51
|
Liu Y, Hu Q, Yang J. Oliceridine for the Management of Acute Postoperative Pain. Ann Pharmacother 2021; 55:1283-1289. [PMID: 33423508 DOI: 10.1177/1060028020987679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To review the pharmacological characteristics, clinical evidence, and place in the management of acute postoperative pain severe enough to require an intravenous opioid. DATA SOURCES A comprehensive literature search was conducted in PubMed (January 2000 to December 1, 2020). Key search terms included oliceridine or acute postoperative pain. Other sources were derived from product labeling and ClinicalTrials.gov. STUDY SELECTION AND DATA EXTRACTION All English-language articles identified from the data sources were reviewed and evaluated. Phase I, II, and III clinical trials were included. DATA SYNTHESIS Oliceridine is a novel selective µ-receptor G-protein pathway modulator. It has the property of activating G-protein signaling while causing low β-arrestin recruitment to the µ-receptor. Intravenous oliceridine showed statistically superior analgesia than placebo in patients with moderate or severe pain after surgery, with a favorable safety and tolerability profile regarding respiratory and gastrointestinal adverse effects, compared with morphine. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The analgesic capacity of oliceridine is at least comparable to that of morphine at clinically relevant dosages, with a rapid onset of action. Also, it may be associated with a lower incidence of adverse events at dosing regimens associated with comparable analgesia. These data suggest that oliceridine may provide an important new treatment option for the management of moderate to severe postoperative pain where an intravenous opioid is warranted. CONCLUSION Oliceridine has obvious analgesic effects in patients with moderate or severe pain after surgery; additionally, it has a favorable safety and tolerability profile.
Collapse
Affiliation(s)
- Yang Liu
- Linyi Central Hospital, Shandong, China
| | - Qiang Hu
- Linyi Central Hospital, Shandong, China
| | | |
Collapse
|
52
|
Pineyro G, Nagi K. Signaling diversity of mu- and delta- opioid receptor ligands: Re-evaluating the benefits of β-arrestin/G protein signaling bias. Cell Signal 2020; 80:109906. [PMID: 33383156 DOI: 10.1016/j.cellsig.2020.109906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/02/2023]
Abstract
Opioid analgesics are elective for treating moderate to severe pain but their use is restricted by severe side effects. Signaling bias has been proposed as a viable means for improving this situation. To exploit this opportunity, continuous efforts are devoted to understand how ligand-specific modulations of receptor functions could mediate the different in vivo effects of opioids. Advances in the field have led to the development of biased agonists based on hypotheses that allocated desired and undesired effects to specific signaling pathways. However, the prevalent hypothesis associating β-arrestin to opioid side effects was recently challenged and multiple of the newly developed biased drugs may not display the superior side effects profile that was sought. Moreover, biased agonism at opioid receptors is now known to be time- and cell-dependent, which adds a new layer of complexity for bias estimation. Here, we first review the signaling mechanisms underlying desired and undesired effects of opioids. We then describe biased agonism at opioid receptors and discuss the different perspectives that support the desired and undesired effects of opioids in view of exploiting biased signaling for therapeutic purposes. Finally, we explore how signaling kinetics and cellular background can influence the magnitude and directionality of bias at those receptors.
Collapse
Affiliation(s)
- Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine research center, Montreal, QC H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
53
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
54
|
Bossert JM, Kiyatkin E, Korah H, Hoots JK, Afzal A, Perekopskiy D, Thomas S, Fredriksson I, Blough BE, Negus SS, Epstein DH, Shaham Y. In a Rat Model of Opioid Maintenance, the G Protein-Biased Mu Opioid Receptor Agonist TRV130 Decreases Relapse to Oxycodone Seeking and Taking and Prevents Oxycodone-Induced Brain Hypoxia. Biol Psychiatry 2020; 88:935-944. [PMID: 32305216 PMCID: PMC7483192 DOI: 10.1016/j.biopsych.2020.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Maintenance treatment with opioid agonists (buprenorphine, methadone) is effective for opioid addiction but does not eliminate opioid use in all patients. We modeled maintenance treatment in rats that self-administered the prescription opioid oxycodone. The maintenance medication was either buprenorphine or the G protein-biased mu opioid receptor agonist TRV130. We then tested prevention of oxycodone seeking and taking during abstinence using a modified context-induced reinstatement procedure, a rat relapse model. METHODS We trained rats to self-administer oxycodone (6 hours/day, 14 days) in context A; infusions were paired with discrete tone-light cues. We then implanted osmotic pumps containing buprenorphine or TRV130 (0, 3, 6, or 9 mg/kg/day) and performed 3 consecutive tests: lever pressing reinforced by oxycodone-associated discrete cues in nondrug context B (extinction responding), context-induced reinstatement of oxycodone seeking in context A, and reacquisition of oxycodone self-administration in context A. We also tested whether TRV130 maintenance would protect against acute oxycodone-induced decreases in nucleus accumbens oxygen levels. RESULTS In male rats, buprenorphine and TRV130 decreased extinction responding and reacquisition of oxycodone self-administration but had a weaker (nonsignificant) effect on context-induced reinstatement. In female rats, buprenorphine decreased responding in all 3 tests, while TRV130 decreased only extinction responding. In both sexes, TRV130 prevented acute brain hypoxia induced by moderate doses of oxycodone. CONCLUSIONS TRV130 decreased oxycodone seeking and taking during abstinence in a partly sex-specific manner and prevented acute oxycodone-induced brain hypoxia. We propose that G protein-biased mu opioid receptor agonists, currently in development as analgesics, should be considered as relapse prevention maintenance treatment for opioid addiction.
Collapse
Affiliation(s)
- Jennifer M. Bossert
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A.,Correspondence: Jennifer M. Bossert ()
| | - Eugene Kiyatkin
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Hannah Korah
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | | | - Anum Afzal
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | | | - Shruthi Thomas
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, U.S.A
| | - S. Stevens Negus
- Dept. of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, U.S.A
| | - David H. Epstein
- Clinical Pharmacology and Therapeutics Research Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, U.S.A
| |
Collapse
|
55
|
Miyano K, Manabe S, Komatsu A, Fujii Y, Mizobuchi Y, Uezono E, Ohshima K, Nonaka M, Kuroda Y, Narita M, Uezono Y. The G Protein Signal-Biased Compound TRV130; Structures, Its Site of Action and Clinical Studies. Curr Top Med Chem 2020; 20:2822-2829. [PMID: 33115393 DOI: 10.2174/1568026620999201027224229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Opioid agonists elicit their analgesic action mainly via μ opioid receptors; however, their use is limited because of adverse events including constipation and respiratory depression. It has been shown that analgesic action is transduced by the G protein-mediated pathway whereas adverse events are by the β-arrestin-mediated pathway through μ opioid receptor signaling. The first new-generation opioid TRV130, which preferentially activates G protein- but not β-arrestin-mediated signal, was constructed and developed to reduce adverse events. TRV130 and other G protein-biased compounds tend to elicit desirable analgesic action with less adverse effects. In clinical trials, the intravenous TRV130 (oliceridine) was evaluated in Phase I, II and III clinical studies. Here we review the discovery and synthesis of TRV130, its main action as a novel analgesic having less adverse events, its up-to-date status in clinical trials, and additional concerns about TRV130 as demonstrated in the literature.
Collapse
Affiliation(s)
- Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Sei Manabe
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuriko Fujii
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Mizobuchi
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Eiko Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kaori Ohshima
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Miki Nonaka
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yui Kuroda
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo,, Japan
| | - Minoru Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
56
|
Low Incidence of Postoperative Respiratory Depression with Oliceridine Compared to Morphine: A Retrospective Chart Analysis. Pain Res Manag 2020; 2020:7492865. [PMID: 33163127 PMCID: PMC7604609 DOI: 10.1155/2020/7492865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
Background Oliceridine, an investigational IV opioid, is a first-in-class G-protein selective agonist at the μ-opioid receptor. The G-protein selectivity results in potent analgesia with less recruitment of β-arrestin, a signaling pathway associated with opioid-related adverse events (ORAEs). In randomized controlled studies in both hard and soft tissue models yielding surgical pain, oliceridine provided effective analgesia with a potential for an improved safety and tolerability profile at equianalgesic doses to morphine. The phase 3, open-label, single-arm, multicenter ATHENA trial demonstrated the safety, tolerability, and effectiveness of oliceridine in moderate to severe acute pain in a broad range of patients undergoing surgery or with painful medical conditions warranting use of an IV opioid. This retrospective, observational chart review study compared respiratory depression events associated with oliceridine administration as found in the ATHENA trial to a control cohort treated with conventional opioids. Methods Patients at 18 years of age or older, who underwent colorectal, orthopedic, cardiothoracic, bariatric, or general surgeries between June 2015 and May 2017 in 11 sites participating in the ATHENA trial who received postoperative analgesia either with IV oliceridine or with IV conventional opioids (e.g., morphine alone or in combination with other opioids) (CO cohort); and had a hospital stay >48 hours, were included in this retrospective analysis. Data from the ATHENA trial was used for the oliceridine cohort; and additional baseline characteristics were collected from medical charts. Data from medical charts were collected for all CO cohort patients. The two cohorts were balanced using an inverse probability weighting method. The primary outcome was the incidence of operationally defined opioid-induced respiratory depression (OIRD) in the two cohorts. Secondary outcomes included between-group comparison of the incidence of OIRD events among a subset of high-risk patients. Results OIRD was significantly less in the oliceridine cohort compared to the CO cohort (8.0% vs. 30.7%; odds ratio: 0.139) (95% confidence interval [CI] 0.09–0.22; P < 0.0001). Likewise, the incidence of OIRD was lower among high-risk patients in the oliceridine cohort (9.1% vs. 34.7%; odds ratio: 0.136) (95% CI [0.09–0.22]; P < 0.0001) compared to the CO cohort. Conclusion In this retrospective chart review study, patients receiving IV oliceridine for moderate to severe acute pain demonstrated a lower incidence of treatment emergent OIRD compared to patients who were treated with IV morphine either alone or with concomitant administration of other opioids.
