51
|
Guan Y, Huang Y, Li T. Applications of Gelatin in Biosensors: Recent Trends and Progress. BIOSENSORS 2022; 12:670. [PMID: 36140057 PMCID: PMC9496244 DOI: 10.3390/bios12090670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Gelatin is a natural protein from animal tissue with excellent biocompatibility, biodegradability, biosafety, low cost, and sol-gel property. By taking advantage of these properties, gelatin is considered to be an ideal component for the fabrication of biosensors. In recent years, biosensors with gelatin have been widely used for detecting various analytes, such as glucose, hydrogen peroxide, urea, amino acids, and pesticides, in the fields of medical diagnosis, food testing, and environmental monitoring. This perspective is an overview of the most recent trends and progress in the development of gelatin-based biosensors, which are classified by the function of gelatin as a matrix for immobilized biorecognition materials or as a biorecognition material for detecting target analytes.
Collapse
Affiliation(s)
- Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
52
|
Caffrey AR, Appaneal HJ, Liao JX, Piehl EC, Lopes V, Puzniak LA. Treatment Heterogeneity in Pseudomonas aeruginosa Pneumonia. Antibiotics (Basel) 2022; 11:antibiotics11081033. [PMID: 36009902 PMCID: PMC9405358 DOI: 10.3390/antibiotics11081033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
We have previously identified substantial antibiotic treatment heterogeneity, even among organism-specific and site-specific infections with treatment guidelines. Therefore, we sought to quantify the extent of treatment heterogeneity among patients hospitalized with P. aeruginosa pneumonia in the national Veterans Affairs Healthcare System from Jan-2015 to Apr-2018. Daily antibiotic exposures were mapped from three days prior to culture collection until discharge. Heterogeneity was defined as unique patterns of antibiotic treatment (drug and duration) not shared by any other patient. Our study included 5300 patients, of whom 87.5% had unique patterns of antibiotic drug and duration. Among patients receiving any initial antibiotic/s with a change to at least one anti-pseudomonal antibiotic (n = 3530, 66.6%) heterogeneity was 97.2%, while heterogeneity was 91.5% in those changing from any initial antibiotic/s to only anti-pseudomonal antibiotics (n = 576, 10.9%). When assessing heterogeneity of anti-pseudomonal antibiotic classes, irrespective of other antibiotic/s received (n = 4542, 85.7%), 50.5% had unique patterns of antibiotic class and duration, with median time to first change of three days, and a median of two changes. Real-world evidence is needed to inform the development of treatment pathways and antibiotic stewardship initiatives based on clinical outcome data, which is currently lacking in the presence of such treatment heterogeneity.
Collapse
Affiliation(s)
- Aisling R. Caffrey
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA; (H.J.A.); (J.X.L.); (E.C.P.); (V.L.)
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA
- College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- School of Public Health, Brown University, Providence, RI 02903, USA
- Correspondence:
| | - Haley J. Appaneal
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA; (H.J.A.); (J.X.L.); (E.C.P.); (V.L.)
- Center of Innovation in Long-Term Support Services, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA
- College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- School of Public Health, Brown University, Providence, RI 02903, USA
| | - J. Xin Liao
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA; (H.J.A.); (J.X.L.); (E.C.P.); (V.L.)
- College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Emily C. Piehl
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA; (H.J.A.); (J.X.L.); (E.C.P.); (V.L.)
- College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Vrishali Lopes
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA; (H.J.A.); (J.X.L.); (E.C.P.); (V.L.)
| | | |
Collapse
|
53
|
Saygin H, Baysal A. Single and combined effects of antibiotics and nanoplastics from surgical masks and plastic bottles on pathogens. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109340. [PMID: 35381365 DOI: 10.1016/j.cbpc.2022.109340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Over the last decade, pollution of plastics and antibiotics has increased in its threat to the environment and human health. However, very limited information is available concerning impact of co-presence of plastics and antibiotics on environment and human health. Moreover, the potential ingestion and inhalation of nano(micro)plastics due to the disposable materials has dramatically increased. With the outbreak and spread of the COVID-19 in the world, disposable surgical masks and plastic bottles have been widely used by the public, and their rapid use and improper dispensing can cause to increase plastic pollution risk on human. However, impacts of co-presence of nano(micro)plastics and antibiotics on pathogens have yet been demonstrated. Therefore, this study aims to investigate the impact the individual and combined influences of nano-sized plastics (surgical mask and plastic bottles) and antibiotics (amoxicillin and spiramycin) towards the main susceptible bacterium (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa) by microbial activity, biofilm formation and their biochemical characteristics. The results showed that antimicrobial efficiencies of the tested antibiotics were reduced (approximately 10-98%) with the plastics. Moreover, the biochemical pathways of the microbial activity changed by the plastics entrance. Polymer structure and sorption play the role on the reduction in the inhibition of pathogens. In the meantime, the biofilm formation changed and characteristic of the extracellular polymeric substance with the co-presence of plastics and antibiotics mostly depended on the polymer structure, exposure time and sorption.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey
| | - Asli Baysal
- Health Services Vocational School of Higher Education, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295 Istanbul, Turkey.
| |
Collapse
|
54
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
55
|
Ojo SKS, Sunmonu GT, Adeoye AO, Akinwunmi CF, Obakunle MI, Ojerinde AO, Awakan OJ.
Therapeutic potential of Ipomoea asarifolia on infected Swiss albino rats with Pseudomonas aeruginosa and Staphylococcus aureus. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Curative misuse of medicinal plants are worrisome with the paucity of histological information. This led to the investigation of Ipomoea asarifolia in Swiss albino rats infected with Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Extraction was done using the cold maceration method. The minimum inhibitory concentrations (MIC) of the extracts were determined using the micro-dilution method. Swiss albino rats of 6 sub-groups with 6 animals each (36 animals/organism) were administered with 0.3 ml single oral dose of P. aeruginosa and S. aureus respectively. The animals received treatment for 5 days as follows: 0.5 ml of 5% dimethyl sulphoxide (DMSO) (negative control), 250 mg/kg of amoxicillin (positive control), 2 mg/kg of whole plant extract, 4 mg/kg of whole plant extract, 2 mg/kg of leaf extract, and 4 mg/kg of leaf extract, respectively. The packed cell volume (PCV) and white blood count (WBC) of the animals were determined before and after treatment with histology examination of vital organs. Results: MIC for S. aureus was 2 mg/mL; the mortality in S. aureus group at 2 mg/kg was 66.7%. The PCV values (50.5±0.5, 45.0±1.0, and 50.5±1.5) decreased after infection, and a corresponding increase in the PCV was observed after treatment with the extracts. Also, a significant increase in the WBC values (3.40±0.35, 4.10±0.15, and 3.30±0.40) following infection and a corresponding decrease after treatment were observed. Congestion of vessels in the kidney was also observed. Conclusion: I. asarifolia has a dose-dependent antibacterial and curative activity, and could enhance innate immunity.
Collapse
Affiliation(s)
- Stephen Kayode S. Ojo
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Gabriel Temitope Sunmonu
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi O. Adeoye
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Christiana Fisayo Akinwunmi
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Moses Ifeoluwa Obakunle
- Drug Discovery and Infectious Diseases Research Group, Department of Microbiology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | | | - Oluwakemi J. Awakan
- Department of Biochemistry, Landmark University, Omu-Aran, Kwara-State, Nigeria
| |
Collapse
|
56
|
Bonardi S, Cabassi CS, Manfreda G, Parisi A, Fiaccadori E, Sabatino A, Cavirani S, Bacci C, Rega M, Spadini C, Iannarelli M, Crippa C, Ruocco F, Pasquali F. Survey on Carbapenem-Resistant Bacteria in Pigs at Slaughter and Comparison with Human Clinical Isolates in Italy. Antibiotics (Basel) 2022; 11:777. [PMID: 35740183 PMCID: PMC9219774 DOI: 10.3390/antibiotics11060777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
This study is focused on resistance to carbapenems and third-generation cephalosporins in Gram-negative microorganisms isolated from swine, whose transmission to humans via pork consumption cannot be excluded. In addition, the common carriage of carbapenem-resistant (CR) bacteria between humans and pigs was evaluated. Sampling involved 300 faecal samples collected from slaughtered pigs and 300 urine samples collected from 187 hospitalised patients in Parma Province (Italy). In swine, MIC testing confirmed resistance to meropenem for isolates of Pseudomonas aeruginosa and Pseudomonas oryzihabitans and resistance to cefotaxime and ceftazidime for Escherichia coli, Ewingella americana, Enterobacter agglomerans, and Citrobacter freundii. For Acinetobacter lwoffii, Aeromonas hydrofila, Burkolderia cepacia, Corynebacterium indologenes, Flavobacterium odoratum, and Stenotrophomonas maltophilia, no EUCAST MIC breakpoints were available. However, ESBL genes (blaCTXM-1, blaCTX-M-2, blaTEM-1, and blaSHV) and AmpC genes (blaCIT, blaACC, and blaEBC) were found in 38 and 16 isolates, respectively. P. aeruginosa was the only CR species shared by pigs (4/300 pigs; 1.3%) and patients (2/187; 1.1%). P. aeruginosa ST938 carrying blaPAO and blaOXA396 was detected in one pig as well as an 83-year-old patient. Although no direct epidemiological link was demonstrable, SNP calling and cgMLST showed a genetic relationship of the isolates (86 SNPs and 661 allele difference), thus suggesting possible circulation of CR bacteria between swine and humans.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Clotilde Silvia Cabassi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Gerardo Manfreda
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 70017 Putignano, Italy;
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Alice Sabatino
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Sandro Cavirani
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Martina Rega
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Costanza Spadini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Mattia Iannarelli
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cecilia Crippa
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | | | - Frédérique Pasquali
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| |
Collapse
|
57
|
Sacco MD, Defrees K, Zhang X, Lawless W, Nwanochie E, Balsizer A, Darch SE, Renslo AR, Chen Y. Structure-Based Ligand Design Targeting Pseudomonas aeruginosa LpxA in Lipid A Biosynthesis. ACS Infect Dis 2022; 8:1231-1240. [PMID: 35653508 DOI: 10.1021/acsinfecdis.1c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes involved in lipid A biosynthesis are promising antibacterial drug targets in Gram-negative bacteria. In this study, we use a structure-based design approach to develop a series of novel tetrazole ligands with low μM affinity for LpxA, the first enzyme in the lipid A pathway. Aided by previous structural data, X-ray crystallography, and surface plasmon resonance bioanalysis, we identify 17 hit compounds. Two of these hits were subsequently modified to optimize interactions with three regions of the LpxA active site. This strategy ultimately led to the discovery of ligand L13, which had a KD of 3.0 μM. The results reveal new chemical scaffolds as potential LpxA inhibitors, important binding features for ligand optimization, and protein conformational changes in response to ligand binding. Specifically, they show that a tetrazole ring is well-accommodated in a small cleft formed between Met169, the "hydrophobic-ruler" and His156, both of which demonstrate significant conformational flexibility. Furthermore, we find that the acyl-chain binding pocket is the most tractable region of the active site for realizing affinity gains and, along with a neighboring patch of hydrophobic residues, preferentially binds aliphatic and aromatic groups. The results presented herein provide valuable chemical and structural information for future inhibitor discovery against this important antibacterial drug target.
