linking genetic polymorphisms of metabolic enzymes and target receptors to variations in caffeine response, and (3) case-control and prospective studies examining relationship between polymorphisms associated with variations in caffeine response to risks of Parkinson's and cardiovascular diseases in habitual caffeine consumers. RESULTS Twin studies find the heritability of caffeine-related traits to range between 0.36 and 0.58. Analysis of polysubstance use shows that predisposition to caffeine use is highly specific to caffeine itself and shares little common disposition to use of other substances. Genome association studies link variations in adenosine and dopamine receptors to caffeine-induced anxiety and sleep disturbances. Polymorphism in the metabolic enzyme cytochrome P-450 is associated with risk of myocardial infarction in caffeine users. CONCLUSION Modeling based on twin studies reveals that genetics plays a role in individual variability in caffeine consumption and in the direct effects of caffeine. Both pharmacodynamic and pharmacokinetic polymorphisms have been linked to variation in response to caffeine. These studies may help guide future research in the role of genetics in modulating the acute and chronic effects of caffeine.
Collapse
Affiliation(s)
- Amy Yang
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA
| | - Abraham A. Palmer
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA. Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA
| |
Collapse
|
76
|
Schwindinger WF, Mihalcik LJM, Giger KE, Betz KS, Stauffer AM, Linden J, Herve D, Robishaw JD. Adenosine A2A receptor signaling and golf assembly show a specific requirement for the gamma7 subtype in the striatum. J Biol Chem 2010; 285:29787-96. [PMID: 20639202 DOI: 10.1074/jbc.m110.142620] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenosine A(2A) receptor (A(2A)R) is increasingly recognized as a novel therapeutic target in Parkinson disease. In striatopallidal neurons, the G-protein α(olf) subtype is required to couple this receptor to adenylyl cyclase activation. It is now well established that the βγ dimer also performs an active role in this signal transduction process. In principal, sixty distinct βγ dimers could arise from combinatorial association of the five known β and 12 γ subunit genes. However, key questions regarding which βγ subunit combinations exist and whether they perform specific signaling roles in the context of the organism remain to be answered. To explore these questions, we used a gene targeting approach to specifically ablate the G-protein γ(7) subtype. Revealing a potentially new signaling paradigm, we show that the level of the γ(7) protein controls the hierarchial assembly of a specific G-protein α(olf)β(2)γ(7) heterotrimer in the striatum. Providing a probable basis for the selectivity of receptor signaling, we further demonstrate that loss of this specific G-protein heterotrimer leads to reduced A(2A)R activation of adenylyl cyclase. Finally, substantiating an important role for this signaling pathway in pyschostimulant responsiveness, we show that mice lacking the G-protein γ(7) subtype exhibit an attenuated behavioral response to caffeine. Collectively, these results further support the A(2A)R G-protein α(olf)β(2)γ(7) interface as a possible therapeutic target for Parkinson disease.
Collapse
|
77
|
Woehrling EK, Hill EJ, Torr EE, Coleman MD. Single-cell ELISA and flow cytometry as methods for highlighting potential neuronal and astrocytic toxicant specificity. Neurotox Res 2010; 19:472-83. [PMID: 20552314 DOI: 10.1007/s12640-010-9202-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 05/09/2010] [Accepted: 06/02/2010] [Indexed: 12/11/2022]
Abstract
The timeline imposed by recent worldwide chemical legislation is not amenable to conventional in vivo toxicity testing, requiring the development of rapid, economical in vitro screening strategies which have acceptable predictive capacities. When acquiring regulatory neurotoxicity data, distinction on whether a toxic agent affects neurons and/or astrocytes is essential. This study evaluated neurofilament (NF) and glial fibrillary acidic protein (GFAP) directed single-cell (S-C) ELISA and flow cytometry as methods for distinguishing cell-specific cytoskeletal responses, using the established human NT2 neuronal/astrocytic (NT2.N/A) co-culture model and a range of neurotoxic (acrylamide, atropine, caffeine, chloroquine, nicotine) and non-neurotoxic (chloramphenicol, rifampicin, verapamil) test chemicals. NF and GFAP directed flow cytometry was able to identify several of the test chemicals as being specifically neurotoxic (chloroquine, nicotine) or astrocytoxic (atropine, chloramphenicol) via quantification of cell death in the NT2.N/A model at cytotoxic concentrations using the resazurin cytotoxicity assay. Those neurotoxicants with low associated cytotoxicity are the most significant in terms of potential hazard to the human nervous system. The NF and GFAP directed S-C ELISA data predominantly demonstrated the known neurotoxicants only to affect the neuronal and/or astrocytic cytoskeleton in the NT2.N/A cell model at concentrations below those affecting cell viability. This report concluded that NF and GFAP directed S-C ELISA and flow cytometric methods may prove to be valuable additions to an in vitro screening strategy for differentiating cytotoxicity from specific neuronal and/or astrocytic toxicity. Further work using the NT2.N/A model and a broader array of toxicants is appropriate in order to confirm the applicability of these methods.
