51
|
Hu H, An S, Sha T, Wu F, Jin Y, Li L, Zeng Z, Wu J, Chen Z. Association between dexmedetomidine administration and outcomes in critically ill patients with sepsis-associated acute kidney injury. J Clin Anesth 2022; 83:110960. [PMID: 36272399 DOI: 10.1016/j.jclinane.2022.110960] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
STUDY OBJECTIVE To investigate the association between dexmedetomidine administration and outcomes in critically ill patients with sepsis-associated acute kidney injury (SA-AKI). DESIGN A single-center, retrospective, cohort study. SETTING Intensive care unit (ICU). PATIENTS A total of 2192 critically ill patients with SA-AKI were included in the analysis, which identified from the Medical Information Mart for Intensive Care (MIMIC-IV) database between 2008 and 2019. INTERVENTIONS Intravenous infusion of dexmedetomidine. MEASUREMENTS The primary outcome was recovery of renal function. In-hospital mortality, vasopressor requirements, length of ICU and hospital stay were considered secondary outcomes. The Cox proportional hazards, logistic regression, and linear regression models were used to assess the association between dexmedetomidine and outcomes. Propensity score matching (PSM) analysis was used to match patients receiving dexmedetomidine to those without treatment. MAIN RESULTS After PSM, 719 matched patient pairs were derived from patients who received dexmedetomidine and those who did not. The administration of dexmedetomidine was associated with a higher rate of renal recovery [61.8% vs. 55.8%, hazard ratio (HR) 1.35; P = 0.01], reduced in-hospital mortality [28.3% vs. 41.3%, HR 0.56; P < 0.001], and prolonged intensive care unit (ICU) stay [15.8d vs 12.6d, HR 2.34; P < 0.001] and hospital stay [23.7d vs 19.7d, HR 4.47; P < 0.001]. No significant difference was found in vasopressor requirements in patients with SA-AKI. Nevertheless, results illustrated that dose receiving between 0.30 and 1.00 μg/kg/h and duration using under 48 h of dexmedetomidine was associated with improvements in renal function recovery in SA-AKI patients. CONCLUSION Dexmedetomidine administration was associated with improvements in renal function recovery and in-hospital survival in critically ill patients with SA-AKI. The results need to be verified in further randomized controlled trials.
Collapse
Affiliation(s)
- Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Sha
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China..
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China..
| |
Collapse
|
52
|
Martinez-Orengo N, Tahmazian S, Lai J, Wang Z, Sinharay S, Schreiber-Stainthorp W, Basuli F, Maric D, Reid W, Shah S, Hammoud DA. Assessing organ-level immunoreactivity in a rat model of sepsis using TSPO PET imaging. Front Immunol 2022; 13:1010263. [PMID: 36439175 PMCID: PMC9685400 DOI: 10.3389/fimmu.2022.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sarine Tahmazian
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - William Reid
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dima A. Hammoud,
| |
Collapse
|
53
|
de Morais DG, Sanches TRC, Santinho MAR, Yada EY, Segura GC, Lowe D, Navarro G, Seabra VF, Taniguchi LU, Malbouisson LMS, de André CDS, Andrade L, Rodrigues CE. Urinary sodium excretion is low prior to acute kidney injury in patients in the intensive care unit. FRONTIERS IN NEPHROLOGY 2022; 2:929743. [PMID: 37675036 PMCID: PMC10479577 DOI: 10.3389/fneph.2022.929743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 09/08/2023]
Abstract
Background The incidence of acute kidney injury (AKI) is high in intensive care units (ICUs), and a better understanding of AKI is needed. Early chronic kidney disease is associated with urinary concentration inability and AKI recovery with increased urinary solutes in humans. Whether the inability of the kidneys to concentrate urine and excrete solutes at appropriate levels could occur prior to the diagnosis of AKI is still uncertain, and the associated mechanisms have not been studied. Methods In this single-center prospective observational study, high AKI risk in ICU patients was followed up for 7 days or until ICU discharge. They were grouped as "AKI" or "No AKI" according to their AKI status throughout admission. We collected daily urine samples to measure solute concentrations and osmolality. Data were analyzed 1 day before AKI, or from the first to the fifth day of admission in the "No AKI" group. We used logistic regression models to evaluate the influence of the variables on future AKI diagnosis. The expression of kidney transporters in urine was evaluated by Western blotting. Results We identified 29 patients as "No AKI" and 23 patients as "AKI," the latter being mostly low severity AKI. Urinary sodium excretion was lower in "AKI" patients prior to AKI diagnosis, particularly in septic patients. The expression of Na+/H+ exchanger (NHE3), a urinary sodium transporter, was higher in "AKI" patients. Conclusions Urinary sodium excretion is low before an AKI episode in ICU patients, and high expressions of proximal tubule sodium transporters might contribute to this.
Collapse
Affiliation(s)
- David Gomes de Morais
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Talita Rojas Cunha Sanches
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mirela Aparecida Rodrigues Santinho
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Yuki Yada
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriela Cardoso Segura
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Lowe
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Navarro
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Victor Faria Seabra
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro Utino Taniguchi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Marcelo Sá Malbouisson
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Carmen Diva Saldiva de André
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Andrade
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Eleuterio Rodrigues
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
54
|
Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step towards precision medicine? J Clin Med 2022; 11:jcm11195782. [PMID: 36233650 PMCID: PMC9571838 DOI: 10.3390/jcm11195782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis and septic shock are a major public health concern and are still associated with high rates of morbidity and mortality. Whilst there is growing understanding of different phenotypes and endotypes of sepsis, all too often treatment strategies still only employ a “one-size-fits-all” approach. Biomarkers offer a unique opportunity to close this gap to more precise treatment approaches by providing insight into clinically hidden, yet complex, pathophysiology, or by individualizing treatment pathways. Predicting and evaluating systemic inflammation, sepsis or septic shock are essential to improve outcomes for these patients. Besides opportunities to improve patient care, employing biomarkers offers a unique opportunity to improve clinical research in patients with sepsis. The high rate of negative clinical trials in this field may partly be explained by a high degree of heterogeneity in patient cohorts and a lack of understanding of specific endotypes or phenotypes. Moving forward, biomarkers can support the selection of more homogeneous cohorts, thereby potentially improving study conditions of clinical trials. This may finally pave the way to a precision medicine approach to sepsis, septic shock and complication of sepsis in the future.
Collapse
|
55
|
Vilhonen J, Koivuviita N, Vahlberg T, Vuopio J, Oksi J. Acute kidney injury in group A streptococcal bacteraemia: incidence, outcome and predictive value of C-reactive protein. Infect Dis (Lond) 2022; 54:852-860. [PMID: 36047611 DOI: 10.1080/23744235.2022.2114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A ubiquitous human pathogen, Streptococcus pyogenes (Group A Streptococcus, GAS) causes infections from mild pharyngitis to severe septic infections. Acute kidney injury (AKI) is a condition of prompt decline of renal function. The aim of the present study was to report the incidence and outcome of AKI in GAS bacteraemia and to evaluate the diagnostic value of serum C-reactive protein as an indicator of AKI. METHODS All adult patients with GAS bacteraemia treated at Turku University Hospital from 2007 to 2018 were identified and their patient records were scrutinised. RESULTS Of 195 included patients, 38 (19.5%) had AKI stage 1, 20 (10.3%) AKI stage 2 and 26 (13.3%) AKI stage 3 and 111 (56.9%) did not have AKI. The adjusted seven-day mortality was significantly higher in AKI stages 2 and 3 compared to the non-AKI group (15% and 19% vs. 3.6%; p = .046 and .006, respectively). Of the survivors, 95.8% met the criteria of renal recovery at discharge. The higher the AKI stage, the higher was the mean serum CRP level on admission. The optimal cut-off for CRP to identify patients with AKI stage 2 or 3 was ≥244 mg/l (sensitivity 82.6% and specificity 75.8%). CONCLUSIONS AKI is common in patients with GAS bacteraemia and the severity of AKI correlates with the CRP level on admission. The mortality of patients with GAS bacteraemia and AKI is significantly higher than of patients without AKI. Most survivors, however, show renal recovery.Key MessageAKI is common in group A Streptococcal bacteraemia and increases mortality compared to bacteraemia alone. However, renal recovery is also common. A high CRP level on admission correlates significantly positively with the degree of severity of AKI.
Collapse
Affiliation(s)
- Johanna Vilhonen
- Department of Infectious Diseases, Turku University Hospital, Turku, Finland.,Doctoral Programme in Clinical Research (DPCR), University of Turku, Turku, Finland
| | - Niina Koivuviita
- Kidney Centre, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| | - Tero Vahlberg
- Biostatistics, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jaana Vuopio
- Institute of Biomedicine, University of Turku, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland.,Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Jarmo Oksi
- Department of Infectious Diseases, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| |
Collapse
|
56
|
Maiese A, Scatena A, Costantino A, Chiti E, Occhipinti C, La Russa R, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:9354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Scatena
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Enrica Chiti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|
57
|
Singh Y, Fuloria NK, Fuloria S, Subramaniyan V, Almalki WH, Al‐abbasi FA, Kazmi I, Rajput SS, Joshi N, Gupta G. A European pharmacotherapeutic agent roflumilast exploring integrated preclinical and clinical evidence for SARS CoV-2 mediated inflammation to organ damage. Br J Clin Pharmacol 2022; 88:3562-3565. [PMID: 35352842 PMCID: PMC9111419 DOI: 10.1111/bcp.15328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/18/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 has spread globally, affecting almost 160 million individuals. Elderly and pre-existing patients (such as diabetes, heart disease and asthma) seem more susceptible to severe illness with COVID-19. Roflumilast was licensed for usage in the European Union in July 2010 as a phosphodiesterase-4 (PDE4) inhibitor. Under preclinical studies, roflumilast has been shown to decrease bleomycin-induced lung fibrosis, lung hydroxyproline and right heart thickening. The current study reviewed existing data that the PDE-4 inhibitor, a roflumilast, protects renal tissues and other major organ systems after COVID-19 infection by decreasing immune cell infiltration. These immune-balancing effects of roflumilast were related to a decrease in oxidative and inflammatory burden, caspase-3 suppression and increased protein kinase A (PKA)/cyclic A.M.P. (cAMP) levels in renal and other organ tissue.
Collapse
Affiliation(s)
- Yogendra Singh
- Department of PharmacologyMaharishi Arvind College of PharmacyJaipurIndia
| | | | | | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Fahad A. Al‐abbasi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | | | - Nirmal Joshi
- Amrapali Institute of Pharmacy and SciencesHaldwaniIndia
| | - Gaurav Gupta
- Department of Pharmacology, School of PharmacySuresh Gyan Vihar UniversityJaipurIndia
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
| |
Collapse
|
58
|
Firouzi S, Pahlavani N, Navashenaq JG, Clayton ZS, Beigmohammadi MT, Malekahmadi M. The effect of Vitamin C and Zn supplementation on the immune system and clinical outcomes in COVID-19 patients. CLINICAL NUTRITION OPEN SCIENCE 2022; 44:144-154. [PMID: 35783349 PMCID: PMC9233349 DOI: 10.1016/j.nutos.2022.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) is the most dangerous form of the coronavirus, which causes COVID-19. In patients with severe COVID-19, the immune system becomes markedly overactive. There is evidence that supplementation with select micronutrients may play a role in maintaining immune system function in this patient population. Throughout the COVID-19 pandemic, significant emphasis has been placed on the importance of supplementing critical micronutrients such as Vitamin C and Zinc (Zn) due to their immunomodulatory effects. Viral infections, like COVID-19, increase physiological demand for these micronutrients. Therefore, the purpose of this review was to provide comprehensive information regarding the potential effectiveness of Vitamin C and Zn supplementation during viral infection and specifically COVID-19. This review demonstrated a relation between Vitamin C and Zn deficiency and a reduction in the innate immune response, which can ultimately make patients with COVID-19 more vulnerable to viral infection. As such, adequate intake of Vitamin C and Zn, as an adjunctive therapeutic approach with any necessary pharmacological treatment(s), may be necessary to mitigate the adverse physiological effects of COVID-19. To truly clarify the role of Vitamin C and Zn supplementation in the management of COVID-19, we must wait for the results of ongoing randomized controlled trials. The toxicity of Vitamin C and Zn should also be considered to prevent over-supplementation. Over-supplementation of Vitamin C can lead to oxalate toxicity, while increased Zn intake can reduce immune system function. In summary, Vitamin C and Zn supplementation may be useful in mitigating COVID-19 symptomology.
