51
|
Azarian T, Ridgway JP, Yin Z, David MZ. Long-Term Intrahost Evolution of Methicillin Resistant Staphylococcus aureus Among Cystic Fibrosis Patients With Respiratory Carriage. Front Genet 2019; 10:546. [PMID: 31244886 PMCID: PMC6581716 DOI: 10.3389/fgene.2019.00546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is the most commonly identified airway colonizer of cystic fibrosis (CF) patients, and infections with methicillin-resistant S. aureus (MRSA) are associated with poor outcomes. Yet, little is known about the intrahost evolution of S. aureus among CF patients. We investigated convergent evolution and adaptation of MRSA among four CF patients with long-term respiratory carriage. For each patient, we performed whole-genome sequencing on an average of 21 isolates (range: 19–23) carried for a mean of 1,403 days (range: 903–1,679), including 25 pairs of isolates collected on the same day. We assessed intrahost diversity, population structure, evolutionary history, evidence of switched intergenic regions (IGRs), and signatures of adaptation in the context of patient age, antibiotic treatment, and co-colonizing microbes. Phylogenetic analysis delineated distinct multilocus sequence type ST5 (n = 3) and ST72 (n = 1) clonal populations in addition to sporadic, non-clonal isolates, and uncovered a putative transmission event. Variation in antibiotic resistance was observed within clonal populations, even among isolates collected on the same day. Rates of molecular evolution ranged from 2.21 to 8.64 nucleotide polymorphisms per year, and lineage ages were consistent with acquisition of colonization in early childhood followed by subsequent persistence of multiple sub-populations. Selection analysis of 1,622 core genes present in all four clonal populations (n = 79) found 11 genes variable in three subjects – most notably, ATP-dependent protease clpX, 2-oxoglutarate dehydrogenase odhA, fmtC, and transcription-repair coupling factor mfd. Only one gene, staphylococcal protein A (spa), was found to have evidence of gene-wide diversifying selection. We identified three instances of intrahost IGR switching events, two of which flanked genes related to quorum sensing. The complex microbial ecology of the CF airway poses challenges for management. We illustrate appreciable intrahost diversity as well as persistence of a dominant lineage. We also show that intrahost adaptation is a continual process, despite purifying selective pressure, and provide targets that should be investigated further for their function in CF adaptation.
Collapse
Affiliation(s)
- Taj Azarian
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jessica P Ridgway
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Zachary Yin
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Z David
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
52
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
53
|
Niehaus L, Boland I, Liu M, Chen K, Fu D, Henckel C, Chaung K, Miranda SE, Dyckman S, Crum M, Dedrick S, Shou W, Momeni B. Microbial coexistence through chemical-mediated interactions. Nat Commun 2019; 10:2052. [PMID: 31053707 PMCID: PMC6499789 DOI: 10.1038/s41467-019-10062-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022] Open
Abstract
Many microbial functions happen within communities of interacting species. Explaining how species with disparate growth rates can coexist is important for applications such as manipulating host-associated microbiota or engineering industrial communities. Here, we ask how microbes interacting through their chemical environment can achieve coexistence in a continuous growth setup (similar to an industrial bioreactor or gut microbiota) where external resources are being supplied. We formulate and experimentally constrain a model in which mediators of interactions (e.g. metabolites or waste-products) are explicitly incorporated. Our model highlights facilitation and self-restraint as interactions that contribute to coexistence, consistent with our intuition. When interactions are strong, we observe that coexistence is determined primarily by the topology of facilitation and inhibition influences not their strengths. Importantly, we show that consumption or degradation of chemical mediators moderates interaction strengths and promotes coexistence. Our results offer insights into how to build or restructure microbial communities of interest.
Collapse
Affiliation(s)
- Lori Niehaus
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ian Boland
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Minghao Liu
- Department of Computer Science, Boston College, Chestnut Hill, MA, 02467, USA
| | - Kevin Chen
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - David Fu
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Catherine Henckel
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Kaitlin Chaung
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Samantha Dyckman
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Matthew Crum
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sandra Dedrick
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
54
|
Wan C, Zhang J, Zhao L, Cheng X, Gao C, Wang Y, Xu W, Zou Q, Gu J. Rational Design of a Chimeric Derivative of PcrV as a Subunit Vaccine Against Pseudomonas aeruginosa. Front Immunol 2019; 10:781. [PMID: 31068928 PMCID: PMC6491502 DOI: 10.3389/fimmu.2019.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major cause of nosocomial infections, which remain an unsolved problem in the clinic despite conventional antibiotic treatment. A PA vaccine could be both an effective and economical strategy to address this issue. Many studies have shown that PcrV, a structural protein of the type 3 secretion system (T3SS) from PA, is an ideal target for immune prevention and therapy. However, difficulties in the production of high-quality PcrV likely hinder its further application in the vaccine industry. Thus, we hypothesized that an optimized PcrV derivative with a rational design could be produced. In this study, the full-length PcrV was divided into four domains with the guidance of its structure, and the Nter domain (Met1-Lys127) and H12 domain (Leu251-Ile294) were found to be immunodominant. Subsequently, Nter and H12 were combined with a flexible linker to generate an artificial PcrV derivative (PcrVNH). PcrVNH was successfully produced in E. coli and behaved as a homogenous monomer. Moreover, immunization with PcrVNH elicited a multifactorial immune response and conferred broad protection in an acute PA pneumonia model and was equally effective to full-length PcrV. In addition, passive immunization with anti-PcrVNH antibodies alone also showed significant protection, at least based on inhibition of the T3SS and mediation of opsonophagocytic killing activities. These results provide an additional example for the rational design of antigens and suggest that PcrVNH is a promising vaccine candidate for the control of PA infection.
Collapse
Affiliation(s)
- Chuang Wan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liqun Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xin Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chen Gao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wanting Xu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
55
|
Cao T, Morales-Soto N, Jia J, Baig NF, Dunham SJB, Ellis J, Sweedler JV, Shrout JD, Bohn PW. Spatiotemporal Dynamics of Molecular Messaging in Bacterial Co-Cultures Studied by Multimodal Chemical Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10863:108630A. [PMID: 33790492 PMCID: PMC8009051 DOI: 10.1117/12.2501349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microbial community behavior is coupled to a set of genetically-regulated chemical signals that correlate with cell density - the quorum sensing (QS) system - and there is growing appreciation that the QS-regulated behavior of bacteria is chemically, spatially, and temporally complex. In addition, while it has been known for some time that different species use different QS networks, we are beginning to appreciate that different strains of the same bacterial species also differ in their QS networks. Here we combine mass spectrometric imaging (MSI) and confocal Raman microscopy (CRM) approaches to investigate co-cultures involving different strains (FRD1 and PAO1C) of the same species (Pseudomonas aeruginosa) as well as those involving different species (P. aeruginosa and E. coli). Combining MSI and CRM makes it possible to supersede the limits imposed by individual imaging approaches and enables the spatial mapping of individual bacterial species and their microbial products within a mixed bacterial community growing in situ on surfaces. MSI is used to delineate the secretion of a specific rhamnolipid surfactant as well as alkyl quinolone (AQ) messengers between FRD1 and PAO1C strains of P. aeruginosa, showing that the spatial distribution and production rate of AQ messengers in PAO1C far outstrips that of FRD1. In the case of multiple species, CRM is used to show that the prolific secretion of AQs by the PAO1C strain of P. aeruginosa is used to mediate its interaction with co-cultured E. coli.