Collapse
Affiliation(s)
- E K Woehrling
- School of Life and Health Sciences, Aston University, Aston Street, Birmingham, UK.
| | | | | | | |
Collapse
|
78
|
Guarraci FA. "Sex, drugs and the brain": the interaction between drugs of abuse and sexual behavior in the female rat. Horm Behav 2010; 58:138-48. [PMID: 20025882 DOI: 10.1016/j.yhbeh.2009.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
Preclinical and clinical research investigating female sexual motivation has lagged behind research on male sexual function. The present review summarizes recent advances in our understanding of the specific roles of various brain areas, as well as our understanding of the role of dopaminergic neurotransmission in sexual motivation of the female rat. A number of behavioral paradigms that can be used to thoroughly evaluate sexual behavior in the female rat are first discussed. Although traditional assessment of the reflexive, lordosis posture has been useful in understanding the neuroanatomical and neurochemical systems that contribute to copulatory behavior, the additional behavioral paradigms described in this review have helped us expand our understanding of appetitive and consumatory behavioral patterns that better assess sexual motivation - the equivalent of "desire" in humans. A summary of numerous lesion studies indicates that different areas of the brain, including forebrain and midbrain structures, work together to produce the complex repertoire of female sexual behavior. In addition, by investigating the effects of commonly addictive drugs, we are beginning to elucidate the role of dopaminergic neurotransmission in female sexual motivation. Consequently, research in this area may contribute to meaningful advances in the treatment of human female sexual dysfunction.
Collapse
Affiliation(s)
- Fay A Guarraci
- Department of Psychology, Southwestern University, Georgetown, TX 78626, USA.
| |
Collapse
|
79
|
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15:3517-55. [PMID: 20657497 PMCID: PMC6263339 DOI: 10.3390/molecules15053517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/31/2010] [Accepted: 05/06/2010] [Indexed: 12/31/2022] Open
Abstract
Plant secondary metabolites include an array of bioactive constituents form both medicinal and food plants able to improve human health. The exposure to these phytochemicals, including phenylpropanoids, isoprenoids and alkaloids, through correct dietary habits, may promote health benefits, protecting against the chronic degenerative disorders mainly seen in Western industrialized countries, such as cancer, cardiovascular and neurodegenerative diseases. In this review, we briefly deal with some plant foods and herbs of traditional medicines and diets, focusing on their neuroprotective active components. Because oxidative stress and neuroinflammation resulting from neuroglial activation, at the level of neurons, microglial cells and astrocytes, are key factors in the etiopathogenesis of both neurodegenerative and neurological diseases, emphasis will be placed on the antioxidant and anti-inflammatory activity exerted by specific molecules present in food plants or in remedies prescribed by herbal medicines.