Collapse
|
57
|
Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 2020; 21:625-643. [PMID: 33024318 DOI: 10.1038/s41583-020-0378-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated 'treatments' may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.
Collapse
|
58
|
The Quest for More Effective Analgesics with Reduced Abuse Liability and Fewer Adverse Effects: Promises, Pitfalls, and Future Perspectives of Biased Agonists at Opioid Receptors. Methods Mol Biol 2020. [PMID: 32975799 DOI: 10.1007/978-1-0716-0884-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chronic pain is a relevant health condition affecting one out of five individuals that is often not adequately treated by currently available analgesics. This, together with the dramatic increase in addicted people within the dramatic "opioid epidemics," significantly spurs the quest for innovative analgesics provided with increased efficacy, reduced abuse liability, and fewer adverse effects.Within this frame, biased agonists at opioid receptors have attracted increasing interest in the last decade as they have emerged as more effective and safer candidate analgesics.In this chapter, promises, pitfalls, and future perspective of biased agonists at mu (MOR) and kappa (KOR) opioid receptors are discussed. Moreover, methodological insights are provided with regard to the most appropriate experimental settings to be employed aiming at developing novel biased KOR agonists.
Collapse
|
59
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
60
|
Azevedo Neto J, Costanzini A, De Giorgio R, Lambert DG, Ruzza C, Calò G. Biased versus Partial Agonism in the Search for Safer Opioid Analgesics. Molecules 2020; 25:molecules25173870. [PMID: 32854452 PMCID: PMC7504468 DOI: 10.3390/molecules25173870] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Opioids such as morphine—acting at the mu opioid receptor—are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2(−/−)) animals indicate that morphine analgesia is potentiated while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2(−/−) mice. Moreover, studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs. Several new molecules have been identified as mu receptor G-protein-biased agonists, including oliceridine (TRV130), PZM21 and SR–17018. These compounds have provided preclinical data with apparent support for bias toward G proteins and the genetic premise of effective and safer analgesics. There are clinical data for oliceridine that have been very recently approved for short term intravenous use in hospitals and other controlled settings. While these data are compelling and provide a potential new pathway-based target for drug discovery, a simpler explanation for the behavior of these biased agonists revolves around differences in intrinsic activity. A highly detailed study comparing oliceridine, PZM21 and SR–17018 (among others) in a range of assays showed that these molecules behave as partial agonists. Moreover, there was a correlation between their therapeutic indices and their efficacies, but not their bias factors. If there is amplification of G-protein, but not arrestin pathways, then agonists with reduced efficacy would show high levels of activity at G-protein and low or absent activity at arrestin; offering analgesia with reduced side effects or ‘apparent bias’. Overall, the current data suggests—and we support—caution in ascribing biased agonism to reduced-side-effect profiles for mu-agonist analgesics.
Collapse
Affiliation(s)
- Joaquim Azevedo Neto
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (J.A.N.); (G.C.)
| | - Anna Costanzini
- Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (R.D.G.)
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anesthesia, Critical Care and Pain Management, University of Leicester, Leicester LE1 7RH, UK;
| | - Chiara Ruzza
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (J.A.N.); (G.C.)
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44122 Ferrara, Italy
- Correspondence:
| | - Girolamo Calò
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (J.A.N.); (G.C.)
| |
Collapse
|
61
|
Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum ST, Che T, Gavin AC, McCorvy JD, Roth BL, Strachan RT. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol 2020; 16:841-849. [PMID: 32367019 PMCID: PMC7648517 DOI: 10.1038/s41589-020-0535-8] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
G-protein-coupled receptors (GPCRs) remain major drug targets, despite our incomplete understanding of how they signal through 16 non-visual G-protein signal transducers (collectively named the transducerome) to exert their actions. To address this gap, we have developed an open-source suite of 14 optimized bioluminescence resonance energy transfer (BRET) Gαβγ biosensors (named TRUPATH) to interrogate the transducerome with single pathway resolution in cells. Generated through exhaustive protein engineering and empirical testing, the TRUPATH suite of Gαβγ biosensors includes the first Gα15 and GαGustducin probes. In head-to-head studies, TRUPATH biosensors outperformed first-generation sensors at multiple GPCRs and in different cell lines. Benchmarking studies with TRUPATH biosensors recapitulated previously documented signaling bias and revealed new coupling preferences for prototypic and understudied GPCRs with potential in vivo relevance. To enable a greater understanding of GPCR molecular pharmacology by the scientific community, we have made TRUPATH biosensors easily accessible as a kit through Addgene.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Justin G English
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Alexis M Glaudin
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ariana C Gavin
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Xu B, Guo Y, Zhang M, Zhang R, Chen D, Zhang Q, Xiao J, Xu K, Li N, Qiu Y, Zhu H, Niu J, Zhang X, Fang Q. Central and peripheral modulation of gastrointestinal transit in mice by DN-9, a multifunctional opioid/NPFF receptor agonist. Neurogastroenterol Motil 2020; 32:e13848. [PMID: 32281198 DOI: 10.1111/nmo.13848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nonapeptide DN-9 functions as a multifunctional agonist to opioid and neuropeptide FF (NPFF) receptors and exhibits antinociceptive effects at the central and peripheral levels. METHODS The effects of DN-9 on small and colonic intestinal transit were evaluated using the upper gastrointestinal (GI) transit test and colonic bead expulsion assay, respectively. Opioid and NPFF receptor antagonists were used to investigate the mechanisms of DN-9-induced GI inhibition. Furthermore, the agonism of the DN-9 analog [Phg9 ]-DN-9 to opioid and NPFF receptors was tested by the cAMP assay. KEY RESULTS Intracerebroventricular administration of DN-9 dose-dependently slowed upper GI transit and colonic expulsion via mu- and kappa-opioid receptors in the brain, independent of the delta-opioid receptor. Similarly, intraperitoneal injection of DN-9 dose-dependently inhibited GI propulsion via the peripheral opioid receptors. DN-9-induced GI transit inhibitions were significantly aggravated by the NPFF receptor antagonist RF9. Moreover, the DN-9 analog [Phg9 ]-DN-9, an agonist at mu-, delta-, and kappa-opioid receptors but not NPFF receptors, inhibited GI more potently than DN-9. In addition, intracerebroventricular NPFF significantly attenuated the central inhibitory effects induced by [Phg9 ]-DN-9 and morphine. However, central and peripheral injections of NPFF or RF9 almost had no significant effects on GI transit by itself. CONCLUSION AND INFERENCES Intracerebroventricular and intraperitoneal administrations of DN-9 inhibit GI transit via opioid receptors in mice by central and peripheral mechanisms, respectively. In addition, the NPFF agonism of DN-9 possesses antiopioid effects on GI transit, which might explain the reduced constipation at the antinociceptive doses.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuanyuan Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
63
|
Goudra B, Singh PM. Oliceridine and its potential to revolutionize GI endoscopy sedation. Saudi J Anaesth 2020; 14:349-354. [PMID: 32934628 PMCID: PMC7458022 DOI: 10.4103/sja.sja_813_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Providing sedation to patients undergoing gastrointestinal (GI) endoscopy is a controversial and emotive issue. The mainstay of sedation is propofol, whose administration is within the sole jurisdiction of anesthesia providers, at least in the USA. Attempts have been made to seize the authority by the GI community. One of the first attempts was the use of the prodrug of propofol -fospropofol. However, as the drug has a similar adverse effect profile as propofol in terms of respiratory depression, the FDA did not approve its use by providers other than those trained in airway management. Sedasys® was the next attempt, which was a computer-assisted personalized sedation system. As a result of insufficient sedation that could be provided with the device, although very successful in research settings, it was not a commercial success. It seems that remimazolam is the next effort in this direction. It is likely to fail in this regard unless its respiratory depressant properties and failure rates could be addressed. G protein-biased μ-receptor agonists are a new class of opioids exhibiting analgesic properties similar to morphine without equivalent respiratory depressant properties. Oliceridine is the prototype. As a result, the drug can be additive to midazolam or remimazolam and allow screening colonoscopy to be comfortably completed without the need for propofol. For an anesthesia provider, the administration of oliceridine can eliminate the need for drugs such as fentanyl that add to the respiratory depressant properties of propofol. As a result, oliceridine has the potential to render the sedation for GI endoscopy procedures both safe and cost-effective.
