51
|
Liukkonen M, Kronholm I, Ketola T. Evolutionary rescue at different rates of environmental change is affected by trade-offs between short-term performance and long-term survival. J Evol Biol 2021; 34:1177-1184. [PMID: 33963623 DOI: 10.1111/jeb.13797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
As climate change accelerates and habitats free from anthropogenic impacts diminish, populations are forced to migrate or to adapt quickly. Evolutionary rescue (ER) is a phenomenon, in which a population is able to avoid extinction through adaptation. ER is considered to be more likely at slower rates of environmental change. However, the effects of correlated characters on evolutionary rescue are seldom explored yet correlated characters could play a major role in ER. We tested how evolutionary background in different fluctuating environments and the rate of environmental change affect the probability of ER by exposing populations of the bacteria Serratia marcescens to two different rates of steady temperature increase. As suggested by theory, slower environmental change allowed populations to grow more effectively even at extreme temperatures, but at the expense of long-term survival at extreme conditions due to correlated selection. Our results indicate important gap of knowledge on the effects of correlated selection during the environmental change and on evolutionary rescue at differently changing environments.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
52
|
Searle CL, Christie MR. Evolutionary rescue in host-pathogen systems. Evolution 2021; 75:2948-2958. [PMID: 34018610 DOI: 10.1111/evo.14269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Natural populations encounter a variety of threats that can increase their risk of extinction. Populations can avoid extinction through evolutionary rescue (ER), which occurs when an adaptive, genetic response to selection allows a population to recover from an environmental change that would otherwise cause extinction. While the traditional framework for ER was developed with abiotic risk factors in mind, ER may also occur in response to a biotic source of demographic change, such as the introduction of a novel pathogen. We first describe how ER in response to a pathogen differs from the traditional ER framework; density-dependent transmission, pathogen evolution, and pathogen extinction can change the strength of selection imposed by a pathogen and make host population persistence more likely. We also discuss several variables that affect traditional ER (abundance, genetic diversity, population connectivity, and community composition) that also directly affect disease risk resulting in diverse outcomes for ER in host-pathogen systems. Thus, generalizations developed in studies of traditional ER may not be relevant for ER in response to the introduction of a pathogen. Incorporating pathogens into the framework of ER will lead to a better understanding of how and when populations can avoid extinction in response to novel pathogens.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
53
|
Griffiths JS, Kawji Y, Kelly MW. An Experimental Test of Adaptive Introgression in Locally Adapted Populations of Splash Pool Copepods. Mol Biol Evol 2021; 38:1306-1316. [PMID: 33306808 PMCID: PMC8042754 DOI: 10.1093/molbev/msaa289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As species struggle to keep pace with the rapidly warming climate, adaptive introgression of beneficial alleles from closely related species or populations provides a possible avenue for rapid adaptation. We investigate the potential for adaptive introgression in the copepod, Tigriopus californicus, by hybridizing two populations with divergent heat tolerance limits. We subjected hybrids to strong heat selection for 15 generations followed by whole-genome resequencing. Utilizing a hybridize evolve and resequence (HER) technique, we can identify loci responding to heat selection via a change in allele frequency. We successfully increased the heat tolerance (measured as LT50) in selected lines, which was coupled with higher frequencies of alleles from the southern (heat tolerant) population. These repeatable changes in allele frequencies occurred on all 12 chromosomes across all independent selected lines, providing evidence that heat tolerance is polygenic. These loci contained genes with lower protein-coding sequence divergence than the genome-wide average, indicating that these loci are highly conserved between the two populations. In addition, these loci were enriched in genes that changed expression patterns between selected and control lines in response to a nonlethal heat shock. Therefore, we hypothesize that the mechanism of heat tolerance divergence is explained by differential gene expression of highly conserved genes. The HER approach offers a unique solution to identifying genetic variants contributing to polygenic traits, especially variants that might be missed through other population genomic approaches.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology, University of California, Davis, Davis, CA
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Yasmeen Kawji
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
54
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
55
|
Anstett DN, Branch HA, Angert AL. Regional differences in rapid evolution during severe drought. Evol Lett 2021; 5:130-142. [PMID: 33868709 PMCID: PMC8045920 DOI: 10.1002/evl3.218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 11/09/2022] Open
Abstract
Climate change is increasing drought intensity, threatening biodiversity. Rapid evolution of drought adaptations might be required for population persistence, particularly in rear-edge populations that may already be closer to physiological limits. Resurrection studies are a useful tool to assess adaptation to climate change, yet these studies rarely encompass the geographic range of a species. Here, we sampled 11 populations of scarlet monkeyflower (Mimulus cardinalis), collecting seeds across the plants' northern, central, and southern range to track trait evolution from the lowest to the greatest moisture anomaly over a 7-year period. We grew families generated from these populations across well-watered and terminal drought treatments in a greenhouse and quantified five traits associated with dehydration escape and avoidance. When considering pre-drought to peak-drought phenotypes, we find that later date of flowering evolved across the range of M. cardinalis, suggesting a shift away from dehydration escape. Instead, traits consistent with dehydration avoidance evolved, with smaller and/or thicker leaves evolving in central and southern regions. The southern region also saw a loss of plasticity in these leaf traits by the peak of the drought, whereas flowering time remained plastic across all regions. This observed shift in traits from escape to avoidance occurred only in certain regions, revealing the importance of geographic context when examining adaptations to climate change.
Collapse
Affiliation(s)
- Daniel N Anstett
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Haley A Branch
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada.,Department of Zoology University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
56
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
57
|
García-Ulloa MI, Escalante AE, Moreno-Letelier A, Eguiarte LE, Souza V. Evolutionary Rescue of an Environmental Pseudomonas otitidis in Response to Anthropogenic Perturbation. Front Microbiol 2021; 11:563885. [PMID: 33552002 PMCID: PMC7856823 DOI: 10.3389/fmicb.2020.563885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic perturbations introduce novel selective pressures to natural environments, impacting the genomic variability of organisms and thus altering the evolutionary trajectory of populations. Water overexploitation for agricultural purposes and defective policies in Cuatro Cienegas, Coahuila, Mexico, have strongly impacted its water reservoir, pushing entire hydrological systems to the brink of extinction along with their native populations. Here, we studied the effects of continuous water overexploitation on an environmental aquatic lineage of Pseudomonas otitidis over a 13-year period which encompasses three desiccation events. By comparing the genomes of a population sample from 2003 (original state) and 2015 (perturbed state), we analyzed the demographic history and evolutionary response to perturbation of this lineage. Through coalescent simulations, we obtained a demographic model of contraction-expansion-contraction which points to the occurrence of an evolutionary rescue event. Loss of genomic and nucleotide variation alongside an increment in mean and variance of Tajima’s D, characteristic of sudden population expansions, support this observation. In addition, a significant increase in recombination rate (R/θ) was observed, pointing to horizontal gene transfer playing a role in population recovery. Furthermore, the gain of phosphorylation, DNA recombination, small-molecule metabolism and transport and loss of biosynthetic and regulatory genes suggest a functional shift in response to the environmental perturbation. Despite subsequent sampling events in the studied site, no pseudomonad was found until the lagoon completely dried in 2017. We speculate about the causes of P. otitidis final decline or possible extinction. Overall our results are evidence of adaptive responses at the genomic level of bacterial populations in a heavily exploited aquifer.