Collapse
Affiliation(s)
- Marcello Iriti
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Dipartimento Agroalimentare, CNR-IVV, Milano, Italy; E-Mail (F.F.)
| | - Sara Vitalini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Orto Botanico ‘GE Ghirardi’, Università degli Studi di Milano, Toscolano Maderno, Brescia, Italy; E-Mail: (S.V.)
| | - Gelsomina Fico
- Orto Botanico ‘GE Ghirardi’, Università degli Studi di Milano, Toscolano Maderno, Brescia, Italy; E-Mail: (S.V.)
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy; E-Mail: (G.F.)
| | - Franco Faoro
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Dipartimento Agroalimentare, CNR-IVV, Milano, Italy; E-Mail (F.F.)
| |
Collapse
|
80
|
Why do young women smoke? VI. A controlled study of nicotine effects on attention: pharmacogenetic interactions. THE PHARMACOGENOMICS JOURNAL 2010; 11:45-52. [PMID: 20231857 DOI: 10.1038/tpj.2010.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In prior studies we found that young, female smokers manifest poorer performance than non-smokers on attention-related tasks and that these findings can be moderated by variation in nicotinic acetylcholine receptor (nAChR) genes. We predicted that under controlled conditions (1) nicotine would improve functioning on attentional tasks in smokers who previously manifested relatively poor performance, and that (2) smokers who carry genetic variations associated with poorer attention performance would derive greater benefit from nicotine. To test these hypotheses, 31 young female smokers, who participated in our previous study, performed the Matching Familiar Figures Test (MFFT), Tower of London Test and Continuous Performance Task (CPT) in a double-blind, within-between subject design, placebo or nicotine (4 mg as gum) serving as the within factor and genetic profile as the between factor. Repeated measures ANCOVA controlling for attention deficit symptomatology, substance abuse and nicotine dependence showed better performance under nicotine among participants with higher levels of attention deficit symptoms (MFFT errors: P=0.04; CPT commissions: P=0.01) and nicotine dependence (CPT stability of response: P=0.04) and greater consumption of caffeine (CPT stability of response: P=0.04). An interactive effect of genetic profile was demonstrated for SNP rs2337980 in CHRNA7. These findings suggest that nicotine may have stronger short-term facilitating effects on attention in women who have more attention deficit symptoms and consume more nicotine and caffeine. This effect may be modified by a specific genetic make-up. Such individuals may be at increased risk for nicotine addiction and for greater difficulties in smoking cessation.
Collapse
|
81
|
Influence of acute caffeine on 50-kHz ultrasonic vocalizations in male adult rats and relevance to caffeine-mediated psychopharmacological effects. Int J Neuropsychopharmacol 2010; 13:123-32. [PMID: 19545474 DOI: 10.1017/s1461145709990113] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To further characterize caffeine-mediated psychopharmacological effects, the present study investigated whether acute caffeine (3, 10, 30, 50 mg/kg i.p.) exerted any influence on the emission and features of ultrasonic vocalizations (USVs), which are thought to index changes involving emotional state, in male adult rats. The results obtained demonstrate that caffeine can trigger modifications in the maximum peak frequency and bandwidth of the 50-kHz range USVs. However, such an effect was not accompanied by a significant elevation in the number of 50-kHz USVs, relative to administration of vehicle. Under the same experimental conditions, acute amphetamine (2 mg/kg i.p.) robustly elevated the number of 50-kHz USVs emitted by rats, although it did not affect the maximum peak frequency and bandwidth of USVs. Thus, both qualitative and quantitative differences in the effects exerted by caffeine and amphetamine on 50-kHz USVs were observed. Taken together, these findings further clarify the features of caffeine-mediated psychopharmacological effects, and may help to elucidate the differences between the central effects of caffeine and those elicited by other psychostimulants.
