51
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|
52
|
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterized by neurodevelopmental regression between 6 and 18 months of life and associated with multi-system comorbidities. Caused mainly by pathogenic variants in the MECP2 (methyl CpG binding protein 2) gene, it is the second leading genetic cause of intellectual disability in girls after Down syndrome. RTT affects not only neurological function but also a wide array of non-neurological organs. RTT-related disorders involve abnormalities of the respiratory, cardiovascular, digestive, metabolic, skeletal, endocrine, muscular, and urinary systems and immune response. Here, we review the different aspects of RTT affecting the main peripheral groups of organs and sometimes occurring independently of nervous system defects.
Collapse
Affiliation(s)
- Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| |
Collapse
|
53
|
Gallucci A, Patterson KC, Weit AR, Van Der Pol WJ, Dubois LG, Percy AK, Morrow CD, Campbell SL, Olsen ML. Microbial community changes in a female rat model of Rett syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110259. [PMID: 33548354 PMCID: PMC8724884 DOI: 10.1016/j.pnpbp.2021.110259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/17/2021] [Indexed: 01/15/2023]
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is predominantly caused by alterations of the methyl-CpG-binding protein 2 (MECP2) gene. Disease severity and the presence of comorbidities such as gastrointestinal distress vary widely across affected individuals. The gut microbiome has been implicated in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) as a regulator of disease severity and gastrointestinal comorbidities. Although the gut microbiome has been previously characterized in humans with RTT compared to healthy controls, the impact of MECP2 mutation on the composition of the gut microbiome in animal models where the host and diet can be experimentally controlled remains to be elucidated. By evaluating the microbial community across postnatal development as behavioral symptoms appear and progress, we have identified microbial taxa that are differentially abundant across developmental timepoints in a zinc-finger nuclease rat model of RTT compared to WT. We have additionally identified p105 as a key translational timepoint. Lastly, we have demonstrated that fecal SCFA levels are not altered in RTT rats compared to WT rats across development. Overall, these results represent an important step in translational RTT research.
Collapse
Affiliation(s)
- A Gallucci
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VA 24014, United States of America; Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, United States of America
| | - K C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, United States of America
| | - A R Weit
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061, United States of America
| | - W J Van Der Pol
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - L G Dubois
- Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708, United States of America
| | - A K Percy
- Department of Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, Civitan International Research Center, University of Alabama, Birmingham, AL 35233, United States of America
| | - C D Morrow
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, United States of America
| | - S L Campbell
- Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, United States of America.
| | - M L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061, United States of America.
| |
Collapse
|
54
|
Pecorelli A, Cordone V, Schiavone ML, Caffarelli C, Cervellati C, Cerbone G, Gonnelli S, Hayek J, Valacchi G. Altered Bone Status in Rett Syndrome. Life (Basel) 2021; 11:life11060521. [PMID: 34205017 PMCID: PMC8230033 DOI: 10.3390/life11060521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked MECP2 gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms. The most common non-neurological comorbidities include, among others, orthopedic complications, mainly scoliosis but also early osteopenia/osteoporosis and a high frequency of fractures. A characteristic low bone mineral density dependent on a slow rate of bone formation due to dysfunctional osteoblast activity rather than an increase in bone resorption is at the root of these complications. Evidence from human and animal studies supports the idea that MECP2 mutation could be associated with altered epigenetic regulation of bone-related factors and signaling pathways, including SFRP4/WNT/β-catenin axis and RANKL/RANK/OPG system. More research is needed to better understand the role of MeCP2 in bone homeostasis. Indeed, uncovering the molecular mechanisms underlying RTT bone problems could reveal new potential pharmacological targets for the treatment of these complications that adversely affect the quality of life of RTT patients for whom the only therapeutic approaches currently available include bisphosphonates, dietary supplements, and physical activity.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Correspondence: (A.P.); (G.V.)
| | - Valeria Cordone
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Lucia Schiavone
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Gaetana Cerbone
- Division of Medical Genetics, “S.G. Moscati” Hospital, 74100 Avellino, Italy;
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Joussef Hayek
- Toscana Life Sciences Foundation, 53100 Siena, Italy;
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (A.P.); (G.V.)
| |
Collapse
|
55
|
Lai YYL, Downs J, Zafar S, Wong K, Walsh L, Leonard H. Oral health care and service utilisation in individuals with Rett syndrome: an international cross-sectional study. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:561-576. [PMID: 33764620 DOI: 10.1111/jir.12834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is a dearth of literature available on the comparative oral health status of those with Rett syndrome (RTT) despite diurnal bruxism being a supportive diagnostic criterion for the disorder. This study was designed to investigate the dental experiences of individuals with RTT in terms of perceived at-home and professional dental care. METHODS Using data in the InterRett database, provided by English-speaking families of individuals with a confirmed MECP2 genetic mutation, the study investigated relationships between dental problems, oral care, child factors including bruxism and use of gastrostomy, and socioeconomic indicators. The study also explored relationships between dental presentations and socioeconomic, child, and family-related factors. RESULTS Individuals with RTT exhibiting bruxism were more likely to access dental treatment. Those who had full oral feeding had a higher incidence rate of dental treatment than those with full tube feeding. A conservative (under) estimation of the overall dental caries progression rate revealed that this may be similar to that of the normal population. CONCLUSIONS Drivers for dental treatment in RTT include bruxism as well as dental caries. Those who have full oral feeding experience more dental treatment than those with full tube feeding. A higher maternal education level may confer a protective effect for oral health outcomes in those with RTT. Nevertheless, families generally tended to value the importance of oral health despite reported difficulties in day-to-day mouth care.
Collapse
Affiliation(s)
- Y Y L Lai
- School of Dentistry, UQ Oral Health Centre, The University of Queensland, Herston, Queensland, Australia
- Child Disability, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - J Downs
- Child Disability, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - S Zafar
- School of Dentistry, UQ Oral Health Centre, The University of Queensland, Herston, Queensland, Australia
| | - K Wong
- Child Disability, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - L Walsh
- School of Dentistry, UQ Oral Health Centre, The University of Queensland, Herston, Queensland, Australia
| | - H Leonard
- Child Disability, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
56
|
Lai YYL, Downs JA, Wong K, Zafar S, Walsh LJ, Leonard HM. Oral parafunction and bruxism in Rett syndrome and associated factors: An observational study. Oral Dis 2021; 29:220-231. [PMID: 34033206 DOI: 10.1111/odi.13924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To explore patterns of parafunction, and bruxism, and its relationships with genotype and snoring in individuals with Rett syndrome (RTT). METHODS Retrospective observational data of those with confirmed MECP2 mutations in the InterRett database (n = 216) were used to investigate experience of parafunctional habits, and bruxism and their relationships with genotype and snoring using multivariable linear regression. RESULTS The prevalence of parafunction was 98.2%. Bruxism was reported (66.2%) with the patterns mostly both diurnal and nocturnal (44.1%) and exclusively diurnal (42.7%). Compared to individuals with C-terminal deletion, individuals with p.Arg106Trp mutations were less likely to have bruxism reported (aOR = 0.15; 95% CI 0.02-0.98, p = 0.05) and those with p.Arg168* mutation were more likely to have frequent bruxism than none or occasional bruxism reported (aROR 3.4; 95% CI 1.1-10.7 p = 0.04). The relative odds of having nocturnal bruxism constantly, compared to none/occasionally, were higher among those 'always' snoring (aROR 6.24; 95% CI 2.1-18.2, p = 0.001) than those with no snoring. CONCLUSIONS There appeared to be genotypic association with bruxism in p.Arg168* and p.Arg106Trp mutations and association between nocturnal bruxism and frequent snoring in an international sample of individuals with RTT. Clinical significance of the high prevalence of bruxism should be highlighted in relation to difficulty communicating pain and increased dental treatment need in RTT.