Collapse
Key Words
- COVID-19
- Dietary supplement
- HIF-1α, Hypoxia-inducible factor-1α
- IFN-α, Intererferon alfa
- INF-β, Interferon beta
- Immune system
- NK, Natural killer
- PUFAs, Polyunsaturated fatty acids
- RCTs, Randomized controlled trials
- RDA, Recommended Dietary Allowance
- SARS-CoV-2, Severe Acute Respiratory Syndrome-Coronavirus-2
- TNF-α, Tumor necrosis factor alpha
- Vitamin C
- Zn
- Zn, Zinc
Collapse
Affiliation(s)
- Safieh Firouzi
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | | | - Mohammad Taghi Beigmohammadi
- Anesthesiology and Intensive Care Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author
| | - Mahsa Malekahmadi
- Anesthesiology and Intensive Care Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author. Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Li X, Luan H, Zhang H, Li C, Bu Q, Zhou B, Tang N, Zhou H, Xu Y, Jiang W, Zhao L, Man X, Che L, Wang Y, Luo C, Sun J. Associations between early thiamine administration and clinical outcomes in critically ill patients with acute kidney injury. Br J Nutr 2022; 128:183-191. [PMID: 34392848 DOI: 10.1017/s0007114521003111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of early thiamine use on clinical outcomes in critically ill patients with acute kidney injury (AKI) are unclear. The purpose of this study was to investigate the associations between early thiamine administration and clinical outcomes in critically ill patients with AKI. The data of critically ill patients with AKI within 48 h after ICU admission were extracted from the Medical Information Mart for Intensive Care III (MIMIC III) database. PSM was used to match patients early receiving thiamine treatment to those not early receiving thiamine treatment. The association between early thiamine use and in-hospital mortality due to AKI was determined using a logistic regression model. A total of 15 066 AKI patients were eligible for study inclusion. After propensity score matching (PSM), 734 pairs of patients who did and did not receive thiamine treatment in the early stage were established. Early thiamine use was associated with lower in-hospital mortality (OR 0·65; 95 % CI 0·49, 0·87; P < 0·001) and 90-d mortality (OR 0·58; 95 % CI 0·45, 0·74; P < 0·001), and it was also associated with the recovery of renal function (OR 1·26; 95 % CI 1·17, 1·36; P < 0·001). In the subgroup analysis, early thiamine administration was associated with lower in-hospital mortality in patients with stages 1 to 2 AKI. Early thiamine use was associated with improved short-term survival in critically ill patients with AKI. It was possible beneficial role in patients with stages 1 to 2 AKI according to the Kidney Disease: Improving Global Outcomes criteria.
Collapse
Affiliation(s)
- Xunliang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hong Luan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Chenyu Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Quandong Bu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Nina Tang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Haiyan Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yanfei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jianping Sun
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
60
|
Kazmi I, Al-Abbasi FA, Afzal M, Nadeem MS, Altayb HN, Gupta G. Phosphodiesterase-4 Inhibitor Roflumilast-Mediated Protective Effect in Sepsis-Induced Late-Phase Event of Acute Kidney Injury: A Narrative Review. Pharmaceuticals (Basel) 2022; 15:ph15070899. [PMID: 35890197 PMCID: PMC9315747 DOI: 10.3390/ph15070899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Severe infections such as viral, bacterial, or fungal sepsis can cause an inflammatory response in the host, leading to organ failure and septic shock—phosphodiesterase-4 (PDE-4) inhibiting related agents from suppressing cyclic adenosine monophosphate (cAMP) degradation. Regulatory organisations have approved some substances in this category to reduce the risk of chronic obstructive pulmonary disease (COPD) exacerbations in patients with chronic bronchitis and a history of COPD exacerbations. Roflumilast has been shown to alleviate inflammatory responses, thus regulating airway inflammation. Additionally, roflumilast therapy dramatically enhanced B-cell lymphoma 2 (Bcl-2) expression, an anti-apoptotic marker lowered in septic animals. Previous research has indicated that roflumilast may help reverse sepsis-induced liver and lung harm, but whether it is also effective in reversing sepsis-induced renal impairment remains unknown. Therefore, this review determines whether roflumilast protects against renal dysfunction, inflammatory response, and apoptosis in sepsis-induced kidney damage. Additionally, we discussed the molecular mechanism through which roflumilast exerts its protective effect to uncover a possible treatment agent for sepsis-induced renal impairment.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
- Correspondence:
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
61
|
Prediction Models for One-Year Survival of Adult Patients with Acute Kidney Injury: A Longitudinal Study Based on the Data from the Medical Information Mart for Intensive Care III Database. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5902907. [PMID: 35836825 PMCID: PMC9276484 DOI: 10.1155/2022/5902907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Acute kidney injury (AKI) is a common complication of acute illnesses with unfavorable outcomes. This cohort study aimed at constructing prediction models for one-year survival in adult AKI patients based on prognostic nutritional index (PNI), platelet-to-lymphocyte ratio (PLR), neutrophil percentage-to-albumin ratio (NPAR), or neutrophil-to-lymphocyte ratio (NLR), respectively. In total, 6050 patients from Medical Information Mart for Intensive Care III (MIMIC-III) were involved. The least absolute shrinkage and selection operator (LASSO) regression was utilized to screen possible covariates. The samples were randomly divided into the training set and the testing set at a ratio of 7.5 : 2.5, and the prediction models were constructed in the training set by random forest. The prediction values of the models were measured via sensitivity, specificity, negative prediction value (NPV), positive prediction value (PPV), area under the curve (AUC), and accuracy. We found that NLR (OR = 1.261, 95% CI: 1.145–1.388), PLR (OR = 1.295, 95% CI: 1.152–1.445), and NPAR (OR = 1.476, 95% CI: 1.261–1.726) were associated with an increased risk, while PNI (OR = 0.035, 95% CI: 0.020–0.059) was associated with a decreased risk of one-year mortality in AKI patients. The AUC was 0.964 (95% CI: 0.959–0.969) in the training set based on PNI, age, gender, length of stay (LOS) in hospital, platelets (PLT), ethnicity, LOS in ICU, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, glucose, AKI stage, atrial fibrillation (AF), vasopressor, renal replacement therapy (RRT), and mechanical ventilation. The testing set was applied as the internal validation of the model with an AUC of 0.778 (95% CI: 0.754–0.801). In conclusion, PNI accompanied by age, gender, ethnicity, SBP, DBP, heart rate, PLT, glucose, AF, RRT, mechanical ventilation, vasopressor, AKI stage, LOS in ICU, and LOS in hospital exhibited a good predictive value for one-year mortality of AKI patients.
Collapse
|
62
|
Greve F, Aulbach I, Mair O, Biberthaler P, Hanschen M. The Clinical Impact of Platelets on Post-Injury Serum Creatinine Concentration in Multiple Trauma Patients: A Retrospective Cohort Study. Medicina (B Aires) 2022; 58:medicina58070901. [PMID: 35888620 PMCID: PMC9317692 DOI: 10.3390/medicina58070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objective: Platelets contribute to the immunological response after multiple trauma. To determine the clinical impact, this study analyzes the association between platelets and creatinine concentration as an indicator of kidney function in polytraumatized patients. Methods: We investigated all patients presenting an Injury Severity Score (ISS) ≥16 for a 2-year period at our trauma center. Platelet counts and creatinine concentrations were analyzed, and correlation analysis was performed within 10 days after multiple trauma. Results: 83 patients with a median ISS of 22 were included. Platelet count was decreased on day 3 (p ≤ 0.001) and increased on day 10 (p ≤ 0.001). Platelet count was elevated on day 10 in younger patients and diminished in severely injured patients (ISS ≥35) on day 1 (p = 0.012) and day 3 (p = 0.011). Creatinine concentration was decreased on day 1 (p = 0.003) and day 10 (p ≤ 0.001) in female patients. Age (p = 0.01), male sex (p = 0.004), and injury severity (p = 0.014) were identified as factors for increased creatinine concentration on day 1, whereas platelets (p = 0.046) were associated with decreased creatinine concentrations on day 5 after multiple trauma. Conclusions: Kinetics of platelet count and creatinine concentration are influenced by age, gender, and trauma severity. There was no clear correlation between platelet counts and creatinine concentration. However, platelets seem to have a modulating effect on creatinine concentrations in the vulnerable phase after trauma.
Collapse
Affiliation(s)
- Frederik Greve
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.A.); (O.M.); (P.B.); (M.H.)
- Correspondence: ; Tel.: +49-89-4140-2126
| | - Ina Aulbach
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.A.); (O.M.); (P.B.); (M.H.)
- Department of Traumatology and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Olivia Mair
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.A.); (O.M.); (P.B.); (M.H.)
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.A.); (O.M.); (P.B.); (M.H.)
| | - Marc Hanschen
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (I.A.); (O.M.); (P.B.); (M.H.)
| |
Collapse
|
63
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
64
|
Zhao H, Wang Y, Zhu X. Chrysophanol exerts a protective effect against sepsis-induced acute myocardial injury through modulating the microRNA-27b-3p/Peroxisomal proliferating-activated receptor gamma axis. Bioengineered 2022; 13:12673-12690. [PMID: 35599576 PMCID: PMC9275920 DOI: 10.1080/21655979.2022.2063560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sepsis, a leading contributor to the death of inpatients, results in severe organ dysfunction as complications. The heart is one of the major organs attacked by sepsis, and the effective control of the inflammatory cascade reaction in sepsis is of great significance in alleviating sepsis-associated acute myocardial injury (S-AMI). Chrysophanol, a natural anthraquinone, has been discovered to carry anti-inflammatory effects. The aim of this paper is to probe the impact of Chrysophanol on S-AMI. An S-AMI model was engineered in rats via CLP. Pathological alterations in the myocardial tissues of rats were monitored. qRT-PCR, ELISA, and western blot measured the profiles of miR-27b-3p, Peroxisomal proliferating-activated receptor gamma (PPARG), inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8), and inflammatory response proteins (NF-κB-p65, MAPK-p38, JNK1/2). Besides, miR-27b-3p mimics were transfected into cardiomyocytes, and the proliferation and apoptosis of cardiomyocytes were examined through MTT and flow cytometry. As evidenced by the experimental outcomes, chrysophanol suppressed sepsis-mediated acute myocardial injury and LPS-mediated apoptosis in myocardial cells and lessened the release of pro-inflammatory cytokines and inflammatory response proteins. Moreover, chrysophanol cramped miR-27b-3p expression and heightened PPARG expression. miR-27b-3p targeted PPARG and restrained its expression. On the other hand, the PPARG agonist (RGZ) partially eliminated the apoptosis and pro-inflammatory responses of myocardial cells elicited by LPS. Therefore, this study revealed that Chrysophanol guarded against sepsis-mediated acute myocardial injury through dampening inflammation and apoptosis via the miR-27b-3p-PPARG axis, adding to the references for treating sepsis-AMI.