Collapse
|
82
|
Lee SC, Lin HM, Chen H. Studies on the preparation and properties of inorganic molecularly imprinted polymer (MIP) based on tetraethoxysilane and silane coupling agents. J Appl Polym Sci 2009. [DOI: 10.1002/app.30974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
Lee SC, Chuang FL, Tsai YL, Chen H. Studies on the preparation and properties of sol-gel molecularly imprinted polymer based on tetraethoxysilane for recognizing sulfonamides. JOURNAL OF POLYMER RESEARCH 2009. [DOI: 10.1007/s10965-009-9364-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
84
|
Altered expression of adenosine A1 and A2A receptors in the carotid body and nucleus tractus solitarius of adult male and female rats following neonatal caffeine treatment. Brain Res 2009; 1287:74-83. [DOI: 10.1016/j.brainres.2009.06.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/19/2009] [Indexed: 12/26/2022]
|
85
|
Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J Neurosci 2009; 29:6568-79. [PMID: 19458227 DOI: 10.1523/jneurosci.0181-09.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Somatodendritic dopamine (DA) release in the substantia nigra pars compacta (SNc) shows a limited dependence on extracellular calcium concentration ([Ca(2+)](o)), suggesting the involvement of intracellular Ca(2+) stores. Here, using immunocytochemistry we demonstrate the presence of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) that sequesters cytosolic Ca(2+) into the endoplasmic reticulum (ER), as well as inositol 1,4,5-triphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) in DAergic neurons. Notably, RyRs were clustered at the plasma membrane, poised for activation by Ca(2+) entry. Using fast-scan cyclic voltammetry to monitor evoked extracellular DA concentration ([DA](o)) in midbrain slices, we found that SERCA inhibition by cyclopiazonic acid (CPA) decreased evoked [DA](o) in the SNc, indicating a functional role for ER Ca(2+) stores in somatodendritic DA release. Implicating IP(3)R-dependent stores, an IP(3)R antagonist, 2-APB, also decreased evoked [DA](o). Moreover, DHPG, an agonist of group I metabotropic glutamate receptors (mGluR1s, which couple to IP(3) production), increased somatodendritic DA release, whereas CPCCOEt, an mGluR1 antagonist, suppressed it. Release suppression by mGluR1 blockade was prevented by 2-APB or CPA, indicating facilitation of DA release by endogenous glutamate acting via mGluR1s and IP(3)R-gated Ca(2+) stores. Similarly, activation of RyRs by caffeine increased [Ca(2+)](i) and elevated evoked [DA](o). The increase in DA release was prevented by a RyR blocker, dantrolene, and by CPA. Importantly, the efficacy of dantrolene was enhanced in low [Ca(2+)](o), suggesting a mechanism for maintenance of somatodendritic DA release with limited Ca(2+) entry. Thus, both mGluR1-linked IP(3)R- and RyR-dependent ER Ca(2+) stores facilitate somatodendritic DA release in the SNc.
Collapse
|
86
|
Temple JL. Caffeine use in children: what we know, what we have left to learn, and why we should worry. Neurosci Biobehav Rev 2009; 33:793-806. [PMID: 19428492 PMCID: PMC2699625 DOI: 10.1016/j.neubiorev.2009.01.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/30/2022]
Abstract
Caffeine is a widely used psychoactive substance in both adults and children that is legal, easy to obtain, and socially acceptable to consume. Although once relatively restricted to use among adults, caffeine-containing drinks are now consumed regularly by children. In addition, some caffeine-containing beverages are specifically marketed to children as young as 4 years of age. Unfortunately, our knowledge of the effects of caffeine use on behavior and physiology of children remains understudied and poorly understood. The purpose of this article is to review what is known about caffeine use in children and adolescents, to discuss why children and adolescents may be particularly vulnerable to the negative effects of caffeine, and to propose how caffeine consumption within this population may potentiate the rewarding properties of other substances. The following topics are reviewed: (1) tolerance and addiction to caffeine, (2) sensitization and cross-sensitization to the effects of caffeine, (3) caffeine self-administration and reinforcing value, and (4) conditioning of preferences for caffeine-containing beverages in both adults and children.