Collapse
Affiliation(s)
- Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nameera F Baig
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
| | - Sage J B Dunham
- Entech Instruments, 2207 Agate Court, Simi Valley, CA 93065
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Joseph Ellis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
56
|
Li S, Li T, Teng X, Lou X, Xu Y, Zhang Q, Bartlam M. Structural analysis of activating mutants of YfiB from Pseudomonas aeruginosa PAO1. Biochem Biophys Res Commun 2018; 506:997-1003. [PMID: 30404734 DOI: 10.1016/j.bbrc.2018.10.190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
Abstract
Bacterial cyclic-di-GMP (c-di-GMP) is an important messenger molecule that influences diverse cellular processes including motility, virulence and cytotoxicity systems, polysaccharide synthesis and biofilm formation. The YfiBNR tripartite signalling system in P. aeruginosa modulates the cellular c-di-GMP levels in response to signals received from the periplasm. In this study, we analyse the structures of activating mutants of the outer membrane protein YfiB that give rise to increased surface attachment and biofilm formation. The F48S and W55L mutants of YfiB(27-168) crystallize in the same dimeric arrangement as our previously reported YfiB structures that preclude complex formation with YfiR. The L43P mutant of YfiB(27-168) is monomeric and forms a stable complex with YfiR. The YfiB(L43P)-YfiR crystal structure reveals a dramatic rearrangement of the N-terminal fragment, which is implicated in increased YfiB activation and membrane attachment, upon YfiR binding. Comparison with our previous complex structure between YfiB(59-168) and YfiR reveals extensive interactions between the N-terminal fragment of YfiB (residues 35-55) and YfiR.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China; College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China; College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaozhen Teng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China; College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaorui Lou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China; College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yueyang Xu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China; College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, People's Republic of China; College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
57
|
Microbial Interactions in the Cystic Fibrosis Airway. J Clin Microbiol 2018; 56:JCM.00354-18. [PMID: 29769279 DOI: 10.1128/jcm.00354-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Interactions in the airway ecology of cystic fibrosis may alter organism persistence and clinical outcomes. Better understanding of such interactions could guide clinical decisions. We used generalized estimating equations to fit logistic regression models to longitudinal 2-year patient cohorts in the Cystic Fibrosis Foundation Patient Registry, 2003 to 2011, in order to study associations between the airway organisms present in each calendar year and their presence in the subsequent year. Models were adjusted for clinical characteristics and multiple observations per patient. Adjusted models were tested for sensitivity to cystic fibrosis-specific treatments. The study included 28,042 patients aged 6 years and older from 257 accredited U.S. care centers and affiliates. These patients had produced sputum specimens for at least two consecutive years that were cultured for methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Candida and Aspergillus species. We analyzed 99.8% of 538,458 sputum cultures from the patients during the study period. Methicillin-sensitive S. aureus was negatively associated with subsequent Paeruginosa. Paeruginosa was negatively associated with subsequent B. cepacia complex, Axylosoxidans, and Smaltophilia. Bcepacia complex was negatively associated with the future presence of all bacteria studied, as well as with that of Aspergillus species. Paeruginosa, B. cepacia complex, and S. maltophilia were each reciprocally and positively associated with Aspergillus species. Independently of patient characteristics, the organisms studied interact and alter the outcomes of treatment decisions, sometimes in unexpected ways. By inhibiting P. aeruginosa, methicillin-sensitive S. aureus may delay lung disease progression. Paeruginosa and B. cepacia complex may inhibit other organisms by decreasing airway biodiversity, potentially worsening lung disease.
Collapse
|
58
|
Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus. J Microbiol 2018; 56:534-541. [DOI: 10.1007/s12275-018-8331-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
|
59
|
Alhazmi A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. J Innate Immun 2018; 10:255-263. [PMID: 29925062 DOI: 10.1159/000489863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
60
|
Nevalainen H, Kaur J, Han Z, Kautto L, Ramsperger M, Meyer W, Chen SCA. Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
61
|
Jagmann N, Philipp B. SpoT-Mediated Regulation and Amino Acid Prototrophy Are Essential for Pyocyanin Production During Parasitic Growth of Pseudomonas aeruginosa in a Co-culture Model System With Aeromonas hydrophila. Front Microbiol 2018; 9:761. [PMID: 29720972 PMCID: PMC5915560 DOI: 10.3389/fmicb.2018.00761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs its complex quorum sensing (QS) network to regulate the expression of virulence factors such as pyocyanin. Besides cell density, QS in this bacterium is co-regulated by environmental cues. In this study, we employed a previously established co-culture model system to identify metabolic influences that are involved in the regulation of pyocyanin production in P. aeruginosa. In this co-culture consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, parasitic growth of P. aeruginosa is strictly dependent on the production of pyocyanin. We could show that in this co-culture, pyocyanin production is likely induced by the stringent response mediated by SpoT in response to nutrient limitation. Pyocyanin production by stringent response mutants in the co-culture could not be complemented by overexpression of PqsE. Via transposon mutagenesis, several amino acid auxotrophic mutants were identified that were also unable to produce pyocyanin when PqsE was overexpressed or when complementing amino acids were present. The inability to produce pyocyanin even though PqsE was overexpressed was likely a general effect of amino acid auxotrophy. These results show the value of the co-culture approach to identify both extra- and intracellular metabolic influences on QS that might be important in infection processes as well.
Collapse
Affiliation(s)
- Nina Jagmann
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
62
|
Dingemans J, Eyns H, Willekens J, Monsieurs P, Van Houdt R, Cornelis P, Malfroot A, Crabbé A. Intrapulmonary percussive ventilation improves lung function in cystic fibrosis patients chronically colonized with Pseudomonas aeruginosa: a pilot cross-over study. Eur J Clin Microbiol Infect Dis 2018; 37:1143-1151. [PMID: 29560543 DOI: 10.1007/s10096-018-3232-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
High levels of shear stress can prevent and disrupt Pseudomonas aeruginosa biofilm formation in vitro. Intrapulmonary percussive ventilation (IPV) could be used to introduce shear stress into the lungs of cystic fibrosis (CF) patients to disrupt biofilms in vivo. We performed a first-of-its-kind pilot clinical study to evaluate short-term IPV therapy at medium (200 bursts per minute, bpm) and high frequency (400 bpm) as compared to autogenic drainage (AD) on lung function and the behavior of P. aeruginosa in the CF lung in four patients who are chronically colonized by P. aeruginosa. A significant difference between the three treatment groups was observed for both the forced expiratory volume in 1 s (FEV1) and the forced vital capacity (FVC) (p < 0.05). More specifically, IPV at high frequency significantly increased FEV1 and FVC compared to AD (p < 0.05) and IPV at medium frequency (p < 0.001). IPV at high frequency enhanced the expression levels of P. aeruginosa planktonic marker genes, which was less pronounced with IPV at medium frequency or AD. In conclusion, IPV at high frequency could potentially alter the behavior of P. aeruginosa in the CF lung and improve lung function. TRIAL REGISTRATION The trail was retrospectively registered at the ISRCTN registry on 6 June 2013, under trial registration number ISRCTN75391385.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Biological Sciences, Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Hanneke Eyns
- Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (UZB), 1090, Brussels, Belgium
| | - Julie Willekens
- Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (UZB), 1090, Brussels, Belgium
| | - Pieter Monsieurs
- Microbiology Unit, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Anne Malfroot
- Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (UZB), 1090, Brussels, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
63
|
Belmadi N, Wu Y, Touqui L. Immuno-modulatory functions of the type-3 secretion system and impacts on the pulmonary host defense: A role for ExoS of Pseudomonas aeruginosa in cystic fibrosis. Toxicon 2018; 143:68-73. [PMID: 29339019 DOI: 10.1016/j.toxicon.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022]
Abstract
Number of previous reviews had described the structures and the various functions of the exotoxins produced by the type-3 secretion system of Pseudomonas aeruginosa and their roles in the interactions of this bacterium with host cells. In this review, we summarize some relevant data of literature on ExoS, an exotoxin from the type-3 secretion system of P. aeruginosa, with a particular focus on the role of this toxin in the airways innate response of the host to infection by this bacterium, and its implication in the elimination of Staphylococcus aureus from the airways of patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nawal Belmadi
- Mucoviscidose et Bronchopathies Chroniques, Unité Mixte Institut Pasteur/Paris V, Faculté de Médecine Cochin, Paris, France
| | - Yongzheng Wu
- Unité de Biologie cellulaire de l'infection microbienne, CNRS, UMR 3691, Institut Pasteur, Paris, France
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, Unité Mixte Institut Pasteur/Paris V, Faculté de Médecine Cochin, Paris, France.
| |
Collapse
|
64
|
Perrin E, Maggini V, Maida I, Gallo E, Lombardo K, Madarena MP, Buroni S, Scoffone VC, Firenzuoli F, Mengoni A, Fani R. Antimicrobial activity of six essential oils against Burkholderia cepacia complex: insights into mechanism(s) of action. Future Microbiol 2018; 13:59-67. [DOI: 10.2217/fmb-2017-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the activity and mechanisms of action of six essential oils (EOs) against Burkholderia cepacia complex, opportunistic human pathogens highly resistant to antibiotics. Materials & methods: Minimal inhibitory concentration of EOs alone, plus antibiotics or efflux pump inhibitors was determined. Results: Origanum vulgare, Thymus vulgaris and Eugenia caryophyllata EOs resulted to be more active than the other EOs. EOs did not enhance antibiotic activity against the model strain B. cenocepacia J2315. EOs resulted more active in the presence of an efflux pump inhibitor acting on Resistance-Nodulation Cell Division efflux pumps and against B. cenocepacia J2315 Resistance-Nodulation Cell Division knocked-out mutants. Conclusion: EOs showed intracellular mechanisms of action and, thus, the efflux pumps inhibitor addition could boost their activity.