Collapse
Affiliation(s)
- Basavana Goudra
- Clinical Associate Professor of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, 680 Dulles, 3400 Spruce Street, Philadelphia, PA, USA
| | - Preet Mohinder Singh
- Department of Anesthesiology, Washington University in Saint Louis, 660 South Euclid Avenue, St Louis, MO, USA
| |
Collapse
|
64
|
Korwin-Kochanowska K, Potié A, El-Boghdadly K, Rawal N, Joshi G, Albrecht E. PROSPECT guideline for hallux valgus repair surgery: a systematic review and procedure-specific postoperative pain management recommendations. Reg Anesth Pain Med 2020; 45:702-708. [PMID: 32595141 PMCID: PMC7476301 DOI: 10.1136/rapm-2020-101479] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
Hallux valgus repair is associated with moderate-to-severe postoperative pain. The aim of this systematic review was to assess the available literature and develop recommendations for optimal pain management after hallux valgus repair. A systematic review using PROcedure SPECific Postoperative Pain ManagemenT (PROSPECT) methodology was undertaken. Randomized controlled trials (RCTs) published in the English language from inception of database to December 2019 assessing postoperative pain using analgesic, anesthetic, and surgical interventions were identified from MEDLINE, EMBASE, and Cochrane Database, among others. Of the 836 RCTs identified, 55 RCTs and 1 systematic review met our inclusion criteria. Interventions that improved postoperative pain relief included paracetamol and non-steroidal anti-inflammatory drugs or cyclo-oxygenase-2 selective inhibitors, systemic steroids, ankle block, and local anesthetic wound infiltration. Insufficient evidence was found for the use of gabapentinoids or wound infiltration with extended release bupivacaine or dexamethasone. Conflicting evidence was found for percutaneous chevron osteotomy. No evidence was found for homeopathic preparation, continuous local anesthetic wound infusion, clonidine and fentanyl as sciatic perineural adjuncts, bioabsorbable magnesium screws, and plaster slippers. No studies of sciatic nerve block met the inclusion criteria for PROSPECT methodology due to a wider scope of included surgical procedures or the lack of a control (no block) group. The analgesic regimen for hallux valgus repair should include, in the absence of contraindication, paracetamol and a non-steroidal anti-inflammatory drug or cyclo-oxygenase-2 selective inhibitor administered preoperatively or intraoperatively and continued postoperatively, along with systemic steroids, and postoperative opioids for rescue analgesia.
Collapse
Affiliation(s)
- Katarzyna Korwin-Kochanowska
- Department of Cardiovascular Sciences and Department of Anesthesiology, University Hospitals of the KU Leuven, Leuven, Belgium
| | - Arnaud Potié
- Department of Anaesthesia, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Kariem El-Boghdadly
- Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, United Kingdom
| | - Narinder Rawal
- Department of Anesthesiology and Intensive Care, University Hospital of Örebro, Örebro, Sweden
| | - Girish Joshi
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, United States
| | - Eric Albrecht
- Department of Anaesthesia, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
65
|
Gudin J, Kaufman AG, Datta S. Are Opioids Needed to Treat Chronic Low Back Pain? A Review of Treatment Options and Analgesics in Development. J Pain Res 2020; 13:1007-1022. [PMID: 32523371 PMCID: PMC7234959 DOI: 10.2147/jpr.s226483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022] Open
Abstract
The continued prevalence of chronic low back pain (CLBP) is a testament to our lack of understanding of the potential causes, leading to significant treatment challenges. CLBP is the leading cause of years lived with disability and the fifth leading cause of disability-adjusted life-years. No single non-pharmacologic, pharmacologic, or interventional therapy has proven effective as treatment for the majority of patients with CLBP. Although non-pharmacologic therapies are generally helpful, they are often ineffective as monotherapy and many patients lack adequate access to these treatments. Noninvasive treatment measures supported by evidence include physical and chiropractic therapy, yoga, acupuncture, and non-opioid and opioid pharmacologic therapy; data suggest a moderate benefit, at most, for any of these therapies. Until our understanding of the pathophysiology and treatment of CLBP advances, clinicians must continue to utilize rational multimodal treatment protocols. Recent Centers for Disease Control and Prevention guidelines for opioid prescribing recommend that opioids not be utilized as first-line therapy and to limit the doses when possible for fear of bothersome or dangerous adverse effects. In combination with the current opioid crisis, this has caused providers to minimize or eliminate opioid therapy when treating patients with chronic pain, leaving many patients suffering despite optimal nonopioid therapies. Therefore, there remains an unmet need for effective and tolerable opioid receptor agonists for the treatment of CLBP with improved safety properties over legacy opioids. There are several such agents in development, including opioids and other agents with novel mechanisms of action. This review critiques non-pharmacologic and pharmacologic treatment modalities for CLBP and examines the potential of novel opioids and other analgesics that may be a useful addition to the treatment options for patients with chronic pain.
Collapse
Affiliation(s)
- Jeffrey Gudin
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Department of Anesthesiology, Englewood Hospital and Medical Center, Englewood, NJ, USA
| | - Andrew G Kaufman
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samyadev Datta
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA.,Center for Pain Management, Hackensack, NJ, USA
| |
Collapse
|
66
|
In Vitro Effects of Ligand Bias on Primate Mu Opioid Receptor Downstream Signaling. Int J Mol Sci 2020; 21:ijms21113999. [PMID: 32503269 PMCID: PMC7312292 DOI: 10.3390/ijms21113999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Interest has emerged in biased agonists at the mu opioid receptor (MOR) as a possible means for maintaining potent analgesis with reduced side effect profiles. While approaches measuring in vitro biased agonism are used in the development of these compounds, their therapeutic utility will ultimately be determined by in vivo functional effects. Nonhuman primates (NHPs) are the most translational model for evaluating the behavioral effects of candidate medications, but biased signaling of these drugs at NHP MOR receptors has been unstudied. The goal of the current work was to characterize MOR ligand bias in rhesus macaques, focusing on agonists that have previously been reported to show different patterns of biased agonism in rodents and humans. Downstream signaling pathways that responded to MOR activation were identified using a luciferase reporter array. Concentration-response curves for specific pathways (cAMP, NF-ĸB, MAPK/JNK) were generated using six agonists previously reported to differ in terms of signaling bias at rodent and human MORs. Using DAMGO as a reference ligand, relative cAMP, NF-ĸB and MAPK/JNK signaling by morphine, endomorphin-1, and TRV130 were found to be comparable between species. Further, the bias patterns of across ligands for NF-ĸB and MAPK/JNK were largely similar between species. There was a high degree of concordance between rhesus macaque and human MOR receptor signaling bias for all agonists tested, further demonstrating their utility for future translational behavioral studies.
Collapse
|
67
|
Poirier B, Briand V, Kadereit D, Schäfer M, Wohlfart P, Philippo MC, Caillaud D, Gouraud L, Grailhe P, Bidouard JP, Trellu M, Muslin AJ, Janiak P, Parkar AA. A G protein-biased S1P 1 agonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal 2020; 13:13/634/eaax8050. [PMID: 32487716 DOI: 10.1126/scisignal.aax8050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than β-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.
Collapse
Affiliation(s)
- Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Veronique Briand
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dieter Kadereit
- Medicinal Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main,, Germany
| | - Matthias Schäfer
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Paulus Wohlfart
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marie-Claire Philippo
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dominique Caillaud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Laurent Gouraud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Patrick Grailhe
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Jean-Pierre Bidouard
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Marc Trellu
- Drug Metabolism and Pharmacokinetics, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Anthony J Muslin
- Diabetes and Cardiovascular Research, Sanofi US Services, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Ashfaq A Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, 55 Corporate Drive, Bridgewater, NJ 08807, USA.
| |
Collapse
|
68
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
69
|
Abstract
Buprenorphine has not only had an interdisciplinary impact on our understanding of key neuroscience topics like opioid pharmacology, pain signaling, and reward processing but has also been a key influence in changing the way that substance use disorders are approached in modern medical systems. From its leading role in expanding outpatient treatment of opioid use disorders to its continued influence on research into next-generation analgesics, buprenorphine has been a continuous player in the ever-evolving societal perception of opioids and substance use disorder. To provide a multifaceted account on the enormous diversity of areas where this molecule has made an impact, this article discusses buprenorphine's chemical properties, synthesis and development, pharmacology, adverse effects, manufacturing information, and historical place in the field of chemical neuroscience.
Collapse
Affiliation(s)
- Jillian L. Kyzer
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Cody J. Wenthur
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
70
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
71
|
Gutridge AM, Robins MT, Cassell RJ, Uprety R, Mores KL, Ko MJ, Pasternak GW, Majumdar S, van Rijn RM. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br J Pharmacol 2020; 177:1497-1513. [PMID: 31705528 PMCID: PMC7060366 DOI: 10.1111/bph.14913] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitragyna speciosa, more commonly known as kratom, is a plant that contains opioidergic alkaloids but is unregulated in most countries. Kratom is used in the self-medication of chronic pain and to reduce illicit and prescription opioid dependence. Kratom may be less dangerous than typical opioids because of the stronger preference of kratom alkaloids to induce receptor interaction with G proteins over β-arrestin proteins. We hypothesized that kratom (alkaloids) can also reduce alcohol intake. EXPERIMENTAL APPROACH We pharmacologically characterized kratom extracts, kratom alkaloids (mitragynine, 7-hydroxymitragynine, paynantheine, and speciogynine) and synthetic carfentanil-amide opioids for their ability to interact with G proteins and β-arrestin at μ, δ, and κ opioid receptors in vitro. We used C57BL/6 mice to assess to which degree these opioids could reduce alcohol intake and whether they had rewarding properties. KEY RESULTS Kratom alkaloids were strongly G protein-biased at all three opioid receptors and reduced alcohol intake, but kratom and 7-hydroxymitragynine were rewarding. Several results indicated a key role for δ opioid receptors, including that the synthetic carfentanil-amide opioid MP102-a G protein-biased agonist with modest selectivity for δ opioid receptors-reduced alcohol intake, whereas the G protein-biased μ opioid agonist TRV130 did not. CONCLUSION AND IMPLICATIONS Our results suggest that kratom extracts can decrease alcohol intake but still carry significant risk upon prolonged use. Development of more δ opioid-selective synthetic opioids may provide a safer option than kratom to treat alcohol use disorder with fewer side effects.