Collapse
Affiliation(s)
- Manuel Ii García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Ana Elena Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alejandra Moreno-Letelier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
58
|
Choo LQ, Bal TMP, Goetze E, Peijnenburg KTCA. Oceanic dispersal barriers in a holoplanktonic gastropod. J Evol Biol 2021; 34:224-240. [PMID: 33150701 PMCID: PMC7894488 DOI: 10.1111/jeb.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Pteropods, a group of holoplanktonic gastropods, are regarded as bioindicators of the effects of ocean acidification on open ocean ecosystems, because their thin aragonitic shells are susceptible to dissolution. While there have been recent efforts to address their capacity for physiological acclimation, it is also important to gain predictive understanding of their ability to adapt to future ocean conditions. However, little is known about the levels of genetic variation and large-scale population structuring of pteropods, key characteristics enabling local adaptation. We examined the spatial distribution of genetic diversity in the mitochondrial cytochrome c oxidase I (COI) and nuclear 28S gene fragments, as well as shell shape variation, across a latitudinal transect in the Atlantic Ocean (35°N-36°S) for the pteropod Limacina bulimoides. We observed high levels of genetic variability (COI π = 0.034, 28S π = 0.0021) and strong spatial structuring (COI ΦST = 0.230, 28S ΦST = 0.255) across this transect. Based on the congruence of mitochondrial and nuclear differentiation, as well as differences in shell shape, we identified a primary dispersal barrier in the southern Atlantic subtropical gyre (15-18°S). This barrier is maintained despite the presence of expatriates, a gyral current system, and in the absence of any distinct oceanographic gradients in this region, suggesting that reproductive isolation between these populations must be strong. A secondary dispersal barrier supported only by 28S pairwise ΦST comparisons was identified in the equatorial upwelling region (between 15°N and 4°S), which is concordant with barriers observed in other zooplankton species. Both oceanic dispersal barriers were congruent with regions of low abundance reported for a similar basin-scale transect that was sampled 2 years later. Our finding supports the hypothesis that low abundance indicates areas of suboptimal habitat that result in barriers to gene flow in widely distributed zooplankton species. Such species may in fact consist of several populations or (sub)species that are adapted to local environmental conditions, limiting their potential for adaptive responses to ocean changes. Future analyses of genome-wide diversity in pteropods could provide further insight into the strength, formation and maintenance of oceanic dispersal barriers.
Collapse
Affiliation(s)
- Le Qin Choo
- Plankton Diversity and EvolutionNaturalis Biodiversity CenterLeidenThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Thijs M. P. Bal
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Erica Goetze
- Department of OceanographyUniversity of Hawaiʻi at MānoaHonoluluUSA
| | - Katja T. C. A. Peijnenburg
- Plankton Diversity and EvolutionNaturalis Biodiversity CenterLeidenThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
59
|
Morgan R, Finnøen MH, Jensen H, Pélabon C, Jutfelt F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci U S A 2020; 117:33365-33372. [PMID: 33318195 PMCID: PMC7776906 DOI: 10.1073/pnas.2011419117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.
Collapse
Affiliation(s)
- Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
| | - Mette H Finnøen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
60
|
Flynn KJ, Skibinski DOF. Exploring evolution of maximum growth rates in plankton. JOURNAL OF PLANKTON RESEARCH 2020; 42:497-513. [PMID: 32939154 PMCID: PMC7484936 DOI: 10.1093/plankt/fbaa038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/03/2020] [Indexed: 05/15/2023]
Abstract
Evolution has direct and indirect consequences on species-species interactions and the environment. However, Earth systems models describing planktonic activity invariably fail to explicitly consider organism evolution. Here we simulate the evolution of the single most important physiological characteristic of any organism as described in models-its maximum growth rate (μm). Using a low-computational-cost approach, we incorporate the evolution of μm for each of the plankton components in a simple Nutrient-Phytoplankton-Zooplankton -style model such that the fitness advantages and disadvantages in possessing a high μm evolve to become balanced. The model allows an exploration of parameter ranges leading to stresses, which drive the evolution of μm. In applications of the method we show that simulations of climate change give very different projections when the evolution of μm is considered. Thus, production may decline as evolution reshapes growth and trophic dynamics. Additionally, predictions of extinction of species may be overstated in simulations lacking evolution as the ability to evolve under changing environmental conditions supports evolutionary rescue. The model explains why organisms evolved for mature ecosystems (e.g. temperate summer, reliant on local nutrient recycling or mixotrophy), express lower maximum growth rates than do organisms evolved for immature ecosystems (e.g. temperate spring, high resource availability).
Collapse
|
61
|
Gómez-Llano M, Narasimhan A, Svensson EI. Male-Male Competition Causes Parasite-Mediated Sexual Selection for Local Adaptation. Am Nat 2020; 196:344-354. [DOI: 10.1086/710039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, Thompson L, Vose J, Weltzin JF, Whyte KP. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:137782. [PMID: 32209235 DOI: 10.1016/j.scitotenv.2020.137782] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 05/22/2023]
Abstract
Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA.
| | | | - Lisa G Crozier
- NOAA Northwest Fisheries Science Center, Seattle, WA, USA
| | - Sarah Gaichas
- NOAA Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - Roger Griffis
- NOAA National Marine Fisheries Service, Silver Spring, MD, USA
| | - Jessica E Halofsky
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Toni Lyn Morelli
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Jeffrey T Morisette
- U.S. Department of the Interior, National Invasive Species Council Secretariat, Fort Collins, CO, USA
| | - Roldan C Muñoz
- NOAA Southeast Fisheries Science Center, Beaufort, NC, USA
| | | | - David L Peterson
- University of Washington, School of Environmental and Forest Sciences, Seattle, WA, USA
| | | | - Michelle D Staudinger
- U.S. Geological Survey Northeast Climate Adaptation Science Center, Amherst, MA, USA
| | - Ariana E Sutton-Grier
- University of Maryland Earth System Science Interdisciplinary Center, College Park, MD, USA
| | - Laura Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, VA, USA
| | - James Vose
- U.S. Forest Service Southern Research Station, Raleigh, NC, USA
| | | | | |
Collapse
|
63
|
Pinek L, Mansour I, Lakovic M, Ryo M, Rillig MC. Rate of environmental change across scales in ecology. Biol Rev Camb Philos Soc 2020; 95:1798-1811. [PMID: 32761787 DOI: 10.1111/brv.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
The rate of change (RoC) of environmental drivers matters: biotic and abiotic components respond differently when faced with a fast or slow change in their environment. This phenomenon occurs across spatial scales and thus levels of ecological organization. We investigated the RoC of environmental drivers in the ecological literature and examined publication trends across ecological levels, including prevalent types of evidence and drivers. Research interest in environmental driver RoC has increased over time (particularly in the last decade), however, the amount of research and type of studies were not equally distributed across levels of organization and different subfields of ecology use temporal terminology (e.g. 'abrupt' and 'gradual') differently, making it difficult to compare studies. At the level of individual organisms, evidence indicates that responses and underlying mechanisms are different when environmental driver treatments are applied at different rates, thus we propose including a time dimension into reaction norms. There is much less experimental evidence at higher levels of ecological organization (i.e. population, community, ecosystem), although theoretical work at the population level indicates the importance of RoC for evolutionary responses. We identified very few studies at the community and ecosystem levels, although existing evidence indicates that driver RoC is important at these scales and potentially could be particularly important for some processes, such as community stability and cascade effects. We recommend shifting from a categorical (e.g. abrupt versus gradual) to a quantitative and continuous (e.g. °C/h) RoC framework and explicit reporting of RoC parameters, including magnitude, duration and start and end points to ease cross-scale synthesis and alleviate ambiguity. Understanding how driver RoC affects individuals, populations, communities and ecosystems, and furthermore how these effects can feed back between levels is critical to making improved predictions about ecological responses to global change drivers. The application of a unified quantitative RoC framework for ecological studies investigating environmental driver RoC will both allow cross-scale synthesis to be accomplished more easily and has the potential for the generation of novel hypotheses.