Collapse
Affiliation(s)
- Michael D. Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - William Lawless
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Emeka Nwanochie
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Amelia Balsizer
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
58
|
Kaya C, Walter I, Alhayek A, Shafiei R, Jézéquel G, Andreas A, Konstantinović J, Schönauer E, Sikandar A, Haupenthal J, Müller R, Brandstetter H, Hartmann RW, Hirsch AK. Structure-Based Design of α-Substituted Mercaptoacetamides as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1010-1021. [PMID: 35451824 PMCID: PMC9112332 DOI: 10.1021/acsinfecdis.1c00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Antivirulence therapy
has become a widely applicable method for
fighting infections caused by multidrug-resistant bacteria. Among
the many virulence factors produced by the Gram-negative bacterium Pseudomonas aeruginosa, elastase (LasB) stands out
as an important target as it plays a pivotal role in the invasion
of the host tissue and evasion of the immune response. In this work,
we explored the recently reported LasB inhibitor class of α-benzyl-N-aryl mercaptoacetamides by exploiting the crystal structure
of one of the compounds. Our exploration yielded inhibitors that maintained
inhibitory activity, selectivity, and increased hydrophilicity. These
inhibitors were found to reduce the pathogenicity of the bacteria
and to maintain the integrity of lung and skin cells in the diseased
state. Furthermore, two most promising compounds increased the survival
rate of Galleria mellonella larvae
treated with P. aeruginosa culture
supernatant.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
59
|
Abstract
The large amounts of organic waste thrown into the garbage without any productivity, and the increase in the demand for electrical energy worldwide, has led to the search for new eco-friendly ways of generating electricity. Because of this, microbial fuel cells have begun to be used as a technology to generate bioelectricity. The main objective of this research was to generate bioelectricity through banana waste using a low-cost laboratory-scale method, achieving the generation of maximum currents and voltages of 3.71667 ± 0.05304 mA and 1.01 ± 0.017 V, with an optimal pH of 4.023 ± 0.064 and a maximum electrical conductivity of the substrate of 182.333 ± 3.51 µS/cm. The FTIR spectra of the initial and final substrate show a decrease in the peaks belonging to phenolic compounds, alkanes, and alkenes, mainly. The maximum power density was 5736.112 ± 12.62 mW/cm2 at a current density of 6.501 A/cm2 with a peak voltage of 1006.95 mV. The molecular analysis of the biofilm formed on the anode electrode identified the species Pseudomonas aeruginosa (100%), and Paenalcaligenes suwonensis (99.09%), Klebsiella oxytoca (99.39%) and Raoultella terrigena (99.8%), as the main electricity generators for this type of substrate. This research gives a second use to the fruit with benefits for farmers and companies dedicated to exporting and importing because they can reduce their expenses by using their own waste.
Collapse
|
60
|
Iglesias-Fernandez M, Buxadera-Palomero J, Sadowska JM, Espanol M, Ginebra MP. Implementation of bactericidal topographies on biomimetic calcium phosphates and the potential effect of its reactivity. BIOMATERIALS ADVANCES 2022; 136:212797. [PMID: 35929296 DOI: 10.1016/j.bioadv.2022.212797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery that nanostructured surfaces were able to kill bacteria, many works have been published focusing on the design of nanopatterned surfaces with antimicrobial properties. Synthetic bone grafts, based on calcium phosphate (CaP) formulations, can greatly benefit from this discovery if adequate nanotopographies can be developed. However, CaP are reactive materials and experience ionic exchanges when placed into aqueous solutions which may in turn affect cell behaviour and complicate the interpretation of the bactericidal results. The present study explores the bactericidal potential of two nanopillared CaP prepared by hydrolysis of two different sizes of α-tricalcium phosphate (α-TCP) powders under biomimetic or hydrothermal conditions. A more lethal bactericidal response toward Pseudomonas aeruginosa (~75% killing efficiency of adhered bacteria) was obtained from the hydrothermally treated CaP which consisted in a more irregular topography in terms of pillar size (radius: 20-60 nm), interpillar distances (100-1500 nm) and pillar distribution (pillar groups forming bouquets) than the biomimetically treated one (radius: 20-40 nm and interpillar distances: 50-200 nm with a homogeneous pillar distribution). The material reactivity was greatly influenced by the type of medium (nutrient-rich versus nutrient-free) and the presence or not of bacteria. A lower reactivity and superior bacterial attachment were observed in the nutrient-free medium while a lower attachment was observed for the nutrient rich medium which was explained by a superior reactivity of the material paired with the lower tendency of planktonic bacteria to adhere on surfaces in the presence of nutrients. Importantly, the ionic exchanges produced by the presence of materials were not toxic to planktonic cells. Thus, we can conclude that topography was the main contributor to mortality in the bacterial adhesion tests.
Collapse
Affiliation(s)
- Marc Iglesias-Fernandez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Joanna-Maria Sadowska
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
61
|
Qin J, Zou C, Tao J, Wei T, Yan L, Zhang Y, Wang H. Carbapenem Resistant Pseudomonas aeruginosa Infections in Elderly Patients: Antimicrobial Resistance Profiles, Risk Factors and Impact on Clinical Outcomes. Infect Drug Resist 2022; 15:2301-2314. [PMID: 35517901 PMCID: PMC9064054 DOI: 10.2147/idr.s358778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 12/28/2022] Open
Abstract
Objective The prevalence and clinical impact on mortality of carbapenem-resistant Pseudomonas aeruginosa (CRPA) infection are unclear in elderly patients. Here, we aimed to clarify the prevalence, the clinical manifestations, antimicrobial resistance, risk factors and outcomes of elderly inpatients with CRPA infection. Methods A retrospective study of 600 elderly inpatients infected with P. aeruginosa was conducted at Yueyang Hospital of Integrated Traditional Chinese and Western Medicine from January 1st 2018 to December 31st 2020. All 155 patients with CRPA infection were designated as a case group. Patients with carbapenem-susceptible Pseudomonas aeruginosa (CSPA) were randomly selected from remaining 445 cases in a 1:1 ratio to case group as a control group. Results Of 600 P. aeruginosa isolates, the overall rates of CRPA, MDR PA (multidrug-resistance Pseudomonas aeruginosa) were 25.8% (155), 22.3% (134), respectively. The rankings of the top five resistant rates of CRPA to tested antimicrobial drugs were imipenem (87.7%), meropenem (70.3%), ciprofloxacin (51.0%), levofloxacin (48.4%), cefoperazone (43.2%). Independent risk factors for patients with CRPA infection were cerebrovascular disease (OR = 3.517, P < 0.001), foley catheter (OR = 2.073, P = 0.018), length of hospital stay ≥ 14 days (OR = 1.980, P = 0.013), albumin < 35 g/L (OR = 2.049, P = 0.020), previous antibiotic exposure to carbapenems (OR = 7.022, P = 0.004), previous antibiotic exposure to third- or fourth-generation cephalosporins (OR = 12.649, P = 0.002). Of 155 patients with CRPA infection, the mortality rate was 16.8% (26/155). Independent risk factors for mortality were receiving mechanical ventilation (OR = 3.671, P = 0.007) and neutrophil percentage ≥ 80% (OR = 2.908, P = 0.024). Conclusion The study revealed high rates of CRPA, MDR PA among the hospitalized elderly patient with P. aeruginosa infection. The analysis of antimicrobial susceptibility emphasizes the necessity for antimicrobial stewardship and infection control in hospitals. These findings of risk factors are practical significant to identify patients at high risk for CRPA infection and mortality that may benefit from alternate empiric treatment.
Collapse
Affiliation(s)
- Jie Qin
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of Medical Technology, Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chengyun Zou
- Department of Medical Technology, Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianmin Tao
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tian Wei
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Yan
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yufei Zhang
- Department of Medical Technology, Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haiying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
62
|
Filik K, Szermer-Olearnik B, Oleksy S, Brykała J, Brzozowska E. Bacteriophage Tail Proteins as a Tool for Bacterial Pathogen Recognition-A Literature Review. Antibiotics (Basel) 2022; 11:555. [PMID: 35625199 PMCID: PMC9137617 DOI: 10.3390/antibiotics11050555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, a number of bacterial detection methods have been developed to replace time-consuming culture methods. One interesting approach is to mobilize the ability of phage tail proteins to recognize and bind to bacterial hosts. In this paper, the authors provide an overview of the current methodologies in which phage proteins play major roles in detecting pathogenic bacteria. Authors focus on proteins capable of recognizing highly pathogenic strains, such as Acinetobacter baumannii, Campylobacter spp., Yersinia pestis, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus spp., Salmonella spp., and Shigella. These pathogens may be diagnosed by capture-based detection methods involving the use of phage protein-coated nanoparticles, ELISA (enzyme-linked immunosorbent assay)-based methods, or biosensors. The reviewed studies show that phage proteins are becoming an important diagnostic tool due to the discovery of new phages and the increasing knowledge of understanding the specificity and functions of phage tail proteins.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | | | | | | |
Collapse
|
63
|
Zhu P, Wang S, Zhang Y, Li Y, Liu Y, Li W, Wang Y, Yan X, Luo D. Carbon Dots in Biomedicine: A Review. ACS APPLIED BIO MATERIALS 2022; 5:2031-2045. [PMID: 35442016 DOI: 10.1021/acsabm.1c01215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the rapid development of science and technology, the effective treatment of cancer still threatens human life and health. However, the success of cancer treatment is closely related to early diagnosis, identification, and effective treatment. In recent years, with the strengthening of the development and research of nanomaterials for cancer diagnosis and treatment, researchers have found that carbon dots (CDs) have the advantages of wide absorption, excellent biocompatibility, diverse imaging characteristics, and photostability and are widely used in various fields, such as sensing, imaging, and drug/gene transportation. Recently, researchers also discovered that CDs could be used as an effective photosensitizer to generate active oxygen or convert light energy into heat under the stimulation of the external lasers, making them have the effects of photothermal and photodynamic therapy for cancer. In this review, we first outline the single-modal and multimodal imaging analysis of CDs in cancer cells. After introducing diversified imaging functions, we focused on the design and the latest research progress of CDs in phototherapy and introduced in detail the strategies of CDs in phototherapy treatment and the challenges faced by clinical applications. We hope that this overview can provide important insights for researchers and accelerate the pace of research on CDs in imaging-guided phototherapy treatment.