Collapse
Affiliation(s)
- Haiyan Zhao
- Dry Treatment Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xishan, China
| | - Yuping Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| | - Xiaolin Zhu
- Dry Treatment Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| |
Collapse
|
65
|
Ni L, Bai R, Zhou Q, Yuan C, Zhou LT, Wu X. The correlation between ferroptosis and m6A methylation in patients with acute kidney injury. Kidney Blood Press Res 2022; 47:523-533. [PMID: 35569444 DOI: 10.1159/000524900] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/23/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present research analyzed the correlation between m6A methylation and ferroptosis associated genes (FAGs) in acute kidney injury (AKI) patients. METHODS Bioinformatics analysis of microarray profiles (GSE30718) were performed to select differential expression genes (DEGs). FAGs are derived from systematic analysis of the aberrances and functional implications. The m6A methylation related genes were derived from the molecular characterization and clinical significance of m6A modulators. The multi-gene correlation of ferroptosis and M6A methylation modification were displayed. Then, the CIBERSORT algorithm was used to analyse the proportions of 22 immune cells infiltration. RESULTS In total, 349 DEGs were extracted between the AKI and control samples, among which 172 genes were up-regulated and 177 were down-regulated. FAGs (SLC1A5, CARS, SAT1, ACSL4, NFE2L2, TFRC and MT1G) and m6A methylation related genes (YTHDF3, WTAP and IGF2BP3) were significantly increased in AKI patients (P< 0.05). FAGs (SAT1, ACSL4 and NFE2L2) was positively correlated with the expression level of m6A methylation genes (P< 0.05). NFE2L2 has high diagnostic value, and level of NFE2L2 was negatively correlated with the degree of follicular helper T (TFH) cells infiltration. CONCLUSION Our research could provide a new theoretical basis for the pathogenesis and immune mechanism of AKI.
Collapse
Affiliation(s)
- Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Le-Ting Zhou
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
66
|
Xie Z, Wei L, Chen J, Chen Z. LncRNA NORAD deficiency alleviates kidney injury in mice and decreases the inflammatory response and apoptosis of lipopolysaccharide-stimulated HK-2 cells via the miR-577/GOLPH3 axis. Cytokine 2022; 153:155844. [DOI: 10.1016/j.cyto.2022.155844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
|
67
|
Fan H, Su BJ, Le JW, Zhu JH. Salidroside Protects Acute Kidney Injury in Septic Rats by Inhibiting Inflammation and Apoptosis. Drug Des Devel Ther 2022; 16:899-907. [PMID: 35386851 PMCID: PMC8978577 DOI: 10.2147/dddt.s361972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose To clarify the protective effect and mechanism of salidroside (SLDS) on acute kidney injury (AKI) in septic rats. Methods We pretreated rats with different doses of SLDS and analyzed the impact of SLDS on the survival of septic rats. We evaluated the levels of inflammatory factors in rats, the expression of NF-ƙB p65 in the kidney, and the apoptosis of kidney tubular epithelial cells (KTECs). Results SLDS significantly decreased the mortality of septic rats, and it reduced the levels of TNF-α, IL-1β, and IL-17A in plasma and kidneys and decreased the levels of serum creatinine, plasma renal injury molecule-1 and plasma neutrophil gelatin-associated lipocalin. Moreover, SLDS could significantly decrease the expression of NF-ƙB p65 in kidney tissues and the apoptotic number of KETCs, while reducing the mRNA levels of Caspase-3 and Bax mRNA, and increasing the level of Bcl-2 mRNA. Conclusion SLDS pretreatment protects against AKI in septic rats by inhibiting the inflammation of kidney and the apoptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Bin-Jie Su
- Department of Intensive Care Unit, Ningbo First Hospital Haishu Branch, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Wei Le
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
68
|
Guan M, Wang H, Tang X, Zhao Y, Wang F, Zhang L, Fu P. Continuous Renal Replacement Therapy With Adsorbing Filter oXiris in Acute Kidney Injury With Septic Shock: A Retrospective Observational Study. Front Med (Lausanne) 2022; 9:789623. [PMID: 35463014 PMCID: PMC9024201 DOI: 10.3389/fmed.2022.789623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Objective Sepsis/septic shock-associated acute kidney injury (S-AKI) is associated with prolonged kidney recovery and extremely high mortality. Extracorporeal blood purification therapy for the removal of endotoxin and cytokines might benefit patients with S-AKI. The purpose of this study was to compare the efficacy of adsorbing filter oXiris in the treatment of S-AKI. Design Setting Participants and Measurements This was a retrospective observational study conducted from September 2017 to June 2020 in ICU. All patients received CRRT for ≥24 h. The primary outcomes were mortality. The secondary outcomes included cardiovascular SOFA score and vasoactive-inotropic score (VIS), the SOFA, the reduction of inflammatory mediators. Results A total of 136 septic shock patients with AKI were included. The interventional group (oXiris group; n = 70) received CRRT with endotoxic and cytokine adsorption function hemofilter (oXiris), while the control group (ST150 group; n = 66) was treated with the ST150 hemofilter. The early mortality in 7 and 14 days was significantly lower in oXiris group compared with ST150 group (7 days: 47.1 vs. 74.2%, P = 0.007; 14 days: 58.5 vs. 80.3%, P = 0.005), but the difference was not significant in 90-day mortality (71.4 vs. 81.8%, P = 0.160). Additionally, the reduction of the SOFA score in the oXiris group at 24, 48, and 72 h CRRT was significantly faster than that in the controlled group. Meanwhile, the reduction of VIS score in the oXiris group compared with the ST150 group at 24 and 48 h after the initiation of CRRT was statistically significant (P < 0.05). Furthermore, the decreases in procalcitonin were greater in the oXiris group than those in the ST150 group at 24, 48, and 72h after initiation of CRRT. Multivariate Cox regression model demonstrated that oXiris (vs. ST150) played a favorably important role in the prognosis of septic shock patients with a hazard ratio (HR) of 0.500 (95% CI: 0.280-0.892; P = 019). Conclusion Although no difference was found in 90-day mortality, oXiris might reduce the short-term (<14-day) mortality compared with ST150 groups in septic shock with AKI. Further investigation in randomized controlled trials or high-quality prospective studies is warranted to validate the present findings.
Collapse
Affiliation(s)
- Mingjing Guan
- Division of Nephrology, Kidney Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Hao Wang
- Division of Osteopathic, Department of Surgery Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Tang
- Division of Nephrology, Kidney Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yuliang Zhao
- Division of Nephrology, Kidney Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Wang
- Division of Nephrology, Kidney Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Zhang
- Division of Nephrology, Kidney Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
69
|
Ou SM, Lee KH, Tsai MT, Tseng WC, Chu YC, Tarng DC. Sepsis and the Risks of Long-Term Renal Adverse Outcomes in Patients With Chronic Kidney Disease. Front Med (Lausanne) 2022; 9:809292. [PMID: 35280875 PMCID: PMC8908417 DOI: 10.3389/fmed.2022.809292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sepsis is known to cause renal function fluctuations during hospitalization, but whether these patients discharged from sepsis were still at greater risks of long-term renal adverse outcomes remains unknown. Methods From 2011 to 2018, we included 1,12,628 patients with chronic kidney disease (CKD) aged ≥ 20 years. The patients with CKD were further divided into 11,661 sepsis group and 1,00,967 non-sepsis group. The following outcome of interest was included: all-cause mortality, readmission for acute kidney injury, estimated glomerular filtration rate decline ≥50% or doubling of serum creatinine, and end-stage renal disease. Results After propensity score matching, the sepsis group was at higher risks of all-cause mortality [hazard ratio (HR) 1.39, 95% CI, 1.31–1.47], readmission for acute kidney injury (HR 1.67, 95% CI 1.58–1.76), eGFR decline ≥ 50% or doubling of serum creatinine (HR 3.34, 95% CI 2.78–4.01), and end-stage renal disease (HR 1.43, 95% CI 1.34–1.53) than non-sepsis group. Conclusions Our study found that patients with CKD discharged from hospitalization for sepsis have higher risks of subsequent renal adverse events.
Collapse
Affiliation(s)
- Shuo-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kuo-Hua Lee
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Cheng Tseng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yuan-Chia Chu
- Information Management Office, Taipei Veterans General Hospital, Taipei City, Taiwan.,Big Data Center, Taipei Veterans General Hospital, Taipei City, Taiwan.,Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan.,Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
70
|
Trifi A, Abdellatif S, Masseoudi Y, Mehdi A, Benjima O, Seghir E, Cherif F, Touil Y, Jeribi B, Daly F, Abdennebi C, Ammous A, Lakhal SB. COVID-19-induced acute kidney injury in critically ill patients: epidemiology, risk factors, and outcome. Acute Crit Care 2022; 36:308-316. [PMID: 35263826 PMCID: PMC8907460 DOI: 10.4266/acc.2021.00934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
Background The kidney represents a potential target for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Clinical data about acute kidney injury (AKI) during SARS-CoV-2 infection are lacking. We aimed to investigate the proportion, risk factors, and prognosis of AKI in critical patients affected with SARS-CoV-2. Methods A case/control study was conducted in two intensive care units of a tertiary teaching hospital. Results Among 109 patients, 75 were male (69%) with median age at 64 years and 48 (44%) developed AKI within 4 days (interquartile range [IQR], 1–9). Of them, 11 (23%), 9 (19%), and 28 (58%) were classified as stage 1, 2, and 3, respectively. AKI patients were older and presented more sepsis, acute respiratory distress syndrome, and rhabdomyolysis; higher initial urea and creatinine; more marked inflammatory syndrome and hematological disorders; and required more mechanical ventilation and vasopressors. An elevated D-dimers level (odds ratio [OR], 12.83; 95% confidence interval [CI], 1.9–85) was an independent factor of AKI. Sepsis was near to significance (OR, 5.22; 95% CI, 0.94–28; P=0.058). AKI was independently related to mortality (OR, 6.8; 95% CI, 1.49–105) and significantly reduced the survival (14.7 days; IQR, 12-17 vs. 19.9 days; IQR, 17-22.7; P=0.011) in AKI and no AKI group respectively. Hypoxemia with the ratio of the arterial partial pressure of oxygen and the inspiratory concentration of oxygen <70, and vasopressors were identified as mortality factors. Conclusions AKI occurred in almost half the studied patients and significantly worsened their prognosis. A high D-dimers level and sepsis contributed significantly to its development.