Collapse
Affiliation(s)
- Liliana Pinek
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - India Mansour
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
64
|
Busck MM, Settepani V, Bechsgaard J, Lund MB, Bilde T, Schramm A. Microbiomes and Specific Symbionts of Social Spiders: Compositional Patterns in Host Species, Populations, and Nests. Front Microbiol 2020; 11:1845. [PMID: 32849442 PMCID: PMC7412444 DOI: 10.3389/fmicb.2020.01845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Social spiders have remarkably low species-wide genetic diversities, potentially increasing the relative importance of microbial symbionts for host fitness. Here we explore the bacterial microbiomes of three species of social Stegodyphus (S. dumicola, S. mimosarum, and S. sarasinorum), within and between populations, using 16S rRNA gene amplicon sequencing. The microbiomes of the three spider species were distinct but shared similarities in membership and structure. This included low overall diversity (Shannon index 0.5–1.7), strong dominance of single symbionts in individual spiders (McNaughton’s dominance index 0.68–0.93), and a core microbiome (>50% prevalence) consisting of 5–7 specific symbionts. The most abundant and prevalent symbionts were classified as Chlamydiales, Borrelia, and Mycoplasma, all representing novel, presumably Stegodyphus-specific lineages. Borrelia- and Mycoplasma-like symbionts were localized by fluorescence in situ hybridization (FISH) in the spider midgut. The microbiomes of individual spiders were highly similar within nests but often very different between nests from the same population, with only the microbiome of S. sarasinorum consistently reflecting host population structure. The weak population pattern in microbiome composition renders microbiome-facilitated local adaptation unlikely. However, the retention of specific symbionts across populations and species may indicate a recurrent acquisition from environmental vectors or an essential symbiotic contribution to spider phenotype.
Collapse
Affiliation(s)
- Mette Marie Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
65
|
Tomasini M, Peischl S. When does gene flow facilitate evolutionary rescue? Evolution 2020; 74:1640-1653. [DOI: 10.1111/evo.14038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Matteo Tomasini
- Interfaculty Bioinformatics UnitUniversity of Bern Bern 3012 Switzerland
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and EvolutionUniversity of Bern Bern 3012 Switzerland
- Swiss Institute for Bioinformatics Lausanne 1015 Switzerland
- Current Address: Department of Integrative BiologyMichigan State University East Lansing Michigan 48824
| | - Stephan Peischl
- Interfaculty Bioinformatics UnitUniversity of Bern Bern 3012 Switzerland
- Swiss Institute for Bioinformatics Lausanne 1015 Switzerland
| |
Collapse
|
66
|
Garoff L, Pietsch F, Huseby DL, Lilja T, Brandis G, Hughes D. Population Bottlenecks Strongly Influence the Evolutionary Trajectory to Fluoroquinolone Resistance in Escherichia coli. Mol Biol Evol 2020; 37:1637-1646. [PMID: 32031639 PMCID: PMC7253196 DOI: 10.1093/molbev/msaa032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental evolution is a powerful tool to study genetic trajectories to antibiotic resistance under selection. A confounding factor is that outcomes may be heavily influenced by the choice of experimental parameters. For practical purposes (minimizing culture volumes), most experimental evolution studies with bacteria use transmission bottleneck sizes of 5 × 106 cfu. We currently have a poor understanding of how the choice of transmission bottleneck size affects the accumulation of deleterious versus high-fitness mutations when resistance requires multiple mutations, and how this relates outcome to clinical resistance. We addressed this using experimental evolution of resistance to ciprofloxacin in Escherichia coli. Populations were passaged with three different transmission bottlenecks, including single cell (to maximize genetic drift) and bottlenecks spanning the reciprocal of the frequency of drug target mutations (108 and 1010). The 1010 bottlenecks selected overwhelmingly mutations in drug target genes, and the resulting genotypes corresponded closely to those found in resistant clinical isolates. In contrast, both the 108 and single-cell bottlenecks selected mutations in three different gene classes: 1) drug targets, 2) efflux pump repressors, and 3) transcription-translation genes, including many mutations with low fitness. Accordingly, bottlenecks smaller than the average nucleotide substitution rate significantly altered the experimental outcome away from genotypes observed in resistant clinical isolates. These data could be applied in designing experimental evolution studies to increase their predictive power and to explore the interplay between different environmental conditions, where transmission bottlenecks might vary, and resulting evolutionary trajectories.
Collapse
Affiliation(s)
- Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Franziska Pietsch
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tua Lilja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
67
|
Melero‐Jiménez IJ, Martín‐Clemente E, García‐Sánchez MJ, Bañares‐España E, Flores‐Moya A. The limit of resistance to salinity in the freshwater cyanobacterium Microcystis aeruginosa is modulated by the rate of salinity increase. Ecol Evol 2020; 10:5045-5055. [PMID: 32551080 PMCID: PMC7297762 DOI: 10.1002/ece3.6257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The overall mean levels of different environmental variables are changing rapidly in the present Anthropocene, in some cases creating lethal conditions for organisms. Under this new scenario, it is crucial to know whether the adaptive potential of organisms allows their survival under different rates of environmental change. Here, we used an eco-evolutionary approach, based on a ratchet protocol, to investigate the effect of environmental change rate on the limit of resistance to salinity of three strains of the toxic cyanobacterium Microcystis aeruginosa. Specifically, we performed two ratchet experiments in order to simulate two scenarios of environmental change. In the first scenario, the salinity increase rate was slow (1.5-fold increase), while in the second scenario, the rate was faster (threefold increase). Salinity concentrations ranging 7-10 gL-1 NaCl (depending on the strain) inhibited growth completely. However, when performing the ratchet experiment, an increase in salinity resistance (9.1-13.6 gL-1 NaCl) was observed in certain populations. The results showed that the limit of resistance to salinity that M. aeruginosa strains were able to reach depended on the strain and on the rate of environmental change. In particular, a higher number of populations were able to grow under their initial lethal salinity levels when the rate of salinity increment was slow. In future scenarios of increased salinity in natural freshwater bodies, this could have toxicological implications due to the production of microcystin by this species.
Collapse
Affiliation(s)
| | - Elena Martín‐Clemente
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| | | | - Elena Bañares‐España
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Antonio Flores‐Moya
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| |
Collapse
|
68
|
Blechschmidt J, Wittmann MJ, Blüml C. Climate Change and Green Sea Turtle Sex Ratio-Preventing Possible Extinction. Genes (Basel) 2020; 11:genes11050588. [PMID: 32466335 PMCID: PMC7288305 DOI: 10.3390/genes11050588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
Climate change poses a threat to species with temperature-dependent sex determination (TSD). A recent study on green sea turtles (Chelonia mydas) at the northern Great Barrier Reef (GBR) showed a highly female-skewed sex ratio with almost all juvenile turtles being female. This shortage of males might eventually cause population extinction, unless rapid evolutionary rescue, migration, range shifts, or conservation efforts ensure a sufficient number of males. We built a stochastic individual-based model inspired by C. mydas but potentially transferrable to other species with TSD. Pivotal temperature, nest depth, and shading were evolvable traits. Additionally, we considered the effect of crossbreeding between northern and southern GBR, nest site philopatry, and conservation efforts. Among the evolvable traits, nest depth was the most likely to rescue the population, but even here the warmer climate change scenarios led to extinction. We expected turtles to choose colder beaches under rising temperatures, but surprisingly, nest site philopatry did not improve persistence. Conservation efforts promoted population survival and did not preclude trait evolution. Although extra information is needed to make reliable predictions for the fate of green sea turtles, our results illustrate how evolution can shape the fate of long lived, vulnerable species in the face of climate change.
Collapse
|
69
|
Blasco FR, Esbaugh AJ, Killen SS, Rantin FT, Taylor EW, McKenzie DJ. Using aerobic exercise to evaluate sub-lethal tolerance of acute warming in fishes. ACTA ACUST UNITED AC 2020; 223:jeb.218602. [PMID: 32381588 PMCID: PMC7225124 DOI: 10.1242/jeb.218602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/01/2020] [Indexed: 01/10/2023]
Abstract
We investigated whether fatigue from sustained aerobic swimming provides a sub-lethal endpoint to define tolerance of acute warming in fishes, as an alternative to loss of equilibrium (LOE) during a critical thermal maximum (CTmax) protocol. Two species were studied, Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus). Each fish underwent an incremental swim test to determine gait transition speed (U GT), where it first engaged the unsteady anaerobic swimming mode that preceded fatigue. After suitable recovery, each fish was exercised at 85% of their own U GT and warmed 1°C every 30 min, to identify the temperature at which they fatigued, denoted as CTswim Fish were also submitted to a standard CTmax, warming at the same rate as CTswim, under static conditions until LOE. All individuals fatigued in CTswim, at a mean temperature approximately 2°C lower than their CTmax Therefore, if exposed to acute warming in the wild, the ability to perform aerobic metabolic work would be constrained at temperatures significantly below those that directly threatened survival. The collapse in performance at CTswim was preceded by a gait transition qualitatively indistinguishable from that during the incremental swim test. This suggests that fatigue in CTswim was linked to an inability to meet the tissue oxygen demands of exercise plus warming. This is consistent with the oxygen and capacity limited thermal tolerance (OCLTT) hypothesis, regarding the mechanism underlying tolerance of warming in fishes. Overall, fatigue at CTswim provides an ecologically relevant sub-lethal threshold that is more sensitive to extreme events than LOE at CTmax.