Collapse
Affiliation(s)
- Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Meridith T. Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Rajendra Uprety
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
- Purdue Interdisciplinary Life Sciences Graduate ProgramPurdue UniversityWest LafayetteIndiana
| | - Gavril W. Pasternak
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Susruta Majumdar
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Center for Clinical PharmacologySt. Louis College of Pharmacy and Washington University School of MedicineSt. LouisMissouri
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
- Purdue Institute for Drug DiscoveryPurdue UniversityWest LafayetteIndiana
- Purdue Institute for Integrative NeurosciencePurdue UniversityWest LafayetteIndiana
- Purdue Interdisciplinary Life Sciences Graduate ProgramPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
72
|
Imam MZ, Kuo A, Ghassabian S, Cai Y, Qin Y, Li T, Smith MT. Intracerebroventricular administration of CYX-6, a potent μ-opioid receptor agonist, a δ- and κ-opioid receptor antagonist and a biased ligand at μ, δ & κ-opioid receptors, evokes antinociception with minimal constipation and respiratory depression in rats in contrast to morphine. Eur J Pharmacol 2020; 871:172918. [PMID: 31958457 DOI: 10.1016/j.ejphar.2020.172918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 01/10/2023]
Abstract
Mu opioid receptor (MOPr) agonists are thought to produce analgesia via modulation of G-protein-coupled intracellular signalling pathways whereas the β-arrestin2 pathway is proposed to mediate opioid-related adverse effects. Here, we report the antinociception, constipation and respiratory depressant profile of CYX-6, a potent MOPr agonist that is also a delta and a kappa opioid receptor (DOPr/KOPr) antagonist and that lacks β-arrestin2 recruitment at each of the MOPr, DOPr and the KOPr. In anaesthetised male Sprague Dawley rats, an intracerebroventricular (i.c.v.) guide cannula was stereotaxically implanted. After 5-7 days post-surgical recovery, rats received a single i.c.v. bolus dose of CYX-6 (3-30 nmol), morphine (100 nmol) or vehicle. Antinociception was assessed using the warm water tail flick test (52.5 ± 0.5 °C). Constipation was assessed using the charcoal meal gut motility test and the castor oil-induced diarrhoea test. Respiratory depression was measured by whole-body plethysmography in awake, freely moving animals, upon exposure to a hypercapnic gas mixture (8% CO2, 21% O2 and 71% N2). The intrinsic pharmacology of CYX-6 given by the i.c.v. route in rats showed that it produced dose-dependent antinociception. It also produced respiratory stimulation rather than depression and it had a minimal effect on intestinal motility in contrast to the positive control, morphine. CYX-6 is an endomorphin-2 analogue that dissociates antinociception from constipation and respiratory depression in rats. Our findings provide useful insight to inform the discovery and development of novel opioid analgesics with a superior tolerability profile compared with morphine.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Constipation/chemically induced
- Infusions, Intraventricular
- Ligands
- Male
- Morphine/adverse effects
- Morphine/pharmacology
- Opioid Peptides/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Respiratory Insufficiency/chemically induced
- Nociceptin
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunxin Cai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
73
|
Busserolles J, Lolignier S, Kerckhove N, Bertin C, Authier N, Eschalier A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol Ther 2020; 210:107519. [PMID: 32165137 DOI: 10.1016/j.pharmthera.2020.107519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The scarcity and limited risk/benefit ratio of painkillers available on the market, in addition to the opioid crisis, warrant reflection on new innovation strategies. The pharmacopoeia of analgesics is based on products that are often old and derived from clinical empiricism, with limited efficacy or spectrum of action, or resulting in an unsatisfactory tolerability profile. Although they are reference analgesics for nociceptive pain, opioids are subject to the same criticism. The use of opium as an analgesic is historical. Morphine was synthesized at the beginning of the 19th century. The efficacy of opioids is limited in certain painful contexts and these drugs can induce potentially serious and fatal adverse effects. The current North American opioid crisis, with an ever-rising number of deaths by opioid overdose, is a tragic illustration of this. It is therefore legitimate to develop research into molecules likely to maintain or increase opioid efficacy while improving their tolerability. Several avenues are being explored including targeting of the mu opioid receptor (MOR) splice variants, developing biased agonists or targeting of other receptors such as heteromers with MOR. Ion channels acting as MOR effectors, are also targeted in order to offer compounds without MOR-dependent adverse effects. Another route is to develop opioid analgesics with peripheral action or limited central nervous system (CNS) access. Finally, endogenous opioids used as drugs or compounds that modify the metabolism of endogenous opioids (Dual ENKephalinase Inhibitors) are being developed. The aim of the present review is to present these various targets/strategies with reference to current indications for opioids, concerns about their widespread use, particularly in chronic non-cancer pains, and ways of limiting the risk of opioid abuse and misuse.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France
| | - Nicolas Kerckhove
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Célian Bertin
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Nicolas Authier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France; Observatoire Français des Médicaments Antalgiques (OFMA), French monitoring centre for analgesic drugs, CHU, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, CHU, NEURO-DOL Pharmacologie Fondamentale et Clinique de la douleur, F-63000 Clermont-Ferrand, France; Institut ANALGESIA, Faculté de Médecine, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
74
|
Huang H, Wang W, Xu X, Zhu C, Wang Y, Liu J, Li W, Fu W. Discovery of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)-N-phenylpiperidine-1-carboxamide as novel potent analgesic. Eur J Med Chem 2020; 189:112070. [PMID: 31982651 DOI: 10.1016/j.ejmech.2020.112070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Management of moderate to severe pain by clinically used opioid analgesics is associated with a plethora of side effects. Despite many efforts have been dedicated to reduce undesirable side effects, moderate progress has been made. In this work, starting from Tramadol, a series of 3-((dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)piperidine-1-carboxamide derivatives were designed and synthesized, and their in vitro and in vivo activities were evaluated. Our campaign afforded selective μ opioid receptor (MOR) ligand 2a (KiMOR: 7.3 ± 0.5 nM; KiDOR: 849.4 ± 96.6 nM; KiKOR: 49.1 ± 6.9 nM) as potent analgesic with ED50 of 3.1 mg/kg in 55 °C hot plate model. Its antinociception effect was blocked by opioid antagonist naloxone. High binding affinity toward MOR of compound 2a was associated with water bridge, salt bridge, hydrogen bond and hydrophobic interaction with MOR. The high selectivity of compound 2a for MOR over δ opioid receptor (DOR) and κ opioid receptor (KOR) was due to steric hindrance of compound 2a with DOR and KOR. 2a, a compound with novel scaffold, could serve as a lead for the development of novel opioid ligands.
Collapse
Affiliation(s)
- Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuejun Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Chen Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujun Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Jinggen Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
75
|
Viscusi ER. Improving the therapeutic window of conventional opioids: novel differential signaling modulators. Reg Anesth Pain Med 2019; 44:32-37. [PMID: 30640650 DOI: 10.1136/rapm-2018-000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/02/2023]
Abstract
Conventional opioids are widely used for acute pain management in the postoperative setting. However, a primary concern with conventional opioids is their therapeutic window-the range between doses that produce the desired therapeutic effect (analgesia) and doses that produce unwanted opioid-related adverse events (ORAEs). Conventional µ receptor opioids have a narrow therapeutic window in part because of their mechanism of action (MoA): they bind to µ receptors and non-selectively activate two intracellular signaling pathways, leading to analgesia and to ORAEs. This review explores the clinical potential of µ receptor ligands with differential signaling. Agents with a 'differential signaling" MoA represent an innovative approach that may enhance the therapeutic window. These agents modulate µ receptor activity to selectively engage downstream signaling pathways associated with analgesia while limiting activity in downstream signaling pathways that lead to ORAEs. Differential signaling may fulfill an unmet need in the management of postoperative pain.