Collapse
Affiliation(s)
- Jennifer L Temple
- University at Buffalo, Department of Exercise and Nutrition Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
87
|
McClatchey WC, Mahady GB, Bennett BC, Shiels L, Savo V. Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from ethnobotanical sources. Pharmacol Ther 2009; 123:239-54. [PMID: 19422851 DOI: 10.1016/j.pharmthera.2009.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 04/13/2009] [Indexed: 02/02/2023]
Abstract
The science of ethnobotany is reviewed in light of its multi-disciplinary contributions to natural product research for the development of pharmaceuticals and pharmacological tools. Some of the issues reviewed involve ethical and cultural perspectives of healthcare and medicinal plants. While these are not usually part of the discussion of pharmacology, cultural concerns potentially provide both challenges and insight for field and laboratory researchers. Plant evolutionary issues are also considered as they relate to development of plant chemistry and accessing this through ethnobotanical methods. The discussion includes presentation of a range of CNS-active medicinal plants that have been recently examined in the field, laboratory and/or clinic. Each of these plants is used to illustrate one or more aspects about the valuable roles of ethnobotany in pharmacological research. We conclude with consideration of mutually beneficial future collaborations between field ethnobotanists and pharmacologists.
Collapse
Affiliation(s)
- Will C McClatchey
- Department of Botany, University of Hawai;i at Manoa, Honolulu, HI 96822, USA.
| | | | | | | | | |
Collapse
|
88
|
Brunetti B, Desimoni E. Determination of Theophylline at a Cysteic Acid Modified Glassy Carbon Electrode. ELECTROANAL 2009. [DOI: 10.1002/elan.200804477] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
89
|
Kelsey JE, Langelier NA, Oriel BS, Reedy C. The effects of systemic, intrastriatal, and intrapallidal injections of caffeine and systemic injections of A2A and A1 antagonists on forepaw stepping in the unilateral 6-OHDA-lesioned rat. Psychopharmacology (Berl) 2009; 201:529-39. [PMID: 18791705 DOI: 10.1007/s00213-008-1319-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/21/2008] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES Given that adenosine A2A antagonists appear to be therapeutic in several animal models of Parkinson's disease (PD), we examined the extent to which caffeine and selective A2A and A1 antagonists could enhance contralateral forepaw stepping in the unilateral 6-OHDA-lesioned rat. MATERIALS AND METHODS Following unilateral injections of 12 microg 6-OHDA into the medial forebrain bundle (MFB), frequency of stepping with both front paws was counted separately as the paws were dragged anteriorally and laterally by a treadmill. RESULTS The MFB lesions decreased contralateral stepping by 74-83%, and 8 mg/kg 3,4-dihydroxy-L-phenylalanine (L-DOPA) increased contralateral stepping by 25-26%. Caffeine given systemically (15 mg/kg) or into the dorsal striatum or external globus pallidus (GPE; 20-40 microg) increased contralateral forepaw stepping by 14%, 27%, and 26%, respectively, and enhanced the effect of 8 mg/kg L-DOPA on stepping. The selective A(2A) antagonist SCH-58261 (2 mg/kg) also increased stepping by 13% and enhanced the therapeutic effect of L-DOPA, whereas the selective A(1) [corrected] antagonist 8-cyclopentyltheophylline (3-7 mg/kg) and A(1) agonist N(6)-cyclopentyladenosine (0.03-0.2 mg/kg) had no effect. None of these drugs appeared to produce dyskinesic effects. CONCLUSIONS In this well-validated animal model of the akinesic effects of PD, caffeine and a selective A2A, but not an A1, antagonist were able to provide both monotherapeutic and adjunctive therapeutic effects. These data are consistent with the hypothesis that A2A antagonists may be therapeutic in human PD patients and indicate that the dorsal striatum and GPE are critical sites of therapeutic action.