Collapse
Affiliation(s)
- Peide Zhu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China.,College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Siyang Wang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuqi Zhang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yinping Liu
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yuying Wang
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Yan
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| |
Collapse
|
64
|
Wolfmeier H, Wardell SJT, Liu LT, Falsafi R, Draeger A, Babiychuk EB, Pletzer D, Hancock REW. Targeting the Pseudomonas aeruginosa Virulence Factor Phospholipase C With Engineered Liposomes. Front Microbiol 2022; 13:867449. [PMID: 35369481 PMCID: PMC8971843 DOI: 10.3389/fmicb.2022.867449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen Pseudomonas aeruginosa. We used the highly virulent cystic fibrosis P. aeruginosa Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the Pseudomonas secretome. Mass spectrometry of liposome-sequestered Pseudomonas proteins identified the virulence-promoting hemolytic phospholipase C (PlcH) as having been neutralized. Pseudomonas aeruginosa supernatants incubated with liposomes demonstrated reduced PlcH activity as assessed by the p-nitrophenylphosphorylcholine (NPPC) assay. Testing the in vivo efficacy of the liposomes in a murine cutaneous abscess model revealed that Sm and Ch:Sm, as single dose treatments, attenuated abscesses by >30%, demonstrating a similar effect to that of a mutant lacking plcH in this infection model. Thus, sphingomyelin-containing liposome therapy offers an interesting approach to treat and reduce virulence of complex infections caused by P. aeruginosa and potentially other Gram-negative pathogens expressing PlcH.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Samuel J. T. Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Leo T. Liu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Daniel Pletzer
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- *Correspondence: Daniel Pletzer,
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Robert E. W. Hancock,
| |
Collapse
|
65
|
Gomes D, da Costa A, Pereira AM, Casal M, Machado R. Biocomposites of Silk-Elastin and Essential Oil from Mentha piperita Display Antibacterial Activity. ACS OMEGA 2022; 7:6568-6578. [PMID: 35252653 PMCID: PMC8892480 DOI: 10.1021/acsomega.1c05704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/13/2022] [Indexed: 05/04/2023]
Abstract
In this study, novel antimicrobial biocomposite films comprising a genetically engineered silk-elastin protein polymer (SELP) and essential oil from Mentha piperita (MPEO) have been fabricated and tested for the antibacterial performance. SELP/MPEO biocomposite films were prepared by solvent casting using water as the solvent and aqueous emulsions of MPEO at different concentrations. Emulsions of MPEO were investigated, showing that the mixing method, relative amount of surfactant, and the presence of SELP influence particle size and homogeneity. The aqueous emulsions of SELP/MPEO were characterized by a population of particles between 100 and 300 nm, depending on the MPEO concentration. The emulsified oil droplets at the highest concentration showed to be homogeneously distributed into the SELP matrix and demonstrated antibacterial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Moreover, the antibacterial activity of the biocomposite films was retained after a period of storage for 7 days at 4 °C. The formulation of composites comprising natural active fillers and recombinant protein polymers opens opportunities to develop new green, functional biocomposite materials, paving the way for a new generation of multifunctional materials.
Collapse
Affiliation(s)
- Diana
S. Gomes
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- IB-S
(Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - André da Costa
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- IB-S
(Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Margarida Pereira
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- IB-S
(Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Margarida Casal
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- IB-S
(Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA
(Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- IB-S
(Institute of Science and Innovation for Sustainability), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
66
|
Cai Z, Yang F, Shao X, Yue Z, Li Z, Song Y, Pan X, Jin Y, Cheng Z, Ha UH, Feng J, Yang L, Deng X, Wu W, Bai F. ECF Sigma Factor HxuI Is Critical for In Vivo Fitness of Pseudomonas aeruginosa during Infection. Microbiol Spectr 2022; 10:e0162021. [PMID: 35044199 PMCID: PMC8768829 DOI: 10.1128/spectrum.01620-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa often adapts to its host environment and causes recurrent nosocomial infections. The extracytoplasmic function (ECF) sigma factor enables bacteria to alter their gene expression in response to host environmental stimuli. Here, we report an ECF sigma factor, HxuI, which is rapidly induced once P. aeruginosa encounters the host. Host stresses such as iron limitation, oxidative stress, low oxygen, and nitric oxide induce the expression of hxuI. By combining RNA-seq and promoter-lacZ reporter fusion analysis, we reveal that HxuI can activate the expression of diverse metabolic and virulence pathways which are critical to P. aeruginosa infections, including iron acquisition, denitrification, pyocyanin synthesis, and bacteriocin production. Most importantly, overexpression of the hxuI in the laboratory strain PAO1 promotes its colonization in both murine lung and subcutaneous infections. Together, our findings show that HxuI, a key player in host stress-response, controls the in vivo adaptability and virulence of P. aeruginosa during infection. IMPORTANCE P. aeruginosa has a strong ability to adapt to diverse environments, making it capable of causing recurrent and multisite infections in clinics. Understanding host adaptive mechanisms plays an important guiding role in the development of new anti-infective agents. Here, we demonstrate that an ECFσ factor of P. aeruginosa response to the host-inflicted stresses, which promotes the bacterial in vivo fitness and pathogenicity. Furthermore, our findings may help explain the emergence of highly transmissible strains of P. aeruginosa and the acute exacerbations during chronic infections.
Collapse
Affiliation(s)
- Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenpeng Li
- School of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang, Shandong, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology (SUSTec), Shenzhen, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
67
|
Bhandari S, Adhikari S, Karki D, Chand AB, Sapkota S, Dhungel B, Banjara MR, Joshi P, Lekhak B, Rijal KR. Antibiotic Resistance, Biofilm Formation and Detection of mexA/mexB Efflux-Pump Genes Among Clinical Isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.810863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Efflux-pump system and biofilm formation are two important mechanisms Pseudomonas aeruginosa deploys to escape the effects of antibiotics. The current study was undertaken from September 2019 to March 2020 at a tertiary-care hospital in Kathmandu in order to ascertain the burden of P. aeruginosa in clinical specimens, examine their biofilm-forming ability and determine their antibiotic susceptibility pattern along with the possession of two efflux-pump genes-mexA and mexB. Altogether 2820 clinical specimens were collected aseptically from the patients attending the hospital and processed according to standard microbiological procedures. Identification of P. aeruginosa was done by Gram stain microscopy and an array of biochemical tests. All the P. aeruginosa isolates were subjected to in vitro antibiotic susceptibility testing and their biofilm-forming ability was also examined. Presence of mexA and mexB efflux-pump genes was analyzed by Polymerase Chain Reaction (PCR) using specific primers. Out of 603 culture positive isolates, 31 (5.14%) were found to be P. aeruginosa, of which 55% were multi-drug resistant (MDR). Out of 13 commonly used antibiotics tested by Kirby-Bauer disc diffusion method, greatest resistance was shown against piperacillin-tazobactam 15 (48.4%) and ceftazidime 15 (48.4%), and least against meropenem 6 (19.4%) and ofloxacin 5 (16.2%). Of all 17 MDR isolates subjected to biofilm detection, strong biofilm formation was exhibited by 11 (65%) and 14 (82%) isolates with microtiter plate method and tube method respectively. Out of 17 isolates tested, 12 (70.6%) isolates possessed mexA and mexB genes indicating the presence of active efflux-pump system. Higher number of the isolates recovered from sputum 7 (58.3%) and pus 5 (41.7%) possessed mexA/mexB genes while the genes were not detected at all in the isolates recovered from the urine (p<0.05). This study assessed no significant association between biofilm production and multi-drug resistance (p>0.05). Adoption of stern measures by the concerned authorities to curb the incidence of multi-drug resistant and biofilm-forming isolates is recommended to prevent their dissemination in the hospital settings.
Collapse
|
68
|
Azimi L, Armin S, Samadi Kafil H, Abdollahi N, Ghazvini K, Hasanzadeh S, Shahraki Zahedani S, Rafiei Tabatabaei S, Fallah F. Evaluation of phenotypic and genotypic patterns of aminoglycoside resistance in the Gram-negative bacteria isolates collected from pediatric and general hospitals. Mol Cell Pediatr 2022; 9:2. [PMID: 35119565 PMCID: PMC8816979 DOI: 10.1186/s40348-022-00134-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
The purpose of the current study was to evaluate the phenotypic and genotypic patterns of aminoglycoside resistance among the Gram-negative bacteria (GNB) isolates collected from pediatric and general hospitals in Iran. A total of 836 clinical isolates of GNB were collected from pediatric and general hospitals from January 2018 to the end of December 2019. The identification of bacterial isolates was performed by conventional biochemical tests. Susceptibility to aminoglycosides was evaluated by the disk diffusion method (DDM). The frequency of genes encoding aminoglycoside-modifying enzymes (AMEs) was screened by the PCR method via specific primers. Among all pediatric and general hospitals, the predominant GNB isolates were Acinetobacter spp. (n = 327) and Escherichia coli (n = 144). However, E. coli (n = 20/144; 13.9%) had the highest frequency in clinical samples collected from pediatrics. The DDM results showed that 64.3% of all GNB were resistant to all of the tested aminoglycoside agents. Acinetobacter spp. and Klebsiella pneumoniae with 93.6%, Pseudomonas aeruginosa with 93.4%, and Enterobacter spp. with 86.5% exhibited very high levels of resistance to gentamicin. Amikacin was the most effective antibiotic against E. coli isolates. In total, the results showed that the aac (6')-Ib gene with 59% had the highest frequency among genes encoding AMEs in GNB. The frequency of the surveyed aminoglycoside-modifying enzyme genes among all GNB was found as follows: aph (3')-VIe (48.7%), aadA15 (38.6%), aph (3')-Ia (31.3%), aph (3')-II (14.4%), and aph (6) (2.6%). The obtained data demonstrated that the phenotypic and genotypic aminoglycoside resistance among GNB was quite high and it is possible that the resistance genes may frequently spread among clinical isolates of GNB.