Collapse
Affiliation(s)
- Eugene R Viscusi
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
76
|
Nafziger AN, Arscott KA, Cochrane K, Skobieranda F, Burt DA, Fossler MJ. The Influence of Renal or Hepatic Impairment on the Pharmacokinetics, Safety, and Tolerability of Oliceridine. Clin Pharmacol Drug Dev 2019; 9:639-650. [PMID: 31697049 PMCID: PMC7383509 DOI: 10.1002/cpdd.750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Oliceridine is a G protein–biased ligand at the μ‐opioid receptor in development for treatment of moderate to severe acute pain. A phase 1, open‐label, single‐dose study investigated the pharmacokinetics and safety of oliceridine 0.5 mg intravenous (IV) in subjects with end‐stage renal disease (ESRD, n = 9) versus 1 mg in healthy controls (n = 8). A second phase 1, open‐label, single‐dose study investigated the pharmacokinetics and safety of a 0.5‐mg IV dose in hepatic impairment (mild, n = 10; moderate, n = 10; severe, n = 6) versus 1 mg in healthy controls (n = 8). The controls were sex and age (±10 years) matched. In ESRD versus healthy subjects, no difference in clearance was observed between ESRD patients and subjects with normal renal function. Oliceridine clearance and AUC were not affected by hepatic impairment. Half‐life (hours; GM [%CV]) increased in subjects with moderate (4.3 [44.1]) and severe (5.8 [41.2]) impairment versus mild impairment (2.6 [20.0]) and healthy subjects (2.1 [11.3]). Volume of distribution was increased with the degree of hepatic impairment. All adverse events were mild and generally consistent with the known safety profile of oliceridine. No dose adjustment is needed in patients with renal impairment or in patients with mild or moderate hepatic impairment. Initial dose reduction should be considered in severe hepatic impairment, and patients may require fewer doses of oliceridine due to the longer half‐life observed in these patients.
Collapse
|
77
|
Conibear AE, Kelly E. A Biased View of μ-Opioid Receptors? Mol Pharmacol 2019; 96:542-549. [PMID: 31175184 PMCID: PMC6784500 DOI: 10.1124/mol.119.115956] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 01/29/2023] Open
Abstract
The field of biased agonism has grown substantially in recent years and the μ-opioid receptor has been one of the most intensively studied receptor targets for developing biased agonists. Yet, despite extensive research efforts, the development of analgesics with reduced adverse effects remains a significant challenge. In this review we discuss the evidence to support the prevailing hypothesis that a G protein-biased agonist at the μ-opioid receptor would be an effective analgesic without the accompanying adverse effects associated with conventional μ-opioid agonists. We also assess the current status of established and novel μ-opioid-receptor ligands that are proposed to be biased ligands. SIGNIFICANCE STATEMENT: The idea that biased agonists at the μ-opioid receptor might provide a therapeutic advantage in terms of producing effective analgesia with fewer adverse effects has driven the design of novel G protein-biased agonists. However, is the desirability of G protein-biased agonists at μ-opioid receptor substantiated by what we know of the physiology and pharmacology of the receptor? Also, do any of the novel biased agonists live up to their initial promise? Here we address these issues by critically examining the evidence that G protein bias really is desirable and also by discussing whether the ligands so far developed are clearly biased in vitro and whether this produces responses in vivo that might be commensurate with such bias.
Collapse
Affiliation(s)
- Alexandra E Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
78
|
Camilleri M. What's in the pipeline for lower functional gastrointestinal disorders in the next 5 years? Am J Physiol Gastrointest Liver Physiol 2019; 317:G640-G650. [PMID: 31460793 PMCID: PMC6879894 DOI: 10.1152/ajpgi.00205.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 01/31/2023]
Abstract
The overall objectives of this review are to summarize actionable biomarkers for organic etiology of lower functional gastrointestinal disorders (FGIDs) that lead to individualized treatment for their FGIDs and to assess the pipeline for novel approaches to the management of constipation, diarrhea, and chronic abdominal pain in lower FGIDs. The new approaches to therapy include ion exchangers/transporters for functional constipation (sodium-glucose cotransporter 1, Na+/H+ exchanger 3, and solute carrier family 26 member 3 inhibitors), bile acid modulators for constipation such as ileal bile acid transporter inhibitors and fibroblast growth factor 19 analog for functional constipation, and bile acid sequestrants or farnesoid X receptor agonists for functional diarrhea. Treatment for chronic abdominal pain remains an unmet need in patients with lower FGIDs, and promising novel approaches include delayed-release linaclotide, nonclassical opioid visceral analgesics, and selective cannabinoid receptor agonists. The role of probiotics, fecal microbial transplantation, and possible future microbiome therapies is discussed.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
79
|
Liang DY, Li WW, Nwaneshiudu C, Irvine KA, Clark JD. Pharmacological Characters of Oliceridine, a μ-Opioid Receptor G-Protein–Biased Ligand in Mice. Anesth Analg 2019; 129:1414-1421. [DOI: 10.1213/ane.0000000000003662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
80
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
81
|
Jeong P, Kim SK, Li Q, Oh SJ, Son S, Chen G, Tan H, Kim S, Park JH, Park KD, Kim YO, Yoon MH, Kim YC, Goddard WA. Discovery of Novel Biased Opioid Receptor Ligands through Structure-Based Pharmacophore Virtual Screening and Experiment. ChemMedChem 2019; 14:1783-1794. [PMID: 31359587 DOI: 10.1002/cmdc.201900418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 11/08/2022]
Abstract
Gi -protein-biased agonists with minimal β-arrestin recruitment represent opportunities to overcome the serious adverse effects of human mu opioid receptor (μ-OR) agonists and developing alternative and safe treatments for pain. In order to discover novel non-morphinan opioid receptor agonists, we applied hierarchical virtual screening of our in-house database against a pharmacophore based on modeling the active conformations of opioid receptors. We discovered an initial hit compound, a novel μ-OR agonist with a pyrazoloisoquinoline scaffold. We applied computational R-group screening to this compound and synthesized 14 derivatives predicted to be the best. Of these, a new Gi -protein-biased compound, 1-{5-(3-chlorophenyl)-7,8-dimethoxy-3-[4-(methylsulfonyl)benzyl]-3H-pyrazolo[3,4-c]isoquinolin-1-yl}-N,N-dimethylmethanamine, showed an EC50 value of 179 nm against the μ-OR. This resulted in significant pain relief for mice in the phase II period of formalin response tests. This study provides a new strategy to identify diverse sets of promising compounds that might prove useful for the development of drugs that target other G-protein-coupled receptors.
Collapse
Affiliation(s)
- Pyeonghwa Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California, 91125, USA
| | - Quanjie Li
- Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California, 91125, USA.,College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, P. R. China
| | - Su-Jin Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - Seonil Son
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment, and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment, and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment, and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea
| | - Yeo Ok Kim
- Department of Anesthesiology and Pain Medicine, Medical School, Chonnam National University, Gwangju, 501-757, South Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Medical School, Chonnam National University, Gwangju, 501-757, South Korea
| | - Yong-Chul Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - William A Goddard
- Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
82
|
Tsai CF, Smith JS, Krajewski K, Zhao R, Moghieb AM, Nicora CD, Xiong X, Moore RJ, Liu T, Smith RD, Jacobs JM, Rajagopal S, Shi T. Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Anal Chem 2019; 91:11606-11613. [PMID: 31418558 PMCID: PMC7197904 DOI: 10.1021/acs.analchem.9b01814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein phosphorylation is a critical post-translational modification (PTM). Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides with enriched regions of serines, threonines, and tyrosines that often orchestrate critical biological functions. To address this issue, we developed a simple, easily implemented method to introduce a commonly used tandem mass tag (TMT) to increase peptide hydrophobicity, effectively enhancing RPLC-MS analysis of hydrophilic peptides. Different from conventional TMT labeling, this method capitalizes on using a nonprimary amine buffer and TMT labeling occurring before C18-based solid phase extraction. Through phosphoproteomic analyses of MCF7 cells, we have demonstrated that this method can greatly increase the number of identified hydrophilic phosphopeptides and improve MS detection signals. We applied this method to study the peptide QPSSSR, a very hydrophilic tryptic peptide located on the C-terminus of the G protein-coupled receptor (GPCR) CXCR3. Identification of QPSSSR has never been reported, and we were unable to detect it by traditional methods. We validated our TMT labeling strategy by comparative RPLC-MS analyses of both a hydrophilic QPSSSR peptide library as well as common phosphopeptides. We further confirmed the utility of this method by quantifying QPSSSR phosphorylation abundances in HEK 293 cells under different treatment conditions predicted to alter QPSSSR phosphorylation. We anticipate that this simple TMT labeling method can be broadly used not only for decoding GPCR phosphoproteome but also for effective RPLC-MS analysis of other highly hydrophilic analytes.