Collapse
Affiliation(s)
- Yvonne Yee Lok Lai
- The University of Queensland School of Dentistry, UQ Oral Health Centre, Herston, QLD, Australia
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Jenny Anne Downs
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Kingsley Wong
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Sobia Zafar
- The University of Queensland School of Dentistry, UQ Oral Health Centre, Herston, QLD, Australia
| | - Laurence James Walsh
- The University of Queensland School of Dentistry, UQ Oral Health Centre, Herston, QLD, Australia
| | | |
Collapse
|
57
|
Thapa S, Venkatachalam A, Khan N, Naqvi M, Balderas M, Runge JK, Haag A, Hoch KM, Glaze DG, Luna RA, Motil KJ. Assessment of the gut bacterial microbiome and metabolome of girls and women with Rett Syndrome. PLoS One 2021; 16:e0251231. [PMID: 33956889 PMCID: PMC8101921 DOI: 10.1371/journal.pone.0251231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gastrointestinal problems affect the health and quality of life of individuals with Rett syndrome (RTT) and pose a medical hardship for their caregivers. We hypothesized that the variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome and metabolome in RTT, predisposing these individuals to gastrointestinal dysfunction. OBJECTIVES We characterized the gut bacterial microbiome and metabolome in girls and young women with RTT (n = 44) and unaffected controls (n = 21), and examined the relation between the composition of the microbiome and variations in the RTT phenotype. METHODS Demographics and clinical information, including growth and anthropometric measurements, pubertal status, symptoms, clinical severity score, bowel movement, medication use, and dietary intakes were collected from the participants. Fecal samples were collected for analysis of the gut microbiome using Illumina MiSeq-based next-generation sequencing of the 16S rRNA gene followed by bioinformatics analysis of microbial composition, diversity, and community structure. Selected end-products of microbial protein metabolism were characterized by liquid chromatography-mass spectrometry. RESULTS The gut bacterial microbiome differed within the RTT cohort based on pubertal status (p<0.02) and clinical severity scores (p<0.02) of the individuals and the type of diet (p<0.01) consumed. Although the composition of the gut microbiome did not differ between RTT and unaffected individuals, concentrations of protein end-products of the gut bacterial metabolome, including γ-aminobutyric acid (GABA) (p<0.001), tyrosine (p<0.02), and glutamate (p<0.06), were lower in the RTT cohort. Differences in the microbiome within RTT groups, based on symptomatic anxiety, hyperventilation, abdominal distention, or changes in stool frequency and consistency, were not detected. CONCLUSIONS Although variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome, we presently cannot infer causality between gut bacterial dysbiosis and gastrointestinal dysfunction. Nevertheless, alterations in the gut metabolome may provide clues to the pathophysiology of gastrointestinal problems in RTT.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alamelu Venkatachalam
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nabeel Khan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mohammed Naqvi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Miriam Balderas
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica K. Runge
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anthony Haag
- Department of Pathology, Metabolomics and Proteomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kathleen M. Hoch
- Department of Pathology, Metabolomics and Proteomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Daniel G. Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth Ann Luna
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathleen J. Motil
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
58
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
59
|
Ojeda J, Ávila A, Vidal PM. Gut Microbiota Interaction with the Central Nervous System throughout Life. J Clin Med 2021; 10:1299. [PMID: 33801153 PMCID: PMC8004117 DOI: 10.3390/jcm10061299] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
During the last years, accumulating evidence has suggested that the gut microbiota plays a key role in the pathogenesis of neurodevelopmental and neurodegenerative diseases via the gut-brain axis. Moreover, current research has helped to elucidate different communication pathways between the gut microbiota and neural tissues (e.g., the vagus nerve, tryptophan production, extrinsic enteric-associated neurons, and short chain fatty acids). On the other hand, altering the composition of gut microbiota promotes a state known as dysbiosis, where the balance between helpful and pathogenic bacteria is disrupted, usually stimulating the last ones. Herein, we summarize selected findings of the recent literature concerning the gut microbiome on the onset and progression of neurodevelopmental and degenerative disorders, and the strategies to modulate its composition in the search for therapeutical approaches, focusing mainly on animal models studies. Readers are advised that this is a young field, based on early studies, that is rapidly growing and being updated as the field advances.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - Pía M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| |
Collapse
|
60
|
Motil KJ, Khan N, Coon JL, Barrish JO, Suter B, Pehlivan D, Schultz RJ, Glaze DG. Gastrointestinal Health Questionnaire for Rett Syndrome: Tool Development. J Pediatr Gastroenterol Nutr 2021; 72:354-360. [PMID: 32969958 DOI: 10.1097/mpg.0000000000002951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We report the development and validation of a tool to assess gastrointestinal health in Rett syndrome (RTT). We hypothesized that the Gastrointestinal Health Questionnaire (GHQ) is a valid clinical outcomes measure of gastrointestinal health in RTT. PATIENTS AND METHODS We used parent interviews, surveys, and literature review to generate a questionnaire related to gastrointestinal health and function, mood and behaviors, and parental concerns for individuals with RTT. Parents of affected and unaffected individuals provided responses to the GHQ, assessed the relevance and importance of statements, and completed 5 surveys related to gastrointestinal health, child-related mood and behaviors, and parent concerns. We used multivariate item analysis, 2-sample t tests, and correlations to assess the validity of the GHQ. RESULTS We documented acceptable internal consistency of statements related to gastrointestinal health and function (Cronbach-α = 0.91), RTT-related mood and behaviors (Cronbach-α = 0.89), and parent concerns (Cronbach-α = 0.95) in the GHQ. We documented favorable external validity based on differences in response scores between parents of affected and unaffected individuals (P < 0.001) and correlations in parental response scores between the GHQ and 5 validated questionnaires addressing similar issues (P < 0.001). CONCLUSION The GHQ is a valid tool for the assessment of gastrointestinal health in RTT and offers the opportunity to field test the safety and efficacy of novel drug therapies in clinical trials for individuals affected with this disorder.
Collapse
Affiliation(s)
- Kathleen J Motil
- USDA/ARS Children's Nutrition Research Center
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
| | - Nabeel Khan
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
| | - Jennifer L Coon
- USDA/ARS Children's Nutrition Research Center
- Department of Pediatrics, Baylor College of Medicine
| | - Judy O Barrish
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
| | - Bernhard Suter
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
| | - Davut Pehlivan
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
| | - Rebecca J Schultz
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
- Texas Woman's University, Houston, TX
| | - Daniel G Glaze
- Texas Children's Hospital
- Department of Pediatrics, Baylor College of Medicine
| |
Collapse
|
61
|
Mahdi SS, Jafri HA, Allana R, Amenta F, Khawaja M, Qasim SSB. Oral Manifestations of Rett Syndrome-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031162. [PMID: 33525609 PMCID: PMC7908587 DOI: 10.3390/ijerph18031162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/02/2022]
Abstract
Rett Syndrome is an x linked developmental disorder which becomes apparent in females after 6 to 18 months of age. It leads to severe impairments including loss of speech, loss of hand movements/manual dexterity, characteristic hand movements such as hang wringing and intellectual disability/learning problems. This systematic review was carried out to identify the dental manifestation of Rett syndrome and to shed light on treatment options available for oral health problems associated with Rett syndrome. A systematic literature search was conducted on the PubMed, Scopus, Biomed, Web of Science, Embase, Google Scholars, Cochrane and CINAHL using the following entries: Rett syndrome (n = 3790), Oral health and Rett syndrome (n = 17), dental health of Rett syndrome patients (n = 13), and the MeSH terms listed below: Rett syndrome and Oral Health (n = 17), Rett syndrome and dentistry (n = 29). The final review included 22 search articles. The most common oral findings was bruxism. Masseteric hypertrophy was also reported. Anterior open bite and non-physiological tooth wear was observed. Other oral manifestations of Rett syndrome included mouth breathing, tongue thrusting, digit/thumb sucking, high arch palate. Increased awareness and dental education amongst dentists and assistants regarding the dental manifestations of Rett syndrome and similar neurodevelopmental disorders is required to improve the level of care and empathy they can provide to these differently able patients. Research on dental aspects of Rett is scarce and this remains a neglected topic.
Collapse
Affiliation(s)
- Syed Sarosh Mahdi
- Department of Community Dentistry, Jinnah Medical and Dental College, Sohail University, Karachi 74800, Pakistan; (H.A.J.); (M.K.)
- Athena Center for Advanced Research in Healthcare, 62032 Camerino, Italy
- Centre of Clinical Research, Telemedicine and Telepharmacy, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy;
- Correspondence: ; Tel.: +92-333-351-7850
| | - Hafsa Abrar Jafri
- Department of Community Dentistry, Jinnah Medical and Dental College, Sohail University, Karachi 74800, Pakistan; (H.A.J.); (M.K.)
| | - Raheel Allana
- Department of Paediatrics & Child Health, Aga Khan University Hospital, Karachi 74800, Pakistan;
| | - Francesco Amenta
- Centre of Clinical Research, Telemedicine and Telepharmacy, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy;
| | - Mariam Khawaja
- Department of Community Dentistry, Jinnah Medical and Dental College, Sohail University, Karachi 74800, Pakistan; (H.A.J.); (M.K.)
| | - Syed Saad B. Qasim
- Department of Bio Clinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait City 12037, Kuwait;
| |
Collapse
|
62
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
63
|
Feeding difficulties in children and adolescents with spinal muscular atrophy type 2. Neuromuscul Disord 2021; 31:101-112. [PMID: 33454188 DOI: 10.1016/j.nmd.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Disease course of feeding difficulties in spinal muscular atrophy type 2 is not well documented. Disease-modifying therapies rapidly change the trajectory of motor function and survival in spinal muscular atrophy, but effects on co-morbidities like bulbar function are unknown. We analysed data concerning feeding problems and their standard of care treatment in 146 patients with spinal muscular atrophy type 2. Data were collected from two separate cohorts: one single-centre retrospective chart review study from the United Kingdom (London), and one prospective questionnaire-based multicentre study from Italy. Cumulatively feeding difficulties were present in 88 patients (60%) in these 2 cohorts. Median age at onset of problems was 6.5years (range 0-16.5 years). Eighty-two patients (60%) showed periods of underweight according to age adjusted body mass index, and thirty-six patients (25%) showed malnourishment with a significant drop on their weight curves. Enteral feeding was indicated in 23 out of 72 patients in the UK cohort (32%) because of weight loss, oropharyngeal dysphagia or aspiration. Gastrostomy and its placement was generally well tolerated, uncomplicated in 96%, never reversed and performed without Nissen fundoplication in 66% of patients. After gastrostomy chest infections improved in 80% and nutritional status (e.g., Body Mass Index) in 84% of patients. These results show that feeding difficulties are a common problem in spinal muscular atrophy type 2. Treatment strategies should be tailor-made on the symptoms and needs of the individual patient.