Collapse
Affiliation(s)
- Ahlem Trifi
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Sami Abdellatif
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Yosri Masseoudi
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Department of Anesthesia, University Hospital Center La Rabta, Tunis, Tunisia
| | - Asma Mehdi
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Oussama Benjima
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Department of Anesthesia, University Hospital Center La Rabta, Tunis, Tunisia
| | - Eya Seghir
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Fatma Cherif
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Department of Anesthesia, University Hospital Center La Rabta, Tunis, Tunisia
| | - Yosr Touil
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Bedis Jeribi
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Department of Anesthesia, University Hospital Center La Rabta, Tunis, Tunisia
| | - Foued Daly
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Cyrine Abdennebi
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Adel Ammous
- Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia.,Department of Anesthesia, University Hospital Center La Rabta, Tunis, Tunisia
| | - Salah Ben Lakhal
- Medical Intensive Care Unit, University Hospital Center La Rabta, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
71
|
Ye J, Feng H, Peng Z. miR-23a-3p inhibits sepsis-induced kidney epithelial cell injury by suppressing Wnt/β-catenin signaling by targeting wnt5a. Braz J Med Biol Res 2022; 55:e11571. [PMID: 35239776 PMCID: PMC8905671 DOI: 10.1590/1414-431x2021e11571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
The present study was designed to investigate the involvement of miR-23a-3p in the progression of sepsis-induced acute kidney injury (AKI). The expression levels of miR-23a-3p and wnt5a in sepsis-induced AKI patients and lipopolysaccharide (LPS)-treated HK-2 cells were detected by real-time PCR and western blotting. Then, the effects of miR-23a-3p overexpression on cell viability, apoptosis, and inflammatory cytokines secretion in LPS-stimulated HK-2 cells were investigated. Moreover, luciferase reporter assay was performed to confirm the regulatory relationship between miR-23a-3p and wnt5a. Whether miR-23a-3p regulated the activation of Wnt/β-catenin signaling was also explored. mR-23a-3p was lowly expressed in the serum of patients with sepsis-associated AKI and in LPS-treated HK-2 cells. In addition, the overexpression of miR-23a-3p restrained LPS-induced proliferation inhibition and promotion of apoptosis and cytokine production in HK-2 cells. Moreover, wnt5a was identified as a target of miR-23a-3p, which could be negatively regulated by miR-23a-3p. Overexpression of miR-23a-3p suppressed the activation of Wnt/β-catenin signaling in LPS-treated HK-2 cells, which was markedly reversed by wnt5a upregulation. Upregulation of miR-23a-3p may alleviate LPS-induced cell injury by targeting wnt5a and inactivating Wnt/β-catenin pathway, which may serve as a novel therapeutic target for sepsis-associated AKI.
Collapse
Affiliation(s)
- Junwei Ye
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huibing Feng
- Department of Critical Care Medicine, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
72
|
Targeted Regional Optimization in Action: Dose-Dependent end Organ Ischemic Injury with Partial Aortic Occlusion in The Setting of Ongoing Liver Hemorrhage. Shock 2022; 57:732-739. [PMID: 35234207 DOI: 10.1097/shk.0000000000001922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Targeted regional optimization (TRO) describes partial resuscitative endovascular balloon occlusion of the aorta (REBOA) strategy that allows for controlled distal perfusion to balance hemostasis and tissue perfusion. This study characterized hemodynamics at specific targeted distal flow rates in a swine model of uncontrolled hemorrhage to determine if precise TRO by volume was possible. METHODS Anesthetized swine were subjected to liver laceration and randomized into TRO at distal flows of 300 (n = 8), 500 (n = 8) or 700 ml/min (n = 8). After 90 minutes, the animals received damage control packing and were monitored for 6 hours. Hemodynamic parameters were measured continuously, and hematology and serologic labs obtained at predetermined intervals. RESULTS During TRO, the average percent deviation from the targeted flow was lower than 15.9% for all cohorts. Average renal flow rates were significantly different across all cohorts during TRO phase (p<0.0001; TRO300 = 63.1 ± 1.2; TRO500=133.70 ± 1.93; TRO700=109.3 ± 2.0), with the TRO700 cohort having less renal flow than TRO500. The TRO500 and TRO700 average renal flow rates inverted during the ICU phase (p < 0.0001; TRO300=86.20 ± 0.40; TRO500=148.50 ± 1.45; TRO700= 181.1 ± 0.70). There was higher BUN, creatinine, and potassium in the TRO300 cohort at the end of the experiment, but no difference in lactate or pH between cohorts. CONCLUSION This study demonstrated technical feasibility of TRO as a strategy to improve outcomes after prolonged periods of aortic occlusion and resuscitation in the setting of ongoing solid organ hemorrhage. A dose-dependent ischemic end-organ injury occurs beginning with partial aortic occlusion that progresses through the critical care phase, with exaggerated effect on renal function.
Collapse
|
73
|
Ning Q, Wu D, Wang X, Xi D, Chen T, Chen G, Wang H, Lu H, Wang M, Zhu L, Hu J, Liu T, Ma K, Han M, Luo X. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Ther 2022; 7:57. [PMID: 35197452 PMCID: PMC8863906 DOI: 10.1038/s41392-022-00907-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Qin Ning
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Di Wu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Lu
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
74
|
Hematological Ratios Are Associated with Acute Kidney Injury and Mortality in Patients That Present with Suspected Infection at the Emergency Department. J Clin Med 2022; 11:jcm11041017. [PMID: 35207289 PMCID: PMC8874958 DOI: 10.3390/jcm11041017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
The early recognition of acute kidney injury (AKI) is essential to improve outcomes and prevent complications such as chronic kidney disease, the need for renal-replacement therapy, and an increased length of hospital stay. Increasing evidence shows that inflammation plays an important role in the pathophysiology of AKI and mortality. Several inflammatory hematological ratios can be used to measure systemic inflammation. Therefore, the association between these ratios and outcomes (AKI and mortality) in patients suspected of having an infection at the emergency department was investigated. Data from the SPACE cohort were used. Cox regression was performed to investigate the association between seven hematological ratios and outcomes. A total of 1889 patients were included, of which 160 (8.5%) patients developed AKI and 102 (5.4%) died in <30 days. The Cox proportional-hazards model revealed that the neutrophil-to-lymphocyte ratio (NLR), segmented-neutrophil-to-monocyte ratio (SMR), and neutrophil-lymphocyte-platelet ratio (NLPR) are independently associated with AKI <30 days after emergency-department presentation. Additionally, the NLR, SMR and NLPR were associated with 30-day all-cause mortality. These findings are an important step forward for the early recognition of AKI. The use of these markers might enable emergency-department physicians to recognize and treat AKI in an early phase to potentially prevent complications.
Collapse
|
75
|
Tang W, Wang L, Liu Y, Xiao D. RasGRP exacerbates lipopolysaccharides-induced acute kidney injury through regulating ERKs activation. Open Forum Infect Dis 2022; 9:ofac041. [PMID: 35198649 PMCID: PMC8860163 DOI: 10.1093/ofid/ofac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Excessive inflammatory activities are reported to be the primary cause of sepsis-induced acute kidney injury (AKI). Ras guanyl nucleotide-releasing protein (RasGRP) could prevent inflammatory response. However, its role in the regulation of inflammatory response in sepsis-associated AKI remains unclear. Methods Wild-type or RasGRP1-deficient mice were treated with lipopolysaccharide intraperitoneally in combination with D-galactosamine to establish a mouse model of sepsis-associated AKI. Serum inflammatory cytokines were measured using enzyme-linked immunosorbent assay. The messenger RNA (mRNA) levels of interleukin 6, tumor necrosis factor, nitric oxide synthase 2, and interleukin 1β were measured using quantitative reverse-transcription polymerase chain reaction. The morphological change in kidney tubule was determined by hematoxylin-and-eosin staining. The protein levels of RasGRP, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) were determined using Western blot. Results RasGRP1 mRNA and protein levels were significantly increased in patients with sepsis-related AKI compared to those in healthy subjects. RasGRP knockout markedly reduced inflammatory cytokines induced by AKI in sepsis when compared with wild-type mice. Additionally, RasGRP deficiency inhibited the phosphorylation of ERK1/2 without altering JNK expression. In conclusion, we demonstrate that RasGRP1 plays a pivotal role in sepsis-associated AKI. Downregulation of RasGRP1 could significantly inhibit inflammatory response by inhibiting the activation of ERK1/2 and mitogen-activated protein kinase pathway, thereby reducing AKI induced by sepsis. Conclusions Our data suggest that RasGRP exacerbates lipopolysaccharide-induced acute kidney injury through regulating ERK activation, which reveals a potential therapeutic target for the treatment of sepsis-induced AKI.
Collapse
Affiliation(s)
- Wen Tang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Lu Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Yan Liu
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| | - Dong Xiao
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Tianshan District, Urumqi 830001, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
76
|
Andronesi A, Sorohan B, Burcea A, Lipan L, Stanescu C, Craciun O, Stefan L, Ranete A, Varady Z, Ungureanu O, Lupusoru G, Agrigoroaei G, Andronesi D, Iliuta L, Obrisca B, Tanase A. Incidence and Risk Factors for Acute Kidney Injury after Allogeneic Stem Cell Transplantation: A Prospective Study. Biomedicines 2022; 10:biomedicines10020262. [PMID: 35203472 PMCID: PMC8869231 DOI: 10.3390/biomedicines10020262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
(1) Background: Acute kidney injury (AKI) is a serious complication of hematopoietic stem cell transplantation (HSCT). (2) Methods: The aim was to identify the incidence, severity, and risk factors for AKI during the first 100 days after allo-HSCT; we performed a prospective observational study on 135 consecutive patients. (3) Results: The mean age was 38.3 ± 11.9 years (50.6% females), AKI developed in 93 patients (68.9%), the median time of appearance was 28 days, and the mean serum creatinine at the time of AKI was 1.8 ± 0.8 mg/dL. A total of 36 (38.7%) patients developed stage 1 AKI, 33 (35.5%) patients developed stage 2, and 24 (25.8%) patients developed stage 3; eight (8.6%) patients required temporary hemodialysis, and the mortality rate in these patients was 87.5%. Death was twice as frequent in the AKI subgroup, without statistical significance. Cyclosporine overdose (HR = 2.36, 95% CI: 1.45-3.85, p = 0.001), tacrolimus overdose (HR = 4.72, 95% CI: 2.22-10.01, p < 0.001), acute graft-versus-host disease (aGVHD) (HR = 1.96, 95% CI: 1.13-3.40, p = 0.01), and CRP level (HR = 1.009, 95% CI: 1.007-1.10, p < 0.001) were independent risk factors for AKI. Sepsis (HR = 5.37, 95% CI: 1.75-16.48, p = 0.003) and sinusoidal obstruction syndrome (HR = 5.10, 95% CI: 2.02-12.85, p = 0.001) were found as independent risk factors for AKI stage 3. (4) Conclusions: AKI occurs with high incidence and increased severity after allo-HSCT. Careful monitoring of calcineurin inhibitors and proper management of sepsis may reduce this risk.
Collapse
Affiliation(s)
- Andreea Andronesi
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.S.); (G.L.); (G.A.); (B.O.)
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
- Correspondence: ; Tel.: +40-723-361-457
| | - Bogdan Sorohan
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.S.); (G.L.); (G.A.); (B.O.)
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
| | - Andreea Burcea
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
| | - Lavinia Lipan
- Bone Marrow Transplant Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (L.L.); (O.C.); (L.S.); (A.R.); (Z.V.); (A.T.)
| | - Cristina Stanescu
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
| | - Oana Craciun
- Bone Marrow Transplant Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (L.L.); (O.C.); (L.S.); (A.R.); (Z.V.); (A.T.)
| | - Laura Stefan
- Bone Marrow Transplant Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (L.L.); (O.C.); (L.S.); (A.R.); (Z.V.); (A.T.)
| | - Adela Ranete
- Bone Marrow Transplant Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (L.L.); (O.C.); (L.S.); (A.R.); (Z.V.); (A.T.)
| | - Zsofia Varady
- Bone Marrow Transplant Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (L.L.); (O.C.); (L.S.); (A.R.); (Z.V.); (A.T.)
| | - Oana Ungureanu
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
| | - Gabriela Lupusoru
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.S.); (G.L.); (G.A.); (B.O.)