Collapse
Affiliation(s)
- Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Shahnaz Armin
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Abdollahi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Antimicrobial Resistance Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepide Hasanzadeh
- Department of Microbiology and Virology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahram Shahraki Zahedani
- Department of Medical Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sedigheh Rafiei Tabatabaei
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, P. Box, Tehran, 19857-17443, Iran.
| |
Collapse
|
69
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
70
|
Segundo RF, De La Cruz-Noriega M, Milly Otiniano N, Benites SM, Esparza M, Nazario-Naveda R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules 2022; 27:625. [PMID: 35163889 PMCID: PMC8838531 DOI: 10.3390/molecules27030625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The enormous environmental problems that arise from organic waste have increased due to the significant population increase worldwide. Microbial fuel cells provide a novel solution for the use of waste as fuel for electricity generation. In this investigation, onion waste was used, and managed to generate maximum peaks of 4.459 ± 0.0608 mA and 0.991 ± 0.02 V of current and voltage, respectively. The conductivity values increased rapidly to 179,987 ± 2859 mS/cm, while the optimal pH in which the most significant current was generated was 6968 ± 0.286, and the ° Brix values decreased rapidly due to the degradation of organic matter. The microbial fuel cells showed a low internal resistance (154,389 ± 5228 Ω), with a power density of 595.69 ± 15.05 mW/cm2 at a current density of 6.02 A/cm2; these values are higher than those reported by other authors in the literature. The diffractogram spectra of the onion debris from FTIR show a decrease in the most intense peaks, compared to the initial ones with the final ones. It was possible to identify the species Pseudomona eruginosa, Acinetobacter bereziniae, Stenotrophomonas maltophilia, and Yarrowia lipolytica adhered to the anode electrode at the end of the monitoring using the molecular technique.
Collapse
Affiliation(s)
- Rojas-Flores Segundo
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.)
| | - Magaly De La Cruz-Noriega
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.)
| | - Nélida Milly Otiniano
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.)
| | - Santiago M. Benites
- Vicerrectorado de Investigación, Universidad Autónoma del Perú, Lima 15842, Peru;
| | - Mario Esparza
- Laboratorio Generbim (Genetica, Reproduccion y Biologia Molecular), Escuela de Medicina Humana, Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo 13001, Peru;
| | - Renny Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo 13007, Peru;
| |
Collapse
|
71
|
Chan HK, Chang RYK. Inhaled Delivery of Anti-Pseudomonal Phages to Tackle Respiratory Infections Caused by Superbugs. J Aerosol Med Pulm Drug Deliv 2021; 35:73-82. [PMID: 34967686 DOI: 10.1089/jamp.2021.0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Respiratory infections are increasingly difficult to treat due to the emergence of multidrug-resistant bacteria. Rediscovery and implementation of inhaled bacteriophage (phage) therapy as a standalone or supplement to antibiotic therapy is becoming recognized as a promising solution to combating respiratory infections caused by these superbugs. To ensure maximum benefit of the treatment, phages must remain stable during formulation as a liquid or powder and delivery using a nebulizer or dry powder inhaler. Methods: Pseudomonas-targeting PEV phages were used as model phages to assess the feasibility of aerosolizing biologically viable liquid formulations using commercial nebulizers in the presence and absence of inhaled antibiotics. The advantages of powder formulations were exploited by spray drying to produce inhalable powders containing PEV phages with and without the antibiotic ciprofloxacin. Results: The produced phage PEV20 and PEV20-ciprofloxacin powders remained stable over long-term storage and exhibited significant bacterial killing activities in a mouse lung infection model. Conclusion: These studies demonstrated that inhaled phage (-antibiotic) therapy has the potential to tackle respiratory infections caused by superbugs.
Collapse
Affiliation(s)
- Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
72
|
Prevalence, Risk Factors, and Molecular Epidemiology of Intestinal Carbapenem-Resistant Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0134421. [PMID: 34817230 PMCID: PMC8612150 DOI: 10.1128/spectrum.01344-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa may become multidrug-resistant (MDR) due to multiple inherited and acquired resistance mechanisms. The human gastrointestinal tract is known as a reservoir of P. aeruginosa and its resistance genes. In this study, we collected 76 intestinal carbapenem-resistant P. aeruginosa (CRPA) strains from clinical inpatients admitted to our hospital from 2014 to 2019, together with their medical data. We aim to analyze the clinical risk factors associated with CRPA infection and its molecular features. We found that the prevalence of CRPA in P. aeruginosa strains was 41.3% (95% confidence interval [CI], 34.1 to 48.8%). We also identified four variables associated with intestinal CRPA positivity, prior antibiotic exposure to aminoglycosides or carbapenems, underlying diabetes mellitus, and extraintestinal P. aeruginosa isolation. blaKPC-2 is the only detected carbapenemase gene, accounting for 21.1% of CRPA strains. The genetic environment showed that the blaKPC-2 gene was flanked immediately by ISKpn8 and ISKpn6 and several other mobile elements further upstream or downstream. Four sequence types (STs) were identified, with ST463 as the dominant sequence type. In conclusion, screening for P. aeruginosa colonization upon hospital admission could reduce the risk of P. aeruginosa infection and spread of CRPA in the hospital. IMPORTANCEPseudomonas aeruginosa may become multidrug-resistant (MDR) due to multiple inherited and acquired resistance mechanisms. The human gastrointestinal tract is known as a reservoir of P. aeruginosa and its resistance genes. Risk factor analysis and molecular epidemiology are critical for preventing their potential dissemination. Here, we identified four risk factors associated with intestinal CRPA—prior antibiotic exposure to aminoglycosides or carbapenems, underlying diabetes mellitus, and extraintestinal P. aeruginosa isolation. Further, we found similar genetic environments with several mobile elements surrounding the blaKPC gene, a carbapenemase gene only detected in intestinal CRPA strains in this study. These findings are of significant public health importance, as the information will facilitate the control of the emergence and spread of CRPA.
Collapse
|
73
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
74
|
Enwuru NV, Gill JJ, Anttonen KP, Enwuru CA, Young R, Coker AO, Cirillo JD. Isolation and characterization of novel phage (Podoviridae ɸParuNE1) and its efficacy against multi-drug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00137-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Bacterial pathogen (Pseudomonas aeruginosa) could form biofilm that conveys multi-drug resistance. Bacteriophage as an alternative to antibacterial resistance is useful against biofilm complications. This study evaluated antibacterial and biofilm removal activities of lytic phage, specific against multi-drug-resistant clinical P. aeruginosa.
Results
The phage showed a wide range of pH (5–10) and heat (7–44 °C) stability. Electron microscopy showed ɸPauNE1 phage head (60 nm in diameter) and non-contractile tail (12 nm in length by 8 nm in width); hence, the family Podoviridae and the order Caudovirales. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed structured protein of 55 kDa and double-stranded DNA of 45 kb. The phage was species specific and had broad host range activity. It inhibited bacterial growth at multiplicity of infection (MOI) 1–0.000001 pfu/ml. Inhibition was maximal at both low (1 × 105) and high (1 × 109) bacterial CFU/ml. Biofilm removal test showed that the phage removed more than 60% cell biomass within CFU/ml of 1.5 × 108, 6.0 × 108 and l.0 × 109.
Conclusion
Phage (ɸPauNE1) was unique and had broad host range activity. The phage exhibited strong bacteriolytic activity against biofilm forming multi-drug-resistant strains. It had no lytic effect on the heterogeneous strains and so a promising bioagent.
Collapse
|
75
|
Antimicrobial resistance profiles and associated factors of Acinetobacter and Pseudomonas aeruginosa nosocomial infection among patients admitted at Dessie comprehensive specialized Hospital, North-East Ethiopia. A cross-sectional study. PLoS One 2021; 16:e0257272. [PMID: 34780494 PMCID: PMC8592406 DOI: 10.1371/journal.pone.0257272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Hospital admitted patients are at increased risk of nosocomial infections (NIs) with multi-drug resistant (MDR) pathogens which are prevalent in the hospital environment. Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are common causes of NIs worldwide. The objective of this study is to determine antimicrobial resistance profiles and associated factors of Acinetobacter spp and P. aeruginosa NIs among hospitalized patients. Methods A cross-sectional study was conducted at Dessie comprehensive specialized hospital, North-East Ethiopia, from February 1 to April 30, 2020. A total of 254 patients who were suspected of the bloodstream, urinary tract, or surgical site nosocomial infections were enrolled consecutively. Socio-demographic and other variables of interest were collected using a structured questionnaire. Specimens were collected and processed following standard microbiological procedures. Antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Data were analyzed with SPSS version 23 and p-value < 0.05 was considered statistically significant. Results Overall, 13% of patients had nosocomial Acinetobacter spp and/or P. aeruginosa infections. The culture positivity rate was 16(6.3%) for Acinetobacter spp and 18(7.1%) for P. aeruginosa. Patients admitted in the surgical ward (Adjusted odds ratio (AOR):10.66;95% confidence interval (CI):1.22–93.23), pediatric ward (AOR:14.37;95%CI:1.4–148.5), intensive care unit (AOR:41.93;95%CI:4.7–374.7) and orthopedics (AOR:52.21;95%CI:7.5–365) were significantly at risk to develop NIs compared to patients admitted in the medical ward. Patients who took more than two antimicrobial types at admission were 94% (AOR:0.06; 95% CI:0.004–0.84) times more protected from NIs compared to those who did not take any antimicrobial. About 81% of Acinetobacter spp and 83% of P. aeruginosa isolates were MDR. Amikacin and meropenem showed promising activity against Acinetobacter spp and P. aeruginosa isolates. Conclusion The high prevalence of MDR Acinetobacter spp and P. aeruginosa nosocomial isolates enforce treating of patients with NIs based on antimicrobial susceptibility testing results.