Collapse
|
64
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
65
|
Peron A, Canevini MP, Ghelma F, Arancio R, Savini MN, Vignoli A. Phenotypes in adult patients with Rett syndrome: results of a 13-year experience and insights into healthcare transition. J Med Genet 2020; 59:39-45. [PMID: 33106377 PMCID: PMC8685662 DOI: 10.1136/jmedgenet-2020-107333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rett syndrome is a complex genetic disorder with age-specific manifestations and over half of the patients surviving into middle age. However, little information about the phenotype of adult individuals with Rett syndrome is available, and mainly relies on questionnaires completed by caregivers. Here, we assess the clinical manifestations and management of adult patients with Rett syndrome and present our experience in transitioning from the paediatric to the adult clinic. METHODS We analysed the medical records and molecular data of women aged ≥18 years with a diagnosis of classic Rett syndrome and/or pathogenic variants in MECP2, CDKL5 and FOXG1, who were in charge of our clinic. RESULTS Of the 50 women with classic Rett syndrome, 94% had epilepsy (26% drug-resistant), 20% showed extrapyramidal signs, 40% sleep problems and 36% behavioural disorders. Eighty-six % patients exhibited gastrointestinal problems; 70% had scoliosis and 90% low bone density. Breathing irregularities were diagnosed in 60%. None of the patients had cardiac issues. CDKL5 patients experienced fewer breathing abnormalities than women with classic Rett syndrome. CONCLUSION The delineation of an adult phenotype in Rett syndrome demonstrates the importance of a transitional programme and the need of a dedicated multidisciplinary team to optimise the clinical management of these patients.
Collapse
Affiliation(s)
- Angela Peron
- Department of Health Sciences, Università degli Studi di Milano, Milano, Lombardia, Italy .,Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA.,Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Milan, Italy
| | - Maria Paola Canevini
- Department of Health Sciences, Università degli Studi di Milano, Milano, Lombardia, Italy.,Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Lombardia, Italy.,Disabled Advanced Medical Assistance (DAMA), San Paolo Hospital, Milan, Italy
| | | | - Miriam Nella Savini
- Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Milan, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, Università degli Studi di Milano, Milano, Lombardia, Italy.,Child Neuropsychiatry Unit - Epilepsy Center, San Paolo Hospital, Milan, Italy
| |
Collapse
|
66
|
Fu C, Armstrong D, Marsh E, Lieberman D, Motil K, Witt R, Standridge S, Lane J, Dinkel T, Jones M, Hale K, Suter B, Glaze D, Neul J, Percy A, Benke T. Multisystem comorbidities in classic Rett syndrome: a scoping review. BMJ Paediatr Open 2020; 4:e000731. [PMID: 33024833 PMCID: PMC7509967 DOI: 10.1136/bmjpo-2020-000731] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a severe, progressive neurodevelopmental disorder with multisystem comorbidities that evolve across a patient's lifespan requiring attentive coordination of subspecialty care by primary care providers. A comprehensive, up-to-date synthesis of medical comorbidities in RTT would aid care coordination and anticipatory guidance efforts by healthcare providers. Our objective was to review and summarise published evidence regarding prevalence of RTT medical comorbidities across all relevant organ systems. METHODS Search of PubMed from January 2000 to July 2019 was performed using the search terms (Rett and MECP2 AND patient) OR (Rett and MECP2 AND cohort). Articles reporting the prevalence of clinical findings in RTT were assessed with respect to the size and nature of the cohorts interrogated and their relevance to clinical care. RESULTS After review of over 800 records, the multisystem comorbidities of RTT were summarised quantitatively from 18 records comprising both retrospective and prospective cohorts (31-983 subjects). Neurological comorbidities had the highest prevalence, occurring in nearly all individuals with gastrointestinal and orthopaedic concerns almost as prevalent as neurological. With the exception of low bone mineral content which was relatively common, endocrine comorbidities were seen in only around one-third of patients. Although more prevalent compared with the general population, cardiac conduction abnormalities were the least common comorbidity in RTT. CONCLUSIONS Effective care coordination for RTT requires knowledge of and attention to multiple comorbidities across multiple unrelated organ systems. Many issues common to RTT can potentially be managed by a primary care provider but the need for sub-specialist referral can be anticipated. Since the median life expectancy extends into the sixth decade with evolving subspecialty requirements throughout this time, paediatric providers may be tasked with continued coordination of these comorbidities or transitioning to adult medicine and specialists with experience managing individuals with complex medical needs.
Collapse
Affiliation(s)
- Cary Fu
- Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dallas Armstrong
- Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Marsh
- Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Lieberman
- Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kathleen Motil
- Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Children's Nutrition Research Center, USDA ARS, Houston, Texas, USA
| | - Rochelle Witt
- Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shannon Standridge
- Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jane Lane
- University of Alabama at Birmingham, School of Medicine, Civitan International Research Center, Birmingham, Alabama, USA
- UAB Civitan International Research Center, Birmingham, Alabama, USA
| | - Tristen Dinkel
- Neurology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Mary Jones
- Pediatric Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Katie Hale
- Pediatric Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Bernhard Suter
- Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA
- Neurology, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Glaze
- Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA
- Neurology, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffrey Neul
- Vanderbilt Kennedy Center, Nashville, Tennessee, USA
- Pediatrics, Pharmacology and Special Education, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan Percy
- Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Timothy Benke
- Neurology, Children's Hospital Colorado, Aurora, Colorado, USA
- Pediatrics, Pharmacology, Neurology, Otolaryngology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
67
|
Byiers BJ, Payen A, Feyma T, Panoskaltsis-Mortari A, Ehrhardt MJ, Symons FJ. Associations Among Diurnal Salivary Cortisol Patterns, Medication Use, and Behavioral Phenotype Features in a Community Sample of Rett Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2020; 125:353-368. [PMID: 32936892 PMCID: PMC10699094 DOI: 10.1352/1944-7558-125.5.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder resulting from mutations of the MECP2 gene. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and abnormal stress responses have been observed in animal models of RTT, but little is known about HPA axis function among individuals with RTT. Diurnal salivary cortisol patterns from 30 females with RTT were examined in relation to mutation type, medication use, and features of the RTT behavioral phenotype. Cortisol patterns were significantly related to mutation severity, anticonvulsant medication status, and bruxism (tooth grinding). This study provides preliminary support for the hypothesis that RTT may be at risk for outcomes associated with aberrant HPA axis function, and that this risk may be mediated by mutation type.
Collapse
Affiliation(s)
| | - Ameante Payen
- Breanne J. Byiers and Ameante Payen, University of Minnesota
| | - Timothy Feyma
- Timothy Feyma, Gillette Children's Specialty Healthcare, St. Paul, Minnesota
| | | | - Michael J Ehrhardt
- Angela Panoskaltsis-Mortari, Michael J. Ehrhardt, and Frank J. Symons, University of Minnesota
| | - Frank J Symons
- Angela Panoskaltsis-Mortari, Michael J. Ehrhardt, and Frank J. Symons, University of Minnesota
| |
Collapse
|
68
|
Mendoza J, Downs J, Wong K, Leonard H. Determinants of quality of life in Rett syndrome: new findings on associations with genotype. J Med Genet 2020; 58:637-644. [PMID: 32843489 DOI: 10.1136/jmedgenet-2020-107120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rett syndrome is a genetically caused neurodevelopmental disorder associated with functional deficits and comorbidities. This study investigated relationships between genotype, functional abilities and comorbidities and quality of life in Rett syndrome. METHODS The International Rett Syndrome Database, InterRett, was used as a sampling frame for this observational study. Information was collected to describe functional abilities (walking and feeding), health (Sleep Disorder Scale for Children, the Rett Syndrome Behavioural Questionnaire), parental health (12-item Short Form Health Survey) sociodemographic factors (parental employment and education) and quality of life (Quality of Life Inventory-Disability) for 210 individuals with Rett syndrome. Univariate and multivariate regressions were used to analyse the relationships between the independent variables and quality of life. RESULTS Compared with individuals with the p.Arg270* mutation, those with the p.Arg294* mutation type had the poorest quality of life (coeff -12.81, 95% CI -23.49 to 2.12), despite this being recognised as a clinically milder genotype. Overall better walking and feeding skills and seizure parameters were more associated with better quality of life and poor sleep and behavioural difficulties with poorer quality of life. CONCLUSIONS These findings suggest that genotype, functioning and health each have implications for quality of life and should be considered when counselling families and planning clinical and support management strategies.