Collapse
Affiliation(s)
- Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil .,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, 14801-903 Araraquara, SP, Brazil
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Austin, TX 78373, USA
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Edwin W Taylor
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.,School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.,MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
70
|
Xu H, Feng B, Xie M, Ren Y, Xia J, Zhang Y, Wang A, Li X. Physiological Characteristics and Environment Adaptability of Reef-Building Corals at the Wuzhizhou Island of South China Sea. Front Physiol 2020; 11:390. [PMID: 32411015 PMCID: PMC7201098 DOI: 10.3389/fphys.2020.00390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
The health of coral reef has declined significantly around the world due to the impact of human activities and natural environment changes, and corals have to develop effective resistance mechanisms to survive. In this study, we examined the physiological characteristics and Symbiodiniaceae types of four dominant scleractinian corals in the reefs at the Wuzhizhou Island (WZZ) in South China Sea. The water environmental conditions are complex on the north side of WZZ due to regional geography and tourism development, and all corals had their unique physiological conditions and Symbiodiniaceae types. For all corals of this study, the rETRm ax and protein content were significantly lower and the SOD enzyme activity was significantly higher in the north than in the south. Interestingly, ITS2 genotyping showed that Galaxea fascicularis contained dominant Symbiodiniaceae either genotype C21 or D1a depending on the regional environmental stress, and had stronger heterotrophy than the other three coral species. In addition, the light use efficiency of the dominant Symbiodiniaceae type C1 for Pocillopora verrucosa was significantly lower in the north and the half saturating irradiance was stable. Besides, Montipora truncata and P. verrucosa increased their density of the symbiotic zooxanthella C1 in the north to offset the decline of photosynthetic efficiency and thus supply energy. For Porites lutea and G. fascicularis, their half saturating irradiance declined sharply in the north, where P. lutea resorted to heterotrophic feeding to balance the energy budget when the number of zooxanthellas fell short and G. fascicularis reduced its energy reserve significantly when the energy source was limited. We thus demonstrated the differences in the physiological responses and energy metabolism strategies between the zooxanthella and the host coral of the four reef-building coral species under the stress of complex water environment on the north side of WZZ. The corals were found to cope with natural and anthropogenic stressors by adjusting the nutrient input sources and the energy structure metabolism of coral hosts or adapting to more sustainable relationship with Symbiodiniaceae clades. The corals exhibited their capacity against long-term disturbances by developing their own successful resistance mechanisms at symbiotic relationship and energy metabolism level.
Collapse
Affiliation(s)
- Huili Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Boxuan Feng
- College of Marine Science, Hainan University, Haikou, China
| | - Minrui Xie
- College of Marine Science, Hainan University, Haikou, China
| | - Yuxiao Ren
- College of Marine Science, Hainan University, Haikou, China
| | - Jingquan Xia
- College of Marine Science, Hainan University, Haikou, China
| | - Yu Zhang
- College of Marine Science, Hainan University, Haikou, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
71
|
Rousselle M, Simion P, Tilak MK, Figuet E, Nabholz B, Galtier N. Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. PLoS Genet 2020; 16:e1008668. [PMID: 32251427 PMCID: PMC7162527 DOI: 10.1371/journal.pgen.1008668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/16/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Whether adaptation is limited by the beneficial mutation supply is a long-standing question of evolutionary genetics, which is more generally related to the determination of the adaptive substitution rate and its relationship with species effective population size (Ne) and genetic diversity. Empirical evidence reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution rate in large-Ne than in small-Ne species. We gathered coding sequence polymorphism data and estimated the adaptive amino-acid substitution rate ωa, in 50 species from ten distant groups of animals with markedly different population mutation rate θ. We reveal the existence of a complex, timescale dependent relationship between species adaptive substitution rate and genetic diversity. We find a positive relationship between ωa and θ among closely related species, indicating that adaptation is indeed limited by the mutation supply, but this was only true in relatively low-θ taxa. In contrast, we uncover no significant correlation between ωa and θ at a larger taxonomic scale, suggesting that the proportion of beneficial mutations scales negatively with species' long-term Ne.
Collapse
Affiliation(s)
| | - Paul Simion
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEGE, Department of Biology, University of Namur, Namur, Belgium
| | - Marie-Ka Tilak
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emeric Figuet
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Benoit Nabholz
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Galtier
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
72
|
Gorter FA, Manhart M, Ackermann M. Understanding the evolution of interspecies interactions in microbial communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190256. [PMID: 32200743 DOI: 10.1098/rstb.2019.0256] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial communities are complex multi-species assemblages that are characterized by a multitude of interspecies interactions, which can range from mutualism to competition. The overall sign and strength of interspecies interactions have important consequences for emergent community-level properties such as productivity and stability. It is not well understood how interspecies interactions change over evolutionary timescales. Here, we review the empirical evidence that evolution is an important driver of microbial community properties and dynamics on timescales that have traditionally been regarded as purely ecological. Next, we briefly discuss different modelling approaches to study evolution of communities, emphasizing the similarities and differences between evolutionary and ecological perspectives. We then propose a simple conceptual model for the evolution of interspecies interactions in communities. Specifically, we propose that to understand the evolution of interspecies interactions, it is important to distinguish between direct and indirect fitness effects of a mutation. We predict that in well-mixed environments, traits will be selected exclusively for their direct fitness effects, while in spatially structured environments, traits may also be selected for their indirect fitness effects. Selection of indirectly beneficial traits should result in an increase in interaction strength over time, while selection of directly beneficial traits should not have such a systematic effect. We tested our intuitions using a simple quantitative model and found support for our hypotheses. The next step will be to test these hypotheses experimentally and provide input for a more refined version of the model in turn, thus closing the scientific cycle of models and experiments. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Florien A Gorter
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Michael Manhart
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
73
|
News Feature: Probing the limits of "evolutionary rescue". Proc Natl Acad Sci U S A 2020; 116:12116-12120. [PMID: 31213579 DOI: 10.1073/pnas.1907565116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
74
|
Fugère V, Hébert MP, da Costa NB, Xu CCY, Barrett RDH, Beisner BE, Bell G, Fussmann GF, Shapiro BJ, Yargeau V, Gonzalez A. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nat Ecol Evol 2020; 4:578-588. [PMID: 32123321 DOI: 10.1038/s41559-020-1134-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Community rescue occurs when ecological or evolutionary processes restore positive growth in a highly stressful environment that was lethal to the community in its ancestral form, thus averting biomass collapse in a deteriorating environment. Laboratory evidence suggests that community rescue is most likely in high-biomass communities that have previously experienced moderate doses of sublethal stress. We assessed this result under more natural conditions, in a mesocosm experiment with phytoplankton communities exposed to the ubiquitous herbicide glyphosate. We tested whether community biomass and prior herbicide exposure would facilitate community rescue after severe contamination. We found that prior exposure to glyphosate was a very strong predictor of the rescue outcome, while high community biomass was not. Furthermore, although glyphosate had negative effects on diversity, it did not influence community composition significantly, suggesting a modest role for genus sorting in this rescue process. Our results expand the scope of community rescue theory to complex ecosystems and confirm that prior stress exposure is a key predictor of rescue.