Collapse
|
76
|
Fluoroquinolone resistance contributing mechanisms and genotypes of ciprofloxacin- unsusceptible Pseudomonas aeruginosa strains in Iran: emergence of isolates carrying qnr/aac(6)-Ib genes. Int Microbiol 2021; 25:405-415. [PMID: 34709520 DOI: 10.1007/s10123-021-00220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Fluoroquinolones (FQs) including ciprofloxacin (CIP) are key antibiotics for the treatment of Pseudomonas aeruginosa infections, but resistance to FQs is developing as a result of chromosomal mutations or efflux pump effects. Plasmid-mediated quinolone resistance (PMQR) has been recently reported in the Enterobacteriaceae family. This study aimed to investigate the mechanisms of CIP insusceptibility in P. aeruginosa isolates from ICU patients and to characterize their genotypes. METHODS A total of 40 ciprofloxacin unsusceptible (CIP-US) P. aeruginosa isolates from Tehran hospitals were recruited in this study. A broth microdilution assay was performed to find acquired resistance profiles of the isolates. All isolates were screened for target-site mutations (gyrA and parC), PMQR genes, and efflux pumps (mexB, D, Y, and E) expression. Clonality was determined by random amplified polymorphic DNA (RAPD)-PCR, and genotyping was performed on 5 selected isolates by analyzing 7 loci in the existing multilocus sequence typing scheme. RESULTS Thirty-eight out of 40 CIP-US isolates (95%) were categorized as MDR. Seven (17.5%) had gyrA mutation in codons 83, and no mutation was detected in parC; 77.5% of the isolates were positive for PMQR genes. Among PMQR genes, qnrB (30%), qnrC (35%), and qnrD (30%) predominated, while qnrA, qnrS, and aac(6)-Ib genes were harbored by 20.5%, 12.5%, and 15% of the isolates respectively. Efflux pump protein expression was observed in 35% of the isolates. After RAPD-PCR, 19 different genotypes were yielded, and 5 of them were classified into sequence types (STs): 773, 1160, 2011, 2386, and 359. CONCLUSION In this first-time study on P. aeruginosa CIP-US strains from Iranian ICU patients, three main CIP unsusceptibility mechanisms were investigated. A single mutation in one CIP target enzyme could explain high CIP resistance. qnr genes in the isolates can be considered as a CIP-unsusceptibility mechanism among studied isolates. Efflux pumps have more contribution in multidrug resistance than CIP susceptibility. CIP-US isolates of this study have not spread from distinct clonal strains and probably emerged from different sources. STs identified for the first time in this study in Iran should be considered as emerging MDR strains.
Collapse
|
77
|
Ababneh MA, Rababa'h AM, Almomani BA, Ayoub AM, Al-Azzam SI. A ten-year surveillance of P aeruginosa bloodstream infections in a tertiary care hospital: Trends and risk factors for mortality. Int J Clin Pract 2021; 75:e14409. [PMID: 34051030 DOI: 10.1111/ijcp.14409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P aeruginosa) is a leading cause of nosocomial bloodstream infections worldwide. This study aimed to evaluate the incidence of P aeruginosa bloodstream infections and to identify predictors of 30-day mortality. METHODS A retrospective study was conducted in an academic tertiary hospital in Jordan. The medical records of patients hospitalised over ten years (1 January 2008-31 December 2017) were reviewed to identify patients' positive blood culture of P aeruginosa. Annual incidence, antimicrobial susceptibility patterns and risk factors for 30-day mortality were analysed. RESULTS A total of 169 cases of P aeruginosa bloodstream infection were identified, with an overall incidence rate of 0.23 case/1000 admission. The overall crude 30-day mortality was 36.7%. Receipt of corticosteroids (OR = 4.5; P = .0017), severe sepsis and septic shock (OR = 2.7; P = .0476), admission to intensive care unit (OR = 5.9; P = .0004), end-stage renal disease (OR = 4.1; P = .0123), inappropriate empirical therapy (OR = 3.2; P = .0143) and inappropriate definitive therapy (OR = 2.9; P = .0110) were identified as independent risk factors for mortality. CONCLUSION The annual incidence of P aeruginosa BSIs was fluctuating over ten years period. Several predictors for 30-day mortality in patients with P aeruginosa BSIs were identified, including inappropriate empirical and definitive therapy.
Collapse
Affiliation(s)
- Mera A Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abeer M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sayer I Al-Azzam
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
78
|
Dunphy LJ, Kolling GL, Jenior ML, Carroll J, Attai AE, Farnoud F, Mathers AJ, Hughes MA, Papin JA. Multidimensional Clinical Surveillance of Pseudomonas aeruginosa Reveals Complex Relationships between Isolate Source, Morphology, and Antimicrobial Resistance. mSphere 2021; 6:e0039321. [PMID: 34259555 PMCID: PMC8386403 DOI: 10.1128/msphere.00393-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial susceptibility in Pseudomonas aeruginosa is dependent on a complex combination of host and pathogen-specific factors. Through the profiling of 971 clinical P. aeruginosa isolates from 590 patients and collection of paired patient metadata, we show that antimicrobial resistance is associated with not only patient-centric factors (e.g., cystic fibrosis and antipseudomonal prescription history) but also microbe-specific phenotypes (e.g., mucoid colony morphology). Additionally, isolates from different sources (e.g., respiratory tract, urinary tract) displayed rates of antimicrobial resistance that were correlated with source-specific antimicrobial prescription strategies. Furthermore, isolates from the same patient often displayed a high degree of heterogeneity, highlighting a key challenge facing personalized treatment of infectious diseases. Our findings support novel relationships between isolate and patient-level data sets, providing a potential guide for future antimicrobial treatment strategies. IMPORTANCE P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting. In this study, we discovered novel relationships between antimicrobial resistance, virulence-linked morphologies, and isolate source in a large and variable collection of clinical P. aeruginosa isolates. Our work motivates the clinical surveillance of virulence-linked P. aeruginosa morphologies as well as the tracking of source-specific antimicrobial prescription and resistance patterns.
Collapse
Affiliation(s)
- Laura J. Dunphy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Joanne Carroll
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - April E. Attai
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Farzad Farnoud
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Amy J. Mathers
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Molly A. Hughes
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
79
|
Talukder A, Rahman MM, Chowdhury MMH, Mobashshera TA, Islam NN. Plasmid profiling of multiple antibiotic-resistant Pseudomonas aeruginosa isolated from soil of the industrial area in Chittagong, Bangladesh. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Multiple antibiotic-resistant (MAR) Pseudomonas aeruginosa (P. aeruginosa) plays a significant role in triggering nosocomial infection in clinical settings. While P. aeruginosa isolated from the environment is often regarded as non-pathogenic, the progressive development of antibiotic resistance necessitates exploring the MAR patterns and transposable genetic elements like plasmid in the isolates.
Results
Using ecfX gene-based PCR, 32 P. aeruginosa isolates among 48 soil samples collected from the industrial region have been confirmed. The antibiotic susceptibility pattern of those isolates revealed that 5 (15.63%) of them were resistant to a range of antibiotics, and they were categorized as MAR isolates. Nevertheless, all MAR isolates were found resistant to piperacillin and gentamicin, but none of them to ceftazidime, aztreonam, and ciprofloxacin. Moreover, the isolates were also showed resistance to amikacin (60%), tobramycin (80%), netilmicin (80%), imipenem (60%), doripenem (40%), meropenem (60%), and cefixime (40%). Furthermore, 60% of MAR isolates possessed double plasmids of 1000–2000 bp sizes which indicates the distribution of antibiotic resistance genes in MAR P. aeruginosa might be correlated with the presence of those plasmids. The MAR index’s high threshold values (> 0.20) implied that the isolates were from high-risk environmental sites where the presence of numerous antibiotic residues happened.
Conclusions
These findings highlighted the presence of multiple antibiotic resistance in P. aeruginosa of the industrial soil and a considerable prospect of transferring antibiotic resistance genes in the microbial community by plasmids. We recommend taking immediate stringent measures to prohibit the unnecessary and overuse of antibiotics in agricultural, industrial, or other purposes.
Collapse
|
80
|
Akter S, Migiyama Y, Tsutsuki H, Ono K, Hamasaki C, Zhang T, Miyao K, Toyomoto T, Yamamoto K, Islam W, Sakagami T, Matsui H, Yamaguchi Y, Sawa T. Development of potent antipseudomonal β-lactams by means of polycarboxylation of aminopenicillins. Microbiol Immunol 2021; 65:449-461. [PMID: 34251710 DOI: 10.1111/1348-0421.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that presents a serious risk to immunosuppressed individuals and other extremely vulnerable patients such as those in intensive care units. The emergence of multidrug-resistant Pseudomonas strains has increased the need for new antipseudomonal agents. In this study, a series of amino group-modified aminopenicillin derivatives was synthesized that have different numbers of carboxyl groups and structurally resemble carboxypenicillin-ureidopenicillin hybrids, and their antipseudomonal activities were evaluated. Among the derivatives synthesized, diethylenetriaminepentaacetic acid (DTPA)-modified amoxicillin (DTPA-Amox) showed potent antipseudomonal activity, not only against the laboratory strain PAO1 but also against clinically isolated Pseudomonas strains that were resistant to piperacillin and carbenicillin. DTPA-Amox had no obvious cytotoxic effects on cultured mammalian cells. In addition, in an in vivo model of leukopenia, DTPA-Amox treatment produced a moderate but statistically significant improvement in the survival of mice with P. aeruginosa strain PAO1 infection. These data suggest that polycarboxylation by DTPA conjugation is an effective approach to enhance antipseudomonal activity of aminopenicillins.