Collapse
Affiliation(s)
- Jonathan Mendoza
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia .,School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
69
|
Sharaf-Eldin WE, Soliman HN, Abdel-Aziz NN, Elbendary HM, Issa MY, Zaki MS. Mutation spectrum in the gene encoding methyl-CpG-binding protein 2 in Egyptian patients with Rett syndrome. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
70
|
Hou W, Bhattacharya U, Pradana WA, Tarquinio DC. Assessment of a Clinical Trial Metric for Rett Syndrome: Critical Analysis of the Rett Syndrome Behavioural Questionnaire. Pediatr Neurol 2020; 107:48-56. [PMID: 32165033 DOI: 10.1016/j.pediatrneurol.2020.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Rett syndrome is a neurodevelopmental disorder with potential for improvement through novel targeted therapeutics. Reliable outcome measures are critical to the development of treatments. We examined the merits and flaws of the Rett Syndrome Behavioural Questionnaire, an outcome measure for clinical trials. METHODS The Rett Syndrome Behavioural Questionnaire was administered alongside other clinical scales in three cohorts, an online survey, a clinic-based study, and the screening period for a clinical trial. Data were collected from individuals with Rett syndrome and related disorders at three time points, separated by a minimum of one week and a maximum of two months. We hypothesized that for clinical trial use, little change should occur among visits. Distribution statistics, internal consistency, intraclass correlation coefficient, percent agreement, and Cohen's kappa were examined. RESULTS Among 149 with classic Rett syndrome, the Rett Syndrome Behavioural Questionnaire was completed 377 times. Median total score was 33, ranging from 3 to 73. Of the 51 items tested in the original Rett Syndrome Behavioural Questionnaire study, 24 exhibited either floor or ceiling effects. Friedman's analysis of variance revealed significant difference among visits (P = 0.024), and graphical analysis using Bland-Altman plots demonstrated systematic positive bias with a 95% confidence interval including up to 12.9 points higher to 15.7 points lower at retest. Median agreement measured by kappa was 0.53 for retest at visit 2 and 0.49 for retest at visit 3. CONCLUSIONS The Rett Syndrome Behavioural Questionnaire did not achieve acceptable standards as an outcome assessment for clinical trials in Rett syndrome.
Collapse
Affiliation(s)
- Wei Hou
- Stony Brook University Medical Center, Stony Brook, New York
| | | | | | | |
Collapse
|
71
|
Arteaga-Henríquez G, Rosales-Ortiz SK, Arias-Vásquez A, Bitter I, Ginsberg Y, Ibañez-Jimenez P, Kilencz T, Lavebratt C, Matura S, Reif A, Rethelyi J, Richarte V, Rommelse N, Siegl A, Ramos-Quiroga JA. Treating impulsivity with probiotics in adults (PROBIA): study protocol of a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2020; 21:161. [PMID: 32046750 PMCID: PMC7014653 DOI: 10.1186/s13063-019-4040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Impulsivity and compulsivity are related to emotional and social maladjustment and often underlie psychiatric disorders. Recently, alterations in microbiota composition have been shown to have implications for brain development and social behavior via the microbiota-gut-brain axis. However, the exact mechanisms are not fully identified. Recent evidence suggests the modulatory effect of synbiotics on gut microbiota and the contribution of these agents in ameliorating symptoms of many psychiatric diseases. To date, no randomized controlled trial has been performed to establish the feasibility and efficacy of this intervention targeting the reduction of impulsivity and compulsivity. We hypothesize that supplementation with synbiotics may be an effective treatment in adults with high levels of impulsivity and/or compulsivity. METHODS/DESIGN This is a prospective, multicenter, double-blind, randomized controlled trial with two arms: treatment with a synbiotic formula versus placebo treatment. The primary outcome is the response rate at the end of the placebo-controlled phase (response defined as a Clinical Global Impression-Improvement Scale score of 1 or 2 = very much improved or much improved, plus a reduction in the Affective Reactivity Index total score of at least 30% compared with baseline). A total of 180 participants with highly impulsive behavior and a diagnosis of attention deficit/hyperactivity disorder (ADHD) and/or borderline personality disorder, aged 18-65 years old, will be screened at three study centers. Secondary outcome measures, including changes in general psychopathology, ADHD symptoms, neurocognitive function, somatic parameters, physical activity, nutritional intake, and health-related quality of life, will be explored at assessments before, during, and at the end of the intervention. The effect of the intervention on genetics, microbiota, and several blood biomarkers will also be assessed. Gastrointestinal symptoms and somatic complaints will additionally be explored at 1-week follow-up. DISCUSSION This is the first randomized controlled trial to determine the effects of supplementation with synbiotics on reducing impulsive and compulsive behavior. This clinical trial can contribute to explaining the mechanisms involved in the crosstalk between the intestinal microbiome and the brain. If effects can be established by reducing impulsive and compulsive behavior, new cost-effective treatments might become available to these patients. TRIAL REGISTRATION ClinicalTrials.gov, NCT03495375. Registered on 26 February 2018.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | | | - Alejandro Arias-Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Istvan Bitter
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Ylva Ginsberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institute, Stockholm, Sweden
| | - Pol Ibañez-Jimenez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Tünde Kilencz
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Janos Rethelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.,Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Nanda Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Anne Siegl
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain. .,Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain. .,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain. .,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
72
|
Henriksen MW, Breck H, von Tetzchner S, Paus B, Skjeldal OH. Medical Issues in Adults with Rett Syndrome - A National Survey. Dev Neurorehabil 2020; 23:106-112. [PMID: 31342829 DOI: 10.1080/17518423.2019.1646341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: To examine main health issues in a population of females with Rett syndrome, with a focus on individuals aged 36 or older. Methods: A national survey including 85 females, divided into a younger (1-20 years), a middle (21-35 years) and an older group (36-66 years). Data include clinical examination, medical records and parental interviews. Prevalences of six main medical issues (scoliosis, ambulation, growth, respiration, gastrointestinal dysmobility and epilepsy) and severity scores in the three groups were compared. Results: Mean severity scores were 11.8, 15.1 and 13.7 (from younger to older), and the difference between the younger and the middle group was significant. No other major significant prevalence differences were observed. Conclusions: Most main medical issues in Rett syndrome continued to be a major concern in adulthood, but health did not seem to decline with increasing age. The results emphasize the need for clinical follow-up throughout adulthood.
Collapse
Affiliation(s)
- Mari Wold Henriksen
- Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway.,University of Oslo, Blindern, Oslo, Norway
| | - Hilde Breck
- University of Oslo, Blindern, Oslo, Norway.,Innlandet Hospital Trust, Lillehammer, Norway
| | | | - Benedicte Paus
- University of Oslo, Blindern, Oslo, Norway.,Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
73
|
Fu C, Armstrong D, Marsh E, Lieberman D, Motil K, Witt R, Standridge S, Nues P, Lane J, Dinkel T, Coenraads M, von Hehn J, Jones M, Hale K, Suter B, Glaze D, Neul J, Percy A, Benke T. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr Open 2020; 4:e000717. [PMID: 32984552 PMCID: PMC7488790 DOI: 10.1136/bmjpo-2020-000717] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a severe neurodevelopmental disorder with complex medical comorbidities extending beyond the nervous system requiring the attention of health professionals. There is no peer-reviewed, consensus-based therapeutic guidance to care in RTT. The objective was to provide consensus on guidance of best practice for addressing these concerns. METHODS Informed by the literature and using a modified Delphi approach, a consensus process was used to develop guidance for care in RTT by health professionals. RESULTS Typical RTT presents early in childhood in a clinically recognisable fashion. Multisystem comorbidities evolve throughout the lifespan requiring coordination of care between primary care and often multiple subspecialty providers. To assist health professionals and families in seeking best practice, a checklist and detailed references for guidance were developed by consensus. CONCLUSIONS The overall multisystem issues of RTT require primary care providers and other health professionals to manage complex medical comorbidities within the context of the whole individual and family. Given the median life expectancy well into the sixth decade, guidance is provided to health professionals to achieve current best possible outcomes for these special-needs individuals.
Collapse
Affiliation(s)
- Cary Fu
- Pediatrics and Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dallas Armstrong
- Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Marsh
- Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Lieberman
- Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kathleen Motil
- Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Children's Nutrition Research Center, USDA ARS, Houston, Texas, USA
| | - Rochelle Witt
- Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shannon Standridge
- Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paige Nues
- International Rett Syndrome Foundation, Cincinnati, Ohio, USA
| | - Jane Lane
- Civitan International Research Center, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Tristen Dinkel
- Neurology, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Jana von Hehn
- Rett Syndrome Research Trust, New York, New York, USA
| | - Mary Jones
- Pediatric Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Katie Hale
- Pediatric Medicine, UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Bernhard Suter
- Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA.,Neurology, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Glaze
- Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA.,Neurology, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffrey Neul
- Vanderbilt Kennedy Center, Nashville, Tennessee, USA.,Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan Percy
- Pediatrics, Neurology, Neurobiology, Genetics, and Psychology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Timothy Benke
- Neurology, Children's Hospital Colorado, Aurora, Colorado, USA.,Pediatrics, Pharmacology, Neurology, Otolaryngology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
74
|
Rett Syndrome and Other Neurodevelopmental Disorders Share Common Changes in Gut Microbial Community: A Descriptive Review. Int J Mol Sci 2019; 20:ijms20174160. [PMID: 31454888 PMCID: PMC6747313 DOI: 10.3390/ijms20174160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022] Open
Abstract
In this narrative review, we summarize recent pieces of evidence of the role of microbiota alterations in Rett syndrome (RTT). Neurological problems are prominent features of the syndrome, but the pathogenic mechanisms modulating its severity are still poorly understood. Gut microbiota was recently demonstrated to be altered both in animal models and humans with different neurodevelopmental disorders and/or epilepsy. By investigating gut microbiota in RTT cohorts, a less rich microbial community was identified which was associated with alterations of fecal microbial short-chain fatty acids. These changes were positively correlated with severe clinical outcomes. Indeed, microbial metabolites can play a crucial role both locally and systemically, having dynamic effects on host metabolism and gene expression in many organs. Similar alterations were found in patients with autism and down syndrome as well, suggesting a potential common pathway of gut microbiota involvement in neurodevelopmental disorders.