Collapse
Affiliation(s)
- Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jeffrey S. Smith
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
- Department of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ahmed M. Moghieb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xinyu Xiong
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
- Department of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
83
|
Turnaturi R, Chiechio S, Salerno L, Rescifina A, Pittalà V, Cantarella G, Tomarchio E, Parenti C, Pasquinucci L. Progress in the development of more effective and safer analgesics for pain management. Eur J Med Chem 2019; 183:111701. [PMID: 31550662 DOI: 10.1016/j.ejmech.2019.111701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Opioid analgesics have been used for thousands of years in the treatment of pain and related disorders, and have become among the most widely prescribed medications. Among opioid analgesics, mu opioid receptor (MOR) agonists are the most commonly used and are indicated for acute and chronic pain management. However, their use results in a plethora of well-described side-effects. From selective delta opioid receptor (DOR) and kappa opioid receptor (KOR) agonists to multitarget MOR/DOR and MOR/KOR ligands, medicinal chemistry provided different approaches aimed at the development of opioid analgesics with an improved pharmacological and tolerability fingerprint. The emergent medicinal chemistry strategy to develop ameliorated opioid analgesics is based upon the concept that functional selectivity for G-protein signalling is necessary for the therapeutic effect, whether β-arrestin recruitment is mainly responsible for the manifestation of side effects, including the development of tolerance after repeated administrations. This review summarises most relevant biased MOR, DOR, KOR and multitarget MOR/DOR ligands synthesised in the last decade and their pharmacological profile in "in vitro" and "in vivo" studies. Such biased ligands could have a significant impact on modern drug discovery and represent a new strategy for the development of better-tolerated drug candidates.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Loredana Salerno
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, Chemistry Section, University of Catania, Viale A. Doria, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Pharmacology Section, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
84
|
Dunn AD, Reed B, Erazo J, Ben-Ezra A, Kreek MJ. Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands: Toward in Vitro Models of in Vivo Responses. ACS Chem Neurosci 2019; 10:3590-3600. [PMID: 31313902 DOI: 10.1021/acschemneuro.9b00195] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biased ligands preferentially activate certain signaling pathways downstream of their target receptor, leading to differential physiological or behavioral responses downstream. The kappa opioid receptor (KOR) is a drug target for diseases involving mood and reward, such as depression and addiction. Biased KOR ligands offer the potential to overcome negative side effects that have previously hampered the therapeutic development of KOR agonists by preferentially activating certain signaling pathways. Understanding relationships between ligand bias and behavior is difficult, however, because differences in cellular context and bias quantification methods lead to variation between studies. Here, a set of 21 structurally diverse KOR ligands were tested in parallel, to systematically quantify ligand bias at the KOR. Compounds included the endogenous peptide ligand Dynorphin A(1-17), two novel compounds synthesized for our research, and 18 additional compounds of different structural classes, including morphinans and the natural product Salvinorin A. Compounds were tested for their activity in early KOR signaling pathways (G-protein and β-arrestin recruitment) in KOR-expressing U2OS cells, and ligand bias was calculated. A subset of compounds was tested for sedative properties in the rotarod assay in mice. We found that rotarod sedation significantly correlated with β-arrestin signaling in this system, indicating that this in vitro system can be used to accurately describe this in vivo behavior caused by KOR agonists. Additionally, downstream signaling pathways ERK1/2 and mTOR were evaluated, and we determined that signaling via both of these pathways could diverge from KOR-mediated G-protein and arrestin signaling in this system.
Collapse
Affiliation(s)
- Amelia D. Dunn
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Brian Reed
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Jose Erazo
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Ariel Ben-Ezra
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Mary Jeanne Kreek
- Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
85
|
Pedersen MF, Wróbel TM, Märcher-Rørsted E, Pedersen DS, Møller TC, Gabriele F, Pedersen H, Matosiuk D, Foster SR, Bouvier M, Bräuner-Osborne H. Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology 2019; 166:107718. [PMID: 31351108 DOI: 10.1016/j.neuropharm.2019.107718] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Binding and signaling kinetics have previously proven important in validation of biased agonism at GPCRs. Here we provide a comprehensive kinetic pharmacological comparison of clinically relevant μ-opioid receptor agonists, including the novel biased agonist oliceridine (TRV130) which is in clinical trial for pain management. We demonstrate that the bias profile observed for the selected agonists is not time-dependent and that agonists with dramatic differences in their binding kinetic properties can display the same degree of bias. Binding kinetics analyses demonstrate that buprenorphine has 18-fold higher receptor residence time than oliceridine. This is thus the largest pharmacodynamic difference between the clinically approved drug buprenorphine and the clinical candidate oliceridine, since their bias profiles are similar. Further, we provide the first pharmacological characterization of (S)-TRV130 demonstrating that it has a similar pharmacological profile as the (R)-form, oliceridine, but displays 90-fold lower potency than the (R)-form. This difference is driven by a significantly slower association rate. Finally, we show that the selected agonists are differentially affected by G protein-coupled receptor kinase 2 and 5 (GRK2 and GRK5) expression. GRK2 and GRK5 overexpression greatly increased μ-opioid receptor internalization induced by morphine, but only had modest effects on buprenorphine and oliceridine-induced internalization. Overall, our data reveal that the clinically available drug buprenorphine displays a similar pharmacological bias profile in vitro compared to the clinical candidate drug oliceridine and that this bias is independent of binding kinetics suggesting a mechanism driven by receptor-conformations. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Mie Fabricius Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Tomasz Marcin Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin, Poland
| | - Emil Märcher-Rørsted
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thor Christian Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Federica Gabriele
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin, Poland
| | - Simon Richard Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada.
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
86
|
Yudin Y, Rohacs T. The G-protein-biased agents PZM21 and TRV130 are partial agonists of μ-opioid receptor-mediated signalling to ion channels. Br J Pharmacol 2019; 176:3110-3125. [PMID: 31074038 DOI: 10.1111/bph.14702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioids remain the most efficient medications against severe pain; they act on receptors that couple to heterotrimeric G-proteins in the Gαi/o family. Opioids exert many of their acute effects through modulating ion channels via Gβγ subunits. Many of their side effects are attributed to β-arrestin recruitment. Several biased agonists that do not recruit β-arrestins, but activate G-protein-dependent pathways, have recently been developed. While these compounds have been proposed to be full agonists of G-protein signalling in several high throughput pharmacological assays, their effects were not studied on ion channel targets. EXPERIMENTAL APPROACH Here, we used patch-clamp electrophysiology and Ca2+ imaging to test the effects of TRV130, PZM21, and herkinorin, three G-protein-biased agonists of μ-opioid receptors, on ion channel targets of Gαi/o /Gβγ signalling. We also studied G-protein dissociation using a FRET-based assay. KEY RESULTS All three biased agonists induced smaller activation of G-protein-coupled inwardly rectifying K+ channels (Kir 3.2) and smaller inhibition of transient receptor potential melastatin (TRPM3) channels than the full μ receptor agonist DAMGO. Co-application of TRV130 or PZM21, but not herkinorin, alleviated the effects of DAMGO on both channels. PZM21 and TRV130 also decreased the effect of morphine on Kir 3.2 channels. The CaV 2.2 channel was also inhibited less by PZM21 and TRV130 than by DAMGO. We also found that TRV130, PZM21, and herkinorin were less effective than DAMGO at inducing dissociation of the Gαi /Gβγ complex. CONCLUSION AND IMPLICATIONS TRV130, PZM21, and potentially herkinorin are partial agonists of μ receptors.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
87
|
Abstract
This article reviews the role of analgesic drugs with a particular emphasis on opioids. Opioids are the oldest and most potent drugs for the treatment of severe pain, but they are burdened by detrimental side effects such as respiratory depression, addiction, sedation, nausea, and constipation. Their clinical application is undisputed in acute (e.g., perioperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny and has contributed to the current opioid crisis. We discuss epidemiological data, pharmacological principles, clinical applications, and research strategies aiming at novel opioids with reduced side effects.
Collapse
|
88
|
Singla NK, Skobieranda F, Soergel DG, Salamea M, Burt DA, Demitrack MA, Viscusi ER. APOLLO-2: A Randomized, Placebo and Active-Controlled Phase III Study Investigating Oliceridine (TRV130), a G Protein-Biased Ligand at the μ-Opioid Receptor, for Management of Moderate to Severe Acute Pain Following Abdominoplasty. Pain Pract 2019; 19:715-731. [PMID: 31162798 PMCID: PMC6851842 DOI: 10.1111/papr.12801] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/06/2019] [Accepted: 05/25/2019] [Indexed: 01/01/2023]
Abstract
Objectives The clinical utility of conventional IV opioids is limited by the occurrence of opioid‐related adverse events. Oliceridine is a novel G protein–biased μ‐opioid receptor agonist designed to provide analgesia with an improved safety and tolerability profile. This phase III, double‐blind, randomized trial (APOLLO‐2 [NCT02820324]) evaluated the efficacy and safety of oliceridine for acute pain following abdominoplasty. Methods Patients received a loading dose of either placebo, oliceridine (1.5 mg), or morphine (4 mg), followed by demand doses via patient‐controlled analgesia (0.1, 0.35, or 0.5 mg oliceridine; 1 mg morphine; or placebo) with a 6‐minute lockout interval. The primary endpoint was the proportion of treatment responders over 24 hours for oliceridine regimens compared to placebo. Secondary outcomes included a predefined composite measure of respiratory safety burden (RSB, representing the cumulative duration of respiratory safety events) and the proportion of treatment responders vs. morphine. Results A total of 401 patients were treated with study medication. Effective analgesia was observed for all oliceridine regimens, with responder rates of 61.0%, 76.3%, and 70.0% for the 0.1‐, 0.35‐, and 0.5‐mg regimens, respectively, compared with 45.7% for placebo (all P < 0.05) and 78.3% for morphine. Oliceridine 0.35‐ and 0.5‐mg demand dose regimens were equi‐analgesic to morphine using a noninferiority analysis. RSB showed a dose‐dependent increase across oliceridine regimens (mean hours [standard deviation], 0.1 mg: 0.43 [1.56]; 0.35 mg: 1.48 [3.83]; 0.5 mg: 1.59 [4.26]; all comparisons not significant at P > 0.05 vs. placebo: 0.60 [2.82]). The RSB measure for morphine was 1.72 (3.86) (P < 0.05 vs. placebo). Gastrointestinal adverse events increased in a dose‐dependent manner across oliceridine demand dose regimens (0.1 mg: 49.4%; 0.35 mg: 65.8%; 0.5 mg: 78.8%; vs. placebo: 47.0%; and morphine: 79.3%). In comparison to morphine, the proportion of patients experiencing nausea or vomiting was lower with the 2 equi‐analgesic dose regimens of 0.35 and 0.5 mg oliceridine. Conclusions Oliceridine is a safe and effective IV analgesic for the relief of moderate to severe acute postoperative pain in patients undergoing abdominoplasty. Since the low‐dose regimen of 0.1 mg oliceridine was superior to placebo but not as effective as the morphine regimen, safety comparisons to morphine are relevant only to the 2 equi‐analgesic dose groups of 0.35 and 0.5 mg, which showed a favorable safety and tolerability profile regarding respiratory and gastrointestinal adverse effects compared to morphine. These findings support that oliceridine may provide a new treatment option for patients with moderate to severe acute pain where an IV opioid is warranted.
