51
|
Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of spiny mice (Acomys dimidiatus) in St. Katherine's Protectorate, Sinai, Egypt. Parasitology 2018; 146:50-73. [DOI: 10.1017/s0031182018000987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractThe importance of parasites as a selective force in host evolution is a topic of current interest. However, short-term ecological studies of host–parasite systems, on which such studies are usually based, provide only snap-shots of what may be dynamic systems. We report here on four surveys, carried out over a period of 12 years, of helminths of spiny mice (Acomys dimidiatus), the numerically dominant rodents inhabiting dry montane wadis in the Sinai Peninsula. With host age (age-dependent effects on prevalence and abundance were prominent) and sex (female bias in abundance in helminth diversity and in several taxa including Cestoda) taken into consideration, we focus on the relative importance of temporal and spatial effects on helminth infracommunities. We show that site of capture is the major determinant of prevalence and abundance of species (and higher taxa) contributing to helminth community structure, the only exceptions beingStreptopharausspp. andDentostomella kuntzi.We provide evidence that most (notably the Spiruroidea,Protospirura muricola,Mastophorus murisandGongylonema aegypti, but with exceptions among the Oxyuroidae, e.g.Syphacia minuta), show elements of temporal-site stability, with a rank order of measures among sites remaining similar over successive surveys. Hence, there are some elements of predictability in these systems.
Collapse
|
52
|
Hernandez AD, Boag B, Neilson R, Forrester NL. Variable changes in nematode infection prevalence and intensity after Rabbit Haemorrhagic Disease Virus emerged in wild rabbits in Scotland and New Zealand. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:187-195. [PMID: 29892555 PMCID: PMC5993101 DOI: 10.1016/j.ijppaw.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/15/2022]
Abstract
The myxoma virus (a microparasite) reduced wild rabbit numbers worldwide when introduced in the 1950s, and is known to interact with co-infecting helminths (macroparasites) causing both increases and decreases in macroparasite population size. In the 1990s Rabbit Haemorrhagic Disease Virus (RHDV) infected rabbits and also significantly reduced rabbit numbers in several countries. However, not much is known about RHDV interactions with macroparasites. In this study, we compare prevalence and intensity of infection for three gastrointestinal nematode species (Trichostrongylus retortaeformis, Graphidium strigosum and Passalurus ambiguus) before and after RHDV spread across host populations in Scotland and New Zealand. During one common season, autumn, prevalence of T. retortaeformis was higher after RHDV spread in both locations, whereas it was lower for G. strigosum and P. ambiguus after RHDV arrived in New Zealand, but higher in Scotland. Meanwhile, intensity of infection for all species decreased after RHDV arrived in New Zealand, but increased in Scotland. The impact of RHDV on worm infections was generally similar across seasons in Scotland, and also similarities in seasonality between locations suggested effects on infection patterns in one season are likely similar year-round. The variable response by macroparasites to the arrival of a microparasite into Scottish and New Zealand rabbits may be due to differences in the environment they inhabit, in existing parasite community structure, and to some extent, in the relative magnitude of indirect effects. Specifically, our data suggest that bottom-up processes after the introduction of a more virulent strain of RHDV to New Zealand may affect macroparasite co-infections by reducing the availability of their shared common resource, the rabbits. Clearly, interactions between co-infecting micro- and macroparasites vary in host populations with different ecologies, and significantly impact parasite community structure in wildlife. Nematode communities in Scotland and New Zealand were compared pre and post Rabbit Haemorrhagic Disease Virus introduction. Similar species occur in both rabbit populations, but prevalence and intensity changed in opposing directions after RHDV. RHDV had a major impact on rabbit populations, and our data show differing impacts on macroparasites in the two countries. Variability in rabbit environment, parasite community structure, and indirect interaction processes may explain differences. Results can help understand interactions between co-infecting parasites and their epidemiology in wild and domestic animals.
Collapse
Affiliation(s)
| | - Brian Boag
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Roy Neilson
- The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Naomi L Forrester
- School of Life Sciences, Keele University, Keele, Straffordshire, ST5 5BG, UK
| |
Collapse
|
53
|
Signatures of balancing selection in toll-like receptor (TLRs) genes - novel insights from a free-living rodent. Sci Rep 2018; 8:8361. [PMID: 29849060 PMCID: PMC5976762 DOI: 10.1038/s41598-018-26672-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/15/2018] [Indexed: 01/12/2023] Open
Abstract
Selective pressure from pathogens is considered a key selective force driving the evolution of components of the immune system. Since single components of the immune system may interact with many pathogens, and single pathogens may be recognized by multiple components of the immune system, gaining a better understanding of the mechanisms of parasite-driven selection requires the study of multiple genes and pathogens. Toll-like receptors (TLRs) are a large gene family that code for antigen-presenting components of the innate immune response. In the present paper we characterize polymorphism and signatures of selection in seven TLRs in free-living bank voles Myodes glareolus. We report the first evidence of balancing selection in several TLR genes, supported by positive values of Fu and Li's D* in TLR2 and TLR5, and positive values of Tajima's D in LRR regions within TLR1 and TLR2. We further found significant associations between amino-acid alleles of TLR1 and TLR5 and susceptibility to infection with the blood pathogen Bartonella. Interestingly, selection patterns in TLRs presenting virus-derived motifs (TLR7 and TLR9) differed considerably from those interacting with bacterial PAMPs. In contrast to the highly variable TLRs presenting bacterial motifs, TLR7 and TLR9 had low polymorphism and displayed signatures of directional selection. These findings suggest different functional responses across the TLR gene family and highlight the complexity of parasite-driven selection.
Collapse
|
54
|
Duncan AB, Dusi E, Schrallhammer M, Berendonk T, Kaltz O. Population-level dynamics in experimental mixed infections: evidence for competitive exclusion among bacterial parasites ofParamecium caudatum. OIKOS 2018. [DOI: 10.1111/oik.05280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alison B. Duncan
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| | - Eike Dusi
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
| | - Martina Schrallhammer
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
- Microbiology; Inst. of Biology II, Albert-Ludwigs Univ. Freiburg; Freiburg Germany
| | | | - Oliver Kaltz
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| |
Collapse
|
55
|
Leung JM, Graham AL, Knowles SCL. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Front Microbiol 2018; 9:843. [PMID: 29867790 PMCID: PMC5960673 DOI: 10.3389/fmicb.2018.00843] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
56
|
Dietrich M, Kearney T, Seamark ECJ, Paweska JT, Markotter W. Synchronized shift of oral, faecal and urinary microbiotas in bats and natural infection dynamics during seasonal reproduction. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180041. [PMID: 29892443 PMCID: PMC5990816 DOI: 10.1098/rsos.180041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Seasonal reproduction is a period of extreme physiological and behavioural changes, yet we know little about how it may affect host microbial communities (i.e. microbiota) and pathogen transmission. Here, we investigated shifts of the bacterial microbiota in saliva, urine and faeces during the seasonal reproduction of bats in South Africa, and test for an interaction in shedding patterns of both bacterial (Leptospira) and viral (adeno- and herpesviruses) agents. Based on a comparative approach in two cave-dwelling bat species and high-throughput sequencing of the 16S rRNA gene, we demonstrated a clear signature in microbiota changes over the reproduction season, consistent across the multiple body habitats investigated, and associated with the sex, age and reproductive condition of bats. We observed in parallel highly dynamic shedding patterns for both bacteria and viruses, but did not find a significant association between viral shedding and bacterial microbiota composition. Indeed, only Leptospira shedding was associated with alterations in both the diversity and composition of the urinary microbiota. These results illustrate how seasonal reproduction in bats substantially affects microbiota composition and infection dynamics, and have broad implications for the understanding of disease ecology in important reservoir hosts, such as bats.