Collapse
Affiliation(s)
- Shahinur Akter
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Migiyama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chika Hamasaki
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenki Miyao
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Touya Toyomoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yamamoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Yamaguchi
- Graduate School of Science and Technology, Environmental Safety Center, Kumamoto University, Kumamoto, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
81
|
Odoi H, Boamah VE, Boakye YD, Agyare C. Prevalence and Phenotypic and Genotypic Resistance Mechanisms of Multidrug-Resistant Pseudomonas aeruginosa Strains Isolated from Clinical, Environmental, and Poultry Litter Samples from the Ashanti Region of Ghana. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:9976064. [PMID: 34221030 PMCID: PMC8221878 DOI: 10.1155/2021/9976064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
Background Antibiotic resistance in bacteria is a major global health challenge. Reports on the prevalence of multidrug-resistant P. aeruginosa, a common pathogenic bacterium implicated in nosocomial infections and poultry diseases, are limited in Ghana. This study therefore sought to determine the prevalence of P. aeruginosa from hospitals, poultry farms, and environmental samples from the Ashanti region of Ghana. Methodology. Stool, urine, and blood samples from 364 patients from two hospitals in the Ashanti region of Ghana were randomly sampled. P. aeruginosa was isolated and confirmed using routine selective media and PCR-based oprL gene amplification. The Kirby-Bauer disk diffusion method employing EUCAST breakpoint values was used to identify multidrug-resistant strains. The occurrence of common antibiotic inactivating enzymes and resistance encoding genes and the assessment of strain efflux capacity were investigated with double disc synergy test (DDST), imipenem-EDTA synergy test, phenylboronic acid test, D-test, routine PCR, and ethidium bromide agar-cartwheel method. Results A total of 87 (9.7%, n = 87/900) P. aeruginosa isolates were confirmed from the samples. 75% (n = 65/87) were resistant to more than one group of antipseudomonal agents, while 43.6% (n = 38/87) were multidrug-resistant (MDR). High prevalence of extended spectrum β-lactamases (84.2%), metallo-β-lactamases (34.1%), and AmpC inducible cephalosporinases (50%) was observed in the MDR strains. About 57.8% of the MDR strains showed moderate to very high efflux capacity. Class 1 integrons were detected in 89.4% of the MDR isolates but β-lactamase encoding genes (bla SHV , bla TEM , bla CTX-M , bla VIM , and bla IMP ) were not detected. Conclusion Surveillance of antibiotic-resistant strains of bacteria should be routinely conducted in clinical and veterinary practice in Ghana to inform selection of antibiotics for therapeutic use.
Collapse
Affiliation(s)
- Hayford Odoi
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Vivian Etsiapa Boamah
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
82
|
Schütz C, Ho D, Hamed MM, Abdelsamie AS, Röhrig T, Herr C, Kany AM, Rox K, Schmelz S, Siebenbürger L, Wirth M, Börger C, Yahiaoui S, Bals R, Scrima A, Blankenfeldt W, Horstmann JC, Christmann R, Murgia X, Koch M, Berwanger A, Loretz B, Hirsch AKH, Hartmann RW, Lehr C, Empting M. A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004369. [PMID: 34165899 PMCID: PMC8224453 DOI: 10.1002/advs.202004369] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Indexed: 05/21/2023]
Abstract
Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.
Collapse
|
83
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
84
|
Emergence and Expansion of a Carbapenem-Resistant Pseudomonas aeruginosa Clone Are Associated with Plasmid-Borne bla KPC-2 and Virulence-Related Genes. mSystems 2021; 6:6/3/e00154-21. [PMID: 34006625 PMCID: PMC8269210 DOI: 10.1128/msystems.00154-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen and one of the leading bacterial species causing health care-associated infections. Carbapenems are the most effective antimicrobial agents for the treatment of severe infections caused by P. aeruginosa However, our recent surveillance demonstrated that the prevalence of carbapenem-resistant P. aeruginosa (CRPA) reached 38.67% in Zhejiang, China. By analyzing CRPA isolates collected from patients from 2006 to 2018, we found that 33% of CRPA isolates carried the gene bla KPC-2, which conferred high-level resistance to carbapenems and other β-lactams. In particular, a CRPA clone, ST463 (sequence type 463), emerged and has become the predominant CRPA clone among the population. Genome sequencing demonstrated that ST463 expansion was associated with plasmid-borne bla KPC-2 The mobile element flanking bla KPC-2, the type IV secretion system, and the successful expansion of clone ST463 might have further favored bla KPC-2 spread in P. aeruginosa Molecular clock analysis dated the emergence of clone ST463 to around 2007. Genome-wide association analysis showed that 567 genes were associated with clone ST463, including several known virulence genes related to the biosynthesis of lipooligosaccharide (LOS) O-antigens and exotoxin. These findings indicate that ST463 is expanding with plasmid-borne bla KPC-2 and virulence-related genes in nosocomial infections, and close surveillance should be undertaken in the future.IMPORTANCE Health care-associated infections, also known as nosocomial infections, are the most frequent adverse events in health care delivery worldwide, causing high rates of morbidity and mortality and high health care costs. Pseudomonas aeruginosa is one of the leading bacterial species causing health care-associated infections. Carbapenems are the most effective antimicrobial agents for the treatment of its severe infections. However, the prevalence of carbapenem-resistant P. aeruginosa (CRPA) has been increasing rapidly in recent years, and our surveillance demonstrated that the prevalence of CRPA reached 38.67% in Zhejiang, China. Genome sequencing of CRPA isolates over a decade showed that a CRPA clone (ST463) emerged recently. The clone is highly resistant to β-lactams, including carbapenems, and fluoroquinolones. Genome-wide association analysis showed that the clone expanded with virulence-related genes and the plasmid-borne carbapenem-resistant gene bla KPC-2 These findings are of significant public health importance, as the information will facilitate the control and minimization of CRPA nosocomial infections.
Collapse
|
85
|
Pan U, Jain A, Gubert J, Kumari B, Sindal MD. Antibiotic sensitivity trends of pseudomonas endophthalmitis in a tertiary eye care center in South India: A 12-year retrospective study. Indian J Ophthalmol 2021; 68:627-631. [PMID: 32174583 PMCID: PMC7210830 DOI: 10.4103/ijo.ijo_1145_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose: To assess trends in antibiotic sensitivity of pseudomonas and compare multidrug resistance (MDR) between Pseudomonas endophthalmitis cases presenting in two consecutive 6-year time frames in a tertiary center in South India. Methods: This is a retrospective comparative series of all Pseudomonas endophthalmitis cases treated from June 2004 to May 2016. Microbiological culture results in all endophthalmitis patients were screened for pseudomonas. Positive cases in the initial 6 and final 6 years were compared for sensitivity to antibiotics and the proportion of MDR. MDR was defined as resistance to at least two different classes of antibiotics. Results: Pseudomonas accounted for 74 of 389 endophthalmitis cases (19%), 42 in initial 6 and 32 in final 6 years. Sensitivity to ciprofloxacin, ofloxacin, gatifloxacin, moxifloxacin, and ceftazidime was 85.7%, 82.9%, 76.5%, 76.9%, 88.1% up to 2010 which reduced to 75%, 59.4%, 68.8%, 56.3%, 56.3%, respectively, after 2010, being significant for ofloxacin (P = 0.0349) and ceftazidime (P = 0.0028). Susceptibility to amikacin, gentamicin, and tobramycin changed non-significantly from 83.3%, 43.9%, 47.6% to 71.9%, 61.3%, 61.3%, respectively. Twenty of 74 cases (27%) were MDR with 16.7% in first 6 years versus 40.6% in final 6 years. Postoperative MDR cases rose from 10.3% to 50% (P = 0.0048). Conclusion: This study shows rising resistance of Pseudomonas to fluoroquinolones, amikacin, and ceftazidime in endophthalmitis. MDR also showed an upward trend, particularly in postsurgical cases.
Collapse
Affiliation(s)
- Utsab Pan
- Vitreoretina Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Pondicherry; Vitreoretina Services, Susrut Eye Foundation and Research Centre, Berhampore, West Bengal, India
| | - Aarti Jain
- Vitreoretina Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Pondicherry; Vitreoretina Services, Giridhar Eye Institute, Kochi, Kerala, India
| | - Joseph Gubert
- Microbiology Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Pondicherry, India
| | - Bibha Kumari
- Vitreoretina Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Pondicherry; Geetasri Retina Institute, Ranchi, Jharkhand, India
| | - Manavi D Sindal
- Vitreoretina Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Pondicherry, India
| |
Collapse
|
86
|
Potential of Silver Nanoparticles in Overcoming the Intrinsic Resistance of Pseudomonas aeruginosa to Secondary Metabolites from Carnivorous Plants. Int J Mol Sci 2021; 22:ijms22094849. [PMID: 34063704 PMCID: PMC8124972 DOI: 10.3390/ijms22094849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/05/2022] Open
Abstract
Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL−1) and only weakly sensitive to their mixtures, i.e., extracts and extracts’ fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.
Collapse
|
87
|
Naser R, Abu-Huwaij R, Al-khateeb I, Abbas MM, Atoom AM. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: antimicrobial and anticancer activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01837-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
88
|
Ashwath P, Sannejal AD. A quest to the therapeutic arsenal: Novel strategies to combat multidrug-resistant bacteria. Curr Gene Ther 2021; 22:79-88. [PMID: 33874870 DOI: 10.2174/1566523221666210419084836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. The various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.
Collapse
Affiliation(s)
- Priyanka Ashwath
- Nitte (Deemed to be University), Nitte University Centre for Science Education & Research (NUCSER), Mangaluru. India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education & Research (NUCSER), Mangaluru. India
| |
Collapse
|
89
|
Regiospecific vs. non regiospecific click azide-alkyne polymerization: In vitro study of water-soluble antibacterial poly(amide aminotriazole)s. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112113. [PMID: 33965117 DOI: 10.1016/j.msec.2021.112113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Novel linear cationic poly(amide aminotriazole)s (PATnD) with secondary amine groups in the backbone were obtained by using azide-alkyne 1,3-dipolar cycloaddition reactions: metal- and solvent-free (thermal conditions, PATTnD) or copper(I)-catalyzed (Sharpless conditions, PATCnD). PATnD were investigated in vitro against strains of E. coli, P. aeruginosa, S. aureus, and S. epidermidis. Hemolytic activity was tested using human red blood cells (hRBC), and very low or no hemolytic activity was observed. The cytotoxicity of PATnD polymers against Human Gingival Fibroblasts (HGnF) cells was concentration-dependent, and significant differences between PATT1D and PATC1D were observed. The ability of these polymers to induce resistance against both Gram-positive and Gram-negative bacteria was also assessed. Studied bacterial strains acquired resistance to catalytic polymers (PATCnD) in initial passages meanwhile resistance to thermal polymers (PATTnD) appears in later passages, being the increase of the minimum inhibitory concentration lower than in catalytic polymers. This result, together with the higher biocidal capacity of thermal polymers compared to catalytic ones, seems to suggest an influence of the regiospecificity of the polymers on their antibacterial characteristics. This study also demonstrates that PAT1D polymers, which do not appear to have strong hydrophobic residues, can exert significant antimicrobial activity against Gram-positive bacteria such as S. epidermidis. This pair of polymers, PATC1D and PATT1D, displays the greatest antimicrobial activity while not causing significant hemolysis along with the lowest susceptibility for resistance development of the polymers evaluated.