Collapse
Affiliation(s)
- Neil K Singla
- Lotus Clinical Research, Pasadena, California, U.S.A
| | | | | | | | | | | | - Eugene R Viscusi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
89
|
Abstract
BACKGROUND Opioids are the oldest and most potent drugs for the treatment of severe pain but they are burdened by detrimental side effects, such as respiratory depression, addiction potential, sedation, nausea and constipation. Their clinical application is undisputed in the treatment of acute (e.g. perioperative) and cancer pain but their long-term use in chronic pain has met increasing criticism and has contributed to the current "opioid crisis". OBJECTIVES This article reviews the pharmacological principles and new research strategies aiming at novel opioids with reduced side effects. The basic mechanisms underlying pain and opioid analgesia and other effects of opioids are outlined. To illustrate the clinical situation and medical problems, the plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic and side effects are discussed. CONCLUSION The epidemic of opioid misuse has shown that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be more intensively considered in the context of drug development and that novel analgesics with less addictive potential are urgently needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and the selective activation of peripheral opioid receptors.
Collapse
Affiliation(s)
- C Stein
- Klinik für Anästhesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| |
Collapse
|
90
|
Olson KM, Duron DI, Womer D, Fell R, Streicher JM. Comprehensive molecular pharmacology screening reveals potential new receptor interactions for clinically relevant opioids. PLoS One 2019; 14:e0217371. [PMID: 31170174 PMCID: PMC6553708 DOI: 10.1371/journal.pone.0217371] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023] Open
Abstract
Most clinically used opioids are thought to induce analgesia through activation of the mu opioid receptor (MOR). However, disparities have been observed between the efficacy of opioids in activating the MOR in vitro and in inducing analgesia in vivo. In addition, some clinically used opioids do not produce cross-tolerance with each other, and desensitization produced in vitro does not match tolerance produced in vivo. These disparities suggest that some opioids could be acting through other targets in vivo, but this has not been comprehensively tested. We thus screened 9 clinically relevant opioids (buprenorphine, hydrocodone, hydromorphone, morphine, O-desmethyl-tramadol, oxycodone, oxymorphone, tapentadol, tramadol) against 9 pain-related receptor targets (MOR, delta opioid receptor [DOR], kappa opioid receptor [KOR], nociceptin receptor [NOP], cannabinoid receptor type 1 [CB1], sigma-1 receptor [σ1R], and the monoamine transporters [NET/SERT/DAT]) expressed in cells using radioligand binding and functional activity assays. We found several novel interactions, including monoamine transporter activation by buprenorphine and σ1R binding by hydrocodone and tapentadol. Tail flick anti-nociception experiments with CD-1 mice demonstrated that the monoamine transporter inhibitor duloxetine selectively promoted buprenorphine anti-nociception while producing no effects by itself or in combination with the most MOR-selective drug oxymorphone, providing evidence that these novel interactions could be relevant in vivo. Our findings provide a comprehensive picture of the receptor interaction profiles of clinically relevant opioids, which has not previously been performed. Our findings also suggest novel receptor interactions for future investigation that could explain some of the disparities observed between opioid performance in vitro and in vivo.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - David I. Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Daniel Womer
- Depomed, Inc., Newark, CA, United States of America
| | - Ryan Fell
- Depomed, Inc., Newark, CA, United States of America
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
91
|
Hot topics in opioid pharmacology: mixed and biased opioids. Br J Anaesth 2019; 122:e136-e145. [DOI: 10.1016/j.bja.2019.03.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 01/14/2023] Open
|
92
|
Utilization of Biased G Protein-Coupled ReceptorSignaling towards Development of Safer andPersonalized Therapeutics. Molecules 2019; 24:molecules24112052. [PMID: 31146474 PMCID: PMC6600667 DOI: 10.3390/molecules24112052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β-arrestin mediated signaling and also separability of G protein and β-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Collapse
|
93
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
94
|
Yang P, Read C, Kuc RE, Nyimanu D, Williams TL, Crosby A, Buonincontri G, Southwood M, Sawiak SJ, Glen RC, Morrell NW, Davenport AP, Maguire JJ. A novel cyclic biased agonist of the apelin receptor, MM07, is disease modifying in the rat monocrotaline model of pulmonary arterial hypertension. Br J Pharmacol 2019; 176:1206-1221. [PMID: 30710493 PMCID: PMC6468262 DOI: 10.1111/bph.14603] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Apelin is an endogenous vasodilatory and inotropic peptide that is down-regulated in human pulmonary arterial hypertension, although the density of the apelin receptor is not significantly attenuated. We hypothesised that a G protein-biased apelin analogue MM07, which is more stable than the endogenous apelin peptide, may be beneficial in this condition with the advantage of reduced β-arrestin-mediated receptor internalisation with chronic use. EXPERIMENTAL APPROACH Male Sprague-Dawley rats received either monocrotaline to induce pulmonary arterial hypertension or saline and then daily i.p. injections of either MM07 or saline for 21 days. The extent of disease was assessed by right ventricular catheterisation, cardiac MRI, and histological analysis of the pulmonary vasculature. The effect of MM07 on signalling, proliferation, and apoptosis of human pulmonary artery endothelial cells was investigated. KEY RESULTS MM07 significantly reduced the elevation of right ventricular systolic pressure and hypertrophy induced by monocrotaline. Monocrotaline-induced changes in cardiac structure and function, including right ventricular end-systolic and end-diastolic volumes, ejection fraction, and left ventricular end-diastolic volume, were attenuated by MM07. MM07 also significantly reduced monocrotaline-induced muscularisation of small pulmonary blood vessels. MM07 stimulated endothelial NOS phosphorylation and expression, promoted proliferation, and attenuated apoptosis of human pulmonary arterial endothelial cells in vitro. CONCLUSION AND IMPLICATIONS Our findings suggest that chronic treatment with MM07 is beneficial in this animal model of pulmonary arterial hypertension by addressing disease aetiology. These data support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.