Collapse
Affiliation(s)
- Muriel Dietrich
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Teresa Kearney
- Ditsong National Museum of Natural History, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
- AfricanBats NPC, Kloofsig, South Africa
| | - Ernest C. J. Seamark
- AfricanBats NPC, Kloofsig, South Africa
- Wildlife Management, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Janusz T. Paweska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
57
|
Babayan SA, Liu W, Hamilton G, Kilbride E, Rynkiewicz EC, Clerc M, Pedersen AB. The Immune and Non-Immune Pathways That Drive Chronic Gastrointestinal Helminth Burdens in the Wild. Front Immunol 2018; 9:56. [PMID: 29459856 PMCID: PMC5807686 DOI: 10.3389/fimmu.2018.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Parasitic helminths are extremely resilient in their ability to maintain chronic infection burdens despite (or maybe because of) their hosts’ immune response. Explaining how parasites maintain these lifelong infections, identifying the protective immune mechanisms that regulate helminth infection burdens, and designing prophylactics and therapeutics that combat helminth infection, while preserving host health requires a far better understanding of how the immune system functions in natural habitats than we have at present. It is, therefore, necessary to complement mechanistic laboratory-based studies with studies on wild populations and their natural parasite communities. Unfortunately, the relative paucity of immunological tools for non-model species has held these types of studies back. Thankfully, recent progress in high-throughput ‘omics platforms provide powerful and increasingly practical means for immunologists to move beyond traditional lab-based model organisms. Yet, assigning both metabolic and immune function to genes, transcripts, and proteins in novel species and assessing how they interact with other physiological and environmental factors requires identifying quantitative relationships between their expression and infection. Here, we used supervised machine learning to identify gene networks robustly associated with burdens of the gastrointestinal nematode Heligmosomoides polygyrus in its natural host, the wild wood mice Apodemus sylvaticus. Across 34 mice spanning two wild populations and across two different seasons, we found 17,639 transcripts that clustered in 131 weighted gene networks. These clusters robustly predicted H. polygyrus burden and included well-known effector and regulatory immune genes, but also revealed a number of genes associated with the maintenance of tissue homeostasis and hematopoiesis that have so far received little attention. We then tested the effect of experimentally reducing helminth burdens through drug treatment on those putatively protective immune factors. Despite the near elimination of H. polygyrus worms, the treatment had surprisingly little effect on gene expression. Taken together, these results suggest that hosts balance tissue homeostasis and protective immunity, resulting in relatively stable immune and, consequently, parasitological profiles. In the future, applying our approach to larger numbers of samples from additional populations will help further increase our ability to detect the immune pathways that determine chronic gastrointestinal helminth burdens in the wild.
Collapse
Affiliation(s)
- Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Wei Liu
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Evelyn C Rynkiewicz
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Melanie Clerc
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy B Pedersen
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
58
|
Fountain-Jones NM, Pearse WD, Escobar LE, Alba-Casals A, Carver S, Davies TJ, Kraberger S, Papeş M, Vandegrift K, Worsley-Tonks K, Craft ME. Towards an eco-phylogenetic framework for infectious disease ecology. Biol Rev Camb Philos Soc 2017; 93:950-970. [PMID: 29114986 DOI: 10.1111/brv.12380] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats.
Collapse
Affiliation(s)
| | - William D Pearse
- Ecology Center and Department of Biology, Utah State University, Logan, UT, 84321, U.S.A
| | - Luis E Escobar
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A.,Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Ana Alba-Casals
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, 7001, Australia
| | | | - Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, U.S.A
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, U.S.A
| | - Kurt Vandegrift
- Department of Biology, The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, U.S.A
| | - Katherine Worsley-Tonks
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, U.S.A
| |
Collapse
|
59
|
Ezenwa VO. Helminth-microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol 2017; 38:527-34. [PMID: 27426017 DOI: 10.1111/pim.12348] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Co-infection is now recognized as the natural state of affairs in most hosts and co-infecting parasites interact in a variety of ways that can impact host health and parasite fitness. Interactions between helminths and microparasites have captured particular attention in this regard owing to the ubiquity of helminth infections in many host populations. The mechanistic underpinnings and health implications of co-infection are typically studied in laboratory and clinical settings, but recently studies of wild species have begun to tackle similar issues. Case studies from three wild mammal groups-ruminants, rodents and rabbits-serve to highlight how wild studies are contributing to the broader co-infection literature. This work suggests that wildlife research can generate new and unique insights about helminth-microparasite co-infection that are fostered in part by studying parasite interactions in a natural context. For this reason, increased integration of wild studies with research in human, laboratory and veterinary animal populations can help pave the way towards a more complete understanding of the issue of co-infection.
Collapse
Affiliation(s)
- V O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
60
|
Ecological and evolutionary approaches to managing honeybee disease. Nat Ecol Evol 2017; 1:1250-1262. [PMID: 29046562 PMCID: PMC5749923 DOI: 10.1038/s41559-017-0246-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
Honeybee declines are a serious threat to global agricultural security and productivity. Although multiple factors contribute to these declines, parasites are a key driver. Disease problems in honeybees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and control these threats via honeybee management. We cover the ecological context of honeybee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honeybees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences. Multiple interacting factors have contributed to the rapid decline of honeybee populations worldwide. Here, the authors review the impact of parasites and pathogens, and how ecological and evolutionary principles can guide management practices.
Collapse
|
61
|
Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback. ADVANCES IN PARASITOLOGY 2017; 98:39-109. [PMID: 28942772 DOI: 10.1016/bs.apar.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a model organism with an extremely well-characterized ecology, evolutionary history, behavioural repertoire and parasitology that is coupled with published genomic data. These small temperate zone fish therefore provide an ideal experimental system to study common diseases of coldwater fish, including those of aquacultural importance. However, detailed information on the culture of stickleback parasites, the establishment and maintenance of infections and the quantification of host responses is scattered between primary and grey literature resources, some of which is not readily accessible. Our aim is to lay out a framework of techniques based on our experience to inform new and established laboratories about culture techniques and recent advances in the field. Here, essential knowledge on the biology, capture and laboratory maintenance of sticklebacks, and their commonly studied parasites is drawn together, highlighting recent advances in our understanding of the associated immune responses. In compiling this guide on the maintenance of sticklebacks and a range of common, taxonomically diverse parasites in the laboratory, we aim to engage a broader interdisciplinary community to consider this highly tractable model when addressing pressing questions in evolution, infection and aquaculture.