Collapse
Affiliation(s)
- Vincent Fugère
- Department of Biology, McGill University, Montreal, Québec, Canada. .,Department of Biological Sciences, University of Québec at Montréal, Montreal, Québec, Canada.
| | - Marie-Pier Hébert
- Department of Biology, McGill University, Montreal, Québec, Canada.,Department of Biological Sciences, University of Québec at Montréal, Montreal, Québec, Canada
| | | | - Charles C Y Xu
- Department of Biology, McGill University, Montreal, Québec, Canada.,Redpath Museum, McGill University, Montreal, Québec, Canada
| | - Rowan D H Barrett
- Department of Biology, McGill University, Montreal, Québec, Canada.,Redpath Museum, McGill University, Montreal, Québec, Canada
| | - Beatrix E Beisner
- Department of Biological Sciences, University of Québec at Montréal, Montreal, Québec, Canada
| | - Graham Bell
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | - B Jesse Shapiro
- Département des Sciences Biologiques, Université de Montréal, Montreal, Québec, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, Québec, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
75
|
Scheiner SM, Barfield M, Holt RD. The genetics of phenotypic plasticity. XVII. Response to climate change. Evol Appl 2020; 13:388-399. [PMID: 31993084 PMCID: PMC6976953 DOI: 10.1111/eva.12876] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023] Open
Abstract
The world is changing at a rapid rate, threatening extinction for a large part of the world's biota. One potential response to those altered conditions is to evolve so as to be able to persist in place. Such evolution includes not just traits themselves, but also the phenotypic plasticity of those traits. We used individual-based simulations to explore the potential of an evolving phenotypic plasticity to increase the probability of persistence in the response to either a step change or continual, directional change in the environment accompanied by within-generation random environmental fluctuations. Populations could evolve by altering both their nonplastic and plastic genetic components. We found that phenotypic plasticity enhanced survival and adaptation if that plasticity was not costly. If plasticity was costly, for it to be beneficial the phenotypic magnitude of plasticity had to be great enough in the initial generations to overcome those costs. These results were not sensitive to either the magnitude of the within-generation correlation between the environment of development and the environment of selection or the magnitude of the environmental fluctuations, except for very small phenotypic magnitudes of plasticity. So, phenotypic plasticity has the potential to enhance survival; however, more data are needed on the ubiquity of trait plasticity, the extent of costs of plasticity, and the rate of mutational input of genetic variation for plasticity.
Collapse
Affiliation(s)
- Samuel M. Scheiner
- Division of Environmental BiologyNational Science FoundationAlexandriaVAUSA
| | | | - Robert D. Holt
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
76
|
Oziolor EM, DeSchamphelaere K, Lyon D, Nacci D, Poynton H. Evolutionary Toxicology-An Informational Tool for Chemical Regulation? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:257-268. [PMID: 31978273 PMCID: PMC7885860 DOI: 10.1002/etc.4611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Elias M Oziolor
- Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - Karel DeSchamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, GhEnToxLab Unit, Ghent University, Gent, Belgium
| | - Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| | - Diane Nacci
- Atlantic Coastal Environmental Sciences Division, Center for Environmental Measurements and Modeling, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Helen Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
77
|
Abstract
Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper wasp Polistes fuscatus-a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps in P. fuscatus contain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures in P. fuscatus' recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.
Collapse
|
78
|
Mueller EA, Wisnoski NI, Peralta AL, Lennon JT. Microbial rescue effects: How microbiomes can save hosts from extinction. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Jay T. Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
79
|
Janjic A. Assisted Evolution in Astrobiology-Convergence of Ecology and Evolutionary Biology within the Context of Planetary Colonization. ASTROBIOLOGY 2019; 19:1410-1417. [PMID: 31657949 DOI: 10.1089/ast.2019.2061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In ecology and conservation biology, the concept of assisted evolution aims at the optimization of the resilience of organisms and populations to changing environmental conditions. What has hardly been considered so far is that this concept is also relevant for future astrobiological research, since in artificial extraterrestrial habitats (e.g., plants and insects in martian greenhouses) novel environmental conditions will also affect the survival and performance of organisms. The question therefore arises whether and how space-relevant organisms can be artificially adapted to the desired circumstances in advance. Based on several adaptation and acclimatization strategies in wild ecosystems of Earth, I discuss which methods can be considered for assisted evolution in the context of astrobiological research. This includes enhanced selective breeding, induction of epigenetic inheritance, and genetic engineering, as well as possible problems of these applications. This short overview article aims to stimulate an emerging discussion as to whether humans, which are already prominent drivers of Earth's evolution, should consider such interventions for future planetary colonization as well.
Collapse
Affiliation(s)
- Aleksandar Janjic
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| |
Collapse
|
80
|
Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci U S A 2019; 116:23216-23224. [PMID: 31659024 DOI: 10.1073/pnas.1913534116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptive radiations are prominent components of the world's biodiversity. They comprise many species derived from one or a small number of ancestral species in a geologically short time that have diversified into a variety of ecological niches. Several authors have proposed that introgressive hybridization has been important in the generation of new morphologies and even new species, but how that happens throughout evolutionary history is not known. Interspecific gene exchange is expected to have greatest impact on variation if it occurs after species have diverged genetically and phenotypically but before genetic incompatibilities arise. We use a dated phylogeny to infer that populations of Darwin's finches in the Galápagos became more variable in morphological traits through time, consistent with the hybridization hypothesis, and then declined in variation after reaching a peak. Some species vary substantially more than others. Phylogenetic inferences of hybridization are supported by field observations of contemporary hybridization. Morphological effects of hybridization have been investigated on the small island of Daphne Major by documenting changes in hybridizing populations of Geospiza fortis and Geospiza scandens over a 30-y period. G. scandens showed more evidence of admixture than G. fortis Beaks of G. scandens became progressively blunter, and while variation in length increased, variation in depth decreased. These changes imply independent effects of introgression on 2, genetically correlated, beak dimensions. Our study shows how introgressive hybridization can alter ecologically important traits, increase morphological variation as a radiation proceeds, and enhance the potential for future evolution in changing environments.
Collapse
|
81
|
Tucker CM, Aze T, Cadotte MW, Cantalapiedra JL, Chisholm C, Díaz S, Grenyer R, Huang D, Mazel F, Pearse WD, Pennell MW, Winter M, Mooers AO. Assessing the utility of conserving evolutionary history. Biol Rev Camb Philos Soc 2019; 94:1740-1760. [PMID: 31149769 PMCID: PMC6852562 DOI: 10.1111/brv.12526] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/05/2023]
Abstract
It is often claimed that conserving evolutionary history is more efficient than species-based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human-centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most - but not all - arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity-ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here.
Collapse
Affiliation(s)
- Caroline M. Tucker
- Department of BiologyUniversity of North Carolina at Chapel Hill, Coker Hall, CB #3280 120 South RoadChapel Hill, NC 27599‐3280U.S.A.
- Centre d'Écologie Fonctionnelle et Évolutive (UMR 5175), CNRS34090 MontpellierFrance
| | - Tracy Aze
- School of Earth and Environment, Maths/Earth and Environment BuildingUniversity of LeedsLeedsLS2 9JTU.K.
| | - Marc W. Cadotte
- Department of Biological SciencesUniversity of Toronto Scarborough, 1265 Military TrailTorontoONM1C 1A4Canada
- Department of Ecology and Evolutionary BiologyUniversity of Toronto, 25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Juan L. Cantalapiedra
- Museum für Naturkunde, Leibniz‐Institut für Evolutions und Biodiversitätsforschung, Invalidenstraße 4310115BerlinGermany
- Departamento de Ciencias de la VidaUniversidad de Alcalá28805Alcalá de HenaresMadridSpain
| | - Chelsea Chisholm
- Department of Ecology and EvolutionQuartier UNIL‐Sorge Batiment Biophore CH‐1015 LausanneSwitzerland
| | - Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de Córdoba, Casilla de Correo 4955000CórdobaArgentina
| | - Richard Grenyer
- School of Geography and the EnvironmentSouth Parks Road, University of OxfordOxfordOX1 3QYU.K.
| | - Danwei Huang
- Department of Biological Sciences and Tropical Marine Science InstituteNational University of Singapore, 16 Science Drive 4, 117558Singapore
| | - Florent Mazel
- Department of Biological Sciences8888 University Drive, Simon Fraser UniversityBurnabyBCV5A 1S6, Canada
- Department of Botany2329 West Mall, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Biodiversity Research Centre2212 Main Mall, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - William D. Pearse
- Department of Biology & Ecology Center5205 Old Main Hill, Utah State UniversityLoganUT84322, U.S.A.
| | - Matthew W. Pennell
- Biodiversity Research Centre2212 Main Mall, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of ZoologySouth Parks Road, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5E, 04103 LeipzigGermany
| | - Arne O. Mooers
- Department of Biological Sciences8888 University Drive, Simon Fraser UniversityBurnabyBCV5A 1S6, Canada
| |
Collapse
|
82
|
Loria A, Cristescu ME, Gonzalez A. Mixed evidence for adaptation to environmental pollution. Evol Appl 2019; 12:1259-1273. [PMID: 31417613 PMCID: PMC6691217 DOI: 10.1111/eva.12782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Adaptation to pollution has been studied since the first observations of heavy metal tolerance in plants decades ago. To document micro-evolutionary responses to pollution, researchers have used phenotypic, molecular genetics, and demographic approaches. We reviewed 258 articles and evaluated the evidence for adaptive responses following exposure to a wide range of pollutants, across multiple taxonomic groups. We also conducted a meta-analysis to calculate the magnitude of phenotypic change in invertebrates in response to metal pollution. The majority of studies that reported differences in responses to pollution were focused on phenotypic responses at the individual level. Most of the studies that used demographic assays in their investigations found that negative effects induced by pollution often worsened over multiple generations. Our meta-analysis did not reveal a significant relationship between metal pollution intensity and changes in the traits studied, and this was probably due to differences in coping responses among different species, the broad array of abiotic and biotic factors, and the weak statistical power of the analysis. We found it difficult to make broad statements about how likely or how common adaptation is in the presence of environmental contamination. Ecological and evolutionary responses to contamination are complex, and difficult to interpret in the context of taxonomic, and methodological biases, and the inconsistent set of approaches that have been used to study adaptation to pollution in the laboratory and in the field. This review emphasizes the need for: (a) long-term monitoring programs on exposed populations that link demography to phenotypic, genetic, and selection assays; (b) the use of standardized protocols across studies especially for similar taxa. Approaches that combine field and laboratory studies offer the greatest opportunity to reveal the complex eco-evolutionary feedback that can occur under selection imposed by pollution.
Collapse
|
83
|
Bridle JR, Kawata M, Butlin RK. Local adaptation stops where ecological gradients steepen or are interrupted. Evol Appl 2019; 12:1449-1462. [PMID: 31417626 PMCID: PMC6691213 DOI: 10.1111/eva.12789] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 01/21/2023] Open
Abstract
Population genetic models of evolution along linear environmental gradients cannot explain why adaptation stops at ecological margins. This is because, unless models impose reductions in carrying capacity at species' edges, the dominant effect of gene flow is to increase genetic variance and adaptive potential rather than swamping local adaptation. This allows the population to match even very steep changes in trait optima. We extend our previous simulations to explore two nonlinear models of ecological gradients: (a) a sigmoid (steepening) gradient and (b) a linear gradient with a flat centre of variable width. We compare the parameter conditions that allow local adaptation and range expansion from the centre, with those that permit the persistence of a perfectly adapted population distributed across the entire range. Along nonlinear gradients, colonization is easier, and extinction rarer, than along a linear gradient. This is because the shallow environmental gradient near the range centre does not cause gene flow to increase genetic variation, and so does not result in reduced population density. However, as gradient steepness increases, gene flow inflates genetic variance and reduces local population density sufficiently that genetic drift overcomes local selection, creating a finite range margin. When a flat centre is superimposed on a linear gradient, gene flow increases genetic variation dramatically at its edges, leading to an abrupt reduction in density that prevents niche expansion. Remarkably local interruptions in a linear ecological gradient (of a width much less than the mean dispersal distance) can prevent local adaptation beyond this flat centre. In contrast to other situations, this effect is stronger and more consistent where carrying capacity is high. Practically speaking, this means that habitat improvement at patch margins will make evolutionary rescue more likely. By contrast, even small improvements in habitat at patch centres may confine populations to limited areas of ecological space.
Collapse
Affiliation(s)
- Jon R. Bridle
- School of Biological SciencesUniversity of BristolBristolUK
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Roger K. Butlin
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
- Department of Marine ScienceUniversity of GothenburgGothenburgSweden
| |
Collapse
|
84
|
Crozier LG, McClure MM, Beechie T, Bograd SJ, Boughton DA, Carr M, Cooney TD, Dunham JB, Greene CM, Haltuch MA, Hazen EL, Holzer DM, Huff DD, Johnson RC, Jordan CE, Kaplan IC, Lindley ST, Mantua NJ, Moyle PB, Myers JM, Nelson MW, Spence BC, Weitkamp LA, Williams TH, Willis-Norton E. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem. PLoS One 2019; 14:e0217711. [PMID: 31339895 PMCID: PMC6655584 DOI: 10.1371/journal.pone.0217711] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022] Open
Abstract
Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids.
Collapse
Affiliation(s)
- Lisa G. Crozier
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
- * E-mail:
| | - Michelle M. McClure
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Tim Beechie
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Steven J. Bograd
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, California, United States of America
| | - David A. Boughton
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
| | - Mark Carr
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| | - Thomas D. Cooney
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Jason B. Dunham
- Forest & Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon, United States of America
| | - Correigh M. Greene
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Melissa A. Haltuch
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Elliott L. Hazen
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, California, United States of America
| | - Damon M. Holzer
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - David D. Huff
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Rachel C. Johnson
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
- Center for Watershed Sciences, University of California, Davis, California, United States of America
| | - Chris E. Jordan
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Isaac C. Kaplan
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Steven T. Lindley
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
| | - Nathan J. Mantua
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
| | - Peter B. Moyle
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, California, United States of America
| | - James M. Myers
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Mark W. Nelson
- ECS Federal, Inc. Under Contract to Office of Sustainable Fisheries, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Brian C. Spence
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
| | - Laurie A. Weitkamp
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Thomas H. Williams
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
| | - Ellen Willis-Norton
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
85
|
Diniz-Filho JAF, Bini LM. Will life find a way out? Evolutionary rescue and Darwinian adaptation to climate change. Perspect Ecol Conserv 2019. [DOI: 10.1016/j.pecon.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
86
|
Rêgo A, Messina FJ, Gompert Z. Dynamics of genomic change during evolutionary rescue in the seed beetle
Callosobruchus maculatus. Mol Ecol 2019; 28:2136-2154. [DOI: 10.1111/mec.15085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Rêgo
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Frank J. Messina
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
87
|
Braga RT, Rodrigues JFM, Diniz-Filho JAF, Rangel TF. Genetic Population Structure and Allele Surfing During Range Expansion in Dynamic Habitats. AN ACAD BRAS CIENC 2019; 91:e20180179. [PMID: 31038531 DOI: 10.1590/0001-3765201920180179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Expanding populations may loss genetic diversity because sequential founder events throughout a wave of demographic expansion may cause "allele surfing", as the alleles of founder individuals may propagate rapidly through space. The spatial components of allele surfing have been studied by geneticists, but have never been investigate on dynamic and shifting habitats. Here we used an individual-based-model (IBM) to study how interactions between different habitat restoration scenarios and biological characteristics (dispersal capacity) affect the spatial patterns of the genetic structure of a population during demographic expansion. We found that both habitat dynamics and dispersal capacity, as well as their interaction, were the drivers of emergent pattern of genetic diversity and allele surfing. Specifically, allele surfing is more common when a species with low dispersal capacity colonizes a large geographic area with slow restoration (low carrying capacity). Despite this, we showed that allele surfing can be reduced, or even avoided, by dispersal management through suitable habitat restoration. Thus, investigating how colonization generates a spatial variation in genetic diversity, and which parameters control the emergent genetic pattern, are essential steps to planning assisted gene flow, which is fundamental for an effective planning of habitat restoration.
Collapse
Affiliation(s)
- Rosana T Braga
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - João F M Rodrigues
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - José A F Diniz-Filho
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| | - Thiago F Rangel
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, s/n, 74001-970 Goiânia, GO, Brazil
| |
Collapse
|
88
|
Gloag RS, Christie JR, Ding G, Stephens RE, Buchmann G, Oldroyd BP. Workers' sons rescue genetic diversity at the sex locus in an invasive honey bee population. Mol Ecol 2019; 28:1585-1592. [DOI: 10.1111/mec.15031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Rosalyn S. Gloag
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences University of Sydney Sydney New South Wales Australia
| | - Joshua R. Christie
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences University of Sydney Sydney New South Wales Australia
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Guiling Ding
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences University of Sydney Sydney New South Wales Australia
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ruby E. Stephens
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences University of Sydney Sydney New South Wales Australia
| | - Gabriele Buchmann
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences University of Sydney Sydney New South Wales Australia
| | - Benjamin P. Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environment Sciences University of Sydney Sydney New South Wales Australia
| |
Collapse
|
89
|
DeLong JP, Belmaker J. Ecological pleiotropy and indirect effects alter the potential for evolutionary rescue. Evol Appl 2019; 12:636-654. [PMID: 30828379 PMCID: PMC6383740 DOI: 10.1111/eva.12745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/25/2018] [Indexed: 11/29/2022] Open
Abstract
Invading predators can negatively affect naïve prey populations due to a lack of evolved defenses. Many species therefore may be at risk of extinction due to overexploitation by exotic predators. Yet the strong selective effect of predation might drive evolution of imperiled prey toward more resistant forms, potentially allowing the prey to persist. We evaluated the potential for evolutionary rescue in an imperiled prey using Gillespie eco-evolutionary models (GEMs). We focused on a system parameterized for protists where changes in prey body size may influence intrinsic rate of population growth, space clearance rate (initial slope of the functional response), and the energetic benefit to predators. Our results show that the likelihood of rescue depends on (a) whether multiple parameters connected to the same evolving trait (i.e., ecological pleiotropy) combine to magnify selection, (b) whether the evolving trait causes negative indirect effects on the predator population by altering the energy gain per prey, (c) whether heritable trait variation is sufficient to foster rapid evolution, and (d) whether prey abundances are stable enough to avoid very rapid extinction. We also show that when evolution fosters rescue by increasing the prey equilibrium abundance, invasive predator populations also can be rescued, potentially leading to additional negative effects on other species. Thus, ecological pleiotropy, indirect effects, and system dynamics may be important factors influencing the potential for evolutionary rescue for both imperiled prey and invading predators. These results suggest that bolstering trait variation may be key to fostering evolutionary rescue, but also that the myriad direct and indirect effects of trait change could either make rescue outcomes unpredictable or, if they occur, cause rescue to have side effects such as bolstering the populations of invasive species.
Collapse
Affiliation(s)
| | - Jonathan Belmaker
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- The Steinhardt Museum of Natural HistoryTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
90
|
Beckmann A, Schaum CE, Hense I. Phytoplankton adaptation in ecosystem models. J Theor Biol 2019; 468:60-71. [PMID: 30796940 DOI: 10.1016/j.jtbi.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.
Collapse
Affiliation(s)
| | | | - Inga Hense
- IMF, CEN, Universität Hamburg, Grosse Elbstrasse 133, Germany.
| |
Collapse
|
91
|
Thawley CJ, Goldy-Brown M, McCormick GL, Graham SP, Langkilde T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. GLOBAL CHANGE BIOLOGY 2019; 25:620-628. [PMID: 30488524 DOI: 10.1111/gcb.14510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non-native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness-relevant traits-morphology, physiological stress responsiveness, and antipredator behavior-in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species' full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress-relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant-invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.
Collapse
Affiliation(s)
- Christopher J Thawley
- Department of Biological Sciences, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Goldy-Brown
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gail L McCormick
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Sean P Graham
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
92
|
Dikicioglu D, Dereli Eke E, Eraslan S, Oliver SG, Kirdar B. Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism. Cell Commun Signal 2018; 16:85. [PMID: 30458881 PMCID: PMC6245637 DOI: 10.1186/s12964-018-0298-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Rapamycin is a potent inhibitor of the highly conserved TOR kinase, the nutrient-sensitive controller of growth and aging. It has been utilised as a chemotherapeutic agent due to its anti-proliferative properties and as an immunosuppressive drug, and is also known to extend lifespan in a range of eukaryotes from yeast to mammals. However, the mechanisms through which eukaryotic cells adapt to sustained exposure to rapamycin have not yet been thoroughly investigated. METHODS Here, S. cerevisiae response to long-term rapamycin exposure was investigated by identifying the physiological, transcriptomic and metabolic differences observed for yeast populations inoculated into low-dose rapamycin-containing environment. The effect of oxygen availability and acidity of extracellular environment on this response was further deliberated by controlling or monitoring the dissolved oxygen level and pH of the culture. RESULTS Yeast populations grown in the presence of rapamycin reached higher cell densities complemented by an increase in their chronological lifespan, and these physiological adaptations were associated with a rewiring of the amino acid metabolism, particularly that of arginine. The ability to synthesise amino acids emerges as the key factor leading to the major mechanistic differences between mammalian and microbial TOR signalling pathways in relation to nutrient recognition. CONCLUSION Oxygen levels and extracellular acidity of the culture were observed to conjointly affect yeast populations, virtually acting as coupled physiological effectors; cells were best adapted when maximal oxygenation of the culture was maintained in slightly acidic pH, any deviation necessitated more extensive readjustment to additional stress factors.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK. .,Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK. .,Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| | - Elif Dereli Eke
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Present address: Unit of Blood Diseases and Stem Cells Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.,Present address: Diagnostic Centre for Genetic Diseases, Koc University Hospital, Istanbul, Turkey
| | - Stephen G Oliver
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
93
|
Dual-stressor selection alters eco-evolutionary dynamics in experimental communities. Nat Ecol Evol 2018; 2:1974-1981. [DOI: 10.1038/s41559-018-0701-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/24/2018] [Indexed: 11/08/2022]
|
94
|
Schedwill P, Geiler AM, Nehring V. Rapid adaptation in phoretic mite development time. Sci Rep 2018; 8:16460. [PMID: 30405194 PMCID: PMC6220314 DOI: 10.1038/s41598-018-34798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022] Open
Abstract
Strong ecological selection can erode genetic variation and render populations unable to deal with changes in ecological conditions. In the adaptation of the phoretic mite Poecilochirus carabi to its host, the burying beetle Nicrophorus vespilloides, the timing of reproduction is crucial. Safe mite development is only possible during the beetles' brood care; mites that develop too slowly will have virtually zero fitness. If the strong specialisation in development time leaves no room for standing genetic variation to remain, changes in beetle brood care are disastrous. Beetle brood care depends on temperature and is thus vulnerable to changing climate. Accidental host switches to another beetle species with shorter brood care would also have negative effects on the mites. Only sufficient standing genetic variation could allow mismatched mite lines to survive and adapt. To test whether such rapid adaptation is possible in principle, we artificially selected on mite generation time. We were able to speed up, but not to slow down, mite development. We conclude that there is enough standing genetic variation in development time to allow P. carabi to quickly adapt to new host species or climate conditions, which could potentially lead to the evolution of new mite species.