Collapse
Affiliation(s)
- John E Kelsey
- Program in Neuroscience, Bates College, Lewiston, ME 04240, USA.
| | | | | | | |
Collapse
|
90
|
Lee SC, Peng CL, Chen H. Studies on the Preparation and Properties of Sol–Gel Molecularly Imprinted Polymer Based on Tetramethoxysilane and Methyltrimethoxysilane for Recognized Sulfonamides. Polym J 2009. [DOI: 10.1295/polymj.pj2009147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
91
|
Jitomir J, Nassar E, Culbertson J, Moreillon J, Buford T, Hudson G, Cooke M, Kreider R, Willoughby DS. The acute effects of the thermogenic supplement Meltdown on energy expenditure, fat oxidation, and hemodynamic responses in young, healthy males. J Int Soc Sports Nutr 2008; 5:23. [PMID: 19087290 PMCID: PMC2637826 DOI: 10.1186/1550-2783-5-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/16/2008] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to evaluate the effects of a thermogenic supplement, Meltdown, on energy expenditure, fat oxidation, and hemodynamics before and after maximal treadmill exercise. In a double-blind, randomized, placebo-controlled, cross-over design, 12 male participants underwent two testing sessions after consuming either the Meltdown or placebo supplement. While in a fasted state, participants rested for one hour, orally ingested either Meltdown or placebo and rested for another hour, performed a maximal treadmill exercise test, and then rested for another hour. Throughout the testing protocol, resting energy expenditure (REE) and respiratory exchange ratio (RER) were assessed. In addition, heart rate (HR) and blood pressure (BP) were assessed before and after exercise. Meltdown increased REE significantly more than placebo at 45 min (1.44 ± 0.25 vs. 1.28 ± 0.23 kcal/min; p = 0.003), 60 min (1.49 ± 0.28 vs. 1.30 ± 0.22 kcal/min; p = 0.025), and 120 min (1.51 ± 0.26 vs. 1.33 ± 0.27 kcals/min; p = 0.014) post-ingestion. Meltdown significantly decreased RER at 30 min (0.84 ± 0.03 vs. 0.91 ± 0.04; p = 0.022) and 45 min post-ingestion (0.82 ± 0.04 vs. 0.89 ± 0.05; p = 0.042), and immediately post-exercise (0.83 ± 0.05 vs. 0.90 ± 0.07; p = 0.009). Furthermore, over the course of the evaluation period, area under the curve assessment demonstrated that REE was significantly increased with Meltdown compared to placebo (992.5 ± 133.1 vs. 895.1 ± 296.1 kcals; p = 0.043), while RER was significantly less than placebo (5.55 ± 0.61 vs. 5.89 ± 0.44; p = 0.002) following ingestion. HR and BP were not significantly affected prior to exercise with either supplement (p > 0.05) and the exercise-induced increases for HR and BP decreased into recovery and were not different between supplements (p > 0.05). These data suggest that Meltdown enhances REE and fat oxidation more than placebo for several hours after ingestion in fully rested and post-exercise states without any adverse hemodynamic responses associated with maximal exercise.
Collapse
Affiliation(s)
- Jean Jitomir
- Department of Health, Human Performance, and Recreation, Baylor University, Box 97313, Waco, TX 76798, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ferré S. La cafeína en la enfermedad de Parkinson. Med Clin (Barc) 2008; 131:710-5. [DOI: 10.1157/13129123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
McCarthy DM, Mycyk MB, DesLauriers CA. Hospitalization for caffeine abuse is associated with abuse of other pharmaceutical products. Am J Emerg Med 2008; 26:799-802. [PMID: 18774047 DOI: 10.1016/j.ajem.2007.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 10/21/2022] Open
Abstract
STUDY OBJECTIVE The aim of this study was to examine the characteristics and outcomes of patients seeking treatment for abuse of supplemental caffeine. METHODS This was a 3-year analysis conducted of all consecutive cases involving caffeine abuse in patients 10 years and older reported to a regional poison center. Excluded were suicide attempts, therapeutic errors, and cases involving only a coffee or tea product. RESULTS Two hundred fifty-four cases met inclusion criteria. Mean age was 20.5 years, 50% were women. Caffeine was in the form of a nondietary medication in 201 cases, a dietary supplement in 35 cases, and a caffeine-enhanced beverage in 35 cases. Caffeine was abused alone in 174 (68%), with alcohol in 7, illegal drugs in 6 cases, and with other pharmaceutical products in 81 (29%) cases. Thirty-four patients (13% of total) were hospitalized for medical complications from caffeine. Only concomitant abuse of other pharmaceutical products was associated with hospitalization (odds ratio, 3.8; 95% CI, 1.8-8.8; P = .0004). CONCLUSION In this cohort, supplemental caffeine was abused primarily by young adults. Concomitant recreational abuse of other pharmaceuticals was associated with hospitalization and warrants further investigation.