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
| | - Gabriela Agrigoroaei
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.S.); (G.L.); (G.A.); (B.O.)
| | - Danut Andronesi
- Department of General Surgery and Liver Transplant, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Luminita Iliuta
- Department of Biostatistics, Marketing and Medical Technology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Bogdan Obrisca
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (B.S.); (G.L.); (G.A.); (B.O.)
- Nephrology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.B.); (C.S.); (O.U.)
| | - Alina Tanase
- Bone Marrow Transplant Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (L.L.); (O.C.); (L.S.); (A.R.); (Z.V.); (A.T.)
| |
Collapse
|
77
|
Kharrat A, Jain A. Hemodynamic dysfunction in neonatal sepsis. Pediatr Res 2022; 91:413-424. [PMID: 34819654 DOI: 10.1038/s41390-021-01855-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 11/09/2022]
Abstract
Cardiovascular disturbances are a frequent occurrence in neonatal sepsis. Preterm and term infants are particularly vulnerable due to the unique features of their cardiovascular function and reserve, compared to older children and adults. The clinical manifestations of neonatal sepsis are a product of the variable inflammatory pathways involved (warm vs. cold shock physiology), developmental state of the cardiovascular system, and hormonal responses. Targeted neonatal echocardiography has played an important role in advancing our knowledge, may help delineate specific hemodynamic phenotypes in real-time, and supports an individualized physiology-based management of sepsis-associated cardiovascular dysfunction. IMPACT: Cardiovascular dysfunction is a common sequela of sepsis. This review aims to highlight the pathophysiological mechanisms involved in hemodynamic disturbance in neonatal sepsis, provide insights from targeted neonatal echocardiography-based clinical studies, and suggest its potential incorporation in day-to-day management.
Collapse
Affiliation(s)
- Ashraf Kharrat
- Department of Paediatrics, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| | - Amish Jain
- Department of Paediatrics, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| |
Collapse
|
78
|
Zhang L, Xu F, Han D, Huang T, Li S, Yin H, Lyu J. Influence of the trajectory of the urine output for 24 h on the occurrence of AKI in patients with sepsis in intensive care unit. J Transl Med 2021; 19:518. [PMID: 34930308 PMCID: PMC8686667 DOI: 10.1186/s12967-021-03190-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (S-AKI) is a common and life-threatening complication in hospitalized and critically ill patients. This condition is an independent cause of death. This study was performed to investigate the correlation between the trajectory of urine output within 24 h and S-AKI. METHODS Patients with sepsis were studied retrospectively based on the Medical Information Mart for Intensive Care IV. Latent growth mixture modeling was used to classify the trajectory of urine output changes within 24 h of sepsis diagnosis. The outcome of this study is AKI that occurs 24 h after sepsis. Cox proportional hazard model, Fine-Gray subdistribution proportional hazard model, and doubly robust estimation method were used to explore the risk of AKI in patients with different trajectory classes. RESULTS A total of 9869 sepsis patients were included in this study, and their 24-h urine output trajectories were divided into five classes. The Cox proportional hazard model showed that compared with class 1, the HR (95% CI) values for classes 3, 4, and 5 were 1.460 (1.137-1.875), 1.532 (1.197-1.961), and 2.232 (1.795-2.774), respectively. Competing risk model and doubly robust estimation methods reached similar results. CONCLUSIONS The trajectory of urine output within 24 h of sepsis patients has a certain impact on the occurrence of AKI. Therefore, in the early treatment of sepsis, close attention should be paid to changes in the patient's urine output to prevent the occurrence of S-AKI.
Collapse
Affiliation(s)
- Luming Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China
| | - Fengshuo Xu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Didi Han
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tao Huang
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China
| | - Shaojin Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China.
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, People's Republic of China.
| |
Collapse
|
79
|
The incidence, mortality and renal outcomes of acute kidney injury in patients with suspected infection at the emergency department. PLoS One 2021; 16:e0260942. [PMID: 34879093 PMCID: PMC8654152 DOI: 10.1371/journal.pone.0260942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background Acute kidney injury (AKI) is a major health problem associated with considerable mortality and morbidity. Studies on clinical outcomes and mortality of AKI in the emergency department are scarce. The aim of this study is to assess incidence, mortality and renal outcomes after AKI in patients with suspected infection at the emergency department. Methods We used data from the SPACE-cohort (SePsis in the ACutely ill patients in the Emergency department), which included consecutive patients that presented to the emergency department of the internal medicine with suspected infection. Hazard ratios (HR) were assessed using Cox regression to investigate the association between AKI, 30-days mortality and renal function decline up to 1 year after AKI. Survival in patients with and without AKI was assessed using Kaplan-Meier analyses. Results Of the 3105 patients in the SPACE-cohort, we included 1716 patients who fulfilled the inclusion criteria. Of these patients, 10.8% had an AKI episode. Mortality was 12.4% for the AKI group and 4.2% for the non-AKI patients. The adjusted HR for all-cause mortality at 30-days in AKI patients was 2.8 (95% CI 1.7–4.8). Moreover, the cumulative incidence of renal function decline was 69.8% for AKI patients and 39.3% for non-AKI patients. Patients with an episode of AKI had higher risk of developing renal function decline (adjusted HR 3.3, 95% CI 2.4–4.5) at one year after initial AKI-episode at the emergency department. Conclusion Acute kidney injury is common in patients with suspected infection in the emergency department and is significantly associated with 30-days mortality and renal function decline one year after AKI.
Collapse
|
80
|
Li X, Li T, Wang J, Dong G, Zhang M, Xu Z, Hu Y, Xie B, Yang J, Wang Y. Higher blood urea nitrogen level is independently linked with the presence and severity of neonatal sepsis. Ann Med 2021; 53:2192-2198. [PMID: 34783614 PMCID: PMC8604458 DOI: 10.1080/07853890.2021.2004317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that blood urea nitrogen (BUN) is strongly associated with sepsis. However, no data are currently available regarding the association of BUN levels and neonatal sepsis. Thus, this study aimed to investigate the role of BUN in predicting the presence and severity of neonatal sepsis. METHODS In this study, we enrolled 925 neonates. Among them, 737 neonates were diagnosed with sepsis, including 426 neonates with severe sepsis. Neonates with hyperbilirubinemia (n = 188) served as controls. We collected complete clinical and laboratory data were collected. Multivariate logistic regression analysis was performed to identify the potential independent risk factor for neonatal sepsis. Receiver operating characteristic (ROC) curve analysis was used to evaluate the prediction accuracy of BUN in predicting neonatal sepsis. All statistical analyses were performed using the statistical package SPSS 24.0. RESULTS Neonates with sepsis and severe sepsis had a higher level of BUN. The prevalence of neonates with severe sepsis was dramatically increased according to BUN tertiles. Correlation analysis showed that BUN levels were positively correlated with the levels of infection marker procalcitonin (PCT) and high-sensitivity C-reactive protein (hsCRP). Multiple logistic regression analysis showed that BUN was an independent risk factor for the presence and severity of neonatal sepsis. ROC curve analysis showed that BUN had a well discriminatory power in predicting sepsis (area under curve (AUC) = 0.69, 95% CI, 0.66-0.74, p < .001) and severe sepsis (AUC = 0.72, 95% CI, 0.67-0.78, p < .001). CONCLUSION Higher BUN level is independently linked with the presence and severity of neonatal sepsis.
Collapse
Affiliation(s)
- Xiaojuan Li
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Tiewei Li
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jingjing Wang
- Department of Neonatology, Ordos Central Hospital, Ordos, China
| | - Geng Dong
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Min Zhang
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhe Xu
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yidi Hu
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Bo Xie
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuewu Wang
- The Engineering Research Center for New Drug Screening, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
81
|
Parvin S, Williams CR, Jarrett SA, Garraway SM. Spinal Cord Injury Increases Pro-inflammatory Cytokine Expression in Kidney at Acute and Sub-chronic Stages. Inflammation 2021; 44:2346-2361. [PMID: 34417952 PMCID: PMC8616867 DOI: 10.1007/s10753-021-01507-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.
Collapse
Affiliation(s)
- Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| | - Clintoria R. Williams
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
- Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH USA
| | - Simone A. Jarrett
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| |
Collapse
|
82
|
Tabah A, Buetti N, Barbier F, Timsit JF. Current opinion in management of septic shock due to Gram-negative bacteria. Curr Opin Infect Dis 2021; 34:718-727. [PMID: 34751185 DOI: 10.1097/qco.0000000000000767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic has caused multiple challenges to ICUs, including an increased rate of secondary infections, mostly caused by Gram-negative micro-organisms. Worrying trends of resistance acquisition complicate this picture. We provide a review of the latest evidence to guide management of patients with septic shock because of Gram-negative bacteria. RECENT FINDINGS New laboratory techniques to detect pathogens and specific resistance patterns from the initial culture are available. Those may assist decreasing the time to adequate antimicrobial therapy and avoid unnecessary broad-spectrum antibiotic overuse. New antimicrobials, including β-lactam/β-lactamase inhibitor combinations, such as ceftolozane-tazobactam, imipenem-relebactam or meropenem-vaborbactam and cephalosporins, such as cefiderocol targeted to specific pathogens and resistance patterns are available for use in the clinical setting. Optimization of antibiotic dosing and delivery should follow pharmacokinetic and pharmacodynamic principles and wherever available therapeutic drug monitoring. Management of sepsis has brought capillary refill time back to the spotlight along with more reasoned fluid resuscitation and a moderate approach to timing of dialysis initiation. SUMMARY Novel rapid diagnostic tests and antimicrobials specifically targeted to Gram-negative pathogens are available and should be used within the principles of antimicrobial stewardship including de-escalation and short duration of antimicrobial therapy.
Collapse
Affiliation(s)
- Alexis Tabah
- Intensive Care Unit, Redcliffe Hospital, Redcliffe.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Niccolò Buetti
- Infection Control Program and World Health Organization Collaborating Centre on Patient Safety, University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,University of Paris, INSERM U1137, IAME, Team DeSCID, Paris
| | | | - Jean-François Timsit
- University of Paris, INSERM U1137, IAME, Team DeSCID, Paris.,Medical and Infectious Diseases Intensive Care Unit (MI2), Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| |
Collapse
|
83
|
Renal Recovery in Critically Ill Adult Patients Treated with Veno-Venous Or Veno-Arterial Extra Corporeal Membrane Oxygenation: a Retrospective Cohort Analysis. J Crit Care Med (Targu Mures) 2021; 7:104-112. [PMID: 34722911 PMCID: PMC8519359 DOI: 10.2478/jccm-2021-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Patients on extracorporeal membrane oxygenator (ECMO) therapy are critically ill and often develop acute kidney injury (AKI) during hospitalisation. Little is known about the association of exposure to and the effect of the type of ECMO and extent of renal recovery after AKI development. Aim of the study In patients who developed AKI, renal recovery was characterised as complete, partial or dialysis-dependent at the time of hospital discharge in both the Veno-Arterial (VA) and Veno-Venous (VV) ECMO treatment groups. Material and methods The study consisted of a single-centre retrospective cohort that includes all adult patients (n=125) who received ECMO treatment at a tertiary academic medical centre between 2015 to 2019. Data on demographics, type of ECMO circuit, comorbidities, exposure to nephrotoxic factors and receipt of renal replacement therapy (RRT) were collected as a part of the analysis. Acute Kidney Injury Network (AKIN) criteria were used for the diagnosis and classification of AKI. Group differences were assessed using Fisher’s exact tests for categorical data and independent t-tests for continuous outcomes. Results Sixty-four patients received VA ECMO, and 58 received VV ECMO. AKI developed in 58(91%) in the VA ECMO group and 51 (88%) in the VV ECMO group (p=0.77). RRT was prescribed in significantly higher numbers in the VV group 38 (75%) compared to the VA group 27 (47%) (p=0.0035). At the time of discharge, AKI recovery rate in the VA group consisted of 15 (26%) complete recovery and 5 (9%) partial recovery; 1 (2%) remained dialysis-dependent. In the VV group, 22 (43%) had complete recovery (p=0.07), 3(6%) had partial recovery (p=0.72), and 1 (2%) was dialysis-dependent (p>0.99). In-hospital mortality was 64% in the VA group and 49% in the VV group (p=0.13). Conclusions Renal outcomes in critically ill patients who develop AKI are not associated with the type of ECMO used. This serves as preliminary data for future studies in the area.