Collapse
|
62
|
Freeman-Gallant CR, Taff CC. Age-specific patterns of infection with haemosporidians and trypanosomes in a warbler: implications for sexual selection. Oecologia 2017; 184:813-823. [PMID: 28756490 DOI: 10.1007/s00442-017-3919-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022]
Abstract
Although the selective loss of individuals susceptible to disease can favor the evolution of female preference for older males, the interrelationship between age, infection, longevity, and mating success remains poorly characterized in natural populations. In a longitudinal study of 61 male common yellowthroats (Geothlypis trichas), we found that the probability of infection with hematozoa increased as males aged from 1 to 5 years. Despite a significant, negative association between infection and longevity that partially masked age-effects, the odds that a male was infected with Trypanosoma, Plasmodium, or Leucocytozoon increased 71-212% per year. Nearly 75% of males in their first breeding season were either uninfected or infected with only a single parasite, while 50% of older males were infected with at least two parasites and 16% were infected with all three. No males escaped infection after their second breeding season. Older males were also more likely to sire extra-pair young (EPY) and, as a consequence, infection with multiple parasites was associated with a fourfold increase in the odds of producing EPY. Unlike younger males, 80% of the oldest males had a history of either surviving chronic infection or recovering. Combined with previous work showing higher diversity at the major histocompatibility complex among older males, our results suggest that the song and plumage traits that signal male age in common yellowthroats also, perforce, signal resistance to parasites. By preferring older males, females may obtain good genes for disease resistance even in the absence of any effect of infection on male ornamentation.
Collapse
Affiliation(s)
| | - Conor C Taff
- Laboratory of Ornithology, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
63
|
Erkenswick GA, Watsa M, Gozalo AS, Dmytryk N, Parker PG. Temporal and demographic blood parasite dynamics in two free-ranging neotropical primates. Int J Parasitol Parasites Wildl 2017; 6:59-68. [PMID: 28393014 PMCID: PMC5377436 DOI: 10.1016/j.ijppaw.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/11/2022]
Abstract
Parasite-host relationships are influenced by several factors intrinsic to hosts, such as social standing, group membership, sex, and age. However, in wild populations, temporal variation in parasite distributions and concomitant infections can alter these patterns. We used microscropy and molecular methods to screen for naturally occurring haemoparasitic infections in two Neotropical primate host populations, the saddleback (Leontocebus weddelli) and emperor (Saguinus imperator) tamarin, in the lowland tropical rainforests of southeastern Peru. Repeat sampling was conducted from known individuals over a three-year period to test for parasite-host and parasite-parasite associations. Three parasites were detected in L. weddelli including Trypanosoma minasense, Mansonella mariae, and Dipetalonema spp., while S. imperator only hosted the latter two. Temporal variation in prevalence was observed in T. minasense and Dipetalonema spp., confirming the necessity of a multi-year study to evaluate parasite-host relationships in this system. Although callitrichids display a distinct reproductive dominance hierarchy, characterized by single breeding females that typically mate polyandrously and can suppress the reproduction of subdominant females, logistic models did not identify sex or breeding status as determining factors in the presence of these parasites. However, age class had a positive effect on infection with M. mariae and T. minasense, and adults demonstrated higher parasite species richness than juveniles or sub-adults across both species. Body weight had a positive effect on the presence of Dipetalonema spp. The inclusion of co-infection variables in statistical models of parasite presence/absence data improved model fit for two of three parasites. This study verifies the importance and need for broad spectrum and long-term screening of parasite assemblages of natural host populations.
Collapse
Affiliation(s)
- Gideon A. Erkenswick
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
- Field Projects International, 7331 Murdoch Ave, Saint Louis, MO 63119, USA
| | - Mrinalini Watsa
- Field Projects International, 7331 Murdoch Ave, Saint Louis, MO 63119, USA
- Department of Anthropology, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO 63130, USA
| | - Alfonso S. Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Dmytryk
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
| | - Patricia G. Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., Saint Louis, MO 63121, USA
- WildCare Institute, Saint Louis Zoo, One Government Dr., Saint Louis, MO 63110, USA
| |
Collapse
|
64
|
Aivelo T, Norberg A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol 2017; 87:438-447. [DOI: 10.1111/1365-2656.12708] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Tuomas Aivelo
- Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Anna Norberg
- Mathematical Biology Group; Metapopulation Research Centre; Department of Biosciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
65
|
Ehret T, Torelli F, Klotz C, Pedersen AB, Seeber F. Translational Rodent Models for Research on Parasitic Protozoa-A Review of Confounders and Possibilities. Front Cell Infect Microbiol 2017. [PMID: 28638807 PMCID: PMC5461347 DOI: 10.3389/fcimb.2017.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.
Collapse
Affiliation(s)
- Totta Ehret
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany.,Department of Molecular Parasitology, Humboldt-Universität zu BerlinBerlin, Germany
| | - Francesca Torelli
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Christian Klotz
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Amy B Pedersen
- School of Biological Sciences, University of EdinburghEdinburgh, United Kingdom
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
66
|
Lesniak I, Heckmann I, Heitlinger E, Szentiks CA, Nowak C, Harms V, Jarausch A, Reinhardt I, Kluth G, Hofer H, Krone O. Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population. Sci Rep 2017; 7:41730. [PMID: 28128348 PMCID: PMC5269671 DOI: 10.1038/srep41730] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022] Open
Abstract
The recent recolonisation of the Central European lowland (CEL) by the grey wolf (Canis lupus) provides an excellent opportunity to study the effect of founder events on endoparasite diversity. Which role do prey and predator populations play in the re-establishment of endoparasite life cycles? Which intrinsic and extrinsic factors control individual endoparasite diversity in an expanding host population? In 53 individually known CEL wolves sampled in Germany, we revealed a community of four cestode, eight nematode, one trematode and 12 potential Sarcocystis species through molecular genetic techniques. Infections with zoonotic Echinococcus multilocularis, Trichinella britovi and T. spiralis occurred as single cases. Per capita endoparasite species richness and diversity significantly increased with population size and changed with age, whereas sex, microsatellite heterozygosity, and geographic origin had no effect. Tapeworm abundance (Taenia spp.) was significantly higher in immigrants than natives. Metacestode prevalence was slightly higher in ungulates from wolf territories than from control areas elsewhere. Even though alternative canid definitive hosts might also play a role within the investigated parasite life cycles, our findings indicate that (1) immigrated wolves increase parasite diversity in German packs, and (2) prevalence of wolf-associated parasites had declined during wolf absence and has now risen during recolonisation.