Collapse
Affiliation(s)
- Danielle M McCarthy
- Department of Emergency Medicine, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
94
|
Ofluoglu E, Pasaoglu H, Pasaoglu A. The effects of caffeine on L-arginine metabolism in the brain of rats. Neurochem Res 2008; 34:395-9. [PMID: 18618243 DOI: 10.1007/s11064-008-9790-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 06/19/2008] [Indexed: 11/26/2022]
Abstract
In our study, the short-term effects of caffeine on L-arginine metabolism in the brains of rats were investigated. Caffeine was given orally at two different doses: 30 mg/kg and 100 mg/kg (a high non-toxic dose). Brain tissue arginase activity in rats from the caffeine-treated groups decreased significantly compared with the control group. Malondialdehyde (MDA) levels in the brain tissue and serum of animals in the caffeine groups also decreased significantly. Brain tissue and serum nitric oxide (NO) levels increased significantly after caffeine administration. Tumor necrosis factor-alpha (TNF-alpha) levels were also investigated in rat serum, but there was no statistically significant difference between the TNF-alpha levels of the caffeine-treated rats groups and the control rats. Our study indicates that brain arginase activity decreases after caffeine administration at doses of 30 mg/kg and 100 mg/kg. As a result, we can say that arginine induces production of NO in the organism.
Collapse
Affiliation(s)
- Ebru Ofluoglu
- Faculty of Medicine, Department of Medical Biochemistry, Gazi University, Beşevler, Ankara 06510, Turkey.
| | | | | |
Collapse
|
95
|
Simola N, Morelli M, Seeman P. Increase of dopamine D2(High) receptors in the striatum of rats sensitized to caffeine motor effects. Synapse 2008; 62:394-7. [PMID: 18297691 DOI: 10.1002/syn.20507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It has been previously demonstrated how rats can develop behavioral dopamine supersensitivity after long-term administration of caffeine. Since behavioral dopamine supersensitivity in rats is usually accompanied by an elevation in striatal dopamine D2(High) receptors, we examined whether alterations in D2(High) receptors occurred in the striatum of rats administered caffeine according to a regimen capable of eliciting behavioral dopamine supersensitivity (15 mg/kg i.p. every other day for 14 days). An increase of 126% in striatal D2(High) receptors was found in caffeine-sensitized rats. This marked elevation in D2(High) receptors may account for the caffeine-induced behavioral dopamine supersensitivity and may help elucidate the interactions between caffeine and dopamine neurotransmission.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, 09124 Cagliari, Italy.
| | | | | |
Collapse
|
96
|
|
97
|
Increased emotional reactivity in rats following exposure to caffeine during adolescence. Neurotoxicol Teratol 2008; 30:195-201. [PMID: 18378115 DOI: 10.1016/j.ntt.2008.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/12/2008] [Accepted: 02/18/2008] [Indexed: 11/24/2022]
Abstract
From 45 to 55 days after birth, male and female rats were treated via daily intraperitoneal injections with either isotonic saline, or 15 or 30 mg/kg caffeine. When 72-82 and 112-122 days old, their activity and emotional reactivity were assessed by means of frequencies of rearing, ambulation, immobility, defecation and urination recorded in an open field, as well as their occupancy of corners and center squares of the field, and their partial emergence and latencies to fully emerge from a small darkened chamber into a brightly lit arena. Rats treated with caffeine were probably more emotionally reactive than untreated controls as suggested by more immobility and defecation and urination. There were also effects on rearing and ambulation that might have arisen from increased impulsivity. Further evidence of caffeine treatment-induced higher emotional reactivity was found in the heavier adrenal glands of a small number of 10 months-old males. This occurred in the absence of any caffeine treatment effects on spatial reference memory measured by ability to identify a novel Y-maze arm. Changes between the two testing ages in rearing and emergence latencies, and sex-dependent changes in ambulation, defecation and corner and center squares occupancy, along with immobility for 30 mg/kg caffeine-treated subjects, were discussed in the light of possible changes in emotional reactivity. Sex differences in open-field rearing and ambulation, and testing age-dependent sex differences in corner and center squares occupancy were ascribed to higher emotional reactivity in males.