Collapse
|
84
|
Hassler L, Reyes F, Sparks MA, Welling P, Batlle D. Evidence For and Against Direct Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clin J Am Soc Nephrol 2021; 16:1755-1765. [PMID: 34127485 PMCID: PMC8729421 DOI: 10.2215/cjn.04560421] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite evidence of multiorgan tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with coronavirus disease 2019 (COVID-19), direct viral kidney invasion has been difficult to demonstrate. The question of whether SARS-CoV2 can directly infect the kidney is relevant to the understanding of pathogenesis of AKI and collapsing glomerulopathy in patients with COVID-19. Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry, immunofluorescence, RT-PCR, in situ hybridization, and electron microscopy. In our review of studies to date, we found that SARS-CoV-2 in the kidneys of patients with COVID-19 was detected in 18 of 94 (19%) by immunohistochemistry, 71 of 144 (49%) by RT-PCR, and 11 of 84 (13%) by in situ hybridization. In a smaller number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13 (77%). In total, in kidneys from 102 of 235 patients (43%), the presence of SARS-CoV-2 was suggested by at least one of the methods used. Despite these positive findings, caution is needed because many other studies have been negative for SARS-CoV-2 and it should be noted that when detected, it was only in kidneys obtained at autopsy. There is a clear need for studies from kidney biopsies, including those performed at early stages of the COVID-19-associated kidney disease. Development of tests to detect kidney viral infection in urine samples would be more practical as a noninvasive way to evaluate SARS-CoV-2 infection during the evolution of COVID-19-associated kidney disease.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois
| | - Fabiola Reyes
- Divison of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew A. Sparks
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina
- Renal Section, Durham Veterans Affairs Health Care System, Durham, North Carolina
| | - Paul Welling
- Departments of Medicine (Nephrology) and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois
| |
Collapse
|
85
|
Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol 2021; 17:751-764. [PMID: 34226718 PMCID: PMC8256398 DOI: 10.1038/s41581-021-00452-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Although respiratory failure and hypoxaemia are the main manifestations of COVID-19, kidney involvement is also common. Available evidence supports a number of potential pathophysiological pathways through which acute kidney injury (AKI) can develop in the context of SARS-CoV-2 infection. Histopathological findings have highlighted both similarities and differences between AKI in patients with COVID-19 and in those with AKI in non-COVID-related sepsis. Acute tubular injury is common, although it is often mild, despite markedly reduced kidney function. Systemic haemodynamic instability very likely contributes to tubular injury. Despite descriptions of COVID-19 as a cytokine storm syndrome, levels of circulating cytokines are often lower in patients with COVID-19 than in patients with acute respiratory distress syndrome with causes other than COVID-19. Tissue inflammation and local immune cell infiltration have been repeatedly observed and might have a critical role in kidney injury, as might endothelial injury and microvascular thrombi. Findings of high viral load in patients who have died with AKI suggest a contribution of viral invasion in the kidneys, although the issue of renal tropism remains controversial. An impaired type I interferon response has also been reported in patients with severe COVID-19. In light of these observations, the potential pathophysiological mechanisms of COVID-19-associated AKI may provide insights into therapeutic strategies.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, CA, USA.
- Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists network, Nancy, France.
| | - Samira Bell
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Lui Forni
- Intensive Care Unit, Royal Surrey Hospital NHS Foundation Trust, Surrey, UK
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, University of Surrey, Surrey, UK
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Jay L Koyner
- Divisions of Nephrology, Departments of Medicine, University of Chicago, Chicago, IL, USA
| | - Kathleen Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of San Francisco, San Francisco, CA, USA
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
86
|
Cau A, Cheng MP, Lee T, Levin A, Lee TC, Vinh DC, Lamontagne F, Singer J, Walley KR, Murthy S, Patrick D, Rewa O, Winston B, Marshall J, Boyd J, Russell JA. Acute Kidney Injury and Renal Replacement Therapy in COVID-19 Versus Other Respiratory Viruses: A Systematic Review and Meta-Analysis. Can J Kidney Health Dis 2021; 8:20543581211052185. [PMID: 34733538 PMCID: PMC8558598 DOI: 10.1177/20543581211052185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a potentially fatal complication of Coronavirus Disease-2019 (COVID-19). Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, to its viral receptor, angiotensin converting enzyme 2 (ACE2), results in viral entry and may cause AKI. OBJECTIVES We performed a systematic review and meta-analysis of the frequencies of AKI and renal replacement therapy (RRT) in critically ill COVID-19 patients and compared those frequencies with patients who were infected by respiratory viruses that bind or downregulate ACE2 (ACE2-associated viruses) and viruses that do not bind nor downregulate ACE2 (non-ACE2-associated viruses). DESIGN Systematic review and meta-analysis. SETTING Observational studies on COVID-19 and other respiratory viral infections reporting AKI and RRT were included. The exclusion criteria were non-English articles, non-peer-reviewed articles, review articles, studies that included patients under the age of 18, studies including fewer than 10 patients, and studies not reporting AKI and RRT rates. PATIENTS Adult COVID-19, Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and influenza patients. MEASUREMENTS We extracted the following data from the included studies: author, year, study location, age, sex, race, diabetes mellitus, hypertension, chronic kidney disease, shock, vasopressor use, mortality, intensive care unit (ICU) admission, ICU mortality, AKI, and RRT. METHODS We systematically searched PubMed and EMBASE for articles reporting AKI or RRT. AKI was defined by authors of included studies. Critical illness was defined by ICU admission. We performed a random effects meta-analysis to calculate pooled estimates for the AKI and RRT rate within each virus group using a random intercept logistic regression model. RESULTS Of 23 655 hospitalized, critically ill COVID-19 patients, AKI frequencies were not significantly different between COVID-19 patients (51%, 95% confidence interval [CI]: 44%-57%) and critically ill patients infected with ACE2-associated (56%, 95% CI: 37%-74%, P = .610) or non-ACE2-associated viruses (63%, 95% CI: 43%-79%, P = .255). Pooled RRT rates were also not significantly different between critically ill, hospitalized patients with COVID-19 (20%, 95% CI: 16%-24%) and ACE2-associated viruses (18%, 95% CI: 8%-33%, P = .747). RRT rates for both COVID-19 and ACE2-associated viruses were significantly different (P < .001 for both) from non-ACE2-associated viruses (49%, 95% CI: 44%-54%). After adjusting for shock or vasopressor use, AKI and RRT rates were not significantly different between groups. LIMITATIONS Limitations of this study include the heterogeneity of definitions of AKI that were used across different virus studies. We could not match severity of infection or do propensity matching across studies. Most of the included studies were conducted in retrospective fashion. Last, we did not include non-English publications. CONCLUSIONS Our findings suggest that viral ACE2 association does not significantly alter the rates of AKI and RRT among critically ill patients admitted to the ICU. However, the rate of RRT is lower in patients with COVID-19 or ACE2-associated viruses when compared with patients infected with non-ACE2-binding viruses, which might partly be due to the lower frequencies of shock and use of vasopressors in these two virus groups. Prospective studies are necessary to demonstrate whether modulation of the ACE2 axis with Renin-Angiotensin System inhibitors impacts the rates of AKI and whether they are beneficial or harmful in COVID-19 patients.
Collapse
Affiliation(s)
- A. Cau
- The University of British Columbia, Vancouver, BC, Canada
| | - M. P. Cheng
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Terry Lee
- Centre for Health Evaluation & Outcomes Science, The University of British Columbia, Vancouver, BC, Canada
| | - A. Levin
- Division of Nephrology, St. Paul’s Hospital, Vancouver, BC, Canada
| | - T. C. Lee
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - D. C. Vinh
- Department of Medicine, McGill University, Montreal, QC, Canada
| | | | - J. Singer
- Centre for Health Evaluation & Outcomes Science, The University of British Columbia, Vancouver, BC, Canada
| | - K. R. Walley
- Centre for Heart Lung Innovation, St. Paul’s Hospital and The University of British Columbia, Vancouver, BC, Canada
| | - S. Murthy
- BC Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - D. Patrick
- British Columbia Centre for Disease Control and The University of British Columbia, Vancouver, BC, Canada
| | - O. Rewa
- University of Alberta, Edmonton, AB, Canada
| | - B. Winston
- University of Calgary, Calgary, AB, Canada
| | - J. Marshall
- St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - J. Boyd
- Centre for Heart Lung Innovation, St. Paul’s Hospital and The University of British Columbia, Vancouver, BC, Canada
| | - JA Russell
- Centre for Heart Lung Innovation, St. Paul’s Hospital and The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
87
|
Rosales TO, Horewicz VV, Ferreira MA, Nardi GM, Assreuy J. Dynamics of GRK2 in the kidney: a putative mechanism for sepsis-associated kidney injury. Clin Sci (Lond) 2021; 135:2341-2356. [PMID: 34622918 DOI: 10.1042/cs20210462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023]
Abstract
Renal vascular reactivity to vasoconstrictors is preserved in sepsis in opposition to what happens in the systemic circulation. We studied whether this distinct behavior was related to α1 adrenergic receptor density, G protein-coupled receptor kinase 2 (GRK2) and the putative role of nitric oxide (NO). Sepsis was induced in female mice by cecal ligation and puncture (CLP). Wildtype mice were treated with prazosin 12 h after CLP or nitric oxide synthase 2 (NOS-2) inhibitor, 30 min before and 6 and 12 h after CLP. In vivo experiments and biochemistry assays were performed 24 h after CLP. Sepsis decreased the systemic mean arterial pressure (MAP) and the vascular reactivity to phenylephrine. Sepsis also reduced basal renal blood flow which was normalized by treatment with prazosin. Sepsis led to a substantial decrease in GRK2 level associated with an increase in α1 adrenergic receptor density in the kidney. The disappearance of renal GRK2 was prevented in NOS-2-KO mice or mice treated with 1400 W. Treatment of non-septic mice with an NO donor reduced GRK2 content in the kidney. Therefore, our results show that an NO-dependent reduction in GRK2 level in the kidney leads to the maintenance of a normal α1 adrenergic receptor density. The preservation of the density and/or functionality of this receptor in the kidney together with a higher vasoconstrictor tonus in sepsis lead to vasoconstriction. Thus, the increased concentration of vasoconstrictor mediators together with the preservation (and even increase) of the response to them may help to explain sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
| | | | | | - Geisson Marcos Nardi
- Department of Morphological Sciences, Universidade Federal de Santa Catarina, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina, SC, Brazil
| |
Collapse
|
88
|
He J, Du J, Yi B, Wang J, Zhang H, Li YC, Sun J. MicroRNA-122 contributes to lipopolysaccharide-induced acute kidney injury via down-regulating the vitamin D receptor in the kidney. Eur J Clin Invest 2021; 51:e13547. [PMID: 33782973 DOI: 10.1111/eci.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Our previous studies showed that vitamin D receptor (VDR) depletion promotes lipopolysaccharide (LPS)-induced acute kidney injury (AKI) in mice, and renal VDR is down-regulated in AKI, but the mechanism of VDR down-regulation is unclear. METHODS Nutritional vitamin D deficiency was induced by feeding mice a vitamin D-deficient (VD-D) diet. Mice were injected intraperitoneally with LPS (20 mg/kg) to establish LPS-induced AKI. Levels of VDR and miR-122 were measured both in vivo and in vitro. The associations between VDR and miR-122 were analysed by dual-luciferase reporter assays. RESULTS Compared with vitamin D-sufficient (VD-S) mice, VD-D mice developed more severe renal injury following LPS challenge. LPS induced a dramatic decrease in VDR expression and marked induction of miR-122 both in vivo and in vitro. Furthermore, miR-122 hairpin inhibitor alleviated LPS-induced VDR down-regulation whereas miR-122 mimic directly suppressed VDR expression in HK-2 cells. In luciferase reporter assays, miR-122 mimic was able to suppress luciferase activity in 293T cells co-transfected with a luciferase reporter that contains a putative miR-122 target site from 3'UTR of the VDR transcript, but not when this site was mutated. Moreover, miR-122 mimic significantly blocked paricalcitol-induced luciferase activity in 293T cells co-transfected with a VDRE-driven luciferase reporter, whereas miR-122 hairpin inhibitor enhanced paricalcitol's activity to suppress PUMA and caspase 3 activation induced by LPS in HK-2 cells. CONCLUSIONS Collectively, these studies provide evidence that miR-122 directly targets VDR in renal tubular cells, which strongly suggest that miR-122 up-regulation in the kidney under LPS challenge contributes to kidney injury by down-regulating VDR expression.