Collapse
|
75
|
Faundez V, Wynne M, Crocker A, Tarquinio D. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Front Integr Neurosci 2019; 13:30. [PMID: 31379529 PMCID: PMC6650571 DOI: 10.3389/fnint.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Meghan Wynne
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT, United States
| | - Daniel Tarquinio
- Rare Neurological Diseases (Private Research Institution), Atlanta, GA, United States
| |
Collapse
|
76
|
Abstract
OBJECTIVE We reviewed medical records and conducted a nationwide survey to characterize the clinical features and determine the prevalence of biliary tract disease in girls and women with Rett syndrome (RTT). METHODS Sixty-two individuals with RTT and biliary tract disease were identified from the membership of Rett Syndrome Organization and patient files of the principal investigator. Medical records of 46 individuals were reviewed for presenting features, diagnostic tests, and treatment outcomes of biliary tract disease. We designed a questionnaire that probed the frequency of risk factors and treatment outcomes of biliary tract disease in RTT. The questionnaire was completed by 271 parents whose daughters met the clinical criteria for RTT and/or had MECP2 mutations and participated in the Natural History of Rett Syndrome Study. RESULTS Presenting symptoms identified by record review included abdominal pain (94%), irritability (88%), weight loss (64%), and vomiting (52%). Biliary dyskinesia, cholecystitis, and cholelithiasis were identified in 90%, 77%, and 70%, respectively, by cholescintigraphy, surgical pathology, and abdominal ultrasound. The prevalence of biliary tract disease was 4.4% (n = 12) in the RTT cohort. Risk factors included older age (P < 0.001) and a positive family history (P < 0.01). Diagnoses included cholecystitis (n = 5), biliary dyskinesia (n = 6), and cholelithiasis (n = 7). Ten individuals underwent surgery; 7 had resolution of symptoms after surgical intervention. CONCLUSIONS Biliary tract disease is not unique to RTT, but may be under-recognized because of the cognitive impairment of affected individuals. Early diagnostic evaluation and intervention may improve the health and quality of life of individuals affected with RTT and biliary tract disease.
Collapse
|
77
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|
78
|
Fukuhara S, Nakajima H, Sugimoto S, Kodo K, Shigehara K, Morimoto H, Tsuma Y, Moroto M, Mori J, Kosaka K, Morimoto M, Hosoi H. High-fat diet accelerates extreme obesity with hyperphagia in female heterozygous Mecp2-null mice. PLoS One 2019; 14:e0210184. [PMID: 30608967 PMCID: PMC6319720 DOI: 10.1371/journal.pone.0210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutation of the methyl-CpG-binding protein 2 (MECP2) gene. Although RTT has been associated with obesity, the underlying mechanism has not yet been elucidated. In this study, female heterozygous Mecp2-null mice (Mecp2+/- mice), a model of RTT, were fed a normal chow diet or high-fat diet (HFD), and the changes in molecular signaling pathways were investigated. Specifically, we examined the expression of genes related to the hypothalamus and dopamine reward circuitry, which represent a central network of feeding behavior control. In particular, dopamine reward circuitry has been shown to regulate hedonic feeding behavior, and its disruption is associated with HFD-related changes in palatability. The Mecp2+/- mice that were fed the normal chow showed normal body weight and food consumption, whereas those fed the HFD showed extreme obesity with hyperphagia, an increase of body fat mass, glucose intolerance, and insulin resistance compared with wild-type mice fed the HFD (WT-HFD mice). The main cause of obesity in Mecp2+/--HFD mice was a remarkable increase in calorie intake, with no difference in oxygen consumption or locomotor activity. Agouti-related peptide mRNA and protein levels were increased, whereas proopiomelanocortin mRNA and protein levels were reduced in Mecp2+/--HFD mice with hyperleptinemia, which play an essential role in appetite and satiety in the hypothalamus. The conditioned place preference test revealed that Mecp2+/- mice preferred the HFD. Tyrosine hydroxylase and dopamine transporter mRNA levels in the ventral tegmental area, and dopamine receptor and dopamine- and cAMP-regulated phosphoprotein mRNA levels in the nucleus accumbens were significantly lower in Mecp2+/--HFD mice than those of WT-HFD mice. Thus, HFD feeding induced dysregulation of food intake in the hypothalamus and dopamine reward circuitry, and accelerated the development of extreme obesity associated with addiction-like eating behavior in Mecp2+/- mice.
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
- * E-mail:
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kazuki Kodo
- Department of Pediatrics, North Medical Center, Kyoto, Prefectural University of Medicine, Yosa-gun, Japan
| | - Keiichi Shigehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masaharu Moroto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
79
|
Persico AM, Ricciardello A, Cucinotta F. The psychopharmacology of autism spectrum disorder and Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:391-414. [DOI: 10.1016/b978-0-444-64012-3.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
80
|
Lai YYL, Wong K, King NM, Downs J, Leonard H. Oral health experiences of individuals with Rett syndrome: a retrospective study. BMC Oral Health 2018; 18:195. [PMID: 30497449 PMCID: PMC6267076 DOI: 10.1186/s12903-018-0651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
Background There is relatively little literature on the oral health experiences of individuals with Rett syndrome. This study described the incidence of dental extractions and restorations in a population-based cohort, according to a range of demographic and clinical factors. The association between bruxism and age was also investigated. Methods Existing questionnaire data in the population-based Australian Rett Syndrome Database for the years 2004, 2006, 2009 or 2011 on genetically confirmed female cases (n = 242) were analysed. Results The incidence rate of restorations and extractions were 6.8 per 100 person years (py) and 9.3 per 100 py respectively. The incidence of extractions decreased with increasing levels of income. Compared to those with a C-terminal mutation, the incidence rate of extraction was higher for those with large deletions (Incidence Rate Ratio (IRR) 4.93; 95% CI 1.46–16.7, p = 0.01). There was a 5% decrease in the risk of frequent bruxism for every one-year increase in age (Risk Ratio 0.95; 95% CI 0.94–0.97). Conclusions Social advantage may provide some protection for dental health in individuals with Rett syndrome. Those with more severe genotypes seemed to have poorer oral health outcomes.
Collapse
Affiliation(s)
- Y Y L Lai
- Department of Paediatric Dentistry, School of Dentistry, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - K Wong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - N M King
- Department of Paediatric Dentistry, School of Dentistry, The University of Western Australia, Perth, WA, Australia
| | - J Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | - H Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
81
|
MacKay J, Leonard H, Wong K, Wilson A, Downs J. Respiratory morbidity in Rett syndrome: an observational study. Dev Med Child Neurol 2018. [PMID: 29536504 DOI: 10.1111/dmcn.13726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Respiratory illness is a major cause of morbidity and mortality in Rett syndrome. This study investigated respiratory morbidity and relationships with age, mutation type, feeding, and walking status. METHOD Families registered with the InterRett database (n=399) provided data on the health of their child with Rett syndrome (age 2-57y). Hospital admissions because of lower respiratory tract infection (LRTI) over a 5-year exposure period were investigated by age, mutation type, enteral feeding, and walking status. RESULTS A hospital admission for LRTI over the previous 5 years was reported for slightly more than one-fifth (21.4%) of individuals. Age and mutation groups did not seem to influence hospital admissions for LRTI but there was nearly twice the risk of an admission with enteral feeding (adjusted relative risk 1.79, 95% confidence interval [CI] 1.21-2.65). Compared with independent walking, being unable to walk was associated with a sixfold increased risk (adjusted relative risk 6.73, 95% CI 3.42-13.25), with assisted walking associated with an intermediate risk. INTERPRETATION Beyond the influence of mutation type, walking seems to have protective effects on respiratory health. Further studies of exercise physiology in Rett syndrome and how this can be influenced by increasing activity levels are indicated. WHAT THIS PAPER ADDS Rett syndrome is associated with increased vulnerability to lower respiratory tract infection (LRTI) requiring hospitalization. Enteral feeding is associated with a higher risk of hospital admission for LRTI. Assisted walking mitigates the risk of hospital admission for LRTI for those unable to walk independently.
Collapse
Affiliation(s)
- Jessica MacKay
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Andrew Wilson
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| |
Collapse
|
82
|
Tarquinio DC, Hou W, Neul JL, Berkmen GK, Drummond J, Aronoff E, Harris J, Lane JB, Kaufmann WE, Motil KJ, Glaze DG, Skinner SA, Percy AK. The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev 2018; 40:515-529. [PMID: 29657083 PMCID: PMC6026556 DOI: 10.1016/j.braindev.2018.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, is associated with a peculiar breathing disturbance exclusively during wakefulness that is distressing, and can even prompt emergency resuscitation. Through the RTT Natural History Study, we characterized cross sectional and longitudinal characteristics of awake breathing abnormalities in RTT and identified associated clinical features. Participants were recruited from 2006 to 2015, and cumulative lifetime prevalence of breathing dysfunction was determined using the Kaplan-Meier estimator. Risk factors were assessed using logistic regression. Of 1205 participants, 1185 had sufficient data for analysis, including 922 females with classic RTT, 778 of whom were followed longitudinally for up to 9.0 years, for a total of 3944 person-years. Participants with classic or atypical severe RTT were more likely to have breathing dysfunction (nearly 100% over the lifespan) compared to those with atypical mild RTT (60-70%). Remission was common, lasting 1 year on average, with 15% ending the study in terminal remission. Factors associated with higher odds of severe breathing dysfunction included poor gross and fine motor function, frequency of stereotypical hand movements, seizure frequency, prolonged corrected QT interval on EKG, and two quality of life metrics: caregiver concern about physical health and contracting illness. Factors associated with lower prevalence of severe breathing dysfunction included higher body mass index and head circumference Z-scores, advanced age, and severe scoliosis or contractures. Awake breathing dysfunction is common in RTT, more so than seizures, and is associated with function, quality of life and risk for cardiac dysrhythmia.
Collapse
Affiliation(s)
- Daniel C. Tarquinio
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Wei Hou
- Statistical analysis, Stony Brook University Medical Center, Stony Brook, NY
| | | | - Gamze Kilic Berkmen
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Jana Drummond
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | - Elizabeth Aronoff
- Emory University, Atlanta, GA,Center for Rare Neurological Diseases, Norcross, GA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Ming X, Chen N, Ray C, Brewer G, Kornitzer J, Steer RA. A Gut Feeling: A Hypothesis of the Role of the Microbiome in Attention-Deficit/Hyperactivity Disorders. Child Neurol Open 2018; 5:2329048X18786799. [PMID: 30023407 PMCID: PMC6047248 DOI: 10.1177/2329048x18786799] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurologic disorder characterized by hyperactivity/impulsivity and/or inattentiveness, with genetic and environmental factors contributing to the disorder. With the growing recognition of the microbiome’s role in many neurological disorders, the authors propose that it may also be implicated in ADHD. Here, we describe several evolving areas of research to support this hypothesis. First, a unique composition of gut bacteria has been identified and linked to behaviors in ADHD. Second, our research found an increased incidence of 2 gastrointestinal symptoms (constipation and flatulence) in children with ADHD, as compared to controls. Finally, emerging data may be interpreted to suggest that immune dysregulation in ADHD be associated with an altered microbiome, low-grade inflammation, and gastrointestinal dysfunction. Although more studies are needed to elucidate exact mechanisms and causality, we propose that an altered microbiome, gastrointestinal symptoms, and immune dysregulation may be associated with the ADHD phenotypes.
Collapse
Affiliation(s)
- Xue Ming
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Neil Chen
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Carly Ray
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Gretchen Brewer
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jeffrey Kornitzer
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Robert A Steer
- Department of Surgery, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
84
|
Strati F, Calabrò A, Donati C, De Felice C, Hayek J, Jousson O, Leoncini S, Renzi D, Rizzetto L, De Filippo C, Cavalieri D. Intestinal Candida parapsilosis isolates from Rett syndrome subjects bear potential virulent traits and capacity to persist within the host. BMC Gastroenterol 2018; 18:57. [PMID: 29720131 PMCID: PMC5930502 DOI: 10.1186/s12876-018-0785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1β and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.
Collapse
Affiliation(s)
- Francesco Strati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy.,Present address: T Cell Development Lab, Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Antonio Calabrò
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Daniela Renzi
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Lisa Rizzetto
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Institute of Agriculture Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
85
|
Gold WA, Krishnarajy R, Ellaway C, Christodoulou J. Rett Syndrome: A Genetic Update and Clinical Review Focusing on Comorbidities. ACS Chem Neurosci 2018; 9:167-176. [PMID: 29185709 DOI: 10.1021/acschemneuro.7b00346] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rett syndrome (RTT) is a unique neurodevelopmental disorder that primarily affects females resulting in severe cognitive and physical disabilities. Despite the commendable collective efforts of the research community to better understand the genetics and underlying biology of RTT, there is still no cure. However, in the past 50 years, since the first report of RTT, steady progress has been made in the accumulation of clinical and molecular information resulting in the identification of a number of genes associated with RTT and associated phenotypes, improved diagnostic criteria, natural history studies, curation of a number of databases capturing genotypic and phenotypic data, a number of promising clinical trials and exciting novel therapeutic options which are currently being tested in laboratory and clinical settings. This Review focuses on the current knowledge of the clinical aspects of RTT, with particular attention being paid to clinical trials and the comorbidities of the disorder as well as the genetic etiology and the recognition of new diseases genes.
Collapse
Affiliation(s)
- Wendy A Gold
- Genetic
Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Rahul Krishnarajy
- Genetic
Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Carolyn Ellaway
- Genetic
Metabolic Disorders Service, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - John Christodoulou
- Genetic
Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Neurodevelopmental
Genomics Research Group, Murdoch Children’s Research Institute,
and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
86
|
Kyle SM, Vashi N, Justice MJ. Rett syndrome: a neurological disorder with metabolic components. Open Biol 2018; 8:170216. [PMID: 29445033 PMCID: PMC5830535 DOI: 10.1098/rsob.170216] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2), a ubiquitously expressed transcriptional regulator. Despite remarkable scientific progress since its discovery, the mechanism by which MECP2 mutations cause RTT symptoms is largely unknown. Consequently, treatment options for patients are currently limited and centred on symptom relief. Thought to be an entirely neurological disorder, RTT research has focused on the role of MECP2 in the central nervous system. However, the variety of phenotypes identified in Mecp2 mutant mouse models and RTT patients implicate important roles for MeCP2 in peripheral systems. Here, we review the history of RTT, highlighting breakthroughs in the field that have led us to present day. We explore the current evidence supporting metabolic dysfunction as a component of RTT, presenting recent studies that have revealed perturbed lipid metabolism in the brain and peripheral tissues of mouse models and patients. Such findings may have an impact on the quality of life of RTT patients as both dietary and drug intervention can alter lipid metabolism. Ultimately, we conclude that a thorough knowledge of MeCP2's varied functional targets in the brain and body will be required to treat this complex syndrome.
Collapse
Affiliation(s)
- Stephanie M Kyle
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Vashi
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
87
|
Bhattacherjee A, Winter MK, Eggimann LS, Mu Y, Gunewardena S, Liao Z, Christianson JA, Smith PG. Motor, Somatosensory, Viscerosensory and Metabolic Impairments in a Heterozygous Female Rat Model of Rett Syndrome. Int J Mol Sci 2017; 19:ijms19010097. [PMID: 29286317 PMCID: PMC5796047 DOI: 10.3390/ijms19010097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Rett Syndrome (RTT), an autism-related disorder caused by mutation of the X-linked Methyl CpG-binding Protein 2 (MECP2) gene, is characterized by severe cognitive and intellectual deficits. While cognitive deficits are well-documented in humans and rodent models, impairments of sensory, motor and metabolic functions also occur but remain poorly understood. To better understand non-cognitive deficits in RTT, we studied female rats heterozygous for Mecp2 mutation (Mecp2−/x); unlike commonly used male Mecp2−/y rodent models, this more closely approximates human RTT where males rarely survive. Mecp2−/x rats showed rapid, progressive decline of motor coordination through six months of age as assessed by rotarod performance, accompanied by deficits in gait and posture. Mecp2−/x rats were hyper-responsive to noxious pressure and cold, but showed visceral hyposensitivity when tested by colorectal distension. Mecp2−/x rats ate less, drank more, and had more body fat resulting in increased weight gain. Our findings reveal an array of progressive non-cognitive deficits in this rat model that are likely to contribute to the compromised quality of life that characterizes RTT.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Linda S Eggimann
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Ying Mu
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Zhaohui Liao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Julie A Christianson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
88
|
van der Vaart M, Svoboda O, Weijts BG, Espín-Palazón R, Sapp V, Pietri T, Bagnat M, Muotri AR, Traver D. Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Dis Model Mech 2017; 10:1439-1451. [PMID: 28993314 PMCID: PMC5769600 DOI: 10.1242/dmm.026922] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in MECP2 cause Rett syndrome, a severe neurological disorder with autism-like features. Duplication of MECP2 also causes severe neuropathology. Both diseases display immunological abnormalities that suggest a role for MECP2 in controlling immune and inflammatory responses. Here, we used mecp2-null zebrafish to study the potential function of Mecp2 as an immunological regulator. Mecp2 deficiency resulted in an increase in neutrophil infiltration and upregulated expression of the pro- and anti-inflammatory cytokines Il1b and Il10 as a secondary response to disturbances in tissue homeostasis. By contrast, expression of the proinflammatory cytokine tumor necrosis factor alpha (Tnfa) was consistently downregulated in mecp2-null animals during development, representing the earliest developmental phenotype described for MECP2 deficiency to date. Expression of tnfa was unresponsive to inflammatory stimulation, and was partially restored by re-expression of functional mecp2 Thus, Mecp2 is required for tnfa expression during zebrafish development and inflammation. Finally, RNA sequencing of mecp2-null embryos revealed dysregulated processes predictive for Rett syndrome phenotypes.
Collapse
Affiliation(s)
- M van der Vaart
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - O Svoboda
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - B G Weijts
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - R Espín-Palazón
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - V Sapp
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
| | - T Pietri
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, 07102 NJ, USA
| | - M Bagnat
- Department of Cell Biology, Duke University, Durham, 27708 NC, USA
| | - A R Muotri
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, La Jolla, 92093 CA, USA
| | - D Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, 92093 CA, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| |
Collapse
|
89
|
Zhong W, Johnson CM, Cui N, Oginsky MF, Wu Y, Jiang C. Effects of early-life exposure to THIP on brainstem neuronal excitability in the Mecp2-null mouse model of Rett syndrome before and after drug withdrawal. Physiol Rep 2017; 5:5/2/e13110. [PMID: 28108647 PMCID: PMC5269412 DOI: 10.14814/phy2.13110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is mostly caused by mutations of the X‐linked MECP2 gene. Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence obtained from Mecp2−/Y mice suggests that imbalanced excitation/inhibition in central neurons plays a major role. Several approaches may help to rebalance the excitation/inhibition, including agonists of GABAA receptors (GABAAR). Indeed, our previous studies have shown that early‐life exposure of Mecp2‐null mice to the extrasynaptic GABAAR agonist THIP alleviates several RTT‐like symptoms including breathing disorders, motor dysfunction, social behaviors, and lifespan. However, how the chronic THIP affects the Mecp2−/Y mice at the cellular level remains elusive. Here, we show that the THIP exposure in early lives markedly alleviated hyperexcitability of two types of brainstem neurons in Mecp2−/Y mice. In neurons of the locus coeruleus (LC), known to be involved in breathing regulation, the hyperexcitability showed clear age‐dependence, which was associated with age‐dependent deterioration of the RTT‐like breathing irregularities. Both the neuronal hyperexcitability and the breathing disorders were relieved with early THIP treatment. In neurons of the mesencephalic trigeminal nucleus (Me5), both the neuronal hyperexcitability and the changes in intrinsic membrane properties were alleviated with the THIP treatment in Mecp2‐null mice. The effects of THIP on both LC and Me5 neuronal excitability remained 1 week after withdrawal. Persistent alleviation of breathing abnormalities in Mecp2−/Y mice was also observed a week after THIP withdrawal. These results suggest that early‐life exposure to THIP, a potential therapeutic medicine, appears capable of controlling neuronal hyperexcitability in Mecp2−/Y mice, which occurs in the absence of THIP in the recording solution, lasts at least 1 week after withdrawal, and may contribute to the RTT‐like symptom mitigation.
Collapse
Affiliation(s)
- Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
90
|
Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2017; 192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Optogenetics has emerged as an important tool in neuroscience, especially in central nervous system research. It allows for the study of the brain's highly complex network with high temporal and spatial resolution. The enteric nervous system (ENS), the brain in the gut, plays critical roles for life. Although advanced progress has been made, the neural circuits of the ENS remain only partly understood because the appropriate research tools are lacking. In this review, I highlight the potential application of optogenetics in ENS research. Firstly, I describe the development of optogenetics with focusing on its three main components. I discuss the applications in vitro and in vivo, and summarize current findings in the ENS research field obtained by optogenetics. Finally, the challenges for the application of optogenetics to the ENS research will be discussed.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
91
|
Abstract
Early-life epilepsies are a series of disorders frequently accompanied by a broad range of morbidities that include cognitive, behavioral, neuromuscular, and sleep disturbances; enteric and other forms of autonomic dysfunction; sensory processing difficulties; and other issues. Usually these morbidities cluster together in a single patient. Rather than these being separate conditions, all, including the seizures, are manifestations or coexpressions of developmental brain disorders. Instead of viewing epilepsy as the disease and the other features as comorbidities, approaching early-life epilepsies as part of the spectrum of developmental brain disorders could have implications for multidisciplinary care models, anticipatory guidance, and counseling of parents, as well as the design of randomized trials and targeting important outcomes. Ultimately, such an approach could improve understanding and help optimize outcomes in these difficult to treat disorders of early childhood.
Collapse
|
92
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
93
|
Abstract
Rett syndrome (RTT) requires total caregiver attention and leads to potential difficulties throughout life. The Caregiver Burden Inventory, designed for Alzheimer disease, was modified to a RTT Caregiver Inventory Assessment (RTT CIA). Reliability and face, construct, and concurrent validity were assessed in caregivers of individuals with RTT. Chi square or Fisher's exact test for categorical variables and t tests or Wilcoxon two-sample tests for continuous variables were utilized. Survey completed by 198 caregivers; 70 caregivers completed follow-up assessment. Exploratory factor analysis revealed good agreement for physical burden, emotional burden, and social burden. Internal reliability was high (Cronbach's alpha 0.898). RTT CIA represents a reliable and valid measure, providing a needed metric of caregiver burden in this disorder.
Collapse
|
94
|
Stahlhut M, Downs J, Aadahl M, Leonard H, Bisgaard AM, Nordmark E. Patterns of sedentary time and ambulatory physical activity in a Danish population of girls and women with Rett syndrome. Disabil Rehabil 2017; 41:133-141. [PMID: 28969435 DOI: 10.1080/09638288.2017.1381181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rett syndrome (RTT) is a rare neurodevelopmental disorder leading to multiple disabilities and high dependency on caregivers. This study aimed to: (1) describe the patterns of sedentary time and daily steps and (2) identify the association of individual and environmental characteristics with sedentary time. METHODS All Danish females with RTT older than 5 years of age and with a MECP2 mutation were invited to participate. The activPAL and StepWatch Activity Monitor (SAM) were worn by participants for at least four days. Sedentary time and step counts were plotted by time to examine daily activity patterns. Associations between sedentary time and individual and environmental covariates were assessed with linear regression models. RESULTS The median (interquartile range) age of participants was 22.0 (14.3-36.5) years. On average 83.3% (standard deviation 13.9%) of waking hours were spent in sedentary behaviours (n = 48) and the median (interquartile range) daily step count was 5128 (2829-7704) (n = 28). Females older than 33.5 years, and those unable to walk independently were more sedentary. CONCLUSIONS This study demonstrated high levels of sedentary time and low daily step counts in a Danish population of females with RTT. Advancing age and lower walking skills were associated with higher levels of sedentary time. Implications for Rehabilitation Sedentary lifestyles in individuals with disabilities have a negative impact on health and quality of life. High levels of sedentary time and low daily step counts were demonstrated in a Danish population of females with Rett syndrome. Advancing age and inability to walk independently were strongly associated with higher levels of sedentary time in females with Rett syndrome. Understanding patterns of sedentary behaviour and physical activity can aid health care professionals in developing health-promoting physical activity interventions.
Collapse
Affiliation(s)
- Michelle Stahlhut
- a Department of Health Sciences, Faculty of Medicine , Lund University , Lund , Sweden.,b Department of Clinical Genetics, Center for Rett syndrome, Kennedy Center , Rigshospitalet , Glostrup , Denmark
| | - Jenny Downs
- c Telethon Kids Institute , University of Western Australia , Perth , Australia.,d School of Physiotherapy and Exercise Science , Curtin University , Perth , Australia
| | - Mette Aadahl
- e Research Center for Prevention and Health , Capital Region of Denmark , Glostrup , Denmark
| | - Helen Leonard
- c Telethon Kids Institute , University of Western Australia , Perth , Australia
| | - Anne-Marie Bisgaard
- b Department of Clinical Genetics, Center for Rett syndrome, Kennedy Center , Rigshospitalet , Glostrup , Denmark
| | - Eva Nordmark
- a Department of Health Sciences, Faculty of Medicine , Lund University , Lund , Sweden
| |
Collapse
|
95
|
Pathogenesis of Lethal Aspiration Pneumonia in Mecp2-null Mouse Model for Rett Syndrome. Sci Rep 2017; 7:12032. [PMID: 28931890 PMCID: PMC5607245 DOI: 10.1038/s41598-017-12293-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2), located on the X chromosome. Many RTT patients have breathing abnormalities, such as apnea and breathing irregularity, and respiratory infection is the most common cause of death in these individuals. Previous studies showed that MeCP2 is highly expressed in the lung, but its role in pulmonary function remains unknown. In this study, we found that MeCP2 deficiency affects pulmonary gene expression and structures. We also found that Mecp2-null mice, which also have breathing problems, often exhibit inflammatory lung injury. These injuries occurred in specific sites in the lung lobes. In addition, polarizable foreign materials were identified in the injured lungs of Mecp2-null mice. These results indicated that aspiration might be a cause of inflammatory lung injury in Mecp2-null mice. On the other hand, MeCP2 deficiency affected the expression of several neuromodulator genes in the lower brainstem. Among them, neuropeptide substance P (SP) immunostaining was reduced in Mecp2-null brainstem. These findings suggest that alteration of SP expression in brainstem may be involved in autonomic dysregulation, and may be one of the causes of aspiration in Mecp2-null mice.
Collapse
|
96
|
Glassman LW, Grocott OR, Kunz PA, Larson AM, Zella G, Ganguli K, Thibert RL. Prevalence of gastrointestinal symptoms in Angelman syndrome. Am J Med Genet A 2017; 173:2703-2709. [PMID: 28816003 DOI: 10.1002/ajmg.a.38401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, expressive speech impairment, movement disorder, epilepsy, and a happy demeanor. Children with AS are frequently reported to be poor feeders during infancy and as having gastrointestinal issues such as constipation, reflux, and abnormal food related behaviors throughout their lifetime. To assess the prevalence of gastrointestinal disorders in individuals with AS, we retrospectively analyzed medical records of 120 individuals seen at the Angelman Syndrome Clinic at Massachusetts General Hospital and 43 individuals seen at the University of North Carolina Comprehensive Angelman Clinic. The majority of patients' medical records indicated at least one symptom of gastrointestinal dysfunction, with constipation and gastroesophageal reflux disease (GERD) the most common. Other gastrointestinal issues reported were cyclic vomiting episodes, difficulty swallowing, excessive swallowing, and eosinophilic esophagitis. Upper gastrointestinal symptoms such as GERD, swallowing difficulties, cyclic vomiting, and eosinophilic esophagitis were more common in those with deletions and uniparental disomy, likely related to the involvement of multiple genes and subsequent hypotonia. The frequency of constipation is consistent among all genetic subtypes while early feeding issues appear to mainly affect those with deletions. Caregivers and healthcare providers should be aware of the high prevalence of these issues, as proper treatment may improve not only gastrointestinal dysfunction but also sleep and behavioral issues.
Collapse
Affiliation(s)
| | - Olivia R Grocott
- Department of Neurology, Angelman Syndrome Clinic, Massachusetts General Hospital, Boston, Massachusetts
| | - Portia A Kunz
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| | - Anna M Larson
- Department of Neurology, Angelman Syndrome Clinic, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School,, Boston, Massachusetts
| | - Garrett Zella
- Tufts University School of Medicine, Boston, Massachusetts.,Tufts Medical Center, Boston, Massachusetts
| | - Kriston Ganguli
- Harvard Medical School,, Boston, Massachusetts.,Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ronald L Thibert
- Department of Neurology, Angelman Syndrome Clinic, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School,, Boston, Massachusetts
| |
Collapse
|
97
|
Effects of chronic exposure to low dose THIP on brainstem neuronal excitability in mouse models of Rett syndrome: Evidence from symptomatic females. Neuropharmacology 2017; 116:288-299. [PMID: 28069353 DOI: 10.1016/j.neuropharm.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations of the MECP2 gene, affecting predominantly females. One of the characteristic features of the disease is defective brainstem autonomic function. In Mecp2-/Y mice, several groups of brainstem neurons are overly excitable, which causes destabilization of neuronal networks for the autonomic control. We have previously shown that the extrasynaptic GABAA receptor agonist THIP relieves many RTT-like symptoms in Mecp2-/Y mice. Although neuronal activity is inhibited by acute THIP exposure, how a chronic treatment affects neuronal excitability remains elusive. Thus, we performed studies to address whether increased excitability occurs in brainstem neurons of female Mecp2+/- mice, how the MeCP expression affects the neuronal excitability, and whether chronic THIP exposure improves the neuronal hyperexcitability. Symptomatic Mecp2+/- (sMecp2+/-) female mice were identified with a two-step screening system. Whole-cell recording was performed in brain slices after a prior exposure of the sMecp2+/- mice to a 5-week low-dose THIP. Neurons in the locus coeruleus (LC) and the mesencephalic trigeminal nucleus (Me5) showed excessive firing activity in the sMecp2+/- mice. THIP pretreatment reduced the hyperexcitability of both LC and Me5 neurons in the sMecp2+/- mice, to a similar level as their counterparts in Mecp2-/Y mice. In identified LC neurons, the hyperexcitability appeared to be determined by not only the MeCP2 expression, but also their environmental cues. The alleviation of LC neuronal hyperexcitability seems to benefit brainstem autonomic function as THIP also improved breathing abnormalities of these sMecp2+/- mice.
Collapse
|
98
|
Millar-Büchner P, Philp AR, Gutierrez N, Villanueva S, Kerr B, Flores CA. Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome. Mol Cell Pediatr 2016; 3:37. [PMID: 27868160 PMCID: PMC5116442 DOI: 10.1186/s40348-016-0065-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Background Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Methods Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. Results First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. Conclusions In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease. Electronic supplementary material The online version of this article (doi:10.1186/s40348-016-0065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pamela Millar-Büchner
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile.,Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Amber R Philp
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile
| | - Noemí Gutierrez
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile
| | - Sandra Villanueva
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | - Bredford Kerr
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos (CECs), Avenida Arturo Prat 514, 511046, Valdivia, Chile.
| |
Collapse
|
99
|
Wahba G, Schock SC, Cudd S, Grynspan D, Humphreys P, Staines WA. Activity and MeCP2-dependent regulation of nNOS levels in enteric neurons. Neurogastroenterol Motil 2016; 28:1723-1730. [PMID: 27254746 DOI: 10.1111/nmo.12873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rett syndrome (RTT) is a neurological disorder characterized by severe cognitive impairment, motor dyspraxia, and seizures. Rett syndrome arises predominantly from mutations in MECP2, the gene coding for methyl-CpG-binding protein 2 (MeCP2). MeCP2 is an important mediator of synaptic development and is essential in regulating homeostatic synaptic plasticity (HSP) in the brain. In addition to demonstrating central nervous system impairment, RTT patients also suffer from gastrointestinal (GI) dysmotility. We hypothesize that this is due to a similar impairment of plasticity-dependent synaptic function in the enteric nervous system (ENS). We recently reported that MeCP2 is expressed in the ENS, providing evidence that neuronal dysfunction may mediate the GI pathology. METHODS Baseline measures of MeCP2-KO vs wild-type (WT) GI neuronal nitric oxide synthase (nNOS) were assessed in tissue samples and in vitro. Experiments were carried out to measure nNOS in baseline vs activated plasticity states in vitro. Functional in vivo studies were carried out to determine whether MeCP2-KO mice reproduced the RTT GI hypomotility. KEY RESULTS Methyl-CpG-binding protein 2-KO mice reproduced the GI hypomotility seen in RTT. MeCP2-KO GI tissue demonstrated elevated nNOS levels. Cultured WT enteric neurons showed upregulation of nNOS following moderate, prolonged stimulation by hyperkalemia; neurons from MeCP2-KO mice failed to show this nNOS upregulation. CONCLUSIONS & INFERENCES MeCP2 is required for proper GI motility and normal nNOS levels. Neuronal nitric oxide synthase imbalances could mediate the GI dysmotility seen in RTT. Disruption of MeCP2-dependent HSP may be the basis for aberrant nNOS levels and hence GI dysmotility in MeCP2-KO and RTT.
Collapse
Affiliation(s)
- G Wahba
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S C Schock
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - S Cudd
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - D Grynspan
- Department of Pathology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - P Humphreys
- Division of Neurology, Department of Paediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - W A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
100
|
Oginsky MF, Cui N, Zhong W, Johnson CM, Jiang C. Hyperexcitability of Mesencephalic Trigeminal Neurons and Reorganization of Ion Channel Expression in a Rett Syndrome Model. J Cell Physiol 2016; 232:1151-1164. [PMID: 27670841 DOI: 10.1002/jcp.25589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
People with Rett syndrome (RTT) have defects in motor function also seen in Mecp2-null mice. Motor function depends on not only central motor commands but also sensory feedback that is vulnerable to changes in excitability of propriosensory neurons. Here we report evidence for hyperexcitability of mesencephalic trigeminal (Me5) neurons in Mecp2-null mice and a novel cellular mechanism for lowering its impact. In in vitro brain slices, the Me5 neurons in both Mecp2-/Y male and symptomatic Mecp2+/- female mice were overly excitable showing increased firing activity in comparison to their wild-type (WT) male and asymptomatic counterparts. In Mecp2-/Y males, Me5 neurons showed a reduced firing threshold. Consistently, the steady-state activation of voltage-gated Na+ currents (INa ) displayed a hyperpolarizing shift in the Mecp2-null neurons with no change in the INa density. This seems to be due to NaV1.1, SCN1B and SCN4B overexpression and NaV1.2 and SCN3B under-expression. In contrast to the hyperexcitability, the sag potential and postinhibitory rebound (PIR) were reduced in Mecp2-null mice. In voltage-clamp, the IH density was deficient by ∼33%, and the steady-state half-activation had a depolarizing shift of ∼10 mV in the Mecp2-null mice. Quantitative PCR analysis indicated that HCN2 was decreased, HCN1 was upregulated with no change in HCN4 in Mecp2-/Y mice compared to WT. Lastly, blocking IH reduced the firing rate much more in WT than in Mecp2-null neurons. These data suggest that the Mecp2 defect causes an increase in Me5 neuronal excitability likely attributable to alterations in INa , meanwhile IH is reduced likely altering neuronal excitability as well. J. Cell. Physiol. 232: 1151-1164, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|