Collapse
Affiliation(s)
- Elena Perrin
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Valentina Maggini
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Isabel Maida
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Eugenia Gallo
- Department of Experimental & Clinical Medicine, University of Florence, I-50134, Florence, Italy
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Katia Lombardo
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Maria Pia Madarena
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Silvia Buroni
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 1, I-27100, Pavia, Italy
| | - Fabio Firenzuoli
- Center for Integrative Medicine, Careggi University Hospital, University of Florence, I-50134, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino I-50019, Florence, Italy
| |
Collapse
|
65
|
Draft Genome Sequence of Burkholderia puraquae Type Strain CAMPA 1040, Isolated from Hospital Settings in Córdoba, Argentina. GENOME ANNOUNCEMENTS 2017; 5:5/47/e01302-17. [PMID: 29167247 PMCID: PMC5701472 DOI: 10.1128/genomea.01302-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report here the draft genome sequence of Burkholderia puraquae type strain CAMPA 1040, a member of the Burkholderia cepacia complex. This strain, isolated from a hemodialysis water reservoir, harbors several stress tolerance genes, such as the systems for low oxygen survival, for copper tolerance, and for osmotic stress resistance.
Collapse
|
66
|
Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017; 7:460. [PMID: 29164069 PMCID: PMC5681537 DOI: 10.3389/fcimb.2017.00460] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
67
|
Potentiation of Tobramycin by Silver Nanoparticles against Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.00415-17. [PMID: 28848007 DOI: 10.1128/aac.00415-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing antibiotic resistance among pathogenic bacterial species is a serious public health problem and has prompted research examining the antibacterial effects of alternative compounds and novel treatment strategies. Compounding this problem is the ability of many pathogenic bacteria to form biofilms during chronic infections. Importantly, these communities are often recalcitrant to antibiotic treatments that show effectiveness against acute infection. The antimicrobial properties of silver have been known for decades, but recently silver and silver-containing compounds have seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the ability of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the aminoglycoside antibiotic tobramycin, to inhibit established Pseudomonas aeruginosa biofilms. Our results demonstrate that smaller 10-nm and 20-nm AgNPs were more effective at synergistically potentiating the activity of tobramycin. Visualization of biofilms treated with combinations of 10-nm AgNPs and tobramycin reveals that the synergistic bactericidal effect may be caused by disrupting cellular membranes. Minimum biofilm eradication concentration (MBEC) assays using clinical P. aeruginosa isolates shows that small AgNPs are more effective than larger AgNPs at inhibiting biofilms, but that the synergy effect is likely a strain-dependent phenomenon. These data suggest that small AgNPs synergistically potentiate the activity of tobramycin against P. aeruginosain vitro and may reveal a potential role for AgNP/antibiotic combinations in treating patients with chronic infections in a strain-specific manner.
Collapse
|
68
|
Ratiu IA, Ligor T, Bocos-Bintintan V, Al-Suod H, Kowalkowski T, Rafińska K, Buszewski B. The effect of growth medium on an Escherichia coli pathway mirrored into GC/MS profiles. J Breath Res 2017. [PMID: 28649963 DOI: 10.1088/1752-7163/aa7ba2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Escherichia coli (E. coli) is a Gram-negative coliform bacterium that is commonly found in the lower intestine of warm-blooded organisms. Most of the strains are harmless but some serotypes are pathogenic, meaning they can cause illness, either diarrhea or illness outside the intestinal tract. The aim of this work is to assess which components are generated for the purpose of E. coli target analysis. In this study, we intend to emphasize the importance of cultivability and to prove that growth media plays a crucial role in bacteria growth. To do this, E. coli was cultivated in three different growth mediums: (a) trypcase soy broth (TSB), (b) Mueller Hinton (MH), and (c) minimal salts (M9) enriched with glucose, respectively. Solid phase micro extraction was used as a sampling method, followed by gas chromatography-mass spectrometry for subsequent analysis. The relevant microbial volatile organic compounds (MVOCs) released in the headspace over the cultures of the E. coli bacteria and the afferent metabolic processes that occur in order to generate these compounds are presented in this work. The characteristic volatile compounds found in E. coli strain emissions were indole, phenylethyl alcohol and a series of esters when it was grown in TSB. Different pyrazines were found (pyrazine, 2-ethyl-3,5-dimethyl-, pyrazine, 2,5-dimethyl- and pyrazine, trimethyl-) when it was cultivated in MH. Long-chain alcohols such as 2-pentadecanol, 9-tetradecen-1-ol and 11-hexadecenol occurred in M9. Dimethyl disulfide, dimethyl trisulfide and a consistent number of alcohols and ketones were observed for E. coli cultivated in all three growth mediums. The occurrence and biosynthesis of these MVOCs clearly denote that the growth media used plays a crucial role in bacterial cultivation. The biomarker chemicals documented from this work may ultimately be used to identify bacterial infections by analyzing exhaled breath.
Collapse
Affiliation(s)
- Ileana-Andreea Ratiu
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Torun, Poland. Faculty of Environmental Science and Engineering, Babeş Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | | | | | | | | | | | | |
Collapse
|
69
|
Nevez G, Robert-Gangneux F, Pougnet L, Virmaux M, Belleguic C, Deneuville E, Rault G, Chevrier S, Ramel S, Le Bihan J, Guillaud-Saumur T, Calderon E, Le Govic Y, Gangneux JP, Le Gal S. Pneumocystis jirovecii and Cystic Fibrosis in Brittany, France. Mycopathologia 2017; 183:81-87. [DOI: 10.1007/s11046-017-0172-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022]
|
70
|
Pseudomonas aeruginosa-Derived Rhamnolipids and Other Detergents Modulate Colony Morphotype and Motility in the Burkholderia cepacia Complex. J Bacteriol 2017; 199:JB.00171-17. [PMID: 28439038 DOI: 10.1128/jb.00171-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/16/2017] [Indexed: 12/16/2022] Open
Abstract
Competitive interactions mediated by released chemicals (e.g., toxins) are prominent in multispecies communities, but the effects of these chemicals at subinhibitory concentrations on susceptible bacteria are poorly understood. Although Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can exist together as a coinfection in cystic fibrosis airways, P. aeruginosa toxins can kill Bcc species in vitro Consequently, these bacteria become an ideal in vitro model system to study the impact of sublethal levels of toxins on the biology of typical susceptible bacteria, such as the Bcc, when exposed to P. aeruginosa toxins. Using P. aeruginosa spent medium as a source of toxins, we showed that a small window of subinhibitory concentrations modulated the colony morphotype and swarming motility of some but not all tested Bcc strains, for which rhamnolipids were identified as the active molecule. Using a random transposon mutagenesis approach, we identified several genes required by the Bcc to respond to low concentrations of rhamnolipids and consequently affect the ability of this microbe to change its morphotype and swarm over surfaces. Among those genes identified were those coding for type IVb-Tad pili, which are often required for virulence in various bacterial pathogens. Our study demonstrates that manipulating chemical gradients in vitro can lead to the identification of bacterial behaviors relevant to polymicrobial infections.IMPORTANCE Interspecies interactions can have profound effects on the development and outcomes of polymicrobial infections. Consequently, improving the molecular understanding of these interactions could provide us with new insights on the possible long-term consequences of these chronic infections. In this study, we show that P. aeruginosa-derived rhamnolipids, which participate in Bcc killing at high concentrations, can also trigger biological responses in Burkholderia spp. at low concentrations. The modulation of potential virulence phenotypes in the Bcc by P. aeruginosa suggests that these interactions contribute to pathogenesis and disease severity in the context of polymicrobial infections.