Collapse
|
90
|
Shi J, Wu D, Su Y, Xie B. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142775. [PMID: 33082042 DOI: 10.1016/j.scitotenv.2020.142775] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 05/11/2023]
Abstract
Landfill leachate is an important reservoir of antibiotic resistance genes (ARGs) and microplastics (MPs). However, the enrichment characteristics of ARGs on MPs and the effect of MPs' presence on ARGs in surrounding leachates are little studied. Therefore, we investigated the differences of ARGs, mobile genetic elements (MGEs), bacterial communities and pathogens on polystyrene MPs, in MPs-surrounding leachate and in control (leachate with the absence of MPs). The results revealed that ARGs were selectively enriched on MPs, which was similar in three types of leachate environments. The genes strB and blaTEM were maximally enriched and mefA, ermB, tetM and tetQ were slightly enriched on MPs, and the degree of ARGs enrichment increased with time during the 60 days of the experiment. Furthermore, compared to the leachate, MPs were observed to have the higher abundances of MGEs and distinct bacterial communities, both of which were closely associated with ARGs on MPs. Pathogens were distinct and more abundant on MPs compared to that in leachate, and 11 pathogens were identified as potential hosts for ARGs on MPs. Additionally, the presence of MPs (500 mg/L) induced few changes in ARGs' abundances, MGEs' abundances and bacterial communities in MP-surrounding leachate within 60 days. Overall, this study suggested that MPs could selectively enrich ARGs and pathogens from the surrounding environments, which promoted the understanding of the combined pollution properties of MPs and ARGs.
Collapse
Affiliation(s)
- Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
91
|
The Pseudomonas aeruginosa substrate-binding protein Ttg2D functions as a general glycerophospholipid transporter across the periplasm. Commun Biol 2021; 4:448. [PMID: 33837253 PMCID: PMC8035174 DOI: 10.1038/s42003-021-01968-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. Here we use the crystallographic structure of Ttg2D at 2.5 Å resolution to reveal that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes. Yero et al. elucidate the function of Ttg2D, a Pseudomonas aeruginosa periplasmic protein, in maintaining phospholipid asymmetry between the outer and inner membrane. Gram negative bacteria have inner and outer membranes that differ in phospholipd composition. Using X-ray crystallography and mass spectrometry, the authors show that Ttg2D can carry two diacyl glycerophospholipids or a cardiolipin. The authors also identify a role for Ttg2D in resistance against antibiotics that use a lipid-mediated pathway into the cell.
Collapse
|
92
|
Sherrard LJ, Wee BA, Duplancic C, Ramsay KA, Dave KA, Ballard E, Wainwright CE, Grimwood K, Sidjabat HE, Whiley DM, Beatson SA, Kidd TJ, Bell SC. Emergence and impact of oprD mutations in Pseudomonas aeruginosa strains in cystic fibrosis. J Cyst Fibros 2021; 21:e35-e43. [PMID: 33775602 DOI: 10.1016/j.jcf.2021.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Antimicrobial resistance in cystic fibrosis (CF) Pseudomonas aeruginosa airway infection is complex and often attributed to chromosomal mutations. How these mutations emerge in specific strains or whether particular gene mutations are clinically informative is unclear. This study focused on oprD, which encodes an outer membrane porin associated with carbapenem resistance when it is downregulated or inactivated. AIM Determine how mutations in oprD emerge in two prevalent Australian shared CF strains of P. aeruginosa and their clinical relevance. METHODS The two most common shared CF strains in Queensland were investigated using whole genome sequencing and their oprD sequences and antimicrobial resistance phenotypes were established. P. aeruginosa mutants with the most common oprD variants were constructed and characterised. Clinical variables were compared between people with or without evidence of infection with strains harbouring these variants. RESULTS Frequently found nonsense mutations arising from a 1-base pair substitution in oprD evolved independently in three sub-lineages, and are likely major contributors to the reduced carbapenem susceptibility observed in the clinical isolates. Lower baseline FEV1 %predicted was identified as a risk factor for infection with a sub-lineage (odds ratio=0.97; 95% confidence interval 0.96-0.99; p<0.001). However, acquiring these sub-lineage strains did not confer an accelerated decline in FEV1 nor increase the risk of death/lung transplantation. CONCLUSIONS Sub-lineages harbouring specific mutations in oprD have emerged and persisted in the shared strain populations. Infection with the sub-lineages was more likely in people with lower lung function, but this was not predictive of a worse clinical trajectory.
Collapse
Affiliation(s)
| | - Bryan A Wee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | - Kay A Ramsay
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Keyur A Dave
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Emma Ballard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Claire E Wainwright
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, Australia
| | - Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Australia
| | - Hanna E Sidjabat
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - David M Whiley
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Pathology Queensland Central Laboratory, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia; Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Timothy J Kidd
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.
| |
Collapse
|
93
|
Yu X, Li L, Sun S, Chang A, Dai X, Li H, Wang Y, Zhu H. A Cyclic Dipeptide from Marine Fungus Penicillium chrysogenum DXY-1 Exhibits Anti-quorum Sensing Activity. ACS OMEGA 2021; 6:7693-7700. [PMID: 33778279 PMCID: PMC7992161 DOI: 10.1021/acsomega.1c00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Bacterial quorum sensing (QS) is anticipated as a new potential target for the development of antimicrobial drugs. An anti-QS substance against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PA01 has been isolated and purified from the crude extracts of the marine fungus Penicillium chrysogenum DXY-1, and the accurate structure was identified as cyclo(l-Tyr-l-Pro). This cyclic dipeptide at sub-minimum inhibitory concentration can decrease the QS-regulated violacein production of C. violaceum CV026 by 79% and QS-mediated pyocyanin production, proteases, and elastase activity of P. aeruginosa PA01 by 41%, 20%, and 32%, respectively. In addition, it can also destroy the biofilm formation and decrease QS gene expression of P. aeruginosa PA01. Molecular docking was further performed, and the obtained data indicated that this dipeptide blocks the effect of QS autoinducers through competitive binding to the same pocket of the receptor proteins. We expect this anti-QS cyclic dipeptide to be a potential pro-drug treating drug-resistant P. aeruginosa infections, and these findings could relieve the alarming problem of microbial resistance to antimicrobial drugs.
Collapse
Affiliation(s)
- Xiaodan Yu
- Engineering
Research Center of Industrial Biocatalysis, Fujian Province University,
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical
Engineering, Fujian Provincial Key Laboratory of Polymer Materials,
Key Laboratory of OptoElectronic Science and Technology for Medicine
of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People’s Republic
of China
| | - Li Li
- Engineering
Research Center of Industrial Biocatalysis, Fujian Province University,
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical
Engineering, Fujian Provincial Key Laboratory of Polymer Materials,
Key Laboratory of OptoElectronic Science and Technology for Medicine
of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People’s Republic
of China
| | - Shiwei Sun
- Department
of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Aiping Chang
- Engineering
Research Center of Industrial Biocatalysis, Fujian Province University,
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical
Engineering, Fujian Provincial Key Laboratory of Polymer Materials,
Key Laboratory of OptoElectronic Science and Technology for Medicine
of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People’s Republic
of China
| | - Xiaoyun Dai
- Centre
for Bioengineering and Biotechnology, China
University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People’s
Republic of China
| | - Hui Li
- Centre
for Bioengineering and Biotechnology, China
University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People’s
Republic of China
| | - Yinglu Wang
- Engineering
Research Center of Industrial Biocatalysis, Fujian Province University,
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical
Engineering, Fujian Provincial Key Laboratory of Polymer Materials,
Key Laboratory of OptoElectronic Science and Technology for Medicine
of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People’s Republic
of China
| | - Hu Zhu
- Engineering
Research Center of Industrial Biocatalysis, Fujian Province University,
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical
Engineering, Fujian Provincial Key Laboratory of Polymer Materials,
Key Laboratory of OptoElectronic Science and Technology for Medicine
of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People’s Republic
of China
| |
Collapse
|
94
|
Dai Y, Ma H, Wu M, Welsch TA, Vora SR, Ren D, Nangia S. Development of the computational antibiotic screening platform (CLASP) to aid in the discovery of new antibiotics. SOFT MATTER 2021; 17:2725-2736. [PMID: 33533373 DOI: 10.1039/d0sm02035d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial colonization of biotic and abiotic surfaces and antibiotic resistance are grand challenges with paramount societal impacts. However, in the face of increasing bacterial resistance to all known antibiotics, efforts to discover new classes of antibiotics have languished, creating an urgent need to accelerate the antibiotic discovery pipeline. A major deterrent in the discovering of new antibiotics is the limited permeability of molecules across the bacterial envelope. Notably, the Gram-negative bacteria have nutrient specific protein channels (or porins) that restrict the permeability of non-essential molecules, including antibiotics. Here, we have developed the Computational Antibiotic Screening Platform (CLASP) for screening of potential drug molecules through the porins. The CLASP takes advantage of coarse grain (CG) resolution, advanced sampling techniques, and a parallel computing environment to maximize its performance. The CLASP yields comprehensive thermodynamic and kinetic output data of a potential drug molecule within a few hours of wall-clock time. Its output includes the potential of mean force profile, energy barrier, the rate constant, and contact analysis of the molecule with the pore-lining residues, and the orientational analysis of the molecule in the porin channel. In our first CLASP application, we report the transport properties of six carbapenem antibiotics-biapenem, doripenem, ertapenem, imipenem, meropenem, and panipenem-through OccD3, a major channel for carbapenem uptake in Pseudomonas aeruginosa. The CLASP is designed to screen small molecule libraries with a fast turnaround time to yield structure-property relationships to discover antibiotics with high permeability. The CLASP will be freely distributed to enable accelerated antibiotic drug discovery.
Collapse
Affiliation(s)
- Yinghui Dai
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Huilin Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Meishan Wu
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Tory Alane Welsch
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Soor Rajiv Vora
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
95
|
Etemadi S, Barhaghi MHS, Leylabadlo HE, Memar MY, Mohammadi AB, Ghotaslou R. The synergistic effect of turmeric aqueous extract and chitosan against multidrug-resistant bacteria. New Microbes New Infect 2021; 41:100861. [PMID: 33898041 PMCID: PMC8054179 DOI: 10.1016/j.nmni.2021.100861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
We aimed to investigate the antibacterial and antibiofilm effects of turmeric and chitosan against the planktonic and biofilm forms of multidrug-resistant (MDR) bacteria. A group of MDR bacteria, including clinical isolates of methicillin-resistant Staphylococcus aureus, carbapenem-resistant Pseudomonas, carbapenem-resistant Enterobacteriaceae and AmpC-producing Enterobacteriaceae, were collected by phenotypic and genotypic assays. The broth microdilution method was used to investigate the MIC of turmeric aqueous extract and chitosan. To investigate the synergistic effect of the combination of these natural compounds, we used the checkerboard assay. According to the results of this study, turmeric and chitosan showed inhibitory effects on MDR bacteria, especially on the planktonic form of methicillin-resistant S. aureus as a Gram-positive compared to tested Gram-negative bacteria (carbapenem-resistant Pseudomonas, carbapenem-resistant Enterobacteriaceae and AmpC-producing Enterobacteriaceae). The antibiofilm effect of turmeric and chitosan was found more often in carbapenem-resistant Pseudomonas isolates. There was no significant difference between the tested Gram-negative bacteria because most of the tested strains were inhibited in 512 and 1024 μg/mL concentrations of chitosan and turmeric aqueous extract. In this study, turmeric aqueous extract and chitosan exhibited significant antibacterial and antibiofilm properties. However, the effect of these compounds should be investigated using in vivo models for use in pharmaceutical and disinfectant formulations.
Collapse
Affiliation(s)
- S Etemadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M H S Barhaghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H E Leylabadlo
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Y Memar
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A B Mohammadi
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - R Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
96
|
Tolentino FM, De Almeida IAZC, Dos Santos CCM, Teixeira ISDC, Silva SIDLE, Nogueira MCL, Arroyo MG, Faim WR, De Almeida MTG, Peresi JTM. Phenotypic and genotypic profile of the antimicrobial resistance of bacterial isolates and evaluation of physical and chemical potability indicators in groundwater in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:186-201. [PMID: 31293171 DOI: 10.1080/09603123.2019.1640354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The aquatic environment has received increasing attention regarding the evolution of bacterial resistance, either as a source of resistance genes or as a matrix for the dissemination of these genes. We evaluated the physicochemical, microbiological and antimicrobial resistance characteristics of 160 samples from alternative water well solutions. According to Ordinance 2914/2011 - MS, 44 (27.5%) samples were considered unsafe if at least one physicochemical parameter exceeded permissible limits. Escherichia coli were found in 30.6% of the unregistered housing estates (UHE) and 1.9% of the local sanitary surveillance system (RW). The total of 158 bacterial strains were isolated from 13 (25%) RW and 68 (63%) UHE, 132 of which (83.5%) were obtained from UHE samples. In the investigation of resistance genes, tetA, qnrS and qnrB genes were detected in three, one and eight isolates, respectively. Our results emphasize the importance of constant surveillance and control of the quality of water supplies.
Collapse
Affiliation(s)
- Fernanda Modesto Tolentino
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | | | - Cecilia Cristina Marques Dos Santos
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Inara Siqueira De Carvalho Teixeira
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Sonia Izaura De Lima E Silva
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| | - Mara Correa Lelles Nogueira
- Centro de Pesquisas de Micro-organismos da Faculdade de Medicina de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | - Máira Gazzola Arroyo
- Centro de Pesquisas de Micro-organismos da Faculdade de Medicina de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | - Wilson Roberto Faim
- Secretaria Municipal de Saúde e Higiene - Vigilância Sanitária de São José do Rio Preto , São José do Rio Preto-SP, Brasil
| | | | - Jacqueline Tanury Macruz Peresi
- Instituto Adolfo Lutz - Centro de Laboratório Regional de São José do Rio Preto - Rua Alberto Sufredine Bertone , São José do Rio Preto-SP, Brasil
| |
Collapse
|
97
|
Ozturk II, Sirinkaya ET, Cakmak M, Gürgan M, Ceyhan D, Panagiotou N, Tasiopoulos AJ. Structural and biological features of bismuth(III) halide complexes with heterocyclic thioamides. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
98
|
Maurya AP, Rajkumari J, Pandey P. Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon-contaminated soils: a major challenge for environmental health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12178-12189. [PMID: 33394421 DOI: 10.1007/s11356-020-12171-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are widely spread ecological contaminants. Antibiotic resistance genes (ARGs) are present with mobile genetic elements (MGE) in the bacteria. There are molecular evidences that PAHs may induce the development of ARGs in contaminated soils. Also, the abundance of ARGs related to tetracycline, sulfonamides, aminoglycosides, ampicillin, and fluoroquinolones is high in PAH-contaminated environments. Genes encoding the efflux pump are located in the MGE and, along with class 1 integrons, have a significant role as a connecting link between PAH contamination and enrichment of ARGs. The horizontal gene transfer mechanisms further make this interaction more dynamic. Therefore, necessary steps to control ARGs into the environment and risk management plan of PAHs should be enforced. In this review, influence of PAH on evolution of ARGs in the contaminated soil, and its spread in the environment, has been described. The co-occurrence of antibiotic resistance and PAH degradation abilities in bacterial isolates has raised the concerns. Also, presence of ARGs in the microbiome of PAH-contaminated soil has been discussed as environmental hotspots for ARG spread. In addition to this, the possible links of molecular interactions between ARGs and PAHs, and their effect on environmental health has been explored.
Collapse
Affiliation(s)
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
99
|
Das N, Kotoky R, Maurya AP, Bhuyan B, Pandey P. Paradigm shift in antibiotic-resistome of petroleum hydrocarbon contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143777. [PMID: 33220994 DOI: 10.1016/j.scitotenv.2020.143777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 05/25/2023]
Abstract
The increasing prevalence of antibiotic-resistant microorganisms in both clinical and environmental samples is of great concern for public health. In the present study, environmental samples from seven different sites, heavily contaminated with petroleum hydrocarbons has been examined for the antimicrobial resistome through metagenomic approach. The soil samples were found to be contaminated with high concentration of total petroleum hydrocarbons (average 45 g/kg), polyaromatic hydrocarbons (average ∑16PAH = 280 mg/kg), and heavy metals, which shapes the microbial community and their function. Proteobacteria was found to be predominant phylum in the contaminated habitat with the highest diversity (55.91%) followed by Actinobacteria (9.86%). Although the taxonomical abundance of the non-contaminated sample was not significantly different from contaminated samples, the functional abundance of genes related to antibiotic resistance was found to be higher up to 2 fold in contaminated samples. The comparative metagenomic analysis revealed a higher abundance of different antibiotic resistance genes, especially genes for fluoroquinolones was found to be higher up to 10 fold in contaminated samples. Moreover, the study has shown a significant difference in total functional diversity and abundance, mainly genes for aromatic compound metabolism and genes for phages, mobile genetic elements. These higher abundances of well recognized antibiotic resistance genes, multidrug efflux pumps, and integrons, suggest that the petroleum hydrocarbon contaminated sites can act as reservoirs for development of antibiotic resistance genes (ARGs). From this study, a significant link between the presence of petroleum hydrocarbon and the development of antibiotic resistance in the microbiome of contaminated habitat has been established.
Collapse
Affiliation(s)
- Nandita Das
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar 788011, India
| | | | - Bhrigu Bhuyan
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar 788011, India.
| |
Collapse
|
100
|
Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviaño M, Pachón ME, Garnacho J, González V, Pascual Á, Cisneros JM, Bou G. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 2021; 74:1244-1252. [PMID: 30753505 DOI: 10.1093/jac/dkz030] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/24/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To characterize the antimicrobial susceptibility, molecular epidemiology and carbapenem resistance mechanisms in Pseudomonas aeruginosa isolates recovered from respiratory tract samples from patients with ventilator-associated pneumonia enrolled in the MagicBullet clinical trial. METHODS Isolates were collected from 53 patients from 12 hospitals in Spain, Italy and Greece. Susceptibility was determined using broth microdilution and Etest. MALDI-TOF MS was used to detect carbapenemase activity and carbapenemases were identified by PCR and sequencing. Molecular epidemiology was investigated using PFGE and MLST. RESULTS Of the 53 isolates, 2 (3.8%) were considered pandrug resistant (PDR), 19 (35.8%) were XDR and 16 (30.2%) were MDR. Most (88.9%) of the isolates from Greece were MDR, XDR or PDR, whereas fewer of the isolates from Spain (33.3%) and Italy (43.5%) showed antibiotic resistance. Three Greek isolates were resistant to colistin. Overall, the rates of resistance of P. aeruginosa isolates to imipenem, ciprofloxacin, ceftolozane/tazobactam and ceftazidime/avibactam were 64.1%, 54.7%, 22.6% and 24.5%, respectively. All isolates resistant to ceftolozane/tazobactam and ceftazidime/avibactam (Greece, n = 10; and Italy, n = 2) carried blaVIM-2. Spanish isolates were susceptible to the new drug combinations. Forty-eight restriction patterns and 27 STs were documented. Sixty percent of isolates belonged to six STs, including the high-risk clones ST-111, ST-175 and ST-235. CONCLUSIONS MDR/XDR isolates were highly prevalent, particularly in Greece. The most effective antibiotic against P. aeruginosa was colistin, followed by ceftolozane/tazobactam and ceftazidime/avibactam. blaVIM-2 is associated with resistance to ceftolozane/tazobactam and ceftazidime/avibactam, and related to highly resistant phenotypes. ST-111 was the most frequent and disseminated clone and the clonal diversity was lower in XDR and PDR strains.
Collapse
Affiliation(s)
- Astrid Pérez
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Eva Gato
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - José Pérez-Llarena
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Felipe Fernández-Cuenca
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla, Seville, Spain
| | - María José Gude
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Marina Oviaño
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María Eugenia Pachón
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
| | - José Garnacho
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - Verónica González
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - Álvaro Pascual
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla, Seville, Spain
- Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - José Miguel Cisneros
- Department of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - Germán Bou
- Microbiology Department, Biomedical Research Institute A Coruña (INIBIC), University Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| |
Collapse
|