Collapse
Affiliation(s)
- Jinrong He
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL, USA
| | - Jian Sun
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Rheumatology and Immunology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
89
|
Thongprayoon C, Petnak T, Kaewput W, Mao MA, Boonpheng B, Bathini T, Vallabhajosyula S, Lertjitbanjong P, Qureshi F, Cheungpasitporn W. Acute kidney injury in hospitalized patients with methanol intoxication: National Inpatient Sample 2003-2014. Hosp Pract (1995) 2021; 49:203-208. [PMID: 33496631 DOI: 10.1080/21548331.2021.1882239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND This study aimed to 1) determine the incidence of acute kidney injury (AKI), 2) identify risk factors for AKI, and 3) evaluate the impact of AKI on in-hospital outcomes in hospitalized patients for methanol intoxication. METHODS We searched the National Inpatient Sample Database for hospitalized patients from 2003 to 2014 with a primary diagnosis of methanol intoxication. We excluded patients with end-stage kidney disease. We identified the AKI using a discharge diagnosis code. We compared clinical characteristics, in-hospital treatment, outcomes, and resource use between AKI and non-AKI patients. RESULTS A total of 603 hospital admissions for methanol intoxication were analyzed. AKI developed in 135 (22.4%) admissions. Anemia (OR 3.43 p < 0.001), hypertension (OR 1.86; p = 0.02), volume depletion (OR 3.46; p = 0.001), sepsis (OR 6.91; p < 0.001), rhabdomyolysis (OR 6.25; p = 0.003), and acute pancreatitis (OR 5.30; p = 0.004) were independent risk factors for AKI development. AKI was significantly associated with increased risk of in-hospital mortality and organ failure. AKI patients needed more mechanical ventilation, and extracorporeal therapy, had longer length of hospital stay, and higher hospitalization costs. CONCLUSION Over one-fifth of methanol intoxication patients developed AKI during hospitalization. AKI was associated with higher morbidity, mortality, and resource utilization.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Department of Medicine, Division of Nephrology and Hypertension, Rochester, MN, USA
| | - Tananchai Petnak
- Division of Pulmonary and Critical Care Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rochester, MN, USA
| | - Wisit Kaewput
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Michael A Mao
- Department of Medicine, Division of Nephrology and Hypertension, Jacksonville, FL, USA
| | - Boonphiphop Boonpheng
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ, USA
| | - Saraschandra Vallabhajosyula
- Section of Interventional Cardiology, Division of Cardiovascular Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ploypin Lertjitbanjong
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fawad Qureshi
- Department of Medicine, Division of Nephrology and Hypertension, Rochester, MN, USA
| | | |
Collapse
|
90
|
Abstract
Since its emergence in Wuhan, China, covid-19 has spread and had a profound effect on the lives and health of people around the globe. As of 4 July 2021, more than 183 million confirmed cases of covid-19 had been recorded worldwide, and 3.97 million deaths. Recent evidence has shown that a range of persistent symptoms can remain long after the acute SARS-CoV-2 infection, and this condition is now coined long covid by recognized research institutes. Studies have shown that long covid can affect the whole spectrum of people with covid-19, from those with very mild acute disease to the most severe forms. Like acute covid-19, long covid can involve multiple organs and can affect many systems including, but not limited to, the respiratory, cardiovascular, neurological, gastrointestinal, and musculoskeletal systems. The symptoms of long covid include fatigue, dyspnea, cardiac abnormalities, cognitive impairment, sleep disturbances, symptoms of post-traumatic stress disorder, muscle pain, concentration problems, and headache. This review summarizes studies of the long term effects of covid-19 in hospitalized and non-hospitalized patients and describes the persistent symptoms they endure. Risk factors for acute covid-19 and long covid and possible therapeutic options are also discussed.
Collapse
Affiliation(s)
- Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Sanara Raza
- Faculty of Medicine, Imperial College London, London, UK
| | - Joseph Nowell
- Faculty of Medicine, Imperial College London, London, UK
| | - Megan Young
- Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
91
|
Chen W, Wang Y, Zhou T, Xu Y, Zhan J, Wu J. CXCL13 Is Involved in the Lipopolysaccharide-Induced Hyperpermeability of Umbilical Vein Endothelial Cells. Inflammation 2021; 43:1789-1796. [PMID: 32500306 PMCID: PMC7476967 DOI: 10.1007/s10753-020-01253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sepsis is a disease that is characterized by a severe systemic inflammatory response to microbial infection and lipopolysaccharide (LPS) and is a well-known inducer of sepsis, as well as endothelial cell hyperpermeability. In the present study, we confirm the elevation of CXC chemokine ligand 13 (CXCL13) in sepsis patients. We also show that LPS exposure increases the release of CXCL13, as well as the mRNA and protein expression of CXCL13 and its receptor, CXC chemokine receptor 5 (CXCR5) in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. We also examined the effects of CXCL13 knockdown on LPS-mediated endothelial hyperpermeability and tight junction (TJ) protein expression in HUVECs. Our results show that HUVECs exposed to LPS result in a significant decrease in transendothelial electrical resistance (TER) and TJ protein (Zonula occluden-1, occludin, and claudin-4) expression, and a notable increase in fluorescein isothiocyanate (FITC)-dextran flux and p38 phosphorylation, which was partially reversed by CXCL13 knockdown. Recombinant CXCL13 treatment had a similar effect as LPS exposure, which was attenuated by a p38 inhibitor, SB203580. Moreover, the CXCL13-neutralizing antibody significantly increased the survival rate of LPS-induced sepsis mice. Collectively, our results show that CXCL13 plays a key role in LPS-induced endothelium hyperpermeability via regulating p38 signaling and suggests that therapeutically targeting CXCL13 may be beneficial for the treatment of sepsis.
Collapse
Affiliation(s)
- Wen Chen
- Department of General Practice, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Zhou
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuansheng Xu
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianwei Zhan
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinhong Wu
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
92
|
CO-Releasing Molecule-2 Prevents Acute Kidney Injury through Suppression of ROS-Fyn-ER Stress Signaling in Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9947772. [PMID: 34326922 PMCID: PMC8277502 DOI: 10.1155/2021/9947772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) most commonly appears in critically ill patients in hospitals. AKI is characterized as a quick deterioration of kidney function and has recently been identified to be tightly interlinked with chronic kidney diseases. The emerging major mediators of AKI include oxidative stress and endoplasmic reticulum (ER) stress. Carbon monoxide (CO) attenuates oxidative stress and ER stress in various cells, while Fyn, a member of the Src kinase family, is activated by oxidative stress and contributes to ER stress in skeletal muscle. Considering these, the objective of the current research was to determine (i) the involvement of Fyn in ER stress-mediated AKI and (ii) the effect of CO-releasing molecule-2 (CORM2) on reactive oxygen species- (ROS-) Fyn-ER stress-mediated AKI. Pretreatment with CORM2 (30 mg/kg) efficiently inhibited LPS (30 mg/kg)-induced oxidative stress, inflammation, and cellular apoptosis during AKI in C57BL/6J mice. Also, CORM2 efficiently suppressed the activation of Fyn and ER stress in AKI mice. Consistently, pretreatment with CORM2 inhibited oxidative stress, Fyn activation, ER stress, inflammation, and apoptosis in LPS- or H2O2-stimulated proximal epithelial tubular cells. Fyn inhibition using siRNA or an inhibitor (PP2) significantly attenuated ER stress responses in the cells. These data suggest that CORM2 may become a potential treatment option against ROS-Fyn-ER stress-mediated AKI.
Collapse
|
93
|
Development of a photoacoustic microscopy technique to assess peritubular capillary function and oxygen metabolism in the mouse kidney. Kidney Int 2021; 100:613-620. [PMID: 34224760 DOI: 10.1016/j.kint.2021.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Microcirculatory changes and oxidative stress have long been associated with acute kidney injury. Despite substantial progress made by two-photon microscopy of microvascular responses to acute kidney injury in rodent models, little is known about the underlying changes in blood oxygen delivery and tissue oxygen metabolism. To fill this gap, we developed a label-free kidney imaging technique based on photoacoustic microscopy, which enables simultaneous quantification of hemoglobin concentration, oxygen saturation of hemoglobin, and blood flow in peritubular capillaries in vivo. Based on these microvascular parameters, microregional oxygen metabolism was quantified. We demonstrated the utility of this technique by studying kidney hemodynamic and oxygen-metabolic responses to acute kidney injury in mice subject to lipopolysaccharide-induced sepsis. Dynamic photoacoustic microscopy of the peritubular capillary function and tissue oxygen metabolism revealed that sepsis induced an acute and significant reduction in peritubular capillary oxygen saturation of hemoglobin, concomitant with a marked reduction in kidney ATP levels and contrasted with nominal changes in peritubular capillary flow and plasma creatinine. Thus, our technique opens new opportunities to study microvascular and metabolic dysfunction in acute and chronic kidney diseases.
