51
|
Abstract
microRNAs (miRNAs) are small approximately 21-nucleotide RNAs that function posttranscriptionally to regulate gene activity. miRNAs function by binding to complementary sites in target genes causing mRNA degradation and/or translational repression of the target. Since the discovery of miRNAs in plants in 2002 much has been learned about the function of these small regulatory RNAs. miRNAs function broadly to control many aspects of plant biology and plant development. This review focuses on the role of miRNAs in flower development. miRNAs function throughout flower development, from the earliest stages (floral induction) to very late stages (floral organ cell type specification). miRNAs such as miR156 and miR172 play a key role in vegetative phase change and in the vegetative to reproductive transition in both Arabidopsis and maize. miR172 in Arabidopsis and maize and miR169 in Petunia and Antirrhinum function to control floral organ identity fate during the early stages of flower development by regulating the spatial boundaries of expression of target genes. miR164, miR319, miR159, and miR167 function to specify particular cell types during later stages of flower development. Although much has been learned about the role of miRNAs in flower development in the last 8 years, many challenges remain to fully elucidate the function of these important regulatory molecules.
Collapse
Affiliation(s)
- Anwesha Nag
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
52
|
Xie Z. Piecing the puzzle together: genetic requirements for miRNA biogenesis in Arabidopsis thaliana. Methods Mol Biol 2010; 592:1-17. [PMID: 19802585 DOI: 10.1007/978-1-60327-005-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are an important class of endogenous small silencing RNAs in both plants and animals. They regulate the expression of a wide range of target genes that are involved in many important biological processes. Biogenesis of plant miRNAs requires a distinct set of proteins, including members that belong to several highly conserved RNA silencing protein families. The framework for miRNA biogenesis in plants was revealed through genetic and biochemical analyses using mutants that are defective in miRNA accumulation. These general miRNA-deficient mutants constitute a set of invaluable genetic resources for the plant miRNA research community. They could be utilized to experimentally validate the candidate miRNAs that are either predicted by a computational program or recovered from a small RNA deep sequencing effort which is becoming a more affordable and widely used approach for small RNA discovery. Starting with a brief introduction on multiple small RNA pathways in plants, this chapter provides basic experimental procedures for the examination of miRNA accumulation from wild type plants and various mutant lines in Arabidopsis.
Collapse
Affiliation(s)
- Zhixin Xie
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
53
|
Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci U S A 2009; 107:466-71. [PMID: 20018656 DOI: 10.1073/pnas.0913203107] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transacting siRNA (tasiRNA) biogenesis in Arabidopsis is initiated by microRNA (miRNA) -guided cleavage of primary transcripts. In the case of TAS3 tasiRNA formation, ARGONAUTE7 (AGO7)-miR390 complexes interact with primary transcripts at two sites, resulting in recruitment of RNA-DEPENDENT RNA POLYMERASE6 for dsRNA biosynthesis. An extensive screen for Arabidopsis mutants with specific defects in TAS3 tasiRNA biogenesis or function was done. This yielded numerous ago7 mutants, one dcl4 mutant, and two mutants that accumulated low levels of miR390. A direct genome sequencing-based approach to both map and rapidly identify one of the latter mutant alleles was developed. This revealed a G-to-A point mutation (mir390a-1) that was calculated to stabilize a relatively nonpaired region near the base of the MIR390a foldback, resulting in misprocessing of the miR390/miR390* duplex and subsequent reduced TAS3 tasiRNA levels. Directed substitutions, as well as analysis of variation at paralogous miR390-generating loci (MIR390a and MIR390b), indicated that base pair properties and nucleotide identity within a region 4-6 bases below the miR390/miR390* duplex region contributed to the efficiency and accuracy of precursor processing.
Collapse
|
54
|
Schauer SE, Schlüter PM, Baskar R, Gheyselinck J, Bolaños A, Curtis MD, Grossniklaus U. Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:987-1000. [PMID: 19473325 DOI: 10.1111/j.1365-313x.2009.03928.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The screening of enhancer detector lines in Arabidopsis thaliana has identified genes that are specifically expressed in the sporophytic tissue of the ovule. One such gene is the MADS-domain transcription factor AGAMOUS-LIKE6 (AGL6), which is expressed asymmetrically in the endothelial layer of the ovule, adjacent to the developing haploid female gametophyte. Transcription of AGL6 is regulated at multiple stages of development by enhancer and silencer elements located in both the upstream regulatory region and the large first intron. These include a bipartite enhancer, which requires elements in both the upstream regulatory region and the first intron, active in the endothelium. Transcription of the AGL13 locus, which encodes the other member of the AGL6 subfamily in Arabidopsis, is also regulated by elements located in the upstream regulatory region and in the first intron. There is, however, no overlapping expression of AGL6 and AGL13 except in the chalaza of the developing ovule, as was shown using a dual gene reporter system. Phylogenetic shadowing of the first intron of AGL6 and AGL13 homologs from other Brassicaceae identified four regions of conservation that probably contain the binding sites of transcriptional regulators, three of which are conserved outside Brassicaceae. Further phylogenetic analysis using the protein-encoding domains of AGL6 and AGL13 revealed that the MADS DNA-binding domain shows considerable divergence. Together, these results suggest that AGL6 and AGL13 show signs of subfunctionalization, with divergent expression patterns, regulatory sequences and possibly functions.
Collapse
Affiliation(s)
- Stephen E Schauer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
55
|
Pérez-Pérez JM, Candela H, Micol JL. Understanding synergy in genetic interactions. Trends Genet 2009; 25:368-76. [PMID: 19665253 DOI: 10.1016/j.tig.2009.06.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Synergy occurs when the contribution of two mutations to the phenotype of a double mutant exceeds the expectations from the additive effects of the individual mutations. The molecular characterization of genes involved in synergistic interactions has revealed that synergy mainly results from mutations in functionally related genes. Recent research in Arabidopsis thaliana has advanced our understanding of the scenarios resulting in synergistic phenotypes. Those involving homologous loci usually result from various levels of functional redundancy. Some of these loci fail to complement each other or become dose-dependent in certain multiple mutant combinations, suggesting that the effects of haploinsufficiency and redundancy can combine. Synergy involving non-homologous genes probably reflects the topology of the regulatory or metabolic networks and can arise when pathways that converge at a node are disrupted. The Hub genes provide a remarkable example, these genes have an extraordinary number of connections and mutations that interact with many unrelated pathways.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
56
|
Grigg SP, Galinha C, Kornet N, Canales C, Scheres B, Tsiantis M. Repression of apical homeobox genes is required for embryonic root development in Arabidopsis. Curr Biol 2009; 19:1485-90. [PMID: 19646874 DOI: 10.1016/j.cub.2009.06.070] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/17/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
Development of seed plant embryos is polarized along the apical-basal axis. This polarization occurs in the absence of cell migration and culminates in the establishment of two distinct pluripotent cell populations: the shoot apical meristem (SAM) and root meristem (RM), which postembryonically give rise to the entire shoot and root systems of the plant. The acquisition of genetic pathways that delimit root from shoot during embryogenesis must have played a pivotal role during land plant evolution because roots evolved after shoots in ancestral vascular plants and may be shoot-derived organs. However, such pathways are very poorly understood. Here we show that RM establishment in the model plant Arabidopsis thaliana requires apical confinement of the Class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) proteins PHABULOSA (PHB) and PHAVOLUTA (PHV), which direct both SAM development and shoot lateral organ polarity. Failure to restrict PHB and PHV expression apically via a microRNA-dependent pathway prevents correct elaboration of the embryonic root development program and results in embryo lethality. As such, repression of a fundamental shoot development pathway is essential for correct root development. Additionally, our data suggest that a single patterning process, based on HD-ZIP III repression, mediates both apical-basal and radial polarity in the embryo and lateral organ polarity in the shoot.
Collapse
Affiliation(s)
- Stephen P Grigg
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | |
Collapse
|
57
|
Linder P, Owttrim GW. Plant RNA helicases: linking aberrant and silencing RNA. TRENDS IN PLANT SCIENCE 2009; 14:344-52. [PMID: 19446493 DOI: 10.1016/j.tplants.2009.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 05/06/2023]
Abstract
RNA helicases are ATPases that are capable of rearranging RNA and ribonucleoprotein (RNP) structure, and they can potentially function in any aspect of RNA metabolism. The RNA helicase gene family of plant genomes is larger and more diverse than genome families observed in other systems and provides an ideal model for investigation of the physiological importance of RNA secondary structure rearrangement in plant development. Numerous plant RNA helicases are associated with a variety of physiological functions, but this review will focus on the thirteen RNA helicases associated with the metabolism of aberrant and silencing RNAs. The results emphasize the crucial role RNA helicase activity has in the regulation of mRNA quality control and gene expression in plant development.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, 1 Rue Michel Servet, CH-1211 Geneve 4, Switzerland
| | | |
Collapse
|
58
|
Tagami Y, Motose H, Watanabe Y. A dominant mutation in DCL1 suppresses the hyl1 mutant phenotype by promoting the processing of miRNA. RNA (NEW YORK, N.Y.) 2009; 15:450-8. [PMID: 19155326 PMCID: PMC2657008 DOI: 10.1261/rna.1297109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are sequence-specific negative regulators of gene expression generated by DICER-LIKE1 (DCL1) with the assistance of a double-stranded RNA-binding protein, HYPONASTIC LEAVES1 (HYL1), in Arabidopsis. To achieve a better understanding of miRNA biogenesis, we isolated hyl1 suppressors. Our genetic screening identified a novel semidominant mutation in DCL1 (dcl1-13), which causes an amino acid substitution of Glu-395 with Lys in the ATPase/DExH-box RNA helicase domain. This mutation confers significant restoration from the developmental abnormality and a reduction in the level of miRNA in the loss-of-function mutant of HYL1. However, the dcl1-13 single mutant, exhibiting a decreased number of leaves, showed a slight decrease in miRNA accumulation. Thus, the effect of the dcl1-13 mutation is HYL1 dependent: it promotes miRNA processing in the absence of HYL1, but conversely, impairs it in the presence of HYL1. Our results suggest significant roles of the helicase domain of DCL1, which remain unclear to date, possibly in relation with HYL1.
Collapse
Affiliation(s)
- Yuko Tagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
59
|
Abstract
MicroRNA (miRNA)-guided cleavage initiates entry of primary transcripts into the transacting siRNA (tasiRNA) biogenesis pathway involving RNA-DEPENDENT RNA POLYMERASE6, DICER-LIKE4, and SUPPRESSOR OF GENE SILENCING3. Arabidopsis thaliana TAS1 and TAS2 families yield tasiRNA that form through miR173-guided initiation-cleavage of primary transcripts and target several transcripts encoding pentatricopeptide repeat proteins and proteins of unknown function. Here, the TAS1c locus was modified to produce synthetic (syn) tasiRNA to target an endogenous transcript encoding PHYTOENE DESATURASE and used to analyze the role of miR173 in routing of transcripts through the tasiRNA pathway. miR173 was unique from other miRNAs in its ability to initiate TAS1c-based syn-tasiRNA formation. A single miR173 target site was sufficient to route non-TAS transcripts into the pathway to yield phased siRNA. We also show that miR173 functions in association with ARGONAUTE 1 (AGO1) during TAS1 and TAS2 tasiRNA formation, and we provide data indicating that the miR173-AGO1 complex possesses unique functionality that many other miRNA-AGO1 complexes lack.
Collapse
|
60
|
Li Y, Coelho CM, Liu T, Wu S, Wu J, Zeng Y, Li Y, Hunter B, Dante RA, Larkins BA, Wu R. A statistical model for estimating maternal-zygotic interactions and parent-of-origin effects of QTLs for seed development. PLoS One 2008; 3:e3131. [PMID: 18769549 PMCID: PMC2519836 DOI: 10.1371/journal.pone.0003131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/11/2008] [Indexed: 11/19/2022] Open
Abstract
Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.
Collapse
Affiliation(s)
- Yanchun Li
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
- Agricultural Ecology Research Institute, Fujian Academy of Agricultural Science, Fuzhou, Fujian, People's Republic of China
| | - Cintia M. Coelho
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Tian Liu
- Human Genetics Group, Genome institute of Singapore, Singapore, Singapore
| | - Song Wu
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
| | - Jiasheng Wu
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
| | - Yanru Zeng
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
| | - Youchun Li
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Brenda Hunter
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Ricardo A. Dante
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Brian A. Larkins
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, Unites States of America
| | - Rongling Wu
- School of Forestry and Biotechnology, Zhejiang Forestry University, Lin'an, Zhejiang, People's Republic of China
- Department of Statistics, University of Florida, Gainesville, Florida, United States of America
- Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
61
|
Eamens A, Wang MB, Smith NA, Waterhouse PM. RNA silencing in plants: yesterday, today, and tomorrow. PLANT PHYSIOLOGY 2008; 147:456-68. [PMID: 18524877 PMCID: PMC2409047 DOI: 10.1104/pp.108.117275] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/26/2008] [Indexed: 05/17/2023]
Affiliation(s)
- Andrew Eamens
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | |
Collapse
|
62
|
Truernit E, Haseloff J. Arabidopsis thaliana outer ovule integument morphogenesis: ectopic expression of KNAT1 reveals a compensation mechanism. BMC PLANT BIOLOGY 2008; 8:35. [PMID: 18410683 PMCID: PMC2330050 DOI: 10.1186/1471-2229-8-35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/14/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND The Arabidopsis outer ovule integument is a simple two-cell layered structure that grows around the developing embryo and develops into the outer layer of the seed coat. As one of the functions of the seed coat is the protection of the plant embryo, the outer ovule integument is an example for a plant organ whose morphogenesis has to be precisely regulated. RESULTS To better characterise outer ovule integument morphogenesis, we have isolated some marker lines that show GFP expression in this organ. We have used those lines to identify distinct cell types in the outer integument and to demonstrate similarities between leaves and the outer integument. Using confocal microscopy, we showed that cell sizes and shapes differ between the two cell layers of the outer integument. Expression of KNAT1 in the integuments leads to extra cell divisions specifically in the outer layer of the outer integument. This is being compensated for by a decrease of cell volume in this layer, thus showing that mechanisms exist to control proper ovule integument morphogenesis. CONCLUSION The Arabidopsis outer ovule integument can be used as a good model system to study the basic principles of plant organ morphogenesis. This work provides new insights into its development and opens new possibilities for the identification of factors involved in the regulation of cell division and elongation during plant organ growth.
Collapse
Affiliation(s)
- Elisabeth Truernit
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge CB2 3EA, UK
- INRA, Centre de Versailles, Institut Jean-Pierre Bourgin, Laboratoire de Biologie Cellulaire, Route de St-Cyr, 78026 Versailles cedex, France
| | - Jim Haseloff
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge CB2 3EA, UK
| |
Collapse
|
63
|
Mlotshwa S, Pruss GJ, Peragine A, Endres MW, Li J, Chen X, Poethig RS, Bowman LH, Vance V. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One 2008. [PMID: 18335032 DOI: 10.1371/journal.pone.0001755.g004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Dicer-like (DCL) enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA) that triggers silencing into the primary short interfering RNAs (siRNAs) that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR)-dependent pathway that uses the target RNA as substrate to generate secondary siRNAs. Here we report that Arabidopsis DCL2-but not DCL4-is required for transitivity in cell-autonomous, post-transcriptional silencing of transgenes. An insertion mutation in DCL2 blocked sense transgene-induced silencing and eliminated accumulation of the associated RDR-dependent siRNAs. In hairpin transgene-induced silencing, the dcl2 mutation likewise eliminated accumulation of secondary siRNAs and blocked transitive silencing, but did not block silencing mediated by primary siRNAs. Strikingly, in all cases, the dcl2 mutation eliminated accumulation of all secondary siRNAs, including those generated by other DCL enzymes. In contrast, mutations in DCL4 promoted a dramatic shift to transitive silencing in the case of the hairpin transgene and enhanced silencing induced by the sense transgene. Suppression of hairpin and sense transgene silencing by the P1/HC-Pro and P38 viral suppressors was associated with elimination of secondary siRNA accumulation, but the suppressors did not block processing of the stem of the hairpin transcript into primary siRNAs. Thus, these viral suppressors resemble the dcl2 mutation in their effects on siRNA biogenesis. We conclude that DCL2 plays an essential, as opposed to redundant, role in transitive silencing of transgenes and may play a more important role in silencing of viruses than currently thought.
Collapse
Affiliation(s)
- Sizolwenkosi Mlotshwa
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Mlotshwa S, Pruss GJ, Peragine A, Endres MW, Li J, Chen X, Poethig RS, Bowman LH, Vance V. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One 2008; 3:e1755. [PMID: 18335032 PMCID: PMC2262140 DOI: 10.1371/journal.pone.0001755] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/08/2008] [Indexed: 12/29/2022] Open
Abstract
Dicer-like (DCL) enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA) that triggers silencing into the primary short interfering RNAs (siRNAs) that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR)-dependent pathway that uses the target RNA as substrate to generate secondary siRNAs. Here we report that Arabidopsis DCL2–but not DCL4-is required for transitivity in cell-autonomous, post-transcriptional silencing of transgenes. An insertion mutation in DCL2 blocked sense transgene-induced silencing and eliminated accumulation of the associated RDR-dependent siRNAs. In hairpin transgene-induced silencing, the dcl2 mutation likewise eliminated accumulation of secondary siRNAs and blocked transitive silencing, but did not block silencing mediated by primary siRNAs. Strikingly, in all cases, the dcl2 mutation eliminated accumulation of all secondary siRNAs, including those generated by other DCL enzymes. In contrast, mutations in DCL4 promoted a dramatic shift to transitive silencing in the case of the hairpin transgene and enhanced silencing induced by the sense transgene. Suppression of hairpin and sense transgene silencing by the P1/HC-Pro and P38 viral suppressors was associated with elimination of secondary siRNA accumulation, but the suppressors did not block processing of the stem of the hairpin transcript into primary siRNAs. Thus, these viral suppressors resemble the dcl2 mutation in their effects on siRNA biogenesis. We conclude that DCL2 plays an essential, as opposed to redundant, role in transitive silencing of transgenes and may play a more important role in silencing of viruses than currently thought.
Collapse
Affiliation(s)
- Sizolwenkosi Mlotshwa
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Gail J. Pruss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Angela Peragine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Endres
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Junjie Li
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Xuemei Chen
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lewis H. Bowman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Vicki Vance
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
65
|
Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker JC, Zhang S. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. THE PLANT CELL 2008; 20:602-13. [PMID: 18364464 PMCID: PMC2329925 DOI: 10.1105/tpc.108.058032] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/28/2008] [Accepted: 03/06/2008] [Indexed: 05/04/2023]
Abstract
The plant life cycle includes diploid sporophytic and haploid gametophytic generations. Female gametophytes (embryo sacs) in higher plants are embedded in specialized sporophytic structures (ovules). Here, we report that two closely related mitogen-activated protein kinases in Arabidopsis thaliana, MPK3 and MPK6, share a novel function in ovule development: in the MPK6 mutant background, MPK3 is haplo-insufficient, giving female sterility when heterozygous. By contrast, in the MPK3 mutant background, MPK6 does not show haplo-insufficiency. Using wounding treatment, we discovered gene dosage-dependent activation of MPK3 and MPK6. In addition, MPK6 activation is enhanced when MPK3 is null, which may help explain why mpk3(-/-) mpk6(+/-) plants are fertile. Genetic analysis revealed that the female sterility of mpk3(+/-) mpk6(-/-) plants is a sporophytic effect. In mpk3(+/-) mpk6(-/-) mutant plants, megasporogenesis and megagametogenesis are normal and the female gametophyte identity is correctly established. Further analysis demonstrates that the mpk3(+/-) mpk6(-/-) ovules have abnormal integument development with arrested cell divisions at later stages. The mutant integuments fail to accommodate the developing embryo sac, resulting in the embryo sacs being physically restricted and female reproductive failure. Our results highlight an essential function of MPK3 and MPK6 in promoting cell division in the integument specifically during ovule development.
Collapse
Affiliation(s)
- Huachun Wang
- Department of Biochemistry and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Plants control the time at which they flower by integrating environmental cues such as day length and temperature with an endogenous program of development. Flowering time is a quantitative trait and a model for how precision in gene regulation is delivered. In this review, we reveal that flowering time control is particularly rich in RNA processing-based gene regulatory phenomena. We review those factors which function in conserved RNA processing events like alternative 3' end formation, splicing, RNA export and miRNA biogenesis and how they affect flowering time. Likewise, we review the novel plant-specific RNA-binding proteins identified as regulators of flowering time control. In addition, we add to the network of flowering time control pathways, information on alternative processing of flowering time gene pre-mRNAs. Finally, we describe new approaches to dissect the mechanisms which underpin this control.
Collapse
Affiliation(s)
- L C Terzi
- Scottish Crop Research Institute, Invergowrie, UK
| | | |
Collapse
|
67
|
Curtis MD, Grossniklaus U. Molecular control of autonomous embryo and endosperm development. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00497-007-0061-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Abstract
RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.
Collapse
Affiliation(s)
- Yan Ma
- Stanley Ho Centre for Emerging Infectious Diseases, and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | |
Collapse
|
69
|
Langer M, Sniderhan LF, Grossniklaus U, Ray A. Transposon excision from an atypical site: a mechanism of evolution of novel transposable elements. PLoS One 2007; 2:e965. [PMID: 17912344 PMCID: PMC1978519 DOI: 10.1371/journal.pone.0000965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 07/26/2007] [Indexed: 12/04/2022] Open
Abstract
The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic, thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology mediated non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3′ to 5′ trans-esterification as an intermediate, a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome, and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of flanking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations.
Collapse
Affiliation(s)
- Marybeth Langer
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lynn F. Sniderhan
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ueli Grossniklaus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Animesh Ray
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Keck Graduate Institute, Claremont, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
70
|
Willmann MR, Poethig RS. Conservation and evolution of miRNA regulatory programs in plant development. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:503-11. [PMID: 17709279 PMCID: PMC2080797 DOI: 10.1016/j.pbi.2007.07.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/27/2007] [Accepted: 07/09/2007] [Indexed: 05/16/2023]
Abstract
Over the past two years, microarray technologies, large-scale small RNA and whole genome sequencing projects, and data mining have provided a wealth of information about the spectrum of miRNAs and miRNA targets present in different plant species and the alga Chlamydomonas. Such studies have shown that a number of key miRNA regulatory modules for plant development are conserved throughout the plant kingdom, suggesting that these programs were crucial to the colonization of land. New genetic and biochemical studies of miRNA pathways in Arabidopsis, the spatiotemporal expression patterns of several conserved miRNAs and their targets, and the characterization of mutations in Arabidopsis and maize have begun to reveal the functions of these ancient miRNA-regulated developmental programs. In addition to these conserved miRNAs, there are many clade and species-specific miRNAs, which have evolved more recently and whose functions are currently unknown.
Collapse
Affiliation(s)
- Matthew R Willmann
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | |
Collapse
|
71
|
Colmenares SU, Buker SM, Buhler M, Dlakić M, Moazed D. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi. Mol Cell 2007; 27:449-61. [PMID: 17658285 DOI: 10.1016/j.molcel.2007.07.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/21/2007] [Accepted: 07/05/2007] [Indexed: 01/08/2023]
Abstract
The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.
Collapse
|
72
|
Abstract
The discovery of microRNAs in the last decade altered the paradigm that protein coding genes are the only significant components for the regulation of gene networks. Within a short period of time small RNA systems within regulatory networks of eukaryotic cells have been uncovered that will ultimately change the way we infer gene regulation networks from transcriptional profiling data. Small RNAs are involved in the regulation of global activities of genic regions via chromatin states, as inhibitors of 'selfish' sequences (transposons, retroviruses), in establishment or maintenance of tissue/organ identity, and as modulators of the activity of transcription factor as well as 'house keeping' genes. With this chapter we provide an overview of the central aspects of small RNA function in plants and the features that distinguish the different small RNAs. We furthermore highlight the use of computational prediction methods for identification of plant miRNAs/precursors and their targets and provide examples for the experimental validation of small RNA candidates that could represent trans-regulators of downstream genes. Lastly, the emerging concepts of small RNAs as modulators of gene expression constituting systems networks within different cells in a multicellular organism are discussed.
Collapse
Affiliation(s)
- Cameron Johnson
- Plant Biology and Plant Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
73
|
Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A 2006; 103:19593-8. [PMID: 17164336 PMCID: PMC1698440 DOI: 10.1073/pnas.0604627103] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA silencing is an ancient mechanism of gene regulation with important antiviral roles in plants and insects. Although induction of RNA silencing by RNA viruses has been well documented in plants, the interactions between DNA viruses and the host silencing machinery remain poorly understood. We investigate this question with cauliflower mosaic virus (CaMV), a dsDNA virus that expresses its genome through the polycistronic 35S RNA, which carries an unusually extensive secondary structure known as translational leader. We show that CaMV-derived siRNAs accumulate in turnip- and Arabidopsis-infected plants and that the leader is a major, albeit not exclusive, source for those molecules. Biogenesis of leader-derived siRNA requires the coordinated and hierarchical action of the four Arabidopsis Dicer-like (DCL) proteins. Our study also uncovers a "facilitating" role exerted by the microRNA biosynthetic enzyme DCL1 on accumulation of DCL2-, DCL3-, and DCL4-dependent siRNAs derived from the 35S leader. This feature of DCL1 defines a small RNA biosynthetic pathway that might have relevance for endogenous gene regulation. Several leader-derived siRNAs were found to bear near-perfect sequence complementarity to Arabidopsis transcripts, and, using a sensor transgene, we provide direct evidence that at least one of those molecules acts as a bona fide siRNA in infected turnip. Extensive bioinformatics searches identified >100 transcripts potentially targeted by CaMV-derived siRNAs, several of which are effectively down-regulated during infection. The implications of virus-directed silencing of host gene expression are discussed.
Collapse
Affiliation(s)
- Guillaume Moissiard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP. A family of microRNAs present in plants and animals. THE PLANT CELL 2006; 18:3355-69. [PMID: 17189346 PMCID: PMC1785418 DOI: 10.1105/tpc.106.044420] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although many miRNAs are deeply conserved within each kingdom, none are known to be conserved between plants and animals. We identified Arabidopsis thaliana miR854 and miR855, two microRNAs (miRNAs) with multiple binding sites in the 3' untranslated region (3'UTR) of OLIGOURIDYLATE binding PROTEIN1b (At UBP1b), forming miRNA:mRNA interactions similar to those that cause translational repression/mRNA cleavage in animals. At UBP1b encodes a member of a heterogeneous nuclear RNA binding protein (hnRNP) family. The 3'UTR of At UBP1b is sufficient to repress reporter protein expression in tissues expressing miR854 or miR855 (rosette leaves and flowers, respectively) but not where both miRNAs are absent (cauline leaves). Intergenic regions containing sequences closely resembling miR854 are predicted to fold into stable miRNA precursors in animals, and members of the miR854 family are expressed in Caenorhabditis elegans, Mus musculus, and Homo sapiens, all with imperfect binding sites in the 3'UTR of genes encoding the T cell Intracellular Antigen-Related protein, an hnRNP of the UBP1 family. Potential binding sites for miR854 are absent from UBP1-like genes in fungi lacking the miRNA biogenetic machinery. Our results indicate that plants and animals share miRNAs of the miR854 family, suggesting a common origin of these miRNAs as regulators of basal transcriptional mechanisms.
Collapse
Affiliation(s)
- Mario Arteaga-Vázquez
- Laboratory of Reproductive Development and Apomixis, Centro de Investigación y Estudios Avanzados, CP 36 500, Irapuato Guanajuato, Mexico
| | | | | |
Collapse
|
75
|
Berger F, Grini PE, Schnittger A. Endosperm: an integrator of seed growth and development. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:664-70. [PMID: 17011228 DOI: 10.1016/j.pbi.2006.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/20/2006] [Indexed: 05/08/2023]
Abstract
Plant reproduction relies on interactions between parental and zygotic components. Elaborate reciprocal signaling pathways enable coordination of the genetic programs between these components. A first and important step in this communication is the tight control of cell cycle events in the gametes prior to fertilization. This prepares for coordinated fertilization and the initiation of seed development. The dialog between the various actors of reproduction extends after fertilization, with the endosperm taking a central role. Importantly, the endosperm mediates a maternal input that is based on memory of the transcriptional states of imprinted genes, which is crucial for harmonious seed growth. Our current knowledge suggests that the endosperm is an integrator of the different components and genetic programs that are involved in seed development.
Collapse
Affiliation(s)
- Frédéric Berger
- Temasek Lifescience Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore.
| | | | | |
Collapse
|
76
|
Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversification of Dicers in plants. FEBS Lett 2006; 580:2442-50. [PMID: 16638569 DOI: 10.1016/j.febslet.2006.03.072] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/28/2006] [Indexed: 12/30/2022]
Abstract
Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants ( approximately 200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots.
Collapse
Affiliation(s)
- Rogerio Margis
- CSIRO Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
77
|
Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci U S A 2005; 102:17531-6. [PMID: 16293693 PMCID: PMC1297679 DOI: 10.1073/pnas.0508418102] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified mutant alleles of two sporophytically acting genes, HAIKU2 (IKU2) and MINISEED3 (MINI3). Homozygotes of these alleles produce a small seed phenotype associated with reduced growth and early cellularization of the endosperm. This phenotype is similar to that described for another seed size gene, IKU1. MINI3 encodes WRKY10, a WRKY class transcription factor. MINI3 promoter::GUS fusions show the gene is expressed in pollen and in the developing endosperm from the two nuclei stage at approximately 12 hr postfertilization to endosperm cellularization at approximately 96 hr. MINI3 is also expressed in the globular embryo but not in the late heart stage of embryo development. The early endosperm expression of MINI3 is independent of its parent of origin. IKU2 encodes a leucine-rich repeat (LRR) KINASE (At3g19700). IKU2::GUS has a similar expression pattern to that of MINI3. The patterns of expression of the two genes and their similar phenotypes indicate they may operate in the same genetic pathway. Additionally, we found that both MINI3 and IKU2 showed decreased expression in the iku1-1 mutant. IKU2 expression was reduced in a mini3-1 background, whereas MINI3 expression was unaltered in the iku2-3 mutant. These data suggest the successive action of the three genes IKU1, IKU2, and MINI3 in the same pathway of seed development.
Collapse
Affiliation(s)
- Ming Luo
- Commonwealth Scientific and Industrial Research Organization Plant Industry, GPO BOX 1600, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
78
|
Mlotshwa S, Schauer SE, Smith TH, Mallory AC, Herr JM, Roth B, Merchant DS, Ray A, Bowman LH, Vance VB. Ectopic DICER-LIKE1 expression in P1/HC-Pro Arabidopsis rescues phenotypic anomalies but not defects in microRNA and silencing pathways. THE PLANT CELL 2005; 17:2873-85. [PMID: 16214897 PMCID: PMC1276016 DOI: 10.1105/tpc.105.036608] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Expression of the viral silencing suppressor P1/HC-Pro in plants causes severe developmental anomalies accompanied by defects in both short interfering RNA (siRNA) and microRNA (miRNA) pathways. P1/HC-Pro transgenic lines fail to accumulate the siRNAs that mediate RNA silencing and are impaired in both miRNA processing and function, accumulating abnormally high levels of miRNA/miRNA* processing intermediates as well as miRNA target messages. Both miRNA and RNA silencing pathways require participation of DICER-LIKE (DCL) ribonuclease III-like enzymes. Here, we investigate the effects of overexpressing DCL1, one of four Dicers in Arabidopsis thaliana, on P1/HC-Pro-induced defects in development and small RNA metabolism. Expression of a DCL1 cDNA transgene (35S:DCL1) produced a mild gain-of-function phenotype and largely rescued dcl1 mutant phenotypes. The 35S:DCL1 plants were competent for virus-induced RNA silencing but were impaired in transgene-induced RNA silencing and in the accumulation of some miRNAs. Ectopic DCL1 largely alleviated developmental anomalies in P1/HC-Pro plants but did not correct the P1/HC-Pro-associated defects in small RNA pathways. The ability of P1/HC-Pro plants to suppress RNA silencing and the levels of miRNAs, miRNA*s, and miRNA target messages in these plants were essentially unaffected by ectopic DCL1. These data suggest that P1/HC-Pro defects in development do not result from general impairments in small RNA pathways and raise the possibility that DCL1 participates in processes in addition to miRNA biogenesis.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Cell Cycle Proteins/genetics
- Cysteine Endopeptidases/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant/genetics
- Gene Silencing/physiology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mutation/genetics
- Phenotype
- Plant Viruses/genetics
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Ribonuclease III/genetics
- Signal Transduction/genetics
- Transgenes/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Sizolwenkosi Mlotshwa
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Qi Y, Denli AM, Hannon GJ. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 2005; 19:421-8. [PMID: 16061187 DOI: 10.1016/j.molcel.2005.06.014] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/30/2005] [Accepted: 06/03/2005] [Indexed: 01/01/2023]
Abstract
In plants, the RNA silencing machinery responds to numerous inputs, including viral infection, microRNAs, and endogenous siRNAs that may act both in trans and in cis. Additionally, the full spectrum of silencing outcomes has been demonstrated in plants, ranging from mRNA degradation to repression at the level of protein synthesis to chromatin remodeling. Genetic studies in Arabidopsis have indicated that individual response pathways are functionally compartmentalized. However, to date, no biochemical systems have been available to investigate the roles of specific proteins within silencing pathways or the effects of selected mutations on the biochemical activity of those components. Here, we describe the generation of Arabidopsis extracts that reproduce many aspects of RNA silencing reactions in vitro. We find that specific members of the Dicer and Argonaute families have distinct biochemical activities, which provides insight into their roles within RNA silencing pathways in Arabidopsis.
Collapse
Affiliation(s)
- Yijun Qi
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
80
|
Yoshikawa M, Peragine A, Park MY, Poethig RS. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 2005; 19:2164-75. [PMID: 16131612 PMCID: PMC1221887 DOI: 10.1101/gad.1352605] [Citation(s) in RCA: 531] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Arabidopsis genes, TAS2 and TAS1a, produce structurally similar noncoding transcripts that are transformed into short (21-nucleotide [nt]) and long (24-nt) siRNAs by RNA silencing pathways. Some of these short siRNAs direct the cleavage of protein-coding transcripts, and thus function as trans-acting siRNAs (ta-siRNAs). Using genetic analysis, we defined the pathway by which ta-siRNAs and other short siRNAs are generated from these loci. This process is initiated by the miR173-directed cleavage of a primary poly(A) transcript. The 3' fragment is then transformed into short siRNAs by the sequential activity of SGS3, RDR6, and DCL4: SGS3 stabilizes the fragment, RDR6 produces a complementary strand, and DCL4 cleaves the resulting double-stranded molecule into short siRNAs, starting at the end with the miR173 cleavage site and proceeding in 21-nt increments from this point. The 5' cleavage fragment is also processed by this pathway, but less efficiently. The DCL3-dependent pathway that generates long siRNAs does not require miRNA-directed cleavage and plays a minor role in the silencing of these loci. Our results define the core components of a post-transcriptional gene silencing pathway in Arabidopsis and reveal some of the features that direct transcripts to this pathway.
Collapse
Affiliation(s)
- Manabu Yoshikawa
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | |
Collapse
|
81
|
Köhler C, Grossniklaus U. Seed development and genomic imprinting in plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:237-62. [PMID: 15881898 DOI: 10.1007/3-540-27310-7_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genomic imprinting refers to an epigenetic phenomenon where the activity of an allele depends on its parental origin. Imprinting at individual genes has only been described in mammals and seed plants. We will discuss the role imprinted genes play in seed development and compare the situation in plants with that in mammals. Interestingly, many imprinted genes appear to control cell proliferation and growth in both groups of organisms although imprinting in plants may also be involved in the cellular differentiation of the two pairs of gametes involved in double fertilization. DNA methylation plays some role in the control of parent-of-origin-specific expression in both mammals and plants. Thus, although imprinting evolved independently in mammals and plants, there are striking similarities at the phenotypic and possibly also mechanistic level.
Collapse
Affiliation(s)
- Claudia Köhler
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
82
|
Abstract
MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression by promoting the degradation of transcribed messages or by inhibiting translation. Although bioinformatic approaches suggest that miRNAs may regulate the expression of a large fraction of the genome, the determination of miRNA gene targets and biological functions has been comparatively limited. Emerging studies suggest that many miRNAs may participate in human disease, including oncogenesis; but for the most part, the observations have been correlative. A recent study by Johnson and colleagues indicates that the let-7 miRNA negatively regulates the oncogenic family of Ras guanosine triphosphatases in both Caenorhabditis elegans and human tumor cell lines, suggesting that let-7 may act as a tumor suppressor. This work raises several important questions: Can other miRNAs act as tumor suppressors or oncogenes? Is miRNA deregulation a critical aspect of tumor development and maintenance? A number of recent studies have begun to address some of these functional questions, providing the field with a greater understanding of the role of miRNAs in cancer.
Collapse
Affiliation(s)
- John P Morris
- UCSF Diabetes Center, Department of Microbiology and Immunology, University of California, San Francisco, CA 94122-0534, USA
| | | |
Collapse
|
83
|
Schwach F, Vaistij FE, Jones L, Baulcombe DC. An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. PLANT PHYSIOLOGY 2005; 138:1842-52. [PMID: 16040651 PMCID: PMC1183376 DOI: 10.1104/pp.105.063537] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 05/03/2023]
Abstract
One of the functions of RNA silencing in plants is antiviral defense. A hallmark of RNA silencing is spreading of the silenced state through the plant. Little is known about the nature of the systemic silencing signal and the proteins required for its production, transport, and reception in plant tissues. Here, we show that the RNA-dependent RNA polymerase RDR6 in Nicotiana benthamiana is involved in defense against potato virus X at the level of systemic spreading and in exclusion of the virus from the apical growing point. It has no effect on primary replication and cell-to-cell movement of the virus and does not contribute significantly to the formation of virus-derived small interfering (si) RNA in a fully established potato virus X infection. In grafting experiments, the RDR6 homolog was required for the ability of a cell to respond to, but not to produce or translocate, the systemic silencing signal. Taking these findings together, we suggest a model of virus defense in which RDR6 uses incoming silencing signal to generate double-stranded RNA precursors of secondary siRNA. According to this idea, the secondary siRNAs mediate RNA silencing as an immediate response that slows down the systemic spreading of the virus into the growing point and newly emerging leaves.
Collapse
Affiliation(s)
- Frank Schwach
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
84
|
Abstract
Considering the intense genetic efforts applied to understanding development, it is surprising that a relatively large class of regulatory genes has newly surfaced. The first microRNA gene and its developmental role were described more than ten years ago, but only recently have we fully appreciated the broad and abundant presence of such genes. MicroRNAs are approximately 22 nucleotide RNAs that use antisense complementarity to inhibit expression of specific mRNAs. Recent studies of restricted expression patterns and functional roles have implicated specific microRNAs in complex genetic pathways regulating embryogenesis, hematopoiesis, neuronal differentiation and Hox-mediated development.
Collapse
Affiliation(s)
- Amy E Pasquinelli
- Molecular Biology Section, Division of Biology 0349, Bonner Hall Rm. 4118, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA.
| | | | | |
Collapse
|
85
|
Salmi ML, Bushart TJ, Stout SC, Roux SJ. Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. PLANT PHYSIOLOGY 2005; 138:1734-45. [PMID: 15965014 PMCID: PMC1176442 DOI: 10.1104/pp.105.062851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Analysis of an expressed sequence tag library with more than 5,000 sequences from spores of the fern Ceratopteris richardii reveals that more than 3,900 of them represent distinct genes, and almost 70% of these have significant similarity to Arabidopsis (Arabidopsis thaliana) genes. Eight genes are common between three very different dormant plant systems, Ceratopteris spores, Arabidopsis seeds, and Arabidopsis pollen. We evaluated the pattern of mRNA abundance over the first 48 h of spore development using a microarray of cDNAs representing 3,207 distinct genes of C. richardii and determined the relative levels of RNA abundance for 3,143 of these genes using a Bayesian method of statistical analysis. More than 900 of them (29%) show a significant change between any of the five time points analyzed, and these have been annotated based on their sequence similarity with the Arabidopsis proteome. Novel data arising from these analyses identify genes likely to be critical for the germination and subsequent early development of diverse cells and tissues emerging from dormancy.
Collapse
Affiliation(s)
- Mari L Salmi
- Molecular Cell and Developmental Biology, University of Texas, Austin, Texas 78751, USA
| | | | | | | |
Collapse
|
86
|
Kidner CA, Martienssen RA. The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 2005; 280:504-17. [PMID: 15882589 DOI: 10.1016/j.ydbio.2005.01.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 01/06/2005] [Accepted: 01/31/2005] [Indexed: 01/11/2023]
Abstract
The ARGONAUTE gene family is involved in the regulation of gene expression via the RNAi Silencing Complex (RISC). microRNA (miRNA) are 20-22bp RNAs that direct RISC to target genes. Several miRNA have been characterized in plants. Their roles include control of flowering time, floral organ identity, cell division patterns, and leaf polarity. ARGONAUTE1 (AGO1) is required for stem cell function and organ polarity, as is the closely related protein PINHEAD/ZWILLE (PNH/ZLL). Through phenotypic and double mutant analysis, we show that AGO1 regulates stem cell function via SHOOT MERISTEMLESS (STM). CUPSHAPED COTYLEDONS1 and 2 (CUC1 and CUC2) positively regulate STM and are targets of miRNA. The effect of AGO1 on leaf polarity is dependent, in part, on its role in meristem function revealed by interactions with ASYMMETRIC LEAVES1(AS1). AGO1 is required for full expression of LEAFY (LFY), APETALA1 (AP1) and AGAMOUS (AG). Flowering time is unaffected but floral meristem identity is partially restored in a curlyleaf (clf) background and this is not due to clf's affects on AG expression. CLF is over expressed in ago1, showing that the RNAi pathway regulates polycomb-type epigenetic modifiers.
Collapse
|
87
|
Grimanelli D, Perotti E, Ramirez J, Leblanc O. Timing of the maternal-to-zygotic transition during early seed development in maize. THE PLANT CELL 2005; 17:1061-72. [PMID: 15749756 PMCID: PMC1087986 DOI: 10.1105/tpc.104.029819] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/09/2005] [Indexed: 05/18/2023]
Abstract
In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. Recent data in plants also suggest maternal control over early seed development, but the actual timing of zygotic genome activation is unclear. Here, we analyzed the timing of the maternal-to-zygotic transition during early Zea mays seed development. We show that for 16 genes expressed during early seed development, only maternally inherited alleles are detected during 3 d after fertilization in both the embryo and the endosperm. Microarray analyses of precocious embryonic development in apomictic hybrids between maize and its wild relative, Tripsacum, demonstrate that early embryo development occurs without significant quantitative changes to the transcript population in the ovule before fertilization. Precocious embryo development is also correlated with a higher proportion of polyadenylated mRNA in the ovules. Our data suggest that the maternal-to-zygotic transition occurs several days after fertilization. By contrast, novel transcription accompanies early endosperm development, indicating that different mechanisms are involved in the initiation of endosperm and embryo development.
Collapse
Affiliation(s)
- Daniel Grimanelli
- Institut de Recherche pour le Développement, Unité Mixte de Recherche 5096, 34394 Montpellier, France.
| | | | | | | |
Collapse
|
88
|
Watanabe T, Takeda A, Mise K, Okuno T, Suzuki T, Minami N, Imai H. Stage-specific expression of microRNAs during Xenopus development. FEBS Lett 2005; 579:318-24. [PMID: 15642338 DOI: 10.1016/j.febslet.2004.11.067] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 11/17/2004] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) repress target genes at the post-transcriptional level and play important roles in development and cell lineage decision. However, in vertebrates, both the targets of miRNAs and their expression profile during development are poorly understood. Here, we report the detailed expression profiles of miRNAs from oocyte stage to tadpole stage in Xenopus laevis. As development proceeds, a variety of miRNAs start to be expressed. Most miRNAs emerged at a specific stage and were continuously expressed until the tadpole stage. In addition, we identified a novel miRNA that was expressed only at specific stages of development and that is likely to have roles in midblastula transition.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Kidner CA, Martienssen RA. The developmental role of microRNA in plants. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:38-44. [PMID: 15653398 DOI: 10.1016/j.pbi.2004.11.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded RNA molecules of around 22 nucleotides (nt) in length that are associated with the RNA-induced silencing complex (RISC). They play an important role in plant development, either by targeting mRNA for cleavage or by inhibiting translation. Over the past year, the list of known miRNAs, confirmed targets and developmental effects has expanded, as has the realization that they are conserved during evolution and that small RNAs can play a direct role in cell-cell signaling.
Collapse
Affiliation(s)
- Catherine A Kidner
- Institute of Molecular Plant Sciences, Edinburgh University, EH9 3JR, UK
| | | |
Collapse
|
90
|
Abstract
Successful embryonic development in plants, as in animals, requires a strict coordination of cell proliferation, cell differentiation, and cell-death programs. The role of cell death is especially critical for the establishment of polarity at early stages of plant embryogenesis, when the differentiation of the temporary structure, the suspensor, is followed by its programmed elimination. Here, we review the emerging knowledge of this and other functions of programmed cell death during plant embryogenesis, as revealed by developmental analyses of Arabidopsis embryo-specific mutants and gymnosperm (spruce and pine) model embryonic systems. Cell biological studies in these model systems have helped to identify and order the cellular processes occurring during self-destruction of the embryonic cells. While metazoan embryos can recruit both apoptotic and autophagic cell deaths, the ultimate choice depending on the developmental task and conditions, plant embryos use autophagic cell disassembly as a single universal cell-death pathway. Dysregulation of this pathway leads to aberrant or arrested embryo development. We address the role of distinct cellular components in the execution of the autophagic cell death, and outline an overall mechanistic view of how cells are eliminated during plant embryonic pattern formation. Finally, we discuss the possible roles of some of the candidate plant cell-death proteins in the regulation of developmental cell death.
Collapse
Affiliation(s)
- Peter V Bozhkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
91
|
Abstract
RNA silencing can reduce the expression of specific genes through posttranscriptional gene silencing, the microRNA pathway, and also through transcriptional gene silencing. Posttranscriptional gene silencing also acts as an antivirus mechanism. By suppressing this antivirus defense mechanism, viruses affect all three silencing pathways in addition to the intercellular signaling mechanism that transmits RNA-based messages throughout the plant. Productive virus infection may therefore disrupt the normal gene expression patterns in plants, resulting, at least in part, in a symptomatic phenotype. This review examines the cellular world that viruses exploit to provide some insight into the molecular interactions that occur during the virus infection cycle and how these produce the symptoms on infected plants.
Collapse
Affiliation(s)
- Robin MacDiarmid
- The Horticulture and Food Research Institute of New Zealand Ltd., Auckland, New Zealand.
| |
Collapse
|
92
|
Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2005; 57:173-88. [PMID: 15821876 DOI: 10.1007/s11103-004-6853-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 11/29/2004] [Indexed: 05/19/2023]
Abstract
Proteins that specifically bind double-stranded RNA (dsRNA) are involved in the regulation of cellular signaling events and gene expression, and are characterized by a conserved dsRNA-binding motif (dsRBM). Here we report the biochemical properties of nine such gene products, each containing one or two dsRBMs: four Arabidopsis Dicer-like proteins (DCL1-4), Arabidopsis HYL1 and four of its homologs (DRB2, DRB4, DRB5 and OsDRB1). DCL1, DCL3, HYL1 and the four HYL1 homologs exhibit significant dsRNA-binding activity, indicating that these proteins are involved in RNA metabolism. The dsRBMs from dsRBM-containing proteins (dsRBPs) also function as a protein-protein interaction domain and homo- and heterodimerization are essential for biological functioning of these proteins. We show that DRB4 interacts specifically with DCL4, and HYL1 most strongly interacts with DCL1. These results indicate that each HYL1/DRB family protein interacts with one specific partner among the four Dicer-like proteins. Localization studies using GFP fusion proteins demonstrate that DCL1, DCL4, HYL1 and DRB4 localize in the nucleus, while DRB2 is present in the cytoplasm. Subcellular localizations of HYL1, DRB4, DCL1 and DCL4 further strengthen the notion that HYL1 and DCL1, and DRB4 and DCL4, exist as complexes. The presented data suggest that each member of the HYL1/DRB protein family may individually modulate Dicer function through heterodimerization with a Dicer-like protein in vivo.
Collapse
Affiliation(s)
- Akihiro Hiraguri
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Geley S, Müller C. RNAi: ancient mechanism with a promising future. Exp Gerontol 2004; 39:985-98. [PMID: 15236758 DOI: 10.1016/j.exger.2004.03.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 03/19/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
RNA interference (RNAi) is a gene silencing mechanism that has been conserved in evolution from yeast to man. Double stranded RNA, which is either expressed by cellular genes for small non-coding RNAs, by parasitic nucleic acids, such as viruses or transposons, or is expressed as an experimental tool, becomes processed into small RNAs, which induce gene silencing by a variety of different means. RNAi-induced gene silencing controls gene expression at all levels, including transcription, mRNA stability and translation. We are only beginning to understand the physiological roles of the RNAi pathway and the function of the many small non-coding RNA species, which are found in eukaryotic genomes. Here we review the known functions of genes in RNAi in various species, the experimental use and design of small RNAs as a genetic tool to dissect the function of mammalian genes and their potential as therapeutic agents to modulate gene expression in patients.
Collapse
Affiliation(s)
- Stephan Geley
- Institute of Pathophysiology, University of Innsbruck, Fritz-Pregl-Str.3, A-6020, Austria.
| | | |
Collapse
|
94
|
Abstract
Small RNAs serve as the specificity determinant for a collection of regulatory mechanisms known as RNA silencing. Plants use these mechanisms to control the expression of endogenous genes and to suppress unwanted foreign nucleic acids. Several gene families implicated in silencing have undergone expansion and evidence exists for multiple RNA silencing pathways. Recent progress in defining the components of a number of these pathways is examined here.
Collapse
Affiliation(s)
- A J Herr
- Sainsbury Laboratory, John Innes Centre, Norwich, UK.
| |
Collapse
|
95
|
Ingram GC. Between the sheets: inter-cell-layer communication in plant development. Philos Trans R Soc Lond B Biol Sci 2004; 359:891-906. [PMID: 15306405 PMCID: PMC1693377 DOI: 10.1098/rstb.2003.1356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of plant meristems and embryos are arranged in an organized, and sometimes extremely beautiful, layered pattern. This pattern is maintained by the controlled orientation of cell divisions within layers. However, despite this layered structure, cell behaviour during plant development is not lineage dependent, and does not occur in a mosaic fashion. Many studies, both classical and recent, have shown that plant cell identity can be re-specified according to position, allowing plants to show remarkable developmental plasticity. However, the layered structure of meristems and the implications of this during plant development, remain subjects of some speculation. Of particular interest is the question of how cell layers communicate, and how communication between cell layers could allow coordinated developmental processes to take place. Recent research has uncovered several examples both of the molecular mechanisms by which cell layers can communicate, and of how this communication can infringe on developmental processes. A range of examples is used to illustrate the diversity of mechanisms potentially implicated in cell-layer communication during plant development.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
96
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
97
|
Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. THE PLANT CELL 2004; 16:2001-19. [PMID: 15258262 PMCID: PMC519194 DOI: 10.1105/tpc.104.022830] [Citation(s) in RCA: 1285] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/03/2004] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
98
|
Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:1206-20. [PMID: 15266054 PMCID: PMC519041 DOI: 10.1104/pp.104.045179] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/19/2004] [Accepted: 05/21/2004] [Indexed: 05/18/2023]
Abstract
A long-term goal of Arabidopsis research is to define the minimal gene set needed to produce a viable plant with a normal phenotype under diverse conditions. This will require both forward and reverse genetics along with novel strategies to characterize multigene families and redundant biochemical pathways. Here we describe an initial dataset of 250 EMB genes required for normal embryo development in Arabidopsis. This represents the first large-scale dataset of essential genes in a flowering plant. When compared with 550 genes with other knockout phenotypes, EMB genes are enriched for basal cellular functions, deficient in transcription factors and signaling components, have fewer paralogs, and are more likely to have counterparts among essential genes of yeast (Saccharomyces cerevisiae) and worm (Caenorhabditis elegans). EMB genes also represent a valuable source of plant-specific proteins with unknown functions required for growth and development. Analyzing such unknowns is a central objective of genomics efforts worldwide. We focus here on 34 confirmed EMB genes with unknown functions, demonstrate that expression of these genes is not embryo-specific, validate a strategy for identifying interacting proteins through complementation with epitope-tagged proteins, and discuss the value of EMB genes in identifying novel proteins associated with important plant processes. Based on sequence comparison with essential genