51
|
Min JS, Kim JC, Kim JA, Kang I, Ahn JK. SIRT2 reduces actin polymerization and cell migration through deacetylation and degradation of HSP90. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1230-1238. [PMID: 29908203 DOI: 10.1016/j.bbamcr.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/26/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023]
Abstract
SIRT2, a member of the class III histone deacetylase family, has been identified as a tumor suppressor, which is associated with various cellular processes including metabolism and proliferation. However, the effects of SIRT2 on cancer cell migration caused by cytoskeletal rearrangement remain uncertain. Here we show that SIRT2 inhibits cell motility by suppressing actin polymerization. SIRT2 regulates actin dynamics through HSP90 destabilization and subsequent repression of LIM kinase (LIMK) 1/cofilin pathway. SIRT2 directly interacts with HSP90 and regulates its acetylation and ubiquitination. In addition, the deacetylase activity of SIRT2 is required for the regulation of actin polymerization and the ubiquitin-mediated proteasomal degradation of HSP90 induced by SIRT2.
Collapse
Affiliation(s)
- Jung Sun Min
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Chul Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Ae Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inho Kang
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Keun Ahn
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
52
|
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ, Barry SC. FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget 2018; 9:27708-27727. [PMID: 29963231 PMCID: PMC6021232 DOI: 10.18632/oncotarget.25523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.
Collapse
Affiliation(s)
- Cheryl Y. Brown
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Sonia Dayan
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Soon Wei Wong
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Adrian Kaczmarek
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher M. Hope
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
| | - Stephen M. Pederson
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Victoria Arnet
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Gregory J. Goodall
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Darryl Russell
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Timothy J. Sadlon
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Simon C. Barry
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| |
Collapse
|
53
|
Cypripedin diminishes an epithelial-to-mesenchymal transition in non-small cell lung cancer cells through suppression of Akt/GSK-3β signalling. Sci Rep 2018; 8:8009. [PMID: 29789636 PMCID: PMC5964153 DOI: 10.1038/s41598-018-25657-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer appears to have the highest rate of mortality among cancers due to its metastasis capability. To achieve metastasis, cancer cells acquire the ability to undergo a switch from epithelial to mesenchymal behaviour, termed the epithelial-to-mesenchymal transition (EMT), which is associated with poor clinical outcomes. Drug discovery attempts have been made to find potent compounds that will suppress EMT. Cypripedin, a phenanthrenequinone isolated from Thai orchid, Dendrobium densiflorum, exhibits diverse pharmacological activities. In this study, we found that cypripedin attenuated typical mesenchymal phenotypes, including migratory behaviour, of non-small cell lung cancer H460 cells, with a significant reduction of actin stress fibres and focal adhesion and with weakened anchorage-independent growth. Western blot analysis revealed that the negative activity of this compound on EMT was a result of the down-regulation of the EMT markers Slug, N-Cadherin and Vimentin, which was due to ATP-dependent tyrosine kinase (Akt) inactivation. As a consequence, the increase in the Slug degradation rate via a ubiquitin-proteasomal mechanism was encouraged. The observation in another lung cancer H23 cell line also supported this finding, indicating that cypripedin exhibits a promising pharmacological action on lung cancer metastasis that could provide scientific evidence for the further development of this compound.
Collapse
|
54
|
Comparison of Human Denuded Amniotic Membrane and Porcine Small Intestine Submucosa as Scaffolds for Limbal Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 14:744-754. [DOI: 10.1007/s12015-018-9819-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
55
|
Kuragano M, Uyeda TQP, Kamijo K, Murakami Y, Takahashi M. Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Mol Biol Cell 2018; 29:911-922. [PMID: 29467250 PMCID: PMC5896930 DOI: 10.1091/mbc.e17-04-0215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
We demonstrated that myosin IIA and IIB are essential for the formation of transverse arcs and ventral stress fibers, respectively. Furthermore, we illustrated the roles of both isoforms in lamellar flattening and also raised the possibility that actin filaments in ventral stress fibers are in a stretched conformation.
Collapse
Affiliation(s)
- Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keiju Kamijo
- Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yota Murakami
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
56
|
Miyoshi H, Suzuki K, Ju J, Ko JS, Adachi T, Yamagata Y. A Perturbation Analysis to Understand the Mechanism How Migrating Cells Sense and Respond to a Topography in the Extracellular Environment. ANAL SCI 2018; 32:1207-1211. [PMID: 27829627 DOI: 10.2116/analsci.32.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Migrating cells in vivo monitor the physiological state of an organism by integrating the physical as well as chemical cues in the extracellular microenvironment, and alter the migration mode, in order to achieve their unique function. The clarification of the mechanism focusing on the topographical cues is important for basic biological research, and for biomedical engineering specifically to establish the design concept of tissue engineering scaffolds. The aim of this study is to understand how cells sense and respond to the complex topographical cues in vivo by exploring in vitro analyses to complex in vivo situations in order to simplify the issue. Since the intracellular mechanical events at subcellular scales and the way of the coordination of these events are supposed to change in the migrating cells, a key to success of the analysis is a mechanical point of view with a particular focus of the subcellular mechanical events. We designed an experimental platform to explore the mechanical requirements in a migrating fibroma cell responding to micro-grooves. The micro-grooved structure is a model of gap structures, typically seen in the microenvironments in vivo. In our experiment, the contributions of actomyosin force generation can be spatially divided and analyzed in the cell center and peripheral regions. The analysis specified that rapid leading edge protrusion, and the cell body translocation coordinated with the leading edge protrusion are required for the turning response at a micro-groove.
Collapse
Affiliation(s)
- Hiromi Miyoshi
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
| | | | | | | | | | | |
Collapse
|
57
|
FERMT2 links cortical actin structures, plasma membrane tension and focal adhesion function to stabilize podocyte morphology. Matrix Biol 2018; 68-69:263-279. [PMID: 29337051 DOI: 10.1016/j.matbio.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
Abstract
Simplification and retraction of podocyte protrusions, generally termed as foot process effacement, is a uniform pathological pattern observed in the majority of glomerular disease, including focal segmental glomerulosclerosis. However, it is still incompletely understood how the interaction of cortical actin structures, actomyosin contractility and focal adhesions, is being orchestrated to control foot process morphology in health and disease. By uncovering the functional role of fermitin family member 2 (FERMT2 or kindlin-2) in podocytes, we provide now evidence, how cell-extracellular matrix (ECM) interactions modulate membrane tension and actomyosin contractility. A genetic modeling approach was applied by deleting FERMT2 in a set of in vivo systems as well as in CRISPR/Cas9 modified human podocytes. Loss of FERMT2 results in altered cortical actin composition, cell cortex destabilization associated with plasma membrane blebbing and a remodeling of focal adhesions. We further show that FERMT2 knockout podocytes have high levels of RhoA activation and concomitantly increased actomyosin contractility. Inhibition of actomyosin tension reverses the membrane blebbing phenotype. Thus, our findings establish a direct link between cell-matrix adhesions, cortical actin structures and plasma membrane tension allowing to better explain cell morphological changes in foot process effacement.
Collapse
|
58
|
Woo YM, Kim DY, Koo NJ, Kim YM, Lee S, Ko JY, Shin Y, Kim BH, Mun H, Choi S, Lee EJ, Shin JO, Park EY, Bok J, Park JH. Profiling of miRNAs and target genes related to cystogenesis in ADPKD mouse models. Sci Rep 2017; 7:14151. [PMID: 29074972 PMCID: PMC5658336 DOI: 10.1038/s41598-017-14083-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/02/2017] [Indexed: 11/09/2022] Open
Abstract
Autosomal polycystic kidney disease (ADPKD) is a common inherited renal disease characterized by the development of numerous fluid-filled cysts in both kidneys. We investigated miRNA-mediated regulatory systems and networks that play an important role during cystogenesis through integrative analysis of miRNA- and RNA-seq using two ADPKD mouse models (conditional Pkd1- or Pkd2-deficient mice), at three different time points (P1, P3, and P7). At each time point, we identified 13 differentially expressed miRNAs (DEmiRs) and their potential targets in agreement with cyst progression in both mouse models. These targets were involved in well-known signaling pathways linked to cystogenesis. More specifically, we found that the actin cytoskeleton pathway was highly enriched and connected with other well-known pathways of ADPKD. We verified that miR-182-5p regulates actin cytoskeleton rearrangement and promotes ADPKD cystogenesis by repressing its target genes-Wasf2, Dock1, and Itga4-in vitro and in vivo. Our data suggest that actin cytoskeleton may play an important role in renal cystogenesis, and miR-182-5p is a novel regulator of actin cytoskeleton and cyst progression. Furthermore, this study provides a systemic network of both key miRNAs and their targets associated with cyst growth in ADPKD.
Collapse
Affiliation(s)
- Yu Mi Woo
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Nam Jin Koo
- Korean Bioinformation Center, Korea Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yubin Shin
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Bo Hye Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyowon Mun
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seonju Choi
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jinwoong Bok
- Departments of Anatomy and Otorhinolaryngology, and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
59
|
Rahman-Zaman A, Shan S, Reinhart-King CA. Cell Migration in Microfabricated 3D Collagen Microtracks is Mediated through the Prometastatic Protein Girdin. Cell Mol Bioeng 2017; 11:1-10. [PMID: 29403565 DOI: 10.1007/s12195-017-0511-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction In vivo, cancer cells can utilize tube-like microtracks formed within the extracellular matrix (ECM) of the stroma as 'highways' to escape the primary tumor, however very little is known about the molecular mechanisms that govern cell migration through these microtracks. Cell polarization and actin organization are both essential for efficient cell migration and cells are known to migrate very unidirectionally in confined spaces. In this study, we focused on understanding the role of Girdin during unidirectional migration. Girdin is a prometastatic protein known to be involved in cell polarity by directly interacting with the cell polarity protein Par-3 (Partitioning defective-3) and also known as an actin binding protein. Methods We utilized a microfabricated platform to recreate these microtracks in vitro using collagen and used siRNA to knockdown Girdin in MDA-MB-231 cells. Results Our data indicate that knockdown of Girdin results in decreased cell speed during 3D collagen microtrack migration. Loss of Girdin also results in altered cell morphology and cell orientation. Moreover, Girdin-depletion impairs actin organization and stress fiber formation, which can be restored by upregulating the GTPase RhoA. Activation of RhoA induces actin stress fiber formation, restores elongated migratory cell shape and partial cell migration in 3D collagen microtracks in the absence of Girdin. Conclusions Our data suggest that Girdin helps directional migration in collagen microtracks by promoting actin cytoskeletal organization and maintaining morphological cell polarity.
Collapse
Affiliation(s)
- Aniqua Rahman-Zaman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Shuo Shan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA.,Department of Biomedical Engineering, Vanderbilt University, PMB 351631, Nashville, TN 37235 USA
| |
Collapse
|
60
|
Suleiman HY, Roth R, Jain S, Heuser JE, Shaw AS, Miner JH. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight 2017; 2:94137. [PMID: 28814668 DOI: 10.1172/jci.insight.94137] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
The architectural integrity of tissues requires complex interactions, both between cells and between cells and the extracellular matrix. Fundamental to cell and tissue homeostasis are the specific mechanical forces conveyed by the actomyosin cytoskeleton. Here we used super-resolution imaging methods to visualize the actin cytoskeleton in the kidney glomerulus, an organized collection of capillaries that filters the blood to make the primary urine. Our analysis of both mouse and human glomeruli reveals a network of myosin IIA-containing contractile actin cables within podocyte cell bodies and major processes at the outer aspects of the glomerular tuft. These likely exert force on an underlying network of myosin IIA-negative, noncontractile actin fibers present within podocyte foot processes that function to both anchor the cells to the glomerular basement membrane and stabilize the slit diaphragm against the pressure of fluid flow. After injuries that disrupt the kidney filtration barrier and cause foot process effacement, the podocyte's contractile actomyosin network relocates to the basolateral surface of the cell, manifesting as sarcomere-like structures juxtaposed to the basement membrane. Our findings suggest a new model of the podocyte actin cytoskeleton in health and disease and suggest the existence of novel mechanisms that regulate podocyte architecture.
Collapse
Affiliation(s)
- Hani Y Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John E Heuser
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | | | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
61
|
Zhang Z, Xia S, Kanchanawong P. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs. BMC Bioinformatics 2017; 18:268. [PMID: 28532442 PMCID: PMC5440974 DOI: 10.1186/s12859-017-1684-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. RESULT Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. CONCLUSION We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.
Collapse
Affiliation(s)
- Zhen Zhang
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Shumin Xia
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Republic of Singapore.
| |
Collapse
|
62
|
Maninova M, Caslavsky J, Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. PROTOPLASMA 2017; 254:1207-1218. [PMID: 28101692 DOI: 10.1007/s00709-017-1077-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/24/2023]
Abstract
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.
Collapse
Affiliation(s)
- Miloslava Maninova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Caslavsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Vomastek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
63
|
Naasani LIS, Rodrigues C, de Campos RP, Beckenkamp LR, Iser IC, Bertoni APS, Wink MR. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production. J Cell Biochem 2017; 118:2430-2442. [PMID: 28120532 DOI: 10.1002/jcb.25909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/23/2017] [Indexed: 01/20/2023]
Abstract
Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105+ , CD44+ , CD14- , CD34- , CD45- , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liliana I Sous Naasani
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Cristiano Rodrigues
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Rafael Paschoal de Campos
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Liziane Raquel Beckenkamp
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| |
Collapse
|
64
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
65
|
MIYOSHI H, NISHIMURA M, YAMAGATA Y, LIU H, WATANABE Y, SUGAWARA M. Cell migration guided by a groove with branches. ACTA ACUST UNITED AC 2017. [DOI: 10.1299/jbse.16-00613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiromi MIYOSHI
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
- Health Metrics Development Team, RIKEN Compass to Healthy Life Research Complex Program
- PRIME, AMED
| | | | - Yutaka YAMAGATA
- Ultrahigh Precision Optics Technology Team, RIKEN Center for Advanced Photonics
| | - Hao LIU
- Graduate School of Engineering, Chiba University
| | - Yasuyoshi WATANABE
- Pathophysiological and Health Science Team, RIKEN Center for Life Science Technologies
- Health Metrics Development Team, RIKEN Compass to Healthy Life Research Complex Program
| | | |
Collapse
|
66
|
Livne A, Geiger B. The inner workings of stress fibers - from contractile machinery to focal adhesions and back. J Cell Sci 2016; 129:1293-304. [PMID: 27037413 DOI: 10.1242/jcs.180927] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ventral stress fibers and focal adhesions are physically coupled structures that play key roles in cellular mechanics and force sensing. The tight functional interdependence between the two is manifested not only by their apparent proximity but also by the fact that ventral stress fibers and focal adhesions are simultaneously diminished upon actomyosin relaxation, and grow when subjected to external stretching. However, whereas the apparent co-regulation of the two structures is well-documented, the underlying mechanisms remains poorly understood. In this Commentary, we discuss some of the fundamental, yet still open questions regarding ventral stress fiber structure, its force-dependent assembly, as well as its capacity to generate force. We also challenge the common approach - i.e. ventral stress fibers are variants of the well-studied striated or smooth muscle machinery - by presenting and critically discussing alternative venues. By highlighting some of the less-explored aspects of the interplay between stress fibers and focal adhesions, we hope that this Commentary will encourage further investigation in this field.
Collapse
Affiliation(s)
- Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
67
|
Dynamics of Actin Stress Fibers and Focal Adhesions during Slow Migration in Swiss 3T3 Fibroblasts: Intracellular Mechanism of Cell Turning. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5749749. [PMID: 28119928 PMCID: PMC5227335 DOI: 10.1155/2016/5749749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
To understand the mechanism regulating the spontaneous change in polarity that leads to cell turning, we quantitatively analyzed the dynamics of focal adhesions (FAs) coupling with the self-assembling actin cytoskeletal structure in Swiss 3T3 fibroblasts. Fluorescent images were acquired from cells expressing GFP-actin and RFP-zyxin by laser confocal microscopy. On the basis of the maximum area, duration, and relocation distance of FAs extracted from the RFP-zyxin images, the cells could be divided into 3 regions: the front region, intermediate lateral region, and rear region. In the intermediate lateral region, FAs appeared close to the leading edge and were stabilized gradually as its area increased. Simultaneously, bundled actin stress fibers (SFs) were observed vertically from the positions of these FAs, and they connected to the other SFs parallel to the leading edge. Finally, these connecting SFs fused to form a single SF with matured FAs at both ends. This change in SF organization with cell retraction in the first cycle of migration followed by a newly formed protrusion in the next cycle is assumed to lead to cell turning in migrating Swiss 3T3 fibroblasts.
Collapse
|
68
|
Abstract
Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge.
Collapse
Affiliation(s)
- Stacey Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
69
|
Maninová M, Vomastek T. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. FEBS J 2016; 283:3676-3693. [PMID: 27538255 DOI: 10.1111/febs.13836] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/30/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In polarized motile cells, stress fibers display specific three-dimensional organization. Ventral stress fibers, attached to focal adhesions at both ends, are restricted to the basal side of the cell and nonprotruding cell sides. Dorsal fibers, transverse actin arcs, and perinuclear actin fibers emanate from protruding cell front toward the nucleus and toward apical side of the cell. Perinuclear cap fibers further extend above the nucleus, associate with nuclear envelope through LINC (linker of nucleoskeleton and cytoskeleton) complex and terminate in focal adhesions at cell rear. How are perinuclear actin fibers formed is poorly understood. We show that the formation of perinuclear actin fibers requires dorsal stress fibers that polymerize from focal adhesions at leading edge, and transverse actin arcs that are interconnected with dorsal fibers in spots rich in α-actinin-1. During cell polarization, the interconnected dorsal fibers and transverse arcs move from leading edge toward dorsal side of the cell. As they move, transverse arcs associate with one end of stress fibers present at nonprotruding cell sides, move them above the nucleus thus forming perinuclear actin fibers. Furthermore, the formation of perinuclear actin fibers induces temporal rotational movement of the nucleus resulting in nuclear reorientation to the direction of migration. These results suggest that the network of dorsal fibers, transverse arcs, and perinuclear fibers transfers mechanical signal between the focal adhesions and nuclear envelope that regulates the nuclear reorientation in polarizing cells.
Collapse
Affiliation(s)
| | - Tomáš Vomastek
- Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
70
|
Calvo G, Sáenz D, Simian M, Sampayo R, Mamone L, Vallecorsa P, Batlle A, Casas A, Di Venosa G. Reversal of the Migratory and Invasive Phenotype of Ras-Transfected Mammary Cells by Photodynamic Therapy Treatment. J Cell Biochem 2016; 118:464-477. [PMID: 27438675 DOI: 10.1002/jcb.25657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy (PDT) is a non-thermal technique for inducing tumor damage following administration of a light-activated photosensitizing drug (PS). In a previous work we found that PDT induces cytoskeleton changes in HB4a-Ras cells (human mammary breast carcinoma HB4a cells transfected with the RAS oncogene). In the present work we have studied the migratory and invasive features and the expression of proteins related to these processes on HB4a-Ras cells after three successive cycles of PDT using different PSs: 5-aminolevulinic acid (ALA), Verteporfin (Verte), m-tetrahydroxyphenylchlorin (m-THPC), and Merocyanine 540 (MC). A slight (1.25- to 2-fold) degree of resistance was acquired in cell populations subjected to the three successive PDT treatments. However, complete cell killing was achieved after a light dose increase. Regardless of the PS employed, all the PDT-treated populations had shorter stress fibres than the untreated control HB4a-Ras cells, and the number of dorsal stress fibres was decreased in the PDT-treated populations. E-Cadherin distribution, which was already aberrant in HB4a-Ras cells, became even more diffuse in the PDT-treated populations, though its expression was increased in some of them. The strong migratory and invasive ability of HB4a-Ras cells in vitro was impaired in all the PDT-treated populations, with a behavior that was similar to the parental non-tumoral HB4a cells. MMP-2 and -9 metalloproteinase activities were also impaired in the PDT-treated populations. The evidence presented herein suggests that the cells surviving PDT would be less metastatic than the initial population. These findings encourage the use of PDT in combination with other treatments such as intraoperative or post-surgery therapeutic procedures. J. Cell. Biochem. 118: 464-477, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gustavo Calvo
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Simian
- Instituto de Nanosistemas & CEDESI, Universidad Nacional de San Martín. 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires, Argentina
| | - Rocío Sampayo
- Instituto de Oncología "Ángel H. Roffo", Av. San Martín 5481, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Vallecorsa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET, University of Buenos Aires, Av. Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
71
|
Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b. Sci Rep 2016; 6:30031. [PMID: 27445265 PMCID: PMC4957108 DOI: 10.1038/srep30031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer.
Collapse
|
72
|
Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep 2016; 6:29660. [PMID: 27412958 PMCID: PMC4944142 DOI: 10.1038/srep29660] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-binding protein over-expressed in pancreatic cancer (PC). We recently reported that extracellular ANXA1 mediates PC cell motility acting on Formyl Peptide Receptors (FPRs). Here, we describe other mechanisms by which intracellular ANXA1 could mediate PC progression. We obtained ANXA1 Knock-Out (KO) MIA PaCa-2 cells using the CRISPR/Cas9 genome editing technology. LC-MS/MS analysis showed altered expression of several proteins involved in cytoskeletal organization. As a result, ANXA1 KO MIA PaCa-2 partially lost their migratory and invasive capabilities with a mechanism that appeared independent of FPRs. The acquisition of a less aggressive phenotype has been further investigated in vivo. Wild type (WT), PGS (scrambled) and ANXA1 KO MIA PaCa-2 cells were engrafted orthotopically in SCID mice. No differences were found about PC primary mass, conversely liver metastatization appeared particularly reduced in ANXA1 KO MIA PaCa-2 engrafted mice. In summary, we show that intracellular ANXA1 is able to preserve the cytoskeleton integrity and to maintain a malignant phenotype in vitro. The protein has a relevant role in the metastatization process in vivo, as such it appears attractive and suitable as prognostic and therapeutic marker in PC progression.
Collapse
|
73
|
Wang X, Hu X, Dulińska-Molak I, Kawazoe N, Yang Y, Chen G. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces. Sci Rep 2016; 6:28708. [PMID: 27349298 PMCID: PMC4923853 DOI: 10.1038/srep28708] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023] Open
Abstract
Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions. In this study, 10 types of isotropical micropatterns that were composed of 2 μm microdots were prepared to precisely control the adhesion area and spreading area of human mesenchymal stem cells (MSCs). The respective influence of adhesion and spreading areas on stem cell functions was investigated. Adhesion area showed more significant influences on the focal adhesion formation, binding of myosin to actin fibers, cytoskeletal organization, cellular Young's modulus, accumulation of YAP/TAZ in nuclei, osteogenic and adipogenic differentiation of MSCs than did the spreading area. The results indicated that adhesion area rather than spreading area played more important roles in regulating cell functions. This study should provide new insight of the influence of cell adhesion and spreading on cell functions and inspire the design of biomaterials to process in an effective manner for manipulation of cell functions.
Collapse
Affiliation(s)
- Xinlong Wang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Xiaohong Hu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Ida Dulińska-Molak
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
74
|
Lualdi M, Pedrini E, Rea K, Monti L, Scaldaferri D, Gariboldi M, Camporeale A, Ghia P, Monti E, Tomassetti A, Acquati F, Taramelli R. Pleiotropic modes of action in tumor cells of RNASET2, an evolutionary highly conserved extracellular RNase. Oncotarget 2016; 6:7851-65. [PMID: 25797262 PMCID: PMC4480721 DOI: 10.18632/oncotarget.3490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/02/2015] [Indexed: 02/03/2023] Open
Abstract
As widely recognized, tumor growth entails a close and complex cross-talk among cancer cells and the surrounding tumor microenvironment. We recently described the human RNASET2 gene as one key player of such microenvironmental cross-talk. Indeed, the protein encoded by this gene is an extracellular RNase which is able to control cancer growth in a non-cell autonomous mode by inducing a sustained recruitment of immune-competent cells belonging to the monocyte/macrophage lineage within a growing tumor mass. Here, we asked whether this oncosuppressor gene is sensitive to stress challenges and whether it can trigger cell-intrinsic processes as well. Indeed, RNASET2 expression levels were consistently found to increase following stress induction. Moreover, changes in RNASET2 expression levels turned out to affect several cancer-related parameters in vitro in an ovarian cancer cell line model. Of note, a remarkable rearrangement of the actin cytoskeleton organization, together with changes in cell adhesion and motility, emerged as putative mechanisms by which such cell-autonomous role could occur. Altogether, these biological features allow to put forward the hypothesis that the RNASET2 protein can act as a molecular barrier for limiting the damages and tissue remodeling events occurring during the earlier step of cell transformation.
Collapse
Affiliation(s)
- Marta Lualdi
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Edoardo Pedrini
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Katia Rea
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Monti
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Debora Scaldaferri
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Annalisa Camporeale
- Division of Molecular Oncology and Department of Onco-Hematology, IRCCS Ospedale San Raffaele, Milan, Italy.,Present address: Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Turin, Italy
| | - Paolo Ghia
- Division of Molecular Oncology and Department of Onco-Hematology, IRCCS Ospedale San Raffaele, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Busto Arsizio, Italy
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Acquati
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Roberto Taramelli
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
75
|
Gandalovičová A, Vomastek T, Rosel D, Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget 2016; 7:25022-49. [PMID: 26872368 PMCID: PMC5041887 DOI: 10.18632/oncotarget.7214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology, Academy of Sciences of The Czech Republic, Videňská, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| |
Collapse
|
76
|
Yang GN, Kopecki Z, Cowin AJ. Role of Actin Cytoskeleton in the Regulation of Epithelial Cutaneous Stem Cells. Stem Cells Dev 2016; 25:749-59. [PMID: 27021878 DOI: 10.1089/scd.2016.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cutaneous stem cells (CSCs) orchestrate the homeostasis and regeneration of mammalian skin. Epithelial CSCs have been isolated and characterized from the skin and hold great potential for tissue engineering and clinical applications. The actin cytoskeleton is known to regulate cell adhesion and motility through its intricate participation in signal transduction and structural modifications. The dynamics of actin cytoskeleton can directly influence CSCs behaviors including tissue morphogenesis, homeostasis, niche maintenance, activation, and wound repair. Various regulators of the actin cytoskeleton including kinases, actin-remodeling proteins, paracrine signals, and micro-RNAs collaborate and contribute to epithelial CSC proliferation, adhesion, and differentiation. This review brings together the latest mechanistic insights into how the actin cytoskeleton participates in the regulation of epithelial CSCs during development, homeostasis, and wound repair.
Collapse
Affiliation(s)
- Gink N Yang
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| |
Collapse
|
77
|
Time course of lead induced proteomic changes in gill of the Antarctic limpet Nacella Concinna (Gastropoda: Patellidae). J Proteomics 2016; 151:145-161. [PMID: 27126604 DOI: 10.1016/j.jprot.2016.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/06/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The effect of increasing levels of metals from anthropogenic sources on Antarctic invertebrates is poorly understood. Here we exposed limpets (Nacella concinna) to 0, 0.12 and 0.25 μg L− 1 lead for 12, 24, 48 and 168 h. We subsequently quantified the changes in protein abundance from gill, using 2D gel electrophoresis and mass spectrometry. We identified several antioxidant proteins, including the metal binding Mn-superoxide dismutase and ferritin, increasing abundances early on. Chaperones involved in the redox-dependent maturation of proteins in the endoplasmic reticulum (ER) showed higher abundance with lead at 48 h. Lead also increased the abundance of Zn-binding carbonic anhydrase at 12 h, suggesting a challenge to acid-base balance. Metabolic proteins increased abundance at 168 h, suggesting a greater ATP demand during prolonged exposure. Changes in abundance of the small G-protein cdc42, a signaling protein modifying cytoskeleton, increased early and subsequently reversed during prolonged exposure, possibly leading to the modification of thick filament structure and function. We hypothesize that the replacement of metals initially affected antioxidant proteins and increased the production of reactive oxygen species. This disrupted the redox-sensitive maturation of proteins in the ER and caused increased ATP demand later on, accompanied by changes in cytoskeleton. SIGNIFICANCE Proteomic analysis of gill tissue in Antarctic limpets exposed to different concentrations of lead (Pb) over a 168 h time period showed that proteomic changes vary with time. These changes included an increase in the demand of scavenging reactive oxygen species, acid-base balance and a challenge to protein homeostasis in the endoplasmic reticulum early on and subsequently an increase in energy metabolism, cellular signaling, and cytoskeletal modifications. Based on this time course, we hypothesize that the main mode of action of lead is a replacement of metal-cofactors of key enzymes involved in the scavenging of reactive oxygen species and the regulation of acid-base balance.
Collapse
|
78
|
Wardecki T, Werner P, Thomas M, Templin MF, Schmidt G, Brandner JM, Merfort I. Influence of Birch Bark Triterpenes on Keratinocytes and Fibroblasts from Diabetic and Nondiabetic Donors. JOURNAL OF NATURAL PRODUCTS 2016; 79:1112-1123. [PMID: 27002382 DOI: 10.1021/acs.jnatprod.6b00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Impaired wound healing is one of the main risk factors associated with diabetes mellitus. Few options are available to treat diabetic wounds, and therefore efficient remedies are urgently needed. An interesting option might be an extract of birch bark (TE) that has been clinically proven to accelerate acute wound healing. We investigated the effects of TE and its main components betulin and lupeol in cultured normal keratinocytes and dermal fibroblasts from diabetic and nondiabetic donors. These in vitro models can provide insights into possible beneficial effects in wound healing. TE and betulin treatment led to increased mRNA levels of chemokines, pro-inflammatory cytokines, and mediators important in wound healing, e.g., IL-6, TNFα, IL-8, and RANTES. We observed a pronounced upregulation of MIF, IL-8, and RANTES on the protein level. Furthermore, a shape change of the actin cytoskeleton was seen in keratinocytes and fibroblasts, and the Rho-GTPases and p38-MAPK were found to be activated in keratinocytes. On the basis of our results, TE is worthy of further study as a potential option to influence wound-healing processes under diabetic conditions. These first insights need to be confirmed by clinical studies with diabetic patients.
Collapse
Affiliation(s)
| | | | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen , Tübingen, Germany
| | - Markus F Templin
- Institute of Natural and Medical Sciences at the University of Tübingen , Reutlingen, Germany
| | | | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | | |
Collapse
|
79
|
Fenix AM, Taneja N, Buttler CA, Lewis J, Van Engelenburg SB, Ohi R, Burnette DT. Expansion and concatenation of non-muscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis. Mol Biol Cell 2016; 27:mbc.E15-10-0725. [PMID: 26960797 PMCID: PMC4850034 DOI: 10.1091/mbc.e15-10-0725] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, non-muscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks) but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non-mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-F/NMIIA-F stacks move together and align. We found NMIIA-F stack formation was regulated by both motor-activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus, interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II-based contractile systems are assembled.
Collapse
Affiliation(s)
- Aidan M Fenix
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nilay Taneja
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - John Lewis
- Vanderbilt University School of Medicine, Nashville, TN 37232 Kalamazoo College, Kalamazoo, MI 49008
| | | | - Ryoma Ohi
- Vanderbilt University School of Medicine, Nashville, TN 37232
| | | |
Collapse
|
80
|
Skau CT, Waterman CM. Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors. Annu Rev Biophys 2016; 44:285-310. [PMID: 26098516 DOI: 10.1146/annurev-biophys-060414-034308] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The actin cytoskeleton is essential for diverse processes in mammalian cells; these processes range from establishing cell polarity to powering cell migration to driving cytokinesis to positioning intracellular organelles. How these many functions are carried out in a spatiotemporally regulated manner in a single cytoplasm has been the subject of much study in the cytoskeleton field. Recent work has identified a host of actin nucleation factors that can build architecturally diverse actin structures. The biochemical properties of these factors, coupled with their cellular location, likely define the functional properties of actin structures. In this article, we describe how recent advances in cell biology and biochemistry have begun to elucidate the role of individual actin nucleation factors in generating distinct cellular structures. We also consider how the localization and orientation of actin nucleation factors, in addition to their kinetic properties, are critical to their ability to build a functional actin cytoskeleton.
Collapse
Affiliation(s)
- Colleen T Skau
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
81
|
Steffen A, Stradal TEB, Rottner K. Signalling Pathways Controlling Cellular Actin Organization. Handb Exp Pharmacol 2016; 235:153-178. [PMID: 27757765 DOI: 10.1007/164_2016_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
82
|
Wang X, Hu X, Li J, Russe ACM, Kawazoe N, Yang Y, Chen G. Influence of cell size on cellular uptake of gold nanoparticles. Biomater Sci 2016; 4:970-8. [DOI: 10.1039/c6bm00171h] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell size affects cellular uptake of gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Xinlong Wang
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Xiaohong Hu
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Jingchao Li
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Adriana C. Mulero Russe
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science
- University of Tsukuba
- Tsukuba
- Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
83
|
Abstract
Actin is the central building block of the actin cytoskeleton, a highly regulated filamentous network enabling dynamic processes of cells and simultaneously providing structure. Mammals have six actin isoforms that are very conserved and thus share common functions. Tissue-specific expression in part underlies their differential roles, but actin isoforms also coexist in various cell types and tissues, suggesting specific functions and preferential interaction partners. Gene deletion models, antibody-based staining patterns, gene silencing effects, and the occurrence of isoform-specific mutations in certain diseases have provided clues for specificity on the subcellular level and its consequences on the organism level. Yet, the differential actin isoform functions are still far from understood in detail. Biochemical studies on the different isoforms in pure form are just emerging, and investigations in cells have to deal with a complex and regulated system, including compensatory actin isoform expression.
Collapse
Affiliation(s)
- Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium.
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| |
Collapse
|
84
|
Huang YW, Chang SJ, Harn HIC, Huang HT, Lin HH, Shen MR, Tang MJ, Chiu WT. Mechanosensitive store-operated calcium entry regulates the formation of cell polarity. J Cell Physiol 2015; 230:2086-97. [PMID: 25639747 DOI: 10.1002/jcp.24936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Ca(2+) -mediated formation of cell polarity is essential for directional migration which plays an important role in physiological and pathological processes in organisms. To examine the critical role of store-operated Ca(2+) entry, which is the major form of extracellular Ca(2+) influx in non-excitable cells, in the formation of cell polarity, we employed human bone osteosarcoma U2OS cells, which exhibit distinct morphological polarity during directional migration. Our analyses showed that Ca(2+) was concentrated at the rear end of cells and that extracellular Ca(2+) influx was important for cell polarization. Inhibition of store-operated Ca(2+) entry using specific inhibitors disrupted the formation of cell polarity in a dose-dependent manner. Moreover, the channelosomal components caveolin-1, TRPC1, and Orai1 were concentrated at the rear end of polarized cells. Knockdown of TRPC1 or a TRPC inhibitor, but not knockdown of Orai1, reduced cell polarization. Furthermore, disruption of lipid rafts or overexpression of caveolin-1 contributed to the downregulation of cell polarity. On the other hand, we also found that cell polarity, store-operated Ca(2+) entry activity, and cell stiffness were markedly decreased by low substrate rigidity, which may be caused by the disorganization of actin filaments and microtubules that occurs while regulating the activity of the mechanosensitive TRPC1 channel.
Collapse
Affiliation(s)
- Yi-Wei Huang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Jing Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
85
|
Gavara N, Chadwick RS. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging. Biomech Model Mechanobiol 2015. [PMID: 26206449 PMCID: PMC4869747 DOI: 10.1007/s10237-015-0706-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Actomyosin stress fibers, one of the main components of the cell’s cytoskeleton, provide mechanical stability to adherent cells by applying and transmitting tensile forces onto the extracellular matrix (ECM) at the sites of cell–ECM adhesion. While it is widely accepted that changes in spatial and temporal distribution of stress fibers affect the cell’s mechanical properties, there is no quantitative knowledge on how stress fiber amount and organization directly modulate cell stiffness. We address this key open question by combining atomic force microscopy with simultaneous fluorescence imaging of living cells, and combine for the first time reliable quantitative parameters obtained from both techniques. We show that the amount of myosin and (to a lesser extent) actin assembled in stress fibers directly modulates cell stiffness in adherent mouse fibroblasts (NIH3T3). In addition, the spatial distribution of stress fibers has a second-order modulatory effect. In particular, the presence of either fibers located in the cell periphery, aligned fibers or thicker fibers gives rise to reinforced cell stiffness. Our results provide basic and significant information that will help design optimal protocols to regulate the mechanical properties of adherent cells via pharmacological interventions that alter stress fiber assembly or via micropatterning techniques that restrict stress fiber spatial organization.
Collapse
Affiliation(s)
- Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 3NS, UK.
| | - Richard S Chadwick
- Auditory Mechanics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10 Rm. 5D49, 10 Center Drive, MSC-1417, Bethesda, MD, 20892, USA
| |
Collapse
|
86
|
Morales-Bárcenas R, Chirino YI, Sánchez-Pérez Y, Osornio-Vargas ÁR, Melendez-Zajgla J, Rosas I, García-Cuellar CM. Particulate matter (PM₁₀) induces metalloprotease activity and invasion in airway epithelial cells. Toxicol Lett 2015; 237:167-73. [PMID: 26047787 DOI: 10.1016/j.toxlet.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
Airborne particulate matter with an aerodynamic diameter ≤ 10 μm (PM10) is a risk factor for the development of lung diseases and cancer. The aim of this work was to identify alterations in airway epithelial (A549) cells induced by PM10 that could explain how subtoxic exposure (10 μg/cm(2)) promotes a more aggressive in vitro phenotype. Our results showed that cells exposed to PM10 from an industrial zone (IZ) and an urban commercial zone (CZ) induced an increase in protease activity and invasiveness; however, the cell mechanism is different, as only PM10 from CZ up-regulated the activity of metalloproteases MMP-2 and MMP-9 and disrupted E-cadherin/β-catenin expression after 48 h of exposure. These in vitro findings are relevant in terms of the mechanism action of PM10 in lung epithelial cells, which could be helpful in understanding the pathogenesis of some human illness associated with highly polluted cities.
Collapse
Affiliation(s)
- Rocío Morales-Bárcenas
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080 México, D.F., Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090 Tlalnepantla, Estado de Mexico, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080 México, D.F., Mexico.
| | | | - Jorge Melendez-Zajgla
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 México, D.F., Mexico
| | - Irma Rosas
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, CP 04510, Mexico, D.F., Mexico
| | - Claudia María García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080 México, D.F., Mexico.
| |
Collapse
|
87
|
Silencing of Eps8 inhibits in vitro angiogenesis. Life Sci 2015; 131:30-6. [DOI: 10.1016/j.lfs.2015.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022]
|
88
|
Eltzner B, Wollnik C, Gottschlich C, Huckemann S, Rehfeldt F. The filament sensor for near real-time detection of cytoskeletal fiber structures. PLoS One 2015; 10:e0126346. [PMID: 25996921 PMCID: PMC4440737 DOI: 10.1371/journal.pone.0126346] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/01/2015] [Indexed: 12/18/2022] Open
Abstract
A reliable extraction of filament data from microscopic images is of high interest in the analysis of acto-myosin structures as early morphological markers in mechanically guided differentiation of human mesenchymal stem cells and the understanding of the underlying fiber arrangement processes. In this paper, we propose the filament sensor (FS), a fast and robust processing sequence which detects and records location, orientation, length, and width for each single filament of an image, and thus allows for the above described analysis. The extraction of these features has previously not been possible with existing methods. We evaluate the performance of the proposed FS in terms of accuracy and speed in comparison to three existing methods with respect to their limited output. Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images. The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy. The implementation of the FS and the benchmark database are available as open source.
Collapse
Affiliation(s)
- Benjamin Eltzner
- Institute for Mathematical Stochastics, Georg-August-University, 37077 Göttingen, Germany
| | - Carina Wollnik
- Third Institute of Physics-Biophysics, Georg-August-University, 37077 Göttingen, Germany
| | - Carsten Gottschlich
- Institute for Mathematical Stochastics, Georg-August-University, 37077 Göttingen, Germany
| | - Stephan Huckemann
- Institute for Mathematical Stochastics, Georg-August-University, 37077 Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics-Biophysics, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
89
|
Kassianidou E, Kumar S. A biomechanical perspective on stress fiber structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3065-74. [PMID: 25896524 DOI: 10.1016/j.bbamcr.2015.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 01/11/2023]
Abstract
Stress fibers are actomyosin-based bundles whose structural and contractile properties underlie numerous cellular processes including adhesion, motility and mechanosensing. Recent advances in high-resolution live-cell imaging and single-cell force measurement have dramatically sharpened our understanding of the assembly, connectivity, and evolution of various specialized stress fiber subpopulations. This in turn has motivated interest in understanding how individual stress fibers generate tension and support cellular structure and force generation. In this review, we discuss approaches for measuring the mechanical properties of single stress fibers. We begin by discussing studies conducted in cell-free settings, including strategies based on isolation of intact stress fibers and reconstitution of stress fiber-like structures from purified components. We then discuss measurements obtained in living cells based both on inference of stress fiber properties from whole-cell mechanical measurements (e.g., atomic force microscopy) and on direct interrogation of single stress fibers (e.g., subcellular laser nanosurgery). We conclude by reviewing various mathematical models of stress fiber function that have been developed based on these experimental measurements. An important future challenge in this area will be the integration of these sophisticated biophysical measurements with the field's increasingly detailed molecular understanding of stress fiber assembly, dynamics, and signal transduction. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, United States.
| |
Collapse
|
90
|
Di Venosa G, Perotti C, Batlle A, Casas A. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem Photobiol Sci 2015; 14:1451-64. [PMID: 25832889 DOI: 10.1039/c4pp00445k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.
Collapse
Affiliation(s)
- Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP). CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad Autónoma de Buenos Aires, CP1120AAF, Argentina.
| | | | | | | |
Collapse
|
91
|
Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 2015; 17:445-57. [DOI: 10.1038/ncb3137] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
|
92
|
Abiko H, Fujiwara S, Ohashi K, Hiatari R, Mashiko T, Sakamoto N, Sato M, Mizuno K. Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells. J Cell Sci 2015; 128:1683-95. [PMID: 25795300 DOI: 10.1242/jcs.157503] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Cyclic stretch is an artificial model of mechanical force loading, which induces the reorientation of vascular endothelial cells and their stress fibers in a direction perpendicular to the stretch axis. Rho family GTPases are crucial for cyclic-stretch-induced endothelial cell reorientation; however, the mechanism underlying stretch-induced activation of Rho family GTPases is unknown. A screen of short hairpin RNAs targeting 63 Rho guanine nucleotide exchange factors (Rho-GEFs) revealed that at least 11 Rho-GEFs – Abr, alsin, ARHGEF10, Bcr, GEF-H1 (also known as ARHGEF2), LARG (also known as ARHGEF12), p190RhoGEF (also known as ARHGEF28), PLEKHG1, P-REX2, Solo (also known as ARHGEF40) and α-PIX (also known as ARHGEF6) – which specifically or broadly target RhoA, Rac1 and/or Cdc42, are involved in cyclic-stretch-induced perpendicular reorientation of endothelial cells. Overexpression of Solo induced RhoA activation and F-actin accumulation at cell-cell and cell-substrate adhesion sites. Knockdown of Solo suppressed cyclic-stretch- or tensile-force-induced RhoA activation. Moreover, knockdown of Solo significantly reduced cyclic-stretch-induced perpendicular reorientation of endothelial cells when cells were cultured at high density, but not when they were cultured at low density or pretreated with EGTA or VE-cadherin-targeting small interfering RNAs. These results suggest that Solo is involved in cell-cell-adhesion-mediated mechanical signal transduction during cyclic-stretch-induced endothelial cell reorientation.
Collapse
Affiliation(s)
- Hiyori Abiko
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ryuichi Hiatari
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Toshiya Mashiko
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Naoya Sakamoto
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Masaaki Sato
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
93
|
Schneider N, Gonçalves FDC, Pinto FO, Lopez PLDC, Araújo AB, Pfaffenseller B, Passos EP, Cirne-Lima EO, Meurer L, Lamers ML, Paz AH. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior. PLoS One 2015; 10:e0120538. [PMID: 25756665 PMCID: PMC4355407 DOI: 10.1371/journal.pone.0120538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.
Collapse
Affiliation(s)
- Natália Schneider
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Fabiany da Costa Gonçalves
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Fernanda Otesbelgue Pinto
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Patrícia Luciana da Costa Lopez
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Anelise Bergmann Araújo
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Bianca Pfaffenseller
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Luíse Meurer
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Marcelo Lazzaron Lamers
- Morphological Sciences Department, Health Basic Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Ana Helena Paz
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
- Morphological Sciences Department, Health Basic Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
94
|
Nie W, Wei MT, Ou-Yang HD, Jedlicka SS, Vavylonis D. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization. Cytoskeleton (Hoboken) 2015; 72:29-46. [PMID: 25641802 DOI: 10.1002/cm.21207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022]
Abstract
The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.
Collapse
Affiliation(s)
- Wei Nie
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | | | | | | | |
Collapse
|
95
|
Xu X, Wang W, Kratz K, Fang L, Li Z, Kurtz A, Ma N, Lendlein A. Controlling major cellular processes of human mesenchymal stem cells using microwell structures. Adv Healthc Mater 2014; 3:1991-2003. [PMID: 25313500 DOI: 10.1002/adhm.201400415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/02/2014] [Indexed: 01/17/2023]
Abstract
Directing stem cells towards a desired location and function by utilizing the structural cues of biomaterials is a promising approach for inducing effective tissue regeneration. Here, the cellular response of human adipose-derived mesenchymal stem cells (hADSCs) to structural signals from microstructured substrates comprising arrays of square-shaped or round-shaped microwells is explored as a transitional model between 2D and 3D systems. Microwells with a side length/diameter of 50 μm show advantages over 10 μm and 25 μm microwells for accommodating hADSCs within single microwells rather than in the inter-microwell area. The cell morphologies are three-dimensionally modulated by the microwell structure due to differences in focal adhesion and consequent alterations of the cytoskeleton. In contrast to the substrate with 50 μm round-shaped microwells, the substrate with 50 μm square-shaped microwells promotes the proliferation and osteogenic differentiation potential of hADSCs but reduces the cell migration velocity and distance. Such microwell shape-dependent modulatory effects are highly associated with Rho/ROCK signaling. Following ROCK inhibition, the differences in migration, proliferation, and osteogenesis between cells on different substrates are diminished. These results highlight the possibility to control stem cell functions through the use of structured microwells combined with the manipulation of Rho/ROCK signaling.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
- Helmholtz Virtual Institute −Multifunctional Materials in Medicine; Berlin and Teltow; Kantstraße 55 14513 Teltow Germany
| | - Liang Fang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
| | - Zhengdong Li
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies; Charité - University Medicine Berlin; Augustenburger Platz 1 13353 Berlin Germany
- College of Veterinary Medicine and Research Institute for Veterinary Science; Seoul National University; Gwangk-ro 1 Gwanak-gu Seoul 151-747 Republic of Korea
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
- Helmholtz Virtual Institute −Multifunctional Materials in Medicine; Berlin and Teltow; Kantstraße 55 14513 Teltow Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies; Helmholtz-Zentrum Geesthacht; Kantstraße 55 14513 Teltow Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
- Helmholtz Virtual Institute −Multifunctional Materials in Medicine; Berlin and Teltow; Kantstraße 55 14513 Teltow Germany
| |
Collapse
|
96
|
Horne-Badovinac S. The Drosophila egg chamber-a new spin on how tissues elongate. Integr Comp Biol 2014; 54:667-76. [PMID: 24920751 DOI: 10.1093/icb/icu067] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During development, tissues undergo complex cellular rearrangements and changes in shape that produce a diversity of body plans and the functional organs therein. The Drosophila egg chamber has emerged as an exciting and highly tractable model in which to investigate novel mechanisms driving the elongation of tissues. Egg chambers are multicellular assemblies within flies' ovaries that will each give rise to a single egg. Although initially spherical, these simple organ-like structures lengthen as they grow. This transformation depends on an unusual form of planar polarity in the egg chamber's outer epithelial layer, in which arrays of linear actin bundles and fibril-like structures in the basement membrane both align perpendicular to the axis of elongation. The resulting circumferential arrangement of structural molecules is then thought to act as a "molecular corset" that directionally biases growth of the egg chamber. I will explore four fundamental questions about this system: (1) How is the circumferential pattern generated in the follicular epithelium? (2) What is the physical nature of the corset? (3) How does a corset-type mechanism lead to the cellular rearrangements necessary for the elongation of tissues? and (4) To what extent are the cellular mechanisms controlling egg chamber elongation conserved in other systems? For each topic, I will present insights gleaned from the recent literature and highlight fertile areas for future investigation.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
97
|
Burnette DT, Shao L, Ott C, Pasapera AM, Fischer RS, Baird MA, Der Loughian C, Delanoe-Ayari H, Paszek MJ, Davidson MW, Betzig E, Lippincott-Schwartz J. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. ACTA ACUST UNITED AC 2014; 205:83-96. [PMID: 24711500 PMCID: PMC3987145 DOI: 10.1083/jcb.201311104] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers' attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions.
Collapse
Affiliation(s)
- Dylan T Burnette
- National Institute of Child Health and Human Development and 2 National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Joensuu M, Belevich I, Rämö O, Nevzorov I, Vihinen H, Puhka M, Witkos TM, Lowe M, Vartiainen MK, Jokitalo E. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays. Mol Biol Cell 2014; 25:1111-26. [PMID: 24523293 PMCID: PMC3967974 DOI: 10.1091/mbc.e13-12-0712] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.
Collapse
Affiliation(s)
- Merja Joensuu
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Ilya Belevich
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
- Electron Microscopy Unit, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Olli Rämö
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Ilya Nevzorov
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
- Electron Microscopy Unit, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Maija Puhka
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Tomasz M. Witkos
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Maria K. Vartiainen
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Cell and Molecular Biology Program, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
- Electron Microscopy Unit, Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
99
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
100
|
Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol 2013; 92:339-48. [PMID: 24252517 DOI: 10.1016/j.ejcb.2013.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Laboratoire d'Enzymologie et Biochimie Structurales CNRS, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|