Collapse
Affiliation(s)
- Peiran Yang
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Cai Read
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Rhoda E. Kuc
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Duuamene Nyimanu
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Thomas L. Williams
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| | - Alexi Crosby
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Guido Buonincontri
- Wolfson Brain Imaging Centre, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Mark Southwood
- Department of PathologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Robert C. Glen
- The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, CambridgeUK and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonUK
| | | | | | - Janet J. Maguire
- Experimental Medicine and ImmunotherapeuticsUniversity of CambridgeCambridgeUK
| |
Collapse
|
95
|
Ibsen MS, Finlay DB, Patel M, Javitch JA, Glass M, Grimsey NL. Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence. Front Pharmacol 2019; 10:350. [PMID: 31024316 PMCID: PMC6468047 DOI: 10.3389/fphar.2019.00350] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Arrestin translocation and signaling have come to the fore of the G protein-coupled receptor molecular pharmacology field. Some receptor–arrestin interactions are relatively well understood and considered responsible for specific therapeutic or adverse outcomes. Coupling of arrestins with cannabinoid receptors 1 (CB1) and 2 (CB2) has been reported, though the majority of studies have not systematically characterized the differential ligand dependence of this activity. In addition, many prior studies have utilized bovine (rather than human) arrestins, and the most widely applied assays require reporter-tagged receptors, which prevent meaningful comparison between receptor types. We have employed a bioluminescence resonance energy transfer (BRET) method that does not require the use of tagged receptors and thereby allows comparisons of arrestin translocation between receptor types, as well as with cells lacking the receptor of interest – an important control. The ability of a selection of CB1 and CB2 agonists to stimulate cell surface translocation of human and bovine β-arrestin-1 and -2 was assessed. We find that some CB1 ligands induce moderate β-arrestin-2 translocation in comparison with vasopressin V2 receptor (a robust arrestin recruiter); however, CB1 coupling with β-arrestin-1 and CB2 with either arrestin elicited low relative efficacies. A range of efficacies between ligands was evident for both receptors and arrestins. Endocannabinoid 2-arachidonoylglycerol stood out as a high efficacy ligand for translocation of β-arrestin-2 via CB1. Δ9-tetrahydrocannabinol was generally unable to elicit translocation of either arrestin subtype via CB1 or CB2; however, control experiments revealed translocation in cells not expressing CB1/CB2, which may assist in explaining some discrepancy with the literature. Overexpression of GRK2 had modest influence on CB1/CB2-induced arrestin translocation. Results with bovine and human arrestins were largely analogous, but a few instances of inconsistent rank order potencies/efficacies between bovine and human arrestins raise the possibility that subtle differences in receptor conformation stabilized by these ligands manifest in disparate affinities for the two arrestin species, with important potential consequences for interpretation in ligand bias studies. As well as contributing important information regarding CB1/CB2 ligand-dependent arrestin coupling, our study raises a number of points for consideration in the design and interpretation of arrestin recruitment assays.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Monica Patel
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan A Javitch
- Department of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
96
|
Abstract
A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
97
|
Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P, Günther T, Brunori G, Kieffer BL, Toll L, Bruchas MR, Zaveri NT, Schulz S. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci Signal 2019; 12:12/574/eaau8072. [PMID: 30914485 DOI: 10.1126/scisignal.aau8072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Agonists of the nociceptin/orphanin FQ opioid peptide (NOP) receptor, a member of the opioid receptor family, are under active investigation as novel analgesics, but their modes of signaling are less well characterized than those of other members of the opioid receptor family. Therefore, we investigated whether different NOP receptor ligands showed differential signaling or functional selectivity at the NOP receptor. Using newly developed phosphosite-specific antibodies to the NOP receptor, we found that agonist-induced NOP receptor phosphorylation occurred primarily at four carboxyl-terminal serine (Ser) and threonine (Thr) residues, namely, Ser346, Ser351, Thr362, and Ser363, and proceeded with a temporal hierarchy, with Ser346 as the first site of phosphorylation. G protein-coupled receptor kinases 2 and 3 (GRK2/3) cooperated during agonist-induced phosphorylation, which, in turn, facilitated NOP receptor desensitization and internalization. A comparison of structurally distinct NOP receptor agonists revealed dissociation in functional efficacies between G protein-dependent signaling and receptor phosphorylation. Furthermore, in NOP-eGFP and NOP-eYFP mice, NOP receptor agonists induced multisite phosphorylation and internalization in a dose-dependent and agonist-selective manner that could be blocked by specific antagonists. Our study provides new tools to study ligand-activated NOP receptor signaling in vitro and in vivo. Differential agonist-selective NOP receptor phosphorylation by chemically diverse NOP receptor agonists suggests that differential signaling by NOP receptor agonists may play a role in NOP receptor ligand pharmacology.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany.
| | - Lionel Moulédous
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany
| | - Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany
| | - Gloria Brunori
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, Jena 07747, Germany.
| |
Collapse
|
98
|
Cai NS, Quiroz C, Bonaventura J, Bonifazi A, Cole TO, Purks J, Billing AS, Massey E, Wagner M, Wish ED, Guitart X, Rea W, Lam S, Moreno E, Casadó-Anguera V, Greenblatt AD, Jacobson AE, Rice KC, Casadó V, Newman AH, Winkelman JW, Michaelides M, Weintraub E, Volkow ND, Belcher AM, Ferré S. Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids. J Clin Invest 2019; 129:2730-2744. [PMID: 30913037 DOI: 10.1172/jci126912] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Identifying non-addictive opioid medications is a high priority in medical sciences, but μ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of μ-opioid receptors with galanin Gal1 receptors, rendering a profound decrease in the potency of methadone. This was explained by methadone's weaker proficiency to activate the dopaminergic system as compared to morphine and predicted a dissociation of therapeutic versus euphoric effects of methadone, which was corroborated by a significantly lower incidence of self-report of "high" in methadone-maintained patients. These results suggest that μ-opioid-Gal1 receptor heteromers mediate the dopaminergic effects of opioids that may lead to a lower addictive liability of opioids with selective low potency for the μ-opioid-Gal1 receptor heteromer, exemplified by methadone.
Collapse
Affiliation(s)
| | | | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, and
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), NIH, Baltimore, Maryland, USA
| | - Thomas O Cole
- Division of Alcohol and Drug Abuse, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Julia Purks
- Massachusetts General Hospital, Departments of Psychiatry and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy S Billing
- Center for Substance Abuse Research, University of Maryland, College Park, Maryland, USA
| | - Ebonie Massey
- Center for Substance Abuse Research, University of Maryland, College Park, Maryland, USA
| | - Michael Wagner
- Center for Substance Abuse Research, University of Maryland, College Park, Maryland, USA
| | - Eric D Wish
- Center for Substance Abuse Research, University of Maryland, College Park, Maryland, USA
| | | | | | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, and
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Aaron D Greenblatt
- Division of Alcohol and Drug Abuse, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | | | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), NIH, Baltimore, Maryland, USA
| | - John W Winkelman
- Massachusetts General Hospital, Departments of Psychiatry and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric Weintraub
- Division of Alcohol and Drug Abuse, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Annabelle M Belcher
- Division of Alcohol and Drug Abuse, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
99
|
Viscusi ER, Skobieranda F, Soergel DG, Cook E, Burt DA, Singla N. APOLLO-1: a randomized placebo and active-controlled phase III study investigating oliceridine (TRV130), a G protein-biased ligand at the µ-opioid receptor, for management of moderate-to-severe acute pain following bunionectomy. J Pain Res 2019; 12:927-943. [PMID: 30881102 PMCID: PMC6417853 DOI: 10.2147/jpr.s171013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Oliceridine is a novel G protein-biased µ-opioid receptor agonist designed to provide intravenous (IV) analgesia with a lower risk of opioid-related adverse events (ORAEs) than conventional opioids. Patients and methods APOLLO-1 (NCT02815709) was a phase III, double-blind, randomized trial in patients with moderate-to-severe pain following bunionectomy. Patients received a loading dose of either placebo, oliceridine (1.5 mg), or morphine (4 mg), followed by demand doses via patient-controlled analgesia (0.1, 0.35, or 0.5 mg oliceridine, 1 mg morphine, or placebo). The primary endpoint compared the proportion of treatment responders through 48 hours for oliceridine regimens and placebo. Secondary outcomes included a composite measure of respiratory safety burden (RSB, representing the cumulative duration of respiratory safety events) and the proportion of treatment responders vs morphine. Results Effective analgesia was observed for all oliceridine regimens, with responder rates of 50%, 62%, and 65.8% in the 0.1 mg, 0.35 mg, and 0.5 mg regimens, respectively (all P<0.0001 vs placebo [15.2%]; 0.35 mg and 0.5 mg non-inferior to morphine). RSB showed a dose-dependent increase across oliceridine regimens (mean hours [SD]: 0.1 mg: 0.04 [0.33]; 0.35 mg: 0.28 [1.11]; 0.5 mg: 0.8 [3.33]; placebo: 0 [0]), but none were statistically different from morphine (1.1 [3.03]). Gastrointestinal adverse events also increased in a dose-dependent manner in oliceridine regimens (0.1 mg: 40.8%; 0.35 mg: 59.5%; 0.5 mg: 70.9%; placebo: 24.1%; morphine: 72.4%). The odds ratio for rescue antiemetic use was significantly lower for oliceridine regimens compared to morphine (P<0.05). Conclusion Oliceridine is a novel and effective IV analgesic providing rapid analgesia for the relief of moderate-to-severe acute postoperative pain compared to placebo. Additionally, it has a favorable safety and tolerability profile with regard to respiratory and gastrointestinal adverse effects compared to morphine, and may provide a new treatment option for patients with moderate-to-severe postoperative pain where an IV opioid is required.
Collapse
Affiliation(s)
- Eugene R Viscusi
- Department of Anesthesiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA,
| | | | | | | | | | - Neil Singla
- Lotus Clinical Research, LLC, Pasadena, CA, USA
| |
Collapse
|
100
|
Bond RA, Lucero Garcia-Rojas EY, Hegde A, Walker JKL. Therapeutic Potential of Targeting ß-Arrestin. Front Pharmacol 2019; 10:124. [PMID: 30894814 PMCID: PMC6414794 DOI: 10.3389/fphar.2019.00124] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
ß-arrestins are multifunctional proteins that modulate heptahelical 7 transmembrane receptors, also known as G protein-coupled receptors (GPCRs), a superfamily of receptors that regulate most physiological processes. ß-arrestin modulation of GPCR function includes termination of G protein-dependent signaling, initiation of ß-arrestin-dependent signaling, receptor trafficking to degradative or recycling pathways, receptor transactivation, transcriptional regulation, and localization of second messenger regulators. The pleiotropic influence ß-arrestins exert on these receptors regulates a breadth of physiological functions, and additionally, ß-arrestins are involved in the pathophysiology of numerous and wide-ranging diseases, making them prime therapeutic targets. In this review, we briefly describe the mechanisms by which ß-arrestins regulate GPCR signaling, including the functional cellular mechanisms modulated by ß-arrestins and relate this to observed pathophysiological responses associated with ß-arrestins. We focus on the role for ß-arrestins in transducing cell signaling; a pathway that is complementary to the classical G protein-coupling pathway. The existence of these GPCR dual signaling pathways offers an immense therapeutic opportunity through selective targeting of one signaling pathway over the other. Finally, we will consider several mechanisms by which the potential of dual signaling pathway regulation can be harnessed and the implications for improved disease treatments.
Collapse
Affiliation(s)
- Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | | |
Collapse
|