Collapse
|
98
|
Diller JW, Saunders BT, Anderson KG. Effects of acute and repeated administration of caffeine on temporal discounting in rats. Pharmacol Biochem Behav 2008; 89:546-55. [PMID: 18329086 DOI: 10.1016/j.pbb.2008.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 01/18/2008] [Accepted: 02/05/2008] [Indexed: 11/28/2022]
Abstract
Delay to presentation is one variable that can weaken the reinforcing efficacy of an outcome in a choice situation and drugs have been shown to modify such choices. A growing body of literature has examined effects of stimulant drugs on temporal (delay) discounting, but effects of caffeine, the most widely used stimulant in the world, have not previously been assessed. In the present experiment, effects of caffeine (administered acutely and repeatedly) on temporal discounting were analyzed. Male Sprague-Dawley rats (n=7) chose between a single food pellet delivered immediately after a lever press and three food pellets delivered after a delay. The delay to the three pellets increased within each session, from 0 to 16 s. High doses of caffeine increased large-reinforcer choice relative to control conditions. With repeated caffeine exposure, percent choice for the large reinforcer decreased relative to acute administration, but was still greater than pre-drug baseline. Following withdrawal of drug administration, choice returned to levels seen during pre-drug baseline. Reintroduction of caffeine increased the percent choice for a larger, delayed reinforcer to near acute levels. The results from the present study are consistent with previous research in which stimulant drugs have decreased temporal (delay) discounting.
Collapse
Affiliation(s)
- James W Diller
- West Virginia University, Morgantown. WV 26506, United States
| | | | | |
Collapse
|
99
|
Caffeine and other sympathomimetic stimulants: modes of action and effects on sports performance. Essays Biochem 2008; 44:109-23. [DOI: 10.1042/bse0440109] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stimulants, illegal and legal, continue to be used in competitive sport. The evidence for the ergogenic properties of the most potent stimulants, amphetamines, cocaine and ephedrine, is mostly insubstantial. Low doses of amphetamines may aid performance where effects of fatigue adversely affect higher psychomotor activity. Pseudoephedrine, at high doses, has been suggested to improve high intensity and endurance exercise but phenylpropanolamine has not been proven to be ergogenic. Only caffeine has substantial experimental backing for being ergogenic in exercise. The mode of action of these stimulants centres on their ability to cause persistence of catecholamine neurotransmitters, with the exception of caffeine which is an adenosine receptor antagonist. By these actions, the stimulants are able to influence the activity of neuronal control pathways in the central (and peripheral) nervous system. Rodent models suggest that amphetamines and cocaine interact with different pathways to that affected by caffeine. Caffeine has a variety of pharmacological effects but its affinity for adenosine receptors is comparable with the levels expected to exist in the body after moderate caffeine intake, thus making adenosine receptor blockade the favoured mode of ergogenic action. However, alternative modes of action to account for the ergogenic properties of caffeine have been supported in the literature. Biochemical mechanisms that are consistent with more recent research findings, involving proteins such as DARPP-32 (dopamine and cAMP-regulated phosphoprotein), are helping to rationalize the molecular details of stimulant action in the central nervous system.
Collapse
|
100
|
van Vliet E, Morath S, Eskes C, Linge J, Rappsilber J, Honegger P, Hartung T, Coecke S. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 2008; 29:1-12. [DOI: 10.1016/j.neuro.2007.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/12/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
|