Collapse
Affiliation(s)
- Ines Lesniak
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Ilja Heckmann
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Emanuel Heitlinger
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany.,Humboldt-Universität zu Berlin, Ecology and Evolution of Molecular Parasite Host Interactions, Philippstraße 13, 10115 Berlin, Germany
| | - Claudia A Szentiks
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Carsten Nowak
- Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Verena Harms
- Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Anne Jarausch
- Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Ilka Reinhardt
- LUPUS Institute for Wolf Monitoring and Research in Germany, Dorfstraße 20, 02979 Spreewitz, Germany
| | - Gesa Kluth
- LUPUS Institute for Wolf Monitoring and Research in Germany, Dorfstraße 20, 02979 Spreewitz, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
67
|
LITWIN D, CHEN W, DZIKA E, KORYCIŃSKA J. Human Permanent Ectoparasites; Recent Advances on Biology and Clinical Significance of Demodex Mites: Narrative Review Article. IRANIAN JOURNAL OF PARASITOLOGY 2017; 12:12-21. [PMID: 28747952 PMCID: PMC5522688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/21/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Demodex is a genus of mites living predominantly in mammalian pilosebaceous units. They are commonly detected in the skin of face, with increasing numbers in inflammatory lesions. Causation between Demodex mites and inflammatory diseases, such as rosacea, blepharitis, perioral and seborrhoeic dermatitis or chalazion, is controversially discussed. Clinical observations indicate a primary form of human Demodex infection. The aim of this review was to highlight the biological aspects of Demodex infestation and point out directions for the future research. METHODS We conducted a broad review based on the electronic database sources such as MEDLINE, PubMed and Scopus with regard to the characteristics of the Demodex species, methods of examination and worldwide epidemiology, molecular studies and its role in the complex human ecosystem. RESULTS Demodex mites are organisms with a worldwide importance as they act in indicating several dermatoses, under certain conditions. However, correlations between Demodex and other parasites or microorganisms occupying one host, as well as interactions between these arachnids and its symbiotic bacteria should be considered. There are few methods of human mites' examination depending on purpose of the study. Nevertheless, paying attention must be needed as polymorphism of Demodex species has been reported. CONCLUSION Overall, the present review will focus on different aspects of Demodex mites' biology and significance of these arachnids in human's health.
Collapse
Affiliation(s)
- Dorota LITWIN
- Dept. of Medical Biology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - WenChieh CHEN
- Dept. of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
- Women’s Health Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Ewa DZIKA
- Dept. of Medical Biology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna KORYCIŃSKA
- Dept. of Medical Biology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
68
|
Clark NJ, Wells K, Dimitrov D, Clegg SM. Co-infections and environmental conditions drive the distributions of blood parasites in wild birds. J Anim Ecol 2016; 85:1461-1470. [DOI: 10.1111/1365-2656.12578] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/17/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas J. Clark
- Environmental Futures Research Institute; School of Environment; Griffith University; Gold Coast Qld 4111 Australia
- Natural Environments Program; Queensland Museum; Institute of Biodiversity and Ecosystem Research; P.O. Box 3300 South Brisbane Qld 4101 Australia
| | - Konstans Wells
- Environmental Futures Research Institute; School of Environment; Griffith University; Gold Coast Qld 4111 Australia
| | - Dimitar Dimitrov
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences; 2 Gagarin Street Sofia 1113 Bulgaria
| | - Sonya M. Clegg
- Environmental Futures Research Institute; School of Environment; Griffith University; Gold Coast Qld 4111 Australia
- Department of Zoology; Edward Grey Institute of Field Ornithology; University of Oxford; Oxford OX1 3PS UK
| |
Collapse
|
69
|
Withenshaw SM, Devevey G, Pedersen AB, Fenton A. Multihost Bartonella parasites display covert host specificity even when transmitted by generalist vectors. J Anim Ecol 2016; 85:1442-1452. [PMID: 27380876 PMCID: PMC5082552 DOI: 10.1111/1365-2656.12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022]
Abstract
Many parasites infect multiple sympatric host species, and there is a general assumption that parasite transmission between co‐occurring host species is commonplace. Such between‐species transmission could be key to parasite persistence within a disease reservoir and is consequently an emerging focus for disease control. However, while a growing body of theory indicates the potential importance of between‐species transmission for parasite persistence, conclusive empirical evidence from natural communities is lacking, and the assumption that between‐species transmission is inevitable may therefore be wrong. We investigated the occurrence of between‐species transmission in a well‐studied multihost parasite system. We identified the flea‐borne Bartonella parasites infecting sympatric populations of Apodemus sylvaticus (wood mice) and Myodes glareolus (bank voles) in the UK and confirmed that several Bartonella species infect both rodent species. However, counter to previous knowledge, genetic characterization of these parasites revealed covert host specificity, where each host species is associated with a distinct assemblage of genetic variants, indicating that between‐species transmission is rare. Limited between‐species transmission could result from rare encounters between one host species and the parasites infecting another and/or host–parasite incompatibility. We investigated the occurrence of such encounter and compatibility barriers by identifying the flea species associated with each rodent host, and the Bartonella variants carried by individual fleas. We found that the majority of fleas were host‐generalists but the assemblage of Bartonella variants in fleas tended to reflect the assemblage of Bartonella variants in the host species they were collected from, thus providing evidence of encounter barriers mediated by limited between‐species flea transfer. However, we also found several fleas that were carrying variants never found in the host species from which they were collected, indicating some degree of host–pathogen incompatibility when barriers to encounter are overcome. Overall, these findings challenge our default perceptions of multihost parasite persistence, as they show that despite considerable overlaps in host species ecology, separate populations of the same parasite species may circulate and persist independently in different sympatric host species. This questions our fundamental understanding of endemic transmission dynamics and the control of infection within natural reservoir communities.
Collapse
Affiliation(s)
- Susan M Withenshaw
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, Merseyside, L69 7ZB, UK. .,NERC Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Oxfordshire, OX10 8BB, UK.
| | - Godefroy Devevey
- School of Biology & Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Amy B Pedersen
- School of Biology & Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, Merseyside, L69 7ZB, UK
| |
Collapse
|
70
|
Carvalho J, Serrano E, Pettorelli N, Granados JE, Habela MA, Olmeda S, Fonseca C, Pérez JM. Sarcoptes scabiei infestation does not alter the stability of ectoparasite communities. Parasit Vectors 2016; 9:379. [PMID: 27370780 PMCID: PMC4930578 DOI: 10.1186/s13071-016-1659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background The host represents a heterogeneous ecosystem where multiple parasite species co-occur and interact with each other for space and resources. Although these interactions may rule the features of an infracommunity and may shape the infracommunity response to external perturbations, the resilience of ectoparasite communities to new infestations remains poorly explored. Methods We analysed the composition of the ectoparasite communities found on 214 individual Iberian ibexes (Capra pyrenaica) inhabiting the Sierra Nevada Natural Space, southern Spain. Using classification and regression trees, we explored how the presence of Sarcoptes scabiei (a highly contagious mite), the off-host environment and the host sex govern the prevalence and abundance of lice and ticks. Null model analysis was applied to assess the impact of S. scabiei on the structure of the ectoparasite communities. Results Our results suggest that S. scabiei infestation acts in tandem with off-host environment and host sex to define the prevalence and abundance of lice and ticks. We also provided evidence for differences in species co-occurrence only at the early stages of S. scabiei infestation. Regarding species diversity, we recorded that ectoparasite communities in scabietic ibexes reached a high richness faster than those in healthy individuals. Conclusions Even though we show that ectoparasite burden is correlated with S. scabiei infestation, off-host environment and host sex, the species response to S. scabiei infestation and climate seem to be highly variable and influenced by ectoparasite life-history traits. Ectoparasite communities also appear resilient to perturbations which is in agreement with what was previously reported for endoparasites. Future refinement of sample collection and the incorporation of ecological and epidemiological-related variables may allow us to establish causal effects and deepen the knowledge about the mechanisms and consequences of ectoparasite interactions.
Collapse
Affiliation(s)
- João Carvalho
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal. .,Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| | - Emmanuel Serrano
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.,Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - José E Granados
- Espacio Natural de Sierra Nevada, Carretera Antigua de Sierra Nevada, km 7, E-18071, Pinos Genil, Granada, Spain
| | - Miguel A Habela
- Parasitology & Parasitic Diseases Animal Health Department, Veterinary Faculty, University of Extremadura Av. Universidad, s.n., E-10003, Cáceres, Spain
| | - Sonia Olmeda
- Departamento de Sanidad Animal, Universidad Complutense de Madrid, Av. Puerta de Hierro, s.n., E-28040, Madrid, Spain
| | - Carlos Fonseca
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jesús M Pérez
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain.
| |
Collapse
|
71
|
Ramiro RS, Pollitt LC, Mideo N, Reece SE. Facilitation through altered resource availability in a mixed-species rodent malaria infection. Ecol Lett 2016; 19:1041-50. [PMID: 27364562 PMCID: PMC5025717 DOI: 10.1111/ele.12639] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/03/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
A major challenge in disease ecology is to understand how co-infecting parasite species interact. We manipulate in vivo resources and immunity to explain interactions between two rodent malaria parasites, Plasmodium chabaudi and P. yoelii. These species have analogous resource-use strategies to the human parasites Plasmodium falciparum and P. vivax: P. chabaudi and P. falciparum infect red blood cells (RBC) of all ages (RBC generalist); P. yoelii and P. vivax preferentially infect young RBCs (RBC specialist). We find that: (1) recent infection with the RBC generalist facilitates the RBC specialist (P. yoelii density is enhanced ~10 fold). This occurs because the RBC generalist increases availability of the RBC specialist's preferred resource; (2) co-infections with the RBC generalist and RBC specialist are highly virulent; (3) and the presence of an RBC generalist in a host population can increase the prevalence of an RBC specialist. Thus, we show that resources shape how parasite species interact and have epidemiological consequences.
Collapse
Affiliation(s)
- Ricardo S Ramiro
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| | - Laura C Pollitt
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK.,Centre for Immunity, Infection & Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Sarah E Reece
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK.,Centre for Immunity, Infection & Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| |
Collapse
|
72
|
Leung JM, Hong CTT, Trung NHD, Thi HN, Minh CNN, Thi TV, Hong DT, Man DNH, Knowles SCL, Wolbers M, Hoang NLT, Thwaites G, Graham AL, Baker S. The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial. Trials 2016; 17:279. [PMID: 27266697 PMCID: PMC4896038 DOI: 10.1186/s13063-016-1406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/25/2016] [Indexed: 11/14/2022] Open
Abstract
Background Anthelmintics are one of the more commonly available classes of drugs to treat infections by parasitic helminths (especially nematodes) in the human intestinal tract. As a result of their cost-effectiveness, mass school-based deworming programs are becoming routine practice in developing countries. However, experimental and clinical evidence suggests that anthelmintic treatments may increase susceptibility to other gastrointestinal infections caused by bacteria, viruses, or protozoa. Hypothesizing that anthelmintics may increase diarrheal infections in treated children, we aim to evaluate the impact of anthelmintics on the incidence of diarrheal disease caused by viral and bacterial pathogens in school children in southern Vietnam. Methods/design This is a randomized, double-blinded, placebo-controlled trial to investigate the effects of albendazole treatment versus placebo on the incidence of viral- and bacterial-induced diarrhea in 350 helminth-infected and 350 helminth-uninfected Vietnamese school children aged 6–15 years. Four hundred milligrams of albendazole, or placebo treatment will be administered once every 3 months for 12 months. At the end of 12 months, all participants will receive albendazole treatment. The primary endpoint of this study is the incidence of diarrheal disease assessed by 12 months of weekly active and passive case surveillance. Secondary endpoints include the prevalence and intensities of helminth, viral, and bacterial infections, alterations in host immunity and the gut microbiota with helminth and pathogen clearance, changes in mean z scores of body weight indices over time, and the number and severity of adverse events. Discussion In order to reduce helminth burdens, anthelmintics are being routinely administered to children in developing countries. However, the effects of anthelmintic treatment on susceptibility to other diseases, including diarrheal pathogens, remain unknown. It is important to monitor for unintended consequences of drug treatments in co-infected populations. In this trial, we will examine how anthelmintic treatment impacts host susceptibility to diarrheal infections, with the aim of informing deworming programs of any indirect effects of mass anthelmintic administrations on co-infecting enteric pathogens. Trial registration ClinicalTrials.gov: NCT02597556. Registered on 3 November 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1406-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Chau Tran Thi Hong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Nghia Ho Dang Trung
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Department of Infectious Diseases, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Hoa Nhu Thi
- Department of Parasitology and Mycology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Chau Nguyen Ngoc Minh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Thuy Vu Thi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Dinh Thanh Hong
- Cu Chi Preventive Medicine Centre, Ho Chi Minh City, Vietnam
| | | | - Sarah C L Knowles
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hertfordshire, UK
| | - Marcel Wolbers
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - Nhat Le Thanh Hoang
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine, University of Oxford, Oxford, UK. .,The London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
73
|
Henrichs B, Oosthuizen MC, Troskie M, Gorsich E, Gondhalekar C, Beechler BR, Ezenwa VO, Jolles AE. Within guild co-infections influence parasite community membership: a longitudinal study in African Buffalo. J Anim Ecol 2016; 85:1025-34. [PMID: 27084785 DOI: 10.1111/1365-2656.12535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/04/2016] [Indexed: 11/26/2022]
Abstract
Experimental studies in laboratory settings have demonstrated a critical role of parasite interactions in shaping parasite communities. The sum of these interactions can produce diverse effects on individual hosts as well as influence disease emergence and persistence at the population level. A predictive framework for the effects of parasite interactions in the wild remains elusive, largely because of limited longitudinal or experimental data on parasite communities of free-ranging hosts. This 4-year study followed a community of haemoparasites in free-ranging African buffalo (Syncerus caffer). We detected infection by 11 haemoparasite species using PCR-based diagnostic techniques, and analyzed drivers of infection patterns using generalized linear mixed models to understand the role of host characteristics and season on infection likelihood. We tested for (i) effects of co-infection by other haemoparasites (within guild) and (ii) effects of parasites infecting different tissue types (across guild). We found that within guild co-infections were the strongest predictors of haemoparasite infections in the buffalo; but that seasonal and host characteristics also had important effects. In contrast, the evidence for across-guild effects of parasites utilizing different tissue on haemoparasite infection was weak. These results provide a nuanced view of the role of co-infections in determining haemoparasite infection patterns in free living mammalian hosts. Our findings suggest a role for interactions among parasites infecting a single tissue type in determining infection patterns.
Collapse
Affiliation(s)
- Brian Henrichs
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Marinda C Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Milana Troskie
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Erin Gorsich
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Carmen Gondhalekar
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brianna R Beechler
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Vanessa O Ezenwa
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.,Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
74
|
Benesh DP, Kalbe M. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J Anim Ecol 2016; 85:1004-13. [DOI: 10.1111/1365-2656.12527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 04/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel P. Benesh
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
- Marine Science Institute; University of California; Santa Barbara CA 93106-6150 USA
| | - Martin Kalbe
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
| |
Collapse
|
75
|
Hoffmann S, Horak IG, Bennett NC, Lutermann H. Evidence for interspecific interactions in the ectoparasite infracommunity of a wild mammal. Parasit Vectors 2016; 9:58. [PMID: 26830510 PMCID: PMC4735965 DOI: 10.1186/s13071-016-1342-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Co-infection with multiple parasite species is commonly observed in nature and interspecific interactions are likely to occur in parasite infracommunities. Such interactions may affect the distribution of parasites among hosts but also the response of infracommunities to perturbations. However, the response of infracommunities to perturbations has not been well studied experimentally for ectoparasite communities of small mammal hosts. Methods In the current study we used experimental perturbations of the ectoparasite infracommunity of sengis from Africa. We suppressed tick recruitment by applying an acaride and monitored the effects on the ectoparasite community. Results Our treatment affected the target as well as two non-target species directly. The experimental removal of the dominant tick (Rhipicephalus spp.) resulted in increases in the abundance of chiggers and lice. However, while these effects were short-lived in chiggers, which are questing from the environment, they were long-lasting for lice which spend their entire life-cycle on the host. In addition, the recruitment rates of some ectoparasite species were high and did not always correspond to total burdens observed. Conclusion These findings indicate that infracommunity interactions may contribute to patterns of parasite burdens. The divergent responses of species with differing life-history traits suggest that perturbation responses may be affected by parasite life-history and that the ectoparasite infracommunity of sengis may lack resilience to perturbations. The latter observation contrasts with the high resilience reported previously for endoparasite communities and also suggests that anti-parasite treatments can affect the distribution of non-target species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1342-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sasha Hoffmann
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - Ivan G Horak
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| | - Heike Lutermann
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
76
|
Easton AV, Oliveira RG, O'Connell EM, Kepha S, Mwandawiro CS, Njenga SM, Kihara JH, Mwatele C, Odiere MR, Brooker SJ, Webster JP, Anderson RM, Nutman TB. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors 2016; 9:38. [PMID: 26813411 PMCID: PMC4729172 DOI: 10.1186/s13071-016-1314-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/05/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information.
Collapse
Affiliation(s)
- Alice V Easton
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA.
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK.
| | - Rita G Oliveira
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK.
| | - Elise M O'Connell
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA. elise.o'
| | - Stella Kepha
- School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Charles S Mwandawiro
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Jimmy H Kihara
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Cassian Mwatele
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Maurice R Odiere
- Neglected Tropical Diseases Research Unit, Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Simon J Brooker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Joanne P Webster
- Royal Veterinary College, University of London, Hertfordshire, UK.
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK.
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
77
|
White LA, Forester JD, Craft ME. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol Rev Camb Philos Soc 2015; 92:389-409. [DOI: 10.1111/brv.12236] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Lauren A. White
- Department of Ecology, Evolution and Behaviour University of Minnesota 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| | - James D. Forester
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota 135 Skok Hall, 2003 Upper Buford Circle St. Paul MN 55108 U.S.A
| | - Meggan E. Craft
- Department of Veterinary Population Medicine University of Minnesota 225 Veterinary Medical Center, 1365 Gortner Avenue St. Paul MN 55108 U.S.A
| |
Collapse
|
78
|
Johnson PTJ, de Roode JC, Fenton A. Why infectious disease research needs community ecology. Science 2015; 349:1259504. [PMID: 26339035 DOI: 10.1126/science.1259504] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infectious diseases often emerge from interactions among multiple species and across nested levels of biological organization. Threats as diverse as Ebola virus, human malaria, and bat white-nose syndrome illustrate the need for a mechanistic understanding of the ecological interactions underlying emerging infections. We describe how recent advances in community ecology can be adopted to address contemporary challenges in disease research. These analytical tools can identify the factors governing complex assemblages of multiple hosts, parasites, and vectors, and reveal how processes link across scales from individual hosts to regions. They can also determine the drivers of heterogeneities among individuals, species, and regions to aid targeting of control strategies. We provide examples where these principles have enhanced disease management and illustrate how they can be further extended.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
79
|
Griffiths EC, Fairlie-Clarke K, Allen JE, Metcalf CJE, Graham AL. Bottom-up regulation of malaria population dynamics in mice co-infected with lung-migratory nematodes. Ecol Lett 2015; 18:1387-96. [PMID: 26477454 DOI: 10.1111/ele.12534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/20/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022]
Abstract
When and how populations are regulated by bottom up vs. top down processes, and how those processes are affected by co-occurring species, are poorly characterised across much of ecology. We are especially interested in the community ecology of parasites that must share a host. Here, we quantify how resources and immunity affect parasite propagation in experiments in near-replicate 'mesocosms'' - i.e. mice infected with malaria (Plasmodium chabaudi) and nematodes (Nippostrongylus brasiliensis). Nematodes suppressed immune responses against malaria, and yet malaria populations were smaller in co-infected hosts. Further analyses of within-host epidemiology revealed that nematode co-infection altered malaria propagation by suppressing target cell availability. This is the first demonstration that bottom-up resource regulation may have earlier and stronger effects than top-down immune mechanisms on within-host community dynamics. Our findings demonstrate the potential power of experimental ecology to disentangle mechanisms of population regulation in complex communities.
Collapse
Affiliation(s)
- Emily C Griffiths
- Department of Entomology, Gardner Hall, Derieux Place, Raleigh NC 27695-7613, USA
| | - Karen Fairlie-Clarke
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Judith E Allen
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Fogarty International Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
80
|
Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland. Parasitology 2015; 142:1722-43. [PMID: 26442655 DOI: 10.1017/s0031182015001225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parasites are considered to be an important selective force in host evolution but ecological studies of host-parasite systems are usually short-term providing only snap-shots of what may be dynamic systems. We have conducted four surveys of helminths of bank voles at three ecologically similar woodland sites in NE Poland, spaced over a period of 11 years, to assess the relative importance of temporal and spatial effects on helminth infracommunities. Some measures of infracommunity structure maintained relative stability: the rank order of prevalence and abundance of Heligmosomum mixtum, Heligmosomoides glareoli and Mastophorus muris changed little between the four surveys. Other measures changed markedly: dynamic changes were evident in Syphacia petrusewiczi which declined to local extinction, while the capillariid Aonchotheca annulosa first appeared in 2002 and then increased in prevalence and abundance over the remaining three surveys. Some species are therefore dynamic and both introductions and extinctions can be expected in ecological time. At higher taxonomic levels and for derived measures, year and host-age effects and their interactions with site are important. Our surveys emphasize that the site of capture is the major determinant of the species contributing to helminth community structure, providing some predictability in these systems.
Collapse
|
81
|
Blake DP. Eimeria genomics: Where are we now and where are we going? Vet Parasitol 2015; 212:68-74. [DOI: 10.1016/j.vetpar.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022]
|
82
|
Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ. Marked seasonal variation in the wild mouse gut microbiota. ISME JOURNAL 2015; 9:2423-34. [PMID: 26023870 PMCID: PMC4611506 DOI: 10.1038/ismej.2015.53] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/30/2022]
Abstract
Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.
Collapse
Affiliation(s)
- Corinne F Maurice
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Sarah C L Knowles
- Centre for Immunity, Infection and Evolution (CIIE), School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, UK
| | | | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA.,Institute for Human Genetics and Division of Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Amy B Pedersen
- Centre for Immunity, Infection and Evolution (CIIE), School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter J Turnbaugh
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA.,Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
83
|
Craft ME. Infectious disease transmission and contact networks in wildlife and livestock. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140107. [PMID: 25870393 PMCID: PMC4410373 DOI: 10.1098/rstb.2014.0107] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.
Collapse
Affiliation(s)
- Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
84
|
Strauß JF, Telschow A. Modeling the indirect effect of Wolbachia on the infection dynamics of horizontally transmitted viruses. Front Microbiol 2015; 6:378. [PMID: 25972858 PMCID: PMC4412059 DOI: 10.3389/fmicb.2015.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/13/2015] [Indexed: 12/04/2022] Open
Abstract
Intracellular bacteria of the genus Wolbachia are widely distributed in arthropods. There is growing empirical evidence that Wolbachia directly interacts with viruses and other parasites inside the arthropod host, sometimes resulting in low or no pathogen replication. Previous theoretical studies showed that this direct effect of Wolbachia can result in a reduced virus prevalence (within the population), suggesting that Wolbachia could be used in the biological control of vector-borne diseases (e.g., dengue fever). However, Wolbachia might also indirectly affect virus dynamics because Wolbachia-induced reproductive phenotypes (cytoplasmic incompatibility or male killing) increase the larval mortality of hosts and thus alter the age structure of populations. We investigated this indirect effect using mathematical models with overlapping generations, and found the results to depend strongly on the host's life history. In general, the indirect effect can result in two different outcomes: (1) reduced virus prevalence and virus invasion ability, and (2) increased virus prevalence and virus invasion ability. The former occurs for host species with larval competition and undercompensation, the latter for hosts with either adult competition or larval competition and overcompensation. These findings suggest that the effect of Wolbachia on a specific virus is sensitive to the host's life history. We discuss the results with respect to biocontrol programs using Wolbachia.
Collapse
Affiliation(s)
- Jakob F Strauß
- Genome Evolution Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms Universität Münster Münster, Germany
| | - Arndt Telschow
- Genome Evolution Group, Institute for Evolution and Biodiversity, Westfälische Wilhelms Universität Münster Münster, Germany
| |
Collapse
|
85
|
Biard C, Monceau K, Motreuil S, Moreau J. Interpreting immunological indices: The importance of taking parasite community into account. An example in blackbirds
Turdus merula. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clotilde Biard
- Sorbonne Université UPMC Univ Paris 06 UPEC, Paris 7, CNRS, INRA, IRD Institut d'Écologie et des Sciences de l'Environnement de Paris F‐75005 Paris France
| | - Karine Monceau
- UMR CNRS 6282 Biogéosciences Equipe Ecologie‐Evolutive Université de Bourgogne 6 Bd Gabriel F‐21000 Dijon France
| | - Sébastien Motreuil
- UMR CNRS 6282 Biogéosciences Equipe Ecologie‐Evolutive Université de Bourgogne 6 Bd Gabriel F‐21000 Dijon France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences Equipe Ecologie‐Evolutive Université de Bourgogne 6 Bd Gabriel F‐21000 Dijon France
| |
Collapse
|
86
|
Rynkiewicz EC, Pedersen AB, Fenton A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol 2015; 31:212-21. [PMID: 25814004 DOI: 10.1016/j.pt.2015.02.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Hosts are typically coinfected by multiple parasite species, resulting in potentially overwhelming levels of complexity. We argue that an individual host can be considered to be an ecosystem in that it is an environment containing a diversity of entities (e.g., parasitic organisms, commensal symbionts, host immune components) that interact with each other, potentially competing for space, energy, and resources, ultimately influencing the condition of the host. Tools and concepts from ecosystem ecology can be applied to better understand the dynamics and responses of within-individual host-parasite ecosystems. Examples from both wildlife and human systems demonstrate how this framework is useful in breaking down complex interactions into components that can be monitored, measured, and managed to inform the design of better disease-management strategies.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Amy B Pedersen
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
87
|
Pedersen AB, Fenton A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol 2015; 31:200-11. [PMID: 25778845 DOI: 10.1016/j.pt.2015.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear that parasites can have significant impacts on the dynamics of wildlife populations. Recently, researchers have shifted from using observational approaches to infer the impact of parasites on the health and fitness of individuals to using antiparasite drug treatments to test directly the consequences of infection. However, it is not clear the extent to which these experiments work in wildlife systems, or whether the results of these individual-level treatment experiments can predict the population-level consequences of parasitism. Here, we assess the results of treatment experiments, laying out the benefits and limitations of this approach, and discuss how they can be used to improve our understanding of the role of parasites in wildlife populations.
Collapse
Affiliation(s)
- Amy B Pedersen
- Institute of Evolutionary Biology & Centre for Immunity, Infection, and Evolution, School of Biological Sciences, Kings Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
88
|
Lutermann H, Fagir DM, Bennett NC. Complex interactions within the ectoparasite community of the eastern rock sengi (Elephantulus myurus). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:148-58. [PMID: 25830115 PMCID: PMC4356872 DOI: 10.1016/j.ijppaw.2015.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/24/2023]
Abstract
We monitored and manipulated the ectoparasite community of rock sengis over 3 years. We found a number of facilitating interactions between tick species. Inter-taxon interactions were mostly antagonistic. Experimental manipulation had long-term effects on the ectoparasite community.
Concomitant infection with more than one parasite species is the rule in nature. Since co-infecting parasites are exploiting the same host, interspecific interactions at the infracommunity level are likely. The nature of such interactions can be expected to affect the distribution of parasites within host populations. Intraspecific interactions within the infracommunity are not easily discernible from cross-sectional studies and the focus of most of these studies lies on relationships between endoparasitic micro- and macroparasites. In the current study of the ectoparasite community of wild eastern rock sengis (Elephantulus myurus) we experimentally reduced tick and flea infestations and monitored ectoparasite burdens over the course of three years. We found a number of within-taxon facilitating interactions between tick species that might be the result of decreasing immune responses with increasing tick burden. In contrast, inter-taxon relationships appeared to be dominated by antagonistic relationships likely to be linked to competition over feeding sites. Only one of the observed interspecific interactions was reciprocal. Our experimental manipulation revealed additional antagonistic relationships that cross-sectional studies would not have captured. In addition, we found substantial long-term changes in the sengi ectoparasite community as a result of our experimental manipulation suggesting carry-over effects of our treatment. This study is the first that evaluates interspecific interactions within the entire ectoparasite community exploiting a mammalian host in Africa and highlights the complexity of interspecific interactions within an ectoparasite community.