Collapse
|
94
|
Gupta K, Pandey S, Singh R, Kumari A, Sen P, Singh G. Roflumilast improves resolution of sepsis-induced acute kidney injury by retarding late phase renal interstitial immune cells infiltration and leakage in urinary sediments. Fundam Clin Pharmacol 2021; 36:114-132. [PMID: 34212425 DOI: 10.1111/fcp.12711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Some evidence has demonstrated that both inflammation and immune cell dysregulation are coincident at late phase (post 24 h) of sepsis. The present study was designed to determine the pathological role of hyperinflammation and renal immune cells mobilization during late phase of sepsis induced acute kidney injury (S-AKI) and tests the pharmacological effects of PDE-4 inhibitor on these events. Sepsis was induced by cecal ligation puncture and renal function, oxidative-inflammatory stress biomarkers were assessed after 24 h. PDE-4 inhibitor was administered for 7 days prior to induction of S-AKI. Renal immune cells infiltration during sepsis was analyzed by H&E staining and papanicolaou staining method was used for detecting leukocytes and cast in urinary sediments, periodic acid schiff (PAS) staining was used for detection of brush border loss. AKI developed 24 h post sepsis insult as depicted by increase in serum creatinine, blood urea nitrogen (BUN), renal oxidative stress, and elevated inflammatory biomarkers levels. Moreover, septic rats displayed increased bacterial load, renal expression of phosphodiesterase-4B, 4D isoforms, enhanced vascular permeability, caspase-3 and myeloperoxidase activity, electrolyte imbalance, reduced Na+ K+ ATPase activity, declined cAMP levels, increased interstitial leukocyte infiltration, and leakage in urinary sediments along with histological alterations. Pre-treatment with roflumilast at high dose completely prevented the various AKI associated manifestations in septic rats. Renal hyper-inflammation and leukocyte infiltration was detected in late phase of S-AKI. Roflumilast pre-treatment resolved sepsis induced renal dysfunction and histological damage by suppressing late phase renal immune cells invasion and anti-inflammatory effects mediated by up-regulation of renal cAMP levels.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar University, Ambala, India
| | - Sneha Pandey
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Ragini Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Abha Kumari
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Pallavi Sen
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | | |
Collapse
|
95
|
Stasi A, Franzin R, Fiorentino M, Squiccimarro E, Castellano G, Gesualdo L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int J Mol Sci 2021; 22:5980. [PMID: 34205975 PMCID: PMC8197836 DOI: 10.3390/ijms22115980] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Enrico Squiccimarro
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70124 Bari, Italy;
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| |
Collapse
|
96
|
Bondeva T, Schindler K, Schindler C, Wolf G. Ramipril pretreatment worsened renal injury and survival despite a reduction in renal inflammation in experimentally induced sepsis in mice. J Renin Angiotensin Aldosterone Syst 2021; 21:1470320320923977. [PMID: 32419571 PMCID: PMC7232051 DOI: 10.1177/1470320320923977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The angiotensin converting enzyme inhibitor ramipril is a standard antihypertensive therapy for many patients. Because angiotensin II may promote inflammation, we were interested in whether basal pretreatment with ramipril may modify renal function and inflammation as well as systemic outcome in experimentally induced sepsis in mice. MATERIAL AND METHODS Ramipril (10 mg/kg/day) pretreatment or placebo (NaCl) was given intraperitoneally for 5 days to C57BL6/J mice, followed by either sham operation or cecal ligation and puncture sepsis induction. Real-time polymerase chain reaction and immunological stains were used to evaluate renal gene and protein expression, respectively. Plasma creatinine, neutrophil-gelatinase associated lipocalin, and blood urea nitrogen were used as markers for renal function. A clinical severity score was determined. RESULTS Administration of ramipril before cecal ligation and puncture surgery was associated with reduced renal inflammation but did not improved renal function and structure and even worsened the clinical status of septic mice. CONCLUSIONS The data suggest that the effects of ramipril pretreatment are complex. Additional studies including monitoring of hemodynamic parameters are necessary to elucidate the exact mechanism(s) of this observation. In addition, the timing of the ramipril administration could be of importance.
Collapse
Affiliation(s)
- Tzvetanka Bondeva
- Department of Internal Medicine III, Jena University Hospital, Germany
| | - Katrin Schindler
- Department of Internal Medicine III, Jena University Hospital, Germany.,Institute of Human genetic, Jena University Hospital, Germany
| | - Claudia Schindler
- Department of Internal Medicine III, Jena University Hospital, Germany.,Department of Experimental Surgery, Jena University Hospital, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Germany
| |
Collapse
|
97
|
Yang X, Zheng E, Ma Y, Chatterjee V, Villalba N, Breslin JW, Liu R, Wu MH, Yuan SY. DHHC21 deficiency attenuates renal dysfunction during septic injury. Sci Rep 2021; 11:11146. [PMID: 34045489 PMCID: PMC8159935 DOI: 10.1038/s41598-021-89983-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Renal dysfunction is one of the most common complications of septic injury. One critical contributor to septic injury-induced renal dysfunction is renal vascular dysfunction. Protein palmitoylation serves as a novel regulator of vascular function. Here, we examined whether palmitoyl acyltransferase (PAT)-DHHC21 contributes to septic injury-induced renal dysfunction through regulating renal hemodynamics. Multispectral optoacoustic imaging showed that cecal ligation and puncture (CLP)-induced septic injury caused impaired renal excretion, which was improved in DHHC21 functional deficient (Zdhhc21dep/dep) mice. DHHC21 deficiency attenuated CLP-induced renal pathology, characterized by tissue structural damage and circulating injury markers. Importantly, DHHC21 loss-of-function led to better-preserved renal perfusion and oxygen saturation after CLP. The CLP-caused reduction in renal blood flow was also ameliorated in Zdhhc21dep/dep mice. Next, CLP promoted the palmitoylation of vascular α1-adrenergic receptor (α1AR) and the activation of its downstream effector ERK, which were blunted in Zdhhc21dep/dep mice. Vasoreactivity analysis revealed that renal arteries from Zdhhc21dep/dep mice displayed reduced constriction response to α1AR agonist phenylephrine compared to those from wild-type mice. Consistently, inhibiting PATs with 2-bromopalmitate caused a blunted vasoconstriction response to phenylephrine in small arteries isolated from human kidneys. Therefore, DHHC21 contributes to impaired renal perfusion and function during septic injury via promoting α1AR palmitoylation-associated vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA. .,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA.
| |
Collapse
|
98
|
Bhatraju PK, Chai XY, Sathe NA, Ruzinski J, Siew ED, Himmelfarb J, Hoofnagle AN, Wurfel MM, Kestenbaum BR. Assessment of kidney proximal tubular secretion in critical illness. JCI Insight 2021; 6:145514. [PMID: 33886506 PMCID: PMC8262320 DOI: 10.1172/jci.insight.145514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDSerum creatinine concentrations (SCrs) are used to determine the presence and severity of acute kidney injury (AKI). SCr is primarily eliminated by glomerular filtration; however, most mechanisms of AKI in critical illness involve kidney proximal tubules, where tubular secretion occurs. Proximal tubular secretory clearance is not currently estimated in the intensive care unit (ICU). Our objective was to estimate the kidney clearance of secretory solutes in critically ill adults.METHODSWe collected matched blood and spot urine samples from 170 ICU patients and from a comparison group of 70 adults with normal kidney function. We measured 7 endogenously produced secretory solutes using liquid chromatography-tandem mass spectrometry. We computed a composite secretion score incorporating all 7 solutes and evaluated associations with 28-day major adverse kidney events (MAKE28), defined as doubling of SCr, dialysis dependence, or death.RESULTSThe urine-to-plasma ratios of 6 of 7 secretory solutes were lower in critically ill patients compared with healthy individuals after adjustment for SCr. The composite secretion score was moderately correlated with SCr and cystatin C (r = -0.51 and r = -0.53, respectively). Each SD higher composite secretion score was associated with a 25% lower risk of MAKE28 (95% CI 9% to 38% lower) independent of severity of illness, SCr, and tubular injury markers. Higher urine-to-plasma ratios of individual secretory solutes isovalerylglycine and tiglylglycine were associated with MAKE28 after accounting for multiple testing.CONCLUSIONAmong critically ill adults, tubular secretory clearance is associated with adverse outcomes, and its measurement could improve assessment of kidney function and dosing of essential ICU medications.FUNDINGGrants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH) K23DK116967, the University of Washington Diabetes Research Center P30DK017047, an unrestricted gift to the Kidney Research Institute from the Northwest Kidney Centers, and the Vanderbilt O'Brien Kidney Center (NIDDK 5P30 DK114809-03). The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.
Collapse
Affiliation(s)
- Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine and.,Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xin-Ya Chai
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - Neha A Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - John Ruzinski
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Vanderbilt Integrated Program for AKI, Nashville, Tennessee, USA.,Tennessee Valley Health Services, Nashville VA Medical Center, Nashville, Tennessee, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - Bryan R Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
99
|
Yang N, Wang H, Zhang L, Lv J, Niu Z, Liu J, Zhang Z. Long non-coding RNA SNHG14 aggravates LPS-induced acute kidney injury through regulating miR-495-3p/HIPK1. Acta Biochim Biophys Sin (Shanghai) 2021; 53:719-728. [PMID: 33856026 DOI: 10.1093/abbs/gmab034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a complex syndrome with an abrupt decrease of kidney function, which is associated with high morbidity and mortality. Sepsis is the common cause of AKI. Mounting evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of sepsis-induced AKI. In this study, we aimed to illustrate the function and mechanism of lncRNA SNHG14 in lipopolysaccharide (LPS)-induced AKI. We found that SNHG14 was highly expressed in the plasma of sepsis patients with AKI. SNHG14 inhibited cell proliferation and autophagy and promoted cell apoptosis and inflammatory cytokine production in LPS-stimulated HK-2 cells. Functionally, SNHG14 acted as a competing endogenous RNA (ceRNA) to negatively regulate miR-495-3p expression in HK-2 cells. Furthermore, we identified that HIPK1 is a direct target of miR-495-3p in HK-2 cells. We also revealed that the SNHG14/miR-495-3p/HIPK1 interaction network regulated HK-2 cell proliferation, apoptosis, autophagy, and inflammatory cytokine production upon LPS stimulation. In addition, we demonstrated that the SNHG14/miR-495-3p/HIPK1 interaction network regulated the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β) via modulating NF-κB/p65 signaling in LPS-challenged HK-2 cells. In conclusion, our findings suggested a novel therapeutic axis of SNHG14/miR-495-3p/HIPK1 to treat sepsis-induced AKI.
Collapse
Affiliation(s)
- Ni Yang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hai Wang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Li Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Junhua Lv
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zequn Niu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jie Liu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhengliang Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
100
|
Zhi D, Zhang M, Lin J, Liu P, Wang Y, Duan M. Wedelolactone improves the renal injury induced by lipopolysaccharide in HK-2 cells by upregulation of protein tyrosine phosphatase non-receptor type 2. J Int Med Res 2021; 49:3000605211012665. [PMID: 33983070 PMCID: PMC8127797 DOI: 10.1177/03000605211012665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective To explore the effects of wedelolactone (WEL) on sepsis-induced renal injury in the human renal proximal tubular epithelial cell line HK-2. Methods HK-2 cells were stimulated by 1 µg/ml lipopolysaccharide (LPS) to trigger renal injury in vitro. HK-2 cells were pretreated with or without WEL (0.1, 1 and 10 µM) before LPS stimulation. Protein and mRNA analyses were performed using enzyme-linked immunosorbent assays, Western blot analysis and quantitative reverse transcription–polymerase chain reaction. The MTT assay and flow cytometry were used to measure cell viability and the rate of cell apoptosis. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) knockdown was induced by the transection of HK-2 cells with short hairpin RNA. Results Cell viability was significantly increased in a dose-dependent manner by WEL in LPS-induced HK-2 cells. WEL also decreased the levels of four inflammatory cytokines and cell apoptosis in LPS-induced HK-2 cells. The level of PTPN2 was increased after WEL treatment. PTPN2 knockdown partly abolished the inhibitory effects of WEL on cell apoptosis, the levels of inflammatory cytokines and on p38 mitogen-activated protein kinase/nuclear factor-kappaB signalling in LPS-induced HK-2 cells. Conclusion WEL improved renal injury by suppressing inflammation and cell apoptosis through upregulating PTPN2 in HK-2 cells. PTPN2 might be used as a potential therapeutic target for LPS-induced sepsis.
Collapse
Affiliation(s)
- Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yajun Wang
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|