Collapse
|
71
|
Li S, Teng X, Su L, Mao G, Xu Y, Li T, Liu R, Zhang Q, Wang Y, Bartlam M. Structure and characterization of a NAD(P)H-dependent carbonyl reductase from Pseudomonas aeruginosa PAO1. FEBS Lett 2017; 591:1785-1797. [PMID: 28524228 DOI: 10.1002/1873-3468.12683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 11/11/2022]
Abstract
To investigate the function of the pa4079 gene from the opportunistic pathogen Pseudomonas aeruginosa PAO1, we determined its crystal structure and confirmed it to be a NAD(P)-dependent short-chain dehydrogenase/reductase. Structural similarity and activity for a broad range of substrates indicate that PA4079 functions as a carbonyl reductase. Comparison of apo- and holo-PA4079 shows that NADP stabilizes the active site specificity loop, and small molecule binding induces rotation of the Tyr183 side chain by approximately 90° out of the active site. Quantitative real-time PCR results show that pa4079 maintains high expression levels during antibiotic exposure. This work provides a starting point for understanding substrate recognition and selectivity by PA4079, as well as its possible reduction of antimicrobial drugs. DATABASE Structural data are available in the Protein Data Bank (PDB) under the following accession numbers: apo PA4079 (condition I), 5WQM; apo PA4079 (condition II), 5WQN; PA4079 + NADP (condition I), 5WQO; PA4079 + NADP (condition II), 5WQP.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaozhen Teng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Li Su
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science & Engineering, Nankai University, Tianjin, China
| | - Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science & Engineering, Nankai University, Tianjin, China
| | - Yueyang Xu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Tingting Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Riuhua Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qionglin Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science & Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
72
|
Hassan AA, Maldonado RF, Dos Santos SC, Di Lorenzo F, Silipo A, Coutinho CP, Cooper VS, Molinaro A, Valvano MA, Sá-Correia I. Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Front Microbiol 2017. [PMID: 28642745 PMCID: PMC5462993 DOI: 10.3389/fmicb.2017.01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen associated with chronic lung infections and increased risk of death in patients with cystic fibrosis (CF). In this work, we investigated the lipopolysaccharide (LPS) of clinical variants of B. cenocepacia that were collected from a CF patient over a period of 3.5 years, from the onset of infection until death by necrotizing pneumonia (cepacia syndrome). We report the chemical structure of the LPS molecule of various sequential isolates and the identification of a novel hybrid O-antigen (OAg) biosynthetic cluster. The OAg repeating unit of the LPS from IST439, the initial isolate, is a [→2)-β-D-Ribf-(1→4)-α-D-GalpNAc-(1→] disaccharide, which was not previously described in B. cenocepacia. The IST439 OAg biosynthetic gene cluster contains 7 of 23 genes that are closely homologous to genes found in B. multivorans, another member of the Burkholderia cepacia complex. None of the subsequent isolates expressed OAg. Genomic sequencing of these isolates enabled the identification of mutations within the OAg cluster, but none of these mutations could be associated with the loss of OAg. This study provides support to the notion that OAg LPS modifications are an important factor in the adaptation of B. cenocepacia to chronic infection and that the heterogeneity of OAgs relates to variation within the OAg gene cluster, indicating that the gene cluster might have been assembled through multiple horizontal transmission events.
Collapse
Affiliation(s)
- A A Hassan
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Rita F Maldonado
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Sandra C Dos Santos
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Carla P Coutinho
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PittsburghPA, United States
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University BelfastBelfast, United Kingdom
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
73
|
Abstract
Chronic polymicrobial infections are associated with increased virulence compared to monospecies infections. However, our understanding of microbial dynamics during polymicrobial infection is limited. A recent study by Limoli and colleagues (D. H. Limoli, G. B. Whitfield, T. Kitao, M. L. Ivey, M. R. Davis, Jr., et al., mBio 8:e00186-17, 2017, https://doi.org/10.1128/mBio.00186-17) provides insight into a mechanism that may contribute to the coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in the cystic fibrosis (CF) lung. CF lung infections have frequently been used to investigate microbial interactions due to both the complex polymicrobial community and chronic nature of these infections. The hypothesis of Limoli et al. is that the conversion of P. aeruginosa to its mucoidy phenotype during chronic CF infection promotes coexistence by diminishing its ability to kill S. aureus Highlighting a new facet of microbial interaction between two species that are traditionally thought of as competitors, this study provides a platform for studying community assembly in a relevant infection setting.
Collapse
|
74
|
Hotterbeekx A, Kumar-Singh S, Goossens H, Malhotra-Kumar S. In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017; 7:106. [PMID: 28421166 PMCID: PMC5376567 DOI: 10.3389/fcimb.2017.00106] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023] Open
Abstract
The significance of polymicrobial infections is increasingly being recognized especially in a biofilm context wherein multiple bacterial species—including both potential pathogens and members of the commensal flora—communicate, cooperate, and compete with each other. Two important bacterial pathogens that have developed a complex network of evasion, counter-inhibition, and subjugation in their battle for space and nutrients are Pseudomonas aeruginosa and Staphylococcus aureus. Their strain- and environment-specific interactions, for instance in the cystic fibrosis lung or in wound infections, show severe competition that is generally linked to worse patient outcomes. For instance, the extracellular factors secreted by P. aeruginosa have been shown to subjugate S. aureus to persist as small colony variants (SCVs). On the other hand, data also exist where S. aureus inhibits biofilm formation by P. aeruginosa but also protects the pathogen by inhibiting its phagocytosis. Interestingly, such interspecies interactions differ between the planktonic and biofilm phenotype, with the extracellular matrix components of the latter likely being a key, and largely underexplored, influence. This review attempts to understand the complex relationship between P. aeruginosa and Staphylococcus spp., focusing on S. aureus, that not only is interesting from the bacterial evolution point of view, but also has important consequences for our understanding of the disease pathogenesis for better patient management.
Collapse
Affiliation(s)
- An Hotterbeekx
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium.,Molecular Pathology Group, Cell Biology and Histology, University of AntwerpWilrijk, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of AntwerpWilrijk, Belgium
| |
Collapse
|
75
|
Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa. PLoS One 2017; 12:e0173022. [PMID: 28282386 PMCID: PMC5345789 DOI: 10.1371/journal.pone.0173022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/14/2017] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota.
Collapse
|
76
|
Magalhães AP, Lopes SP, Pereira MO. Insights into Cystic Fibrosis Polymicrobial Consortia: The Role of Species Interactions in Biofilm Development, Phenotype, and Response to In-Use Antibiotics. Front Microbiol 2017; 7:2146. [PMID: 28133457 PMCID: PMC5233685 DOI: 10.3389/fmicb.2016.02146] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
Cystic Fibrosis (CF) airways disease involves complex polymicrobial infections where different bacterial species can interact and influence each other and/or even interfere with the whole community. To gain insights into the role that interactions between Pseudomonas aeruginosa in co-culture with Staphylococcus aureus, Inquilinus limosus, and Stenotrophomonas maltophilia may play in infection, the reciprocal effect during biofilm formation and the response of dual biofilms toward ciprofloxacin under in vitro atmospheres with different oxygen availabilities were evaluated. Biofilm formation kinetics showed that the growth of S. aureus, I. limosus, and S. maltophilia was disturbed in the presence of P. aeruginosa, under both aerobic and anaerobic environments. On the other hand, under aerobic conditions, I. limosus led to a decrease in biofilm mass production by P. aeruginosa, although biofilm-cells viability remains unaltered. The interaction between S. maltophilia and P. aeruginosa positively influenced dual biofilm development by increasing its biomass. Compared with monocultures, biomass of P. aeruginosa+ S. aureus biofilms was significantly reduced by reciprocal interference. When grown in dual biofilms with P. aeruginosa, ciprofloxacin was less effective against S. aureus, I. limosus, and S. maltophilia, with increasing antibiotic doses leading to drastic inhibitions of P. aeruginosa cultivability. Therefore, P. aeruginosa might be responsible for the protection of the whole dual consortia against ciprofloxacin activity. Based on the overall data, it can be speculated that reciprocal interferences occur between the different bacterial species in CF lung, regardless the level of oxygen. The findings also suggest that alterations of bacterial behavior due to species interplay may be important for disease progression in CF infection.