Collapse
Affiliation(s)
- Petra Schedwill
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| | - Adrian M Geiler
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| | - Volker Nehring
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany.
| |
Collapse
|
95
|
O'Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. GLOBAL CHANGE BIOLOGY 2018; 24:4554-4565. [PMID: 29940071 DOI: 10.1111/gcb.14360] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Rapid evolution in response to environmental change will likely be a driving force determining the distribution of species across the biosphere in coming decades. This is especially true of microorganisms, many of which may evolve in step with warming, including phytoplankton, the diverse photosynthetic microbes forming the foundation of most aquatic food webs. Here we tested the capacity of a globally important, model marine diatom Thalassiosira pseudonana, for rapid evolution in response to temperature. Selection at 16 and 31°C for 350 generations led to significant divergence in several temperature response traits, demonstrating local adaptation and the existence of trade-offs associated with adaptation to different temperatures. In contrast, competitive ability for nitrogen (commonly limiting in marine systems), measured after 450 generations of temperature selection, did not diverge in a systematic way between temperatures. This study shows how rapid thermal adaptation affects key temperature and nutrient traits and, thus, a population's long-term physiological, ecological, and biogeographic response to climate change.
Collapse
Affiliation(s)
- Daniel R O'Donnell
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | - Carolyn R Hamman
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
| | - Evan C Johnson
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
| | - Colin T Kremer
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Christopher A Klausmeier
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Elena Litchman
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| |
Collapse
|
96
|
Wolak ME, Arcese P, Keller LF, Nietlisbach P, Reid JM. Sex‐specific additive genetic variances and correlations for fitness in a song sparrow (
Melospiza melodia
) population subject to natural immigration and inbreeding. Evolution 2018; 72:2057-2075. [DOI: 10.1111/evo.13575] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Matthew E. Wolak
- School of Biological SciencesUniversity of Aberdeen Aberdeen Scotland
- Department of Biological SciencesAuburn University Auburn Alabama 36849
| | - Peter Arcese
- Department of Forest and Conservation SciencesUniversity of British Columbia Vancouver British Columbia Canada
| | - Lukas F. Keller
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Winterthurerstrasse 190 CH‐8057 Zurich Switzerland
- Zoological MuseumUniversity of Zurich Karl‐Schmid‐Strasse 4 CH‐8006 Zurich Switzerland
| | - Pirmin Nietlisbach
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Winterthurerstrasse 190 CH‐8057 Zurich Switzerland
- Department of ZoologyUniversity of British Columbia Vancouver British Columbia Canada
| | - Jane M. Reid
- School of Biological SciencesUniversity of Aberdeen Aberdeen Scotland
| |
Collapse
|
97
|
Orive ME, Holt RD, Barfield M. Evolutionary Rescue in a Linearly Changing Environment: Limits on Predictability. Bull Math Biol 2018; 81:4821-4839. [PMID: 30218277 DOI: 10.1007/s11538-018-0504-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
Populations subject to substantial environmental change that decreases absolute fitness (expected number of offspring per individual) to less than one must adapt to persist. The probability of adaptive evolutionary rescue may be influenced by factors intrinsic to the organism itself, or by features specific to the individual population and its environment. An important question (given the increasing prevalence of environmental change) is the predictability of evolutionary rescue. We used an individual-based simulation model and a related analytic model to examine population persistence, given a continuously changing environment that leads to a linear change in the optimum for a phenotypic trait under selection. Population persistence was not well predicted by the population genetics at the start of environmental change, which contrasts strongly with the results shown in prior work for persistence after a sudden environmental change. Larger populations, which had a greater scope for the generation and maintenance of beneficial genetic variation, showed a clear advantage, but increasing the rate of environmental change always decreased the probability of persistence. Extinctions occurred throughout the period of continuous change, and populations that went extinct showed little sign of their eventual fate until shortly before extinction. Partially clonal populations showed less predictability and greater vulnerability to extinction when impacted by continuous change than did fully sexual populations-any advantage gained by the initial transmission of well-adapted phenotypes via clonal reproduction is lost as the phenotypic optimum continues to shift and the generation of novel variation is required for continuous adaptation.
Collapse
Affiliation(s)
- Maria E Orive
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS, 66045, USA.
| | - Robert D Holt
- Department of Biology, University of Florida, 111 Bartram Hall, Gainesville, FL, 32611-8525, USA
| | - Michael Barfield
- Department of Biology, University of Florida, 111 Bartram Hall, Gainesville, FL, 32611-8525, USA
| |
Collapse
|
98
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. How does parental environment influence the potential for adaptation to global change? Proc Biol Sci 2018; 285:20181374. [PMID: 30209227 PMCID: PMC6158540 DOI: 10.1098/rspb.2018.1374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 02/01/2023] Open
Abstract
Parental environments are regularly shown to alter the mean fitness of offspring, but their impacts on the genetic variation for fitness, which predicts adaptive capacity and is also measured on offspring, are unclear. Consequently, how parental environments mediate adaptation to environmental stressors, like those accompanying global change, is largely unknown. Here, using an ecologically important marine tubeworm in a quantitative-genetic breeding design, we tested how parental exposure to projected ocean warming alters the mean survival, and genetic variation for survival, of offspring during their most vulnerable life stage under current and projected temperatures. Offspring survival was higher when parent and offspring temperatures matched. Across offspring temperatures, parental exposure to warming altered the distribution of additive genetic variance for survival, making it covary across current and projected temperatures in a way that may aid adaptation to future warming. Parental exposure to warming also amplified nonadditive genetic variance for survival, suggesting that compatibilities between parental genomes may grow increasingly important under future warming. Our study shows that parental environments potentially have broader-ranging effects on adaptive capacity than currently appreciated, not only mitigating the negative impacts of global change but also reshaping the raw fuel for evolutionary responses to it.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
99
|
Environmental pleiotropy and demographic history direct adaptation under antibiotic selection. Heredity (Edinb) 2018; 121:438-448. [PMID: 30190561 PMCID: PMC6180006 DOI: 10.1038/s41437-018-0137-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
Evolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated—termed ‘environmental pleiotropy’—may determine which alleles are ultimately favoured. A population’s demographic history—its size over time—influences the variation present. Although demographic history is known to affect the probability of evolutionary rescue, how it interacts with environmental pleiotropy during severe and sustained environmental change remains unexplored. Here, we demonstrate how these factors interact during antibiotic resistance evolution, a key example of evolutionary rescue fuelled by pre-existing mutations with pleiotropic fitness effects. We combine published data with novel simulations to characterise environmental pleiotropy and its effects on resistance evolution under different demographic histories. Comparisons among resistance alleles typically revealed no correlation for fitness—i.e., neutral pleiotropy—above and below the sensitive strain’s minimum inhibitory concentration. Resistance allele frequency following experimental evolution showed opposing correlations with their fitness effects in the presence and absence of antibiotic. Simulations demonstrated that effects of environmental pleiotropy on allele frequencies depended on demographic history. At the population level, the major influence of environmental pleiotropy was on mean fitness, rather than the probability of evolutionary rescue or diversity. Our work suggests that determining both environmental pleiotropy and demographic history is critical for predicting resistance evolution, and we discuss the practicalities of this during in vivo evolution.
Collapse
|
100
|
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 2018; 361:361/6399/eaar5452. [DOI: 10.1126/science.aar5452] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/05/2018] [Indexed: 12/24/2022]
Abstract
Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate.
Collapse
Affiliation(s)
- Thiago F. Rangel
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
| | - Neil R. Edwards
- School of Environment, Earth, and Ecosystems, The Open University, Milton Keynes, UK
| | - Philip B. Holden
- School of Environment, Earth, and Ecosystems, The Open University, Milton Keynes, UK
| | | | - William D. Gosling
- School of Environment, Earth, and Ecosystems, The Open University, Milton Keynes, UK
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - Marco Túlio P. Coelho
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
| | - Fernanda A. S. Cassemiro
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
- Núcleo de Pesquisa em Ictiologia, Limnologia e Aquicultura. Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Robert K. Colwell
- Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- University of Colorado Museum of Natural History, Boulder, CO 80309, USA
| |
Collapse
|