Collapse
Affiliation(s)
- Heike Lutermann
- Corresponding author. Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. Tel.: +27 12 420 4872; fax: +27 12 362 5242.
| | | | | |
Collapse
|
89
|
Parasite species richness and its effect on persistence in food webs. J Theor Biol 2015; 364:377-82. [DOI: 10.1016/j.jtbi.2014.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/23/2022]
|
90
|
Buhnerkempe MG, Roberts MG, Dobson AP, Heesterbeek H, Hudson PJ, Lloyd-Smith JO. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 2014; 10:26-30. [PMID: 25843378 DOI: 10.1016/j.epidem.2014.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/23/2022] Open
Abstract
Many disease systems exhibit complexities not captured by current theoretical and empirical work. In particular, systems with multiple host species and multiple infectious agents (i.e., multi-host, multi-agent systems) require novel methods to extend the wealth of knowledge acquired studying primarily single-host, single-agent systems. We outline eight challenges in multi-host, multi-agent systems that could substantively increase our knowledge of the drivers and broader ecosystem effects of infectious disease dynamics.
Collapse
Affiliation(s)
- Michael G Buhnerkempe
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - Mick G Roberts
- Institute of Natural & Mathematical Sciences, New Zealand Institute for Advanced Study and Infectious Disease Research Centre, Massey University, Auckland, New Zealand
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Hans Heesterbeek
- Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands
| | - Peter J Hudson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA; The Huck Institute for Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
91
|
The effect of anthelmintic treatment on coccidia oocyst shedding in a wild mammal host with intermittent cestode infection. ScientificWorldJournal 2014; 2014:302903. [PMID: 25506065 PMCID: PMC4258359 DOI: 10.1155/2014/302903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022] Open
Abstract
While hosts are routinely exploited by a community of parasite species, the principles governing host responses towards parasites are unclear. Identifying the health outcomes of coinfections involving helminth macroparasites and microparasites is one area of importance for public and domestic animal health. For instance, it is controversial how deworming programmes affect incidence and severity of such important microparasite diseases as malaria. One problem is that most study systems involve domestic and laboratory animals with conditions hardly comparable to those of free-living animals. Here, we study the effect of anthelmintic treatment on coccidia infection intensity in wild Alpine marmots, M. marmota. Our results lend support to the hypothesis that helminth infection has a positive effect on concurrent microparasite infection. However, our work also points to the fact that within-host interactions between helminths and microparasites are context-dependent and can turn to negative ones once helminth burdens increase. Our study suggests that coccidia benefit from intermittent helminth infection in marmots due to the protective effects of helminth infection only during the early phase of the host's active season. Also, the marmot's response towards coccidia infection appears optimal only under no helminth infection when the host immune response towards coccidia would not be compromised, thereby pointing to the importance of regular intestinal helminth elimination by marmots just before hibernation.
Collapse
|
92
|
Forbes KM, Stuart P, Mappes T, Henttonen H, Huitu O. Food resources and intestinal parasites as limiting factors for boreal vole populations during winter. Ecology 2014. [DOI: 10.1890/13-2381.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
93
|
Oakgrove KS, Harrigan RJ, Loiseau C, Guers S, Seppi B, Sehgal RNM. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Int J Parasitol 2014; 44:717-27. [PMID: 25014331 DOI: 10.1016/j.ijpara.2014.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Avian species are commonly infected by multiple parasites, however few studies have investigated the environmental determinants of the prevalence of co-infection over a large scale. Here we believe that we report the first, detailed ecological study of the prevalence, diversity and co-infections of four avian blood-borne parasite genera: Plasmodium spp., Haemoproteus spp., Leucocytozoon spp. and Trypanosoma spp. We collected blood samples from 47 resident and migratory bird species across a latitudinal gradient in Alaska. From the patterns observed at collection sites, random forest models were used to provide evidence of associations between bioclimatic conditions and the prevalence of parasite co-infection distribution. Molecular screening revealed a higher prevalence of haematozoa (53%) in Alaska than previously reported. Leucocytozoons had the highest diversity, prevalence and prevalence of co-infection. Leucocytozoon prevalence (35%) positively correlated with Trypanosoma prevalence (11%), negatively correlated with Haemoproteus prevalence (14%) and had no correlation with Plasmodium prevalence (7%). We found temperature, precipitation and tree cover to be the primary environmental drivers that show a relationship with the prevalence of co-infection. The results provide insight into the impacts of bioclimatic drivers on parasite ecology and intra-host interactions, and have implications for the study of infectious diseases in rapidly changing environments.
Collapse
Affiliation(s)
- Khouanchy S Oakgrove
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Ryan J Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Claire Loiseau
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Sue Guers
- Alaska Songbird Institute, PO Box 82035, Fairbanks, AK 99708, USA
| | - Bruce Seppi
- Bureau of Land Management, Anchorage Field Office, 4700 BLM Road, Anchorage, AK 99507, USA
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
94
|
The reliability of observational approaches for detecting interspecific parasite interactions: comparison with experimental results. Int J Parasitol 2014; 44:437-45. [DOI: 10.1016/j.ijpara.2014.03.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/27/2014] [Accepted: 03/02/2014] [Indexed: 11/22/2022]
|
95
|
Griffiths EC, Pedersen AB, Fenton A, Petchey OL. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc Biol Sci 2014; 281:20132286. [PMID: 24619434 PMCID: PMC3973251 DOI: 10.1098/rspb.2013.2286] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/10/2014] [Indexed: 12/25/2022] Open
Abstract
Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite-resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread.
Collapse
Affiliation(s)
- Emily C. Griffiths
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Amy B. Pedersen
- Centre for Immunology, Infection and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Labs, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Owen L. Petchey
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| |
Collapse
|
96
|
Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species. Parasitol Res 2013; 112:3295-304. [DOI: 10.1007/s00436-013-3509-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022]
|
97
|
Dances with worms: the ecological and evolutionary impacts of deworming on coinfecting pathogens. Parasitology 2013; 140:1119-32. [PMID: 23714427 PMCID: PMC3695730 DOI: 10.1017/s0031182013000590] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Parasitic helminths are ubiquitous in most host, including human, populations. Helminths
often alter the likelihood of infection and disease progression of coinfecting
microparasitic pathogens (viruses, bacteria, protozoa), and there is great interest in
incorporating deworming into control programmes for many major diseases (e.g. HIV,
tuberculosis, malaria). However, such calls are controversial; studies show the
consequences of deworming for the severity and spread of pathogens to be highly variable.
Hence, the benefits of deworming, although clear for reducing the morbidity due to
helminth infection per se, are unclear regarding the outcome of
coinfections and comorbidities. I develop a theoretical framework to explore how helminth
coinfection with other pathogens affects host mortality and pathogen spread and evolution
under different interspecific parasite interactions. In all cases the outcomes of
coinfection are highly context-dependent, depending on the mechanism of helminth-pathogen
interaction and the quantitative level of helminth infection, with the effects of
deworming potentially switching from beneficial to detrimental depending on helminth
burden. Such context-dependency may explain some of the variation in the benefits of
deworming seen between studies, and highlights the need for obtaining a quantitative
understanding of parasite interactions across realistic helminth infection ranges.
However, despite this complexity, this framework reveals predictable patterns in the
effects of helminths that may aid the development of more effective, integrated management
strategies to combat pathogens in this coinfected world.
Collapse
|