Collapse
Affiliation(s)
- Andreia P Magalhães
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), University of Minho, Braga Portugal
| | - Susana P Lopes
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), University of Minho, Braga Portugal
| | - Maria O Pereira
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), University of Minho, Braga Portugal
| |
Collapse
|
77
|
Ganz HH, Doroud L, Firl AJ, Hird SM, Eisen JA, Boyce WM. Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses. mSystems 2017; 2:e00188-16. [PMID: 28293681 PMCID: PMC5347185 DOI: 10.1128/msystems.00188-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/24/2022] Open
Abstract
Waterfowl, especially ducks and geese, are primary reservoirs for influenza A viruses (IAVs) that evolve and emerge as important pathogens in domestic animals and humans. In contrast to humans, where IAVs infect the respiratory tract and cause significant morbidity and mortality, IAVs infect the gastrointestinal tract of waterfowl and cause little or no pathology and are spread by fecal-oral transmission. For this reason, we examined whether IAV infection is associated with differences in the cloacal microbiome of mallards (Anas platyrhyncos), an important host of IAVs in North America and Eurasia. We characterized bacterial community composition by sequencing the V4 region of 16S rRNA genes. IAV-positive mallards had lower species diversity, richness, and evenness than IAV-negative mallards. Operational taxonomic unit (OTU) cooccurrence patterns were also distinct depending on infection status. Network analysis showed that IAV-positive mallards had fewer significant cooccurring OTUs and exhibited fewer coassociation patterns among those OTUs than IAV-negative mallards. These results suggest that healthy mallards have a more robust and complex cloacal microbiome. By combining analytical approaches, we identified 41 bacterial OTUs, primarily representatives of Streptococcus spp., Veillonella dispar, and Rothia mucilaginosa, contributing to the observed differences. This study found that IAV-infected wild mallards exhibited strong differences in microbiome composition relative to noninfected mallards and identified a concise set of putative biomarker OTUs. Using Random Forest, a supervised machine learning method, we verified that these 41 bacterial OTUs are highly predictive of infection status. IMPORTANCE Seasonal influenza causes 3 to 5 million severe illnesses and 250,000 to 500,000 human deaths each year. While pandemic influenza viruses emerge only periodically, they can be devastating-for example, the 1918 H1N1 pandemic virus killed more than 20 million people. IAVs infect the respiratory tract and cause significant morbidity and mortality in humans. In contrast, IAVs infect the gastrointestinal tract of waterfowl, producing little pathology. Recent studies indicated that viruses can alter the microbiome at the respiratory and gastrointestinal mucosa, but there are no reports of how the microbiota of the natural host of influenza is affected by infection. Here we find that the mallard microbiome is altered during IAV infection. Our results suggest that detailed examination of humans and animals infected with IAVs may reveal individualized microbiome profiles that correspond to health and disease. Moreover, future studies should explore whether the altered microbiome facilitates maintenance and transmission of IAVs in waterfowl populations.
Collapse
Affiliation(s)
- Holly H. Ganz
- Genome Center, University of California, Davis, Davis, California, USA
| | - Ladan Doroud
- Department of Computer Science, University of California, Davis, Davis, California, USA
| | - Alana J. Firl
- Genome Center, University of California, Davis, Davis, California, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, Davis, California, USA
| | - Walter M. Boyce
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
78
|
Azevedo AS, Almeida C, Melo LF, Azevedo NF. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit Rev Microbiol 2016; 43:423-439. [PMID: 28033847 DOI: 10.1080/1040841x.2016.1240656] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent reports have demonstrated that most biofilms involved in catheter-associated urinary tract infections are polymicrobial communities, with pathogenic microorganisms (e.g. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and uncommon microorganisms (e.g. Delftia tsuruhatensis, Achromobacter xylosoxidans) frequently co-inhabiting the same urinary catheter. However, little is known about the interactions that occur between different microorganisms and how they impact biofilm formation and infection outcome. This lack of knowledge affects CAUTIs management as uncommon bacteria action can, for instance, influence the rate at which pathogens adhere and grow, as well as affect the overall biofilm resistance to antibiotics. Another relevant aspect is the understanding of factors that drive a single pathogenic bacterium to become prevalent in a polymicrobial community and subsequently cause infection. In this review, a general overview about the IMDs-associated biofilm infections is provided, with an emphasis on the pathophysiology and the microbiome composition of CAUTIs. Based on the available literature, it is clear that more research about the microbiome interaction, mechanisms of biofilm formation and of antimicrobial tolerance of the polymicrobial consortium are required to better understand and treat these infections.
Collapse
Affiliation(s)
- Andreia S Azevedo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| | - Carina Almeida
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal.,b Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Universidade do Minho , Braga , Portugal
| | - Luís F Melo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| | - Nuno F Azevedo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| |
Collapse
|
79
|
Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl 2016; 10:161-169. [PMID: 28127392 PMCID: PMC5253424 DOI: 10.1111/eva.12435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022] Open
Abstract
The rapid rise of antibiotic resistance has renewed interest in phage therapy – the use of bacteria‐specific viruses (phages) to treat bacterial infections. Even though phages are often pathogen‐specific, little is known about the efficiency and eco‐evolutionary outcomes of phage therapy in polymicrobial infections. We studied this experimentally by exposing both quorum‐sensing (QS) signalling PAO1 and QS‐deficient lasR Pseudomonas aeruginosa genotypes (differing in their ability to signal intraspecifically) to lytic PT7 phage in the presence and absence of two bacterial competitors: Staphylococcus aureus and Stenotrophomonas maltophilia–two bacteria commonly associated with P. aeruginosa in polymicrobial cystic fibrosis lung infections. Both the P. aeruginosa genotype and the presence of competitors had profound effects on bacteria and phage densities and bacterial resistance evolution. In general, competition reduced the P. aeruginosa frequencies leading to a lower rate of resistance evolution. This effect was clearer with QS signalling PAO1 strain due to lower bacteria and phage densities and relatively larger pleiotropic growth cost imposed by both phages and competitors. Unexpectedly, phage selection decreased the total bacterial densities in the QS‐deficient lasR pathogen communities, while an increase was observed in the QS signalling PAO1 pathogen communities. Together these results suggest that bacterial competition can shape the eco‐evolutionary outcomes of phage therapy.
Collapse
Affiliation(s)
- Rachel Mumford
- Silwood Park Campus Imperial College London Ascot Berkshire UK
| | - Ville-Petri Friman
- Silwood Park Campus Imperial College London Ascot Berkshire UK; Department of Biology University of York York UK
| |
Collapse
|
80
|
Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F, Widder S. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes 2016; 2:4. [PMID: 28649398 PMCID: PMC5460249 DOI: 10.1038/s41522-016-0002-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022] Open
Abstract
In the context of a polymicrobial infection, treating a specific pathogen poses challenges because of unknown consequences on other members of the community. The presence of ecological interactions between microbes can change their physiology and response to treatment. For example, in the cystic fibrosis lung polymicrobial infection, antimicrobial susceptibility testing on clinical isolates is often not predictive of antibiotic efficacy. Novel approaches are needed to identify the interrelationships within the microbial community to better predict treatment outcomes. Here we used an ecological networking approach on the cystic fibrosis lung microbiome characterized using 16S rRNA gene sequencing and metagenomics. This analysis showed that the community is separated into three interaction groups: Gram-positive anaerobes, Pseudomonas aeruginosa, and Staphylococcus aureus. The P. aeruginosa and S. aureus groups both anti-correlate with the anaerobic group, indicating a functional antagonism. When patients are clinically stable, these major groupings were also stable, however, during exacerbation, these communities fragment. Co-occurrence networking of functional modules annotated from metagenomics data supports that the underlying taxonomic structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease with more predictable outcomes.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093 USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697 USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Jiangchao Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Douglas Conrad
- Department of Medicine, University of California at San Diego, La Jolla, CA 92037 USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Stefanie Widder
- CUBE, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr.14 A-1090, Vienna, Austria
- CeMM - Research Center, for Molecular Medicine of the Austrian Academy of Sciences, Lazarettg, 14, A-1090 Vienna, Austria
| |
Collapse
|
81
|
Clinical Insights into Pulmonary Exacerbations in Cystic Fibrosis from the Microbiome. What Are We Missing? Ann Am Thorac Soc 2016; 12 Suppl 2:S207-11. [PMID: 26595741 DOI: 10.1513/annalsats.201506-353aw] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulmonary exacerbations account for much of the decrease in lung function and consequently most of the morbidity and mortality in patients with cystic fibrosis. These events are driven by an acute inflammatory response to infection. Recent technological advancements in molecular profiling techniques have allowed for a proliferation of microbiome studies of the lower airways of patients with cystic fibrosis. But these methods may not provide a comprehensive and unbiased measure of the lung microbiota in these patients and molecular profiles do not always translate to quantitative microbiology. Furthermore, these studies have not yet been able to provide much in the way of mechanistic insights into exacerbations or to guide patient therapy. We propose a model in which pulmonary exacerbations may be driven by an active subpopulation of the lung microbiota, which may represent only a small portion of the microbiota measured in a clinical sample. Methodology should be focused on the ultimate goal, which is to use the best available approaches to provide accurate quantitative measures of the microbiome to inform clinical decisions and provide rapid assessment of treatment efficacy. These strategies would be relevant to other chronic lung diseases such as chronic obstructive pulmonary disease and neutrophilic asthma.
Collapse
|
82
|
Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa. Infect Immun 2016; 84:2355-2361. [PMID: 27271742 DOI: 10.1128/iai.00233-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities.
Collapse
|
83
|
Jagmann N, Bleicher V, Busche T, Kalinowski J, Philipp B. The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. Environ Microbiol 2016; 18:3550-3564. [PMID: 27322205 DOI: 10.1111/1462-2920.13419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa controls the production of virulence factors by quorum sensing (QS). Besides cell density, QS in P. aeruginosa is co-regulated by metabolic influences, especially nutrient limitation. Previously, a co-culture model system was established consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, in which parasitic growth of P. aeruginosa is strictly dependent on the QS-controlled production of pyocyanin in response to nutrient limitation (Jagmann et al., ). In this study, the co-culture was employed to identify novel genes involved in the regulation of pyocyanin production. Via transposon mutagenesis, the gene gbuA encoding a guanidinobutyrase was identified, deletion of which led to a loss of pyocyanin production in co-cultures and to a reduced pyocyanin production in single cultures. Addition of the natural substrate of GbuA to the mutant strain enhanced the negative effect on pyocyanin production in single cultures. The gbuA mutant showed a reduced transcription of the pqsABCDE operon and could be complemented by PqsE overexpression and addition of alkylquinolone signal molecules. The strong effect of gbuA deletion on the QS-controlled pyocyanin production in co-cultures showed the value of this approach for the discovery of novel gene functions linking metabolism and QS in P. aeruginosa.
Collapse
Affiliation(s)
- Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstr. 3, Münster, 48149, Germany
| | - Vera Bleicher
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstr. 3, Münster, 48149, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstr. 3, Münster, 48149, Germany.
| |
Collapse
|
84
|
Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc Natl Acad Sci U S A 2016; 113:8266-71. [PMID: 27382184 DOI: 10.1073/pnas.1520056113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than nonpathogenic taxa and are associated with changes in pathogen virulence. High abundance and mobilization of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, ɸ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. Although bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage ɸ4 integrated randomly into the bacterial chromosome, but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts.
Collapse
|
85
|
Scales BS, Dickson RP, Huffnagle GB. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J Leukoc Biol 2016; 100:943-950. [PMID: 27365534 DOI: 10.1189/jlb.3mr0316-106r] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Inflammation can directly and indirectly modulate the bacterial composition of the microbiome. Although studies of inflammation primarily focus on its function to negatively select against potential pathogens, some bacterial species have the ability to exploit inflammatory byproducts for their benefit. Inflammatory cells release reactive nitrogen species as antimicrobial effectors against infection, but some facultative anaerobes can also utilize the increase in extracellular nitrate in their environment for anaerobic respiration and growth. This phenomenon has been studied in the gastrointestinal tract, where blooms of facultative anaerobic Gammaproteobacteria, primarily Escherichia coli, often occur during colonic inflammation. In cystic fibrosis, Pseudomonas aeruginosa, another Gammaproteobacteria facultative anaerobe, can reduce nitrogen for anaerobic respiration and it blooms in the airways of the chronically inflamed cystic fibrosis lung. This review focuses on the evidence that inflammation can provide terminal electron acceptors for anaerobic respiration and can support blooms of facultative anaerobes, such as E. coli and P. aeruginosa in distinct, but similar, environments of the inflamed gastrointestinal and respiratory tracts.
Collapse
Affiliation(s)
- Brittan S Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
86
|
Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, Conrad DJ, Dorrestein PC, Rohwer FL. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. THE ISME JOURNAL 2016; 10:1483-98. [PMID: 26623545 PMCID: PMC5029181 DOI: 10.1038/ismej.2015.207] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/19/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample.
Collapse
Affiliation(s)
- Robert A Quinn
- Department of Biology, San Diego State
University, San Diego, CA, USA
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Vanessa V Phelan
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Katrine L Whiteson
- Department of Molecular Biology and
Biochemistry, University of California Irvine, Irvine,
CA, USA
| | - Neha Garg
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics,
San Diego State University, San Diego, CA,
USA
| | - Yan Wei Lim
- Department of Biology, San Diego State
University, San Diego, CA, USA
| | - Douglas J Conrad
- Department of Medicine, University of
California at San Diego, La Jolla, CA,
USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California at San Diego, La
Jolla, CA, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State
University, San Diego, CA, USA
| |
Collapse
|
87
|
Frydenlund Michelsen C, Hossein Khademi SM, Krogh Johansen H, Ingmer H, Dorrestein PC, Jelsbak L. Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction. THE ISME JOURNAL 2016; 10:1323-36. [PMID: 26684729 PMCID: PMC5029194 DOI: 10.1038/ismej.2015.220] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 02/08/2023]
Abstract
The effect of polymicrobial interactions on pathogen physiology and how it can act either to limit pathogen colonization or to potentiate pathogen expansion and virulence are not well understood. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens commonly found together in polymicrobial human infections. However, we have previously shown that the interactions between these two bacterial species are strain dependent. Whereas P. aeruginosa PAO1, a commonly used laboratory strain, effectively suppressed S. aureus growth, we observed a commensal-like interaction between the human host-adapted strain, DK2-P2M24-2003, and S. aureus. In this study, characterization by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) and mass spectral (MS) molecular networking revealed a significant metabolic divergence between P. aeruginosa PAO1 and DK2-P2M24-2003, which comprised several virulence factors and signaling 4-hydroxy-2-alkylquinoline (HAQ) molecules. Strikingly, a further modulation of the HAQ profile was observed in DK2-P2M24-2003 during interaction with S. aureus, resulting in an area with thickened colony morphology at the P. aeruginosa-S. aureus interface. In addition, we found an HAQ-mediated protection of S. aureus by DK2-P2M24-2003 from the killing effect of tobramycin. Our findings suggest a model where the metabolic divergence manifested in human host-adapted P. aeruginosa is further modulated during interaction with S. aureus and facilitate a proto-cooperative P. aeruginosa-S. aureus relationship.
Collapse
Affiliation(s)
| | | | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Food Safety and Zoonoses, University of Copenhagen, Frederiksberg C, Denmark
| | - Pieter C Dorrestein
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
88
|
Bernier SP, Workentine ML, Li X, Magarvey NA, O'Toole GA, Surette MG. Cyanide Toxicity to Burkholderia cenocepacia Is Modulated by Polymicrobial Communities and Environmental Factors. Front Microbiol 2016; 7:725. [PMID: 27242743 PMCID: PMC4870242 DOI: 10.3389/fmicb.2016.00725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behavior of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide (HCN) was recently proposed to play a critical role. Here we show that modification of the environment (i.e., culture medium), long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF) lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM), that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community.
Collapse
Affiliation(s)
- Steve P Bernier
- Department of Medicine, Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Matthew L Workentine
- Department of Medicine, Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Xiang Li
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| | - Nathan A Magarvey
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth Hanover, NH, USA
| | - Michael G Surette
- Department of Medicine, Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster UniversityHamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster UniversityHamilton, ON, Canada
| |
Collapse
|
89
|
Cerquetti M, Giufrè M. Why we need a vaccine for non-typeable Haemophilus influenzae. Hum Vaccin Immunother 2016; 12:2357-61. [PMID: 27171854 DOI: 10.1080/21645515.2016.1174354] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is increasingly recognized as emerging pathogen. The routine immunization of infants with conjugated vaccines against H. influenzae type b (Hib) has greatly reduced the incidence of invasive Hib disease; however a marked change in the predominant invasive serotype from Hib to NTHi has occurred. Localized infections where the role of H. influenzae is important, such as otitis media in children and acute exacerbations in chronic obstructive pulmonary disease (COPD) in adults, are almost exclusively associated with NTHi isolates. The implementation of pneumococcal conjugate vaccines has resulted in changes in frequency of nasopharynx colonizing pathogens with an increase of NTHi, although this data is yet under debate. An effective vaccine against NTHi is not currently available. The major challenge in developing a successful vaccine is the intrinsic heterogeneity of NTHi. H. influenzae protein D is used as carrier protein in the licensed 10-valent pneumococcal conjugate vaccine (Synflorix, GlaxoSmithKline), but no robust evidences for protective efficacy against NTHi otitis have been until now obtained. Several other vaccine candidates are under investigations and we hope that significant advancements in vaccine development will be achieved in the next future. Genome-based vaccine strategy might provide an additional useful tool for discovering further vaccine antigens.
Collapse
Affiliation(s)
- Marina Cerquetti
- a Department of Infectious , Parasitic and Immune-Mediated Diseases , Istituto Superiore di Sanità , Rome , Italy
| | - Maria Giufrè
- a Department of Infectious , Parasitic and Immune-Mediated Diseases , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
90
|
Wigneswaran V, Amador CI, Jelsbak L, Sternberg C, Jelsbak L. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories. F1000Res 2016; 5. [PMID: 27092245 PMCID: PMC4821285 DOI: 10.12688/f1000research.7876.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 11/20/2022] Open
Abstract
Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.
Collapse
Affiliation(s)
- Vinoth Wigneswaran
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Claus Sternberg
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
91
|
Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison HG, Sogin ML, Czum J, Ashare A. Analysis of Lung Microbiota in Bronchoalveolar Lavage, Protected Brush and Sputum Samples from Subjects with Mild-To-Moderate Cystic Fibrosis Lung Disease. PLoS One 2016; 11:e0149998. [PMID: 26943329 PMCID: PMC4778801 DOI: 10.1371/journal.pone.0149998] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
Individuals with cystic fibrosis (CF) often acquire chronic lung infections that lead to irreversible damage. We sought to examine regional variation in the microbial communities in the lungs of individuals with mild-to-moderate CF lung disease, to examine the relationship between the local microbiota and local damage, and to determine the relationships between microbiota in samples taken directly from the lung and the microbiota in spontaneously expectorated sputum. In this initial study, nine stable, adult CF patients with an FEV1>50% underwent regional sampling of different lobes of the right lung by bronchoalveolar lavage (BAL) and protected brush (PB) sampling of mucus plugs. Sputum samples were obtained from six of the nine subjects immediately prior to the procedure. Microbial community analysis was performed on DNA extracted from these samples and the extent of damage in each lobe was quantified from a recent CT scan. The extent of damage observed in regions of the right lung did not correlate with specific microbial genera, levels of community diversity or composition, or bacterial genome copies per ml of BAL fluid. In all subjects, BAL fluid from different regions of the lung contained similar microbial communities. In eight out of nine subjects, PB samples from different regions of the lung were also similar in microbial community composition, and were similar to microbial communities in BAL fluid from the same lobe. Microbial communities in PB samples were more diverse than those in BAL samples, suggesting enrichment of some taxa in mucus plugs. To our knowledge, this study is the first to examine the microbiota in different regions of the CF lung in clinically stable individuals with mild-to-moderate CF-related lung disease.
Collapse
Affiliation(s)
- Deborah A. Hogan
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
- * E-mail: (AA); (DAH)
| | - Sven D. Willger
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Emily L. Dolben
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Thomas H. Hampton
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Bruce A. Stanton
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
| | - Hilary G. Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Mitchell L. Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Julianna Czum
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Alix Ashare
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
- * E-mail: (AA); (DAH)
| |
Collapse
|
92
|
Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol 2016; 24:327-337. [PMID: 26946977 PMCID: PMC4854172 DOI: 10.1016/j.tim.2016.01.008] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 12/02/2022]
Abstract
Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification. During chronic lung infections of CF patients common genetic adaptations occur in P. aeruginosa, such as conversion to mucoidy, loss of virulence factors, and resistance to antibiotics. Although pathoadaptive mutations in regulatory proteins are common, the actual regulators affected vary between populations. P. aeruginosa populations in CF lungs exhibit high levels of phenotypic diversity. Fine-scale population genomics approaches reveal that divergent sublineages can coexist, with evidence for regional isolation in the spatially structured and heterogeneous lung environment. Experimental evolution is beginning to provide insights into the selective drivers of evolution in P. aeruginosa infection, including the role of social interactions.
Collapse
Affiliation(s)
- Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Ronald Ross Building, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.
| | - Siobhan O'Brien
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
93
|
Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms. ACTA ACUST UNITED AC 2016; 23:57-66. [PMID: 27004018 DOI: 10.1097/cpm.0000000000000108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The infections found in chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis share a number of clinical similarities, the most striking of which is bacterial persistence despite the use of antibiotics. These infections have been clinically described using culture-based methods usually performed on sputum samples, and treatment has been directed towards the bacteria found in this manner. Unfortunately the clinical response to antibiotics is frequently not predictable based on these cultures, and the role of these cultured organisms in disease progression has been debated. The past 20 years have seen a revolution in the techniques used to describe bacterial populations and their growth patterns. These techniques have revealed these persistent lung infections are vastly more complicated than described by traditional, and still widely relied upon, sputum cultures. A better understanding of the initiation and evolution of these infections, and better clinical tools to describe them, will dramatically alter the way patients are cared for. While clinical tests to more accurately describe these infections are not yet available, the better appreciation of these infections afforded by current science should enlighten practitioners as to the care of their patients with these diseases.
Collapse
|
94
|
Prieto CI, Palau MJ, Martina P, Achiary C, Achiary A, Bettiol M, Montanaro P, Cazzola ML, Leguizamón M, Massillo C, Figoli C, Valeiras B, Perez S, Rentería F, Diez G, Yantorno OM, Bosch A. [Cystic Fibrosis Cloud database: An information system for storage and management of clinical and microbiological data of cystic fibrosis patients]. Rev Argent Microbiol 2016; 48:27-37. [PMID: 26895996 DOI: 10.1016/j.ram.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/03/2015] [Accepted: 11/22/2015] [Indexed: 11/29/2022] Open
Abstract
The epidemiological and clinical management of cystic fibrosis (CF) patients suffering from acute pulmonary exacerbations or chronic lung infections demands continuous updating of medical and microbiological processes associated with the constant evolution of pathogens during host colonization. In order to monitor the dynamics of these processes, it is essential to have expert systems capable of storing and subsequently extracting the information generated from different studies of the patients and microorganisms isolated from them. In this work we have designed and developed an on-line database based on an information system that allows to store, manage and visualize data from clinical studies and microbiological analysis of bacteria obtained from the respiratory tract of patients suffering from cystic fibrosis. The information system, named Cystic Fibrosis Cloud database is available on the http://servoy.infocomsa.com/cfc_database site and is composed of a main database and a web-based interface, which uses Servoy's product architecture based on Java technology. Although the CFC database system can be implemented as a local program for private use in CF centers, it can also be used, updated and shared by different users who can access the stored information in a systematic, practical and safe manner. The implementation of the CFC database could have a significant impact on the monitoring of respiratory infections, the prevention of exacerbations, the detection of emerging organisms, and the adequacy of control strategies for lung infections in CF patients.
Collapse
Affiliation(s)
- Claudia I Prieto
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María J Palau
- Sala de Microbiología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | - Pablo Martina
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Carlos Achiary
- Infocom S.A., Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Achiary
- Infocom S.A., Ciudad Autónoma de Buenos Aires, Argentina
| | - Marisa Bettiol
- Sala de Microbiología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | | | - María L Cazzola
- Sala de Bacteriología, Hospital HIGA, La Plata, Buenos Aires, Argentina
| | - Mariana Leguizamón
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cintia Massillo
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cecilia Figoli
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Brenda Valeiras
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia Perez
- Sala de Bacteriología, Hospital HIGA, La Plata, Buenos Aires, Argentina
| | - Fernando Rentería
- Servicio de Neumonología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | - Graciela Diez
- Servicio de Neumonología, Hospital de Niños «Sor María Ludovica», La Plata, Buenos Aires, Argentina
| | - Osvaldo M Yantorno
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Centro de Biotecnología Aplicada, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
95
|
Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation. PLoS Genet 2016; 12:e1005837. [PMID: 26845436 PMCID: PMC4741518 DOI: 10.1371/journal.pgen.1005837] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome. Post-transcriptional control of protein abundance is a significant and underexplored regulatory process by which organisms respond to environmental change. We have discovered an important new mechanism for this control in bacteria, based on the covalent modification of a small ribosomal protein by the widespread enzyme RimK. Here we show that the activity of RimK has specific effects on the levels of ribosomal proteins in the cell, which in turn affects the abundance of the important translational regulator Hfq. RimK is itself controlled by binding to the small regulatory proteins RimA and RimB and the widespread signalling molecule cyclic-di-GMP. Deletion of rimK compromises motility, virulence and plant colonisation/infection in several different Pseudomonas species. We propose that changes in intracellular RimK activity enable Pseudomonas to respond to environmental pressures by changing the nature of their ribosomes, leading in turn to an adaptive phenotypic response to their surroundings. This promotes motility and virulence during the initial stages of plant contact, and phenotypes including attachment, metabolite transport and stress control during long-term environmental adaptation.
Collapse
|
96
|
Horsley A, Jones AM, Lord R, Cochrane Cystic Fibrosis and Genetic Disorders Group. Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation. Cochrane Database Syst Rev 2016; 2016:CD009529. [PMID: 26789750 PMCID: PMC7100516 DOI: 10.1002/14651858.cd009529.pub3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Chronic pulmonary infection is a hallmark of lung disease in cystic fibrosis. Infections dominated by organisms of the Burkholderia cepacia complex, a group of at least 18 closely-related species of gram-negative bacteria, are particularly difficult to treat. These infections may be associated with a fulminant necrotising pneumonia. Burkholderia cepacia complex bacteria are resistant to many common antibiotics and able to acquire resistance against many more. Following patient segregation in cystic fibrosis medical care, the more virulent epidemic strains are not as frequent, and new infections are more likely to be with less virulent environmentally-acquired strains. Although evidence-based guidelines exist for treating respiratory exacerbations involving Pseudomonas aeruginosa, these cannot be extended to Burkholderia cepacia complex infections. This review, which is an update of a previous review, aims to assess the available trial evidence for the choice and application of treatments for these infections. OBJECTIVES To assess the effectiveness and safety of different antibiotic regimens in people with cystic fibrosis experiencing an exacerbation and chronically infected with organisms of the Burkholderia cepacia complex. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of latest search: 28 August 2015. SELECTION CRITERIA Randomised and quasi-randomised controlled trials of treatments for exacerbations of pulmonary symptoms in people with cystic fibrosis chronically infected with organisms of the Burkholderia cepacia complex. DATA COLLECTION AND ANALYSIS No relevant trials were identified. MAIN RESULTS No trials were included in this review. AUTHORS' CONCLUSIONS Burkholderia cepacia complex infections present a significant challenge for people with cystic fibrosis and their clinicians. The incidence is likely to increase as the cystic fibrosis population ages; and managing and treating these infections will become more important. There is a lack of trial evidence to guide decision making and no conclusions can be drawn from this review about the optimal antibiotic regimens for people with cystic fibrosis who have chronic Burkholderia cepacia complex infections. Clinicians must continue to assess each person individually, taking into account in vitro antibiotic susceptibility data, previous clinical responses and their own experience. Multicentre randomised clinical trials are needed to assess the effectiveness of different antibiotic regimens in people with cystic fibrosis infected with organisms of the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Alex Horsley
- University Hospital of South ManchesterSchool of Translational MedicineSouthmoor RoadManchesterUKM23 9LT
- South Manchester University Hospitals NHS TrustManchester Adult Cystic Fibrosis CentreWythenshawe HospitalSouthmoor RoadManchesterUKM23 9LT
| | - Andrew M Jones
- University Hospital of South ManchesterSchool of Translational MedicineSouthmoor RoadManchesterUKM23 9LT
- South Manchester University Hospitals NHS TrustManchester Adult Cystic Fibrosis CentreWythenshawe HospitalSouthmoor RoadManchesterUKM23 9LT
| | - Robert Lord
- University Hospital of South ManchesterSchool of Translational MedicineSouthmoor RoadManchesterUKM23 9LT
- South Manchester University Hospitals NHS TrustManchester Adult Cystic Fibrosis CentreWythenshawe HospitalSouthmoor RoadManchesterUKM23 9LT
| | | |
Collapse
|
97
|
Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci U S A 2015; 113:E110-6. [PMID: 26715741 DOI: 10.1073/pnas.1512057112] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.
Collapse
|
98
|
Balaguer A, González de Dios J. Home versus hospital intravenous antibiotic therapy for cystic fibrosis. Cochrane Database Syst Rev 2015; 2015:CD001917. [PMID: 26671062 PMCID: PMC6481823 DOI: 10.1002/14651858.cd001917.pub4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Recurrent endobronchial infection in cystic fibrosis requires treatment with intravenous antibiotics for several weeks usually in hospital, affecting health costs and quality of life for patients and their families. This is an update of a previously published review. OBJECTIVES To determine whether home intravenous antibiotic therapy in cystic fibrosis is as effective as inpatient intravenous antibiotic therapy and if it is preferred by individuals or families or both. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Most recent search of the Group's Trials Register: 23 November 2015. SELECTION CRITERIA Randomized and quasi-randomized controlled studies of intravenous antibiotic treatment for adults and children with cystic fibrosis at home compared to in hospital. DATA COLLECTION AND ANALYSIS The authors independently selected studies for inclusion in the review, assessed methodological quality of each study and extracted data using a standardised form. MAIN RESULTS Eighteen studies were identified by the searches. Only one study could be included which reported results from 17 participants aged 10 to 41 years with an infective exacerbation of Pseudomonas aeruginosa. All their 31 admissions (18 hospital and 13 at home after two to four days of hospital treatment) were analysed as independent events. Outcomes were measured at 0, 10 and 21 days after initiation of treatment. Home participants underwent fewer investigations than hospital participants (P < 0.002) and general activity was higher in the home group. No significant differences were found for clinical outcomes, adverse events, complications or change of intravenous lines,or time to next admission. Home participants received less low-dose home maintenance antibiotic.Quality of life measures showed no significant differences for dyspnoea and emotional state, but fatigue and mastery were worse for home participants, possibly due to a higher general activity and need of support. Personal, family, sleeping and eating disruptions were less important for home than hospital admissions.Home therapy was cheaper for families and the hospital. Indirect costs were not determined. AUTHORS' CONCLUSIONS Current evidence is restricted to a single randomized clinical trial. It suggests that, in the short term, home therapy does not harm individuals, entails fewer investigations, reduces social disruptions and can be cost-effective. There were both advantages and disadvantages in terms of quality of life. The decision to attempt home treatment should be based on the individual situation and appropriate local resources. More research is urgently required.
Collapse
Affiliation(s)
- Albert Balaguer
- Department of Pediatrics. Hospital General de Catalunya., Universitat Internacional de Catalunya, C/ Pedro I Pons, 1, Sant Cugat de Vallés, Barcelona, CATALONIA, Spain, 08195
| | | |
Collapse
|
99
|
Khare A, Tavazoie S. Multifactorial Competition and Resistance in a Two-Species Bacterial System. PLoS Genet 2015; 11:e1005715. [PMID: 26647077 PMCID: PMC4672897 DOI: 10.1371/journal.pgen.1005715] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023] Open
Abstract
Microorganisms exist almost exclusively in interactive multispecies communities, but genetic determinants of the fitness of interacting bacteria, and accessible adaptive pathways, remain uncharacterized. Here, using a two-species system, we studied the antagonism of Pseudomonas aeruginosa against Escherichia coli. Our unbiased genome-scale approach enabled us to identify multiple factors that explained the entire antagonism observed. We discovered both forms of ecological competition–sequestration of iron led to exploitative competition, while phenazine exposure engendered interference competition. We used laboratory evolution to discover adaptive evolutionary trajectories in our system. In the presence of P. aeruginosa toxins, E. coli populations showed parallel molecular evolution and adaptive convergence at the gene-level. The multiple resistance pathways discovered provide novel insights into mechanisms of toxin entry and activity. Our study reveals the molecular complexity of a simple two-species interaction, an important first-step in the application of systems biology to detailed molecular dissection of interactions within native microbiomes. Bacteria commonly exist in nature as part of large multispecies communities, and their behavior is affected by the surrounding species via secreted molecules or physical contact. Such interactions are poorly understood, and the pathways that actually affect bacterial growth and behavior in any multispecies system have rarely been studied. In this study, we show that the opportunistic pathogen Pseudomonas aeruginosa inhibits the growth of the commensal Escherichia coli, and we use unbiased genome-scale methods to identify the mediators. We find that P. aeruginosa iron-chelating molecules and redox-active phenazines account for all of the E. coli growth inhibition seen in our system. We also evolve E. coli in the presence of the P. aeruginosa antimicrobials and identify multiple pathways that lead to resistance, gaining novel insights into the mechanism of action of these antimicrobial molecules. Thus, our study demonstrates the complexity of even simple two-species bacterial systems and lays down a framework for studying such interactions at the molecular level.
Collapse
Affiliation(s)
- Anupama Khare
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
100
|
Magalhães AP, Azevedo NF, Pereira MO, Lopes SP. The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy. Appl Microbiol Biotechnol 2015; 100:1163-1181. [PMID: 26637419 DOI: 10.1007/s00253-015-7177-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.
Collapse
Affiliation(s)
- Andreia P Magalhães
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Maria O Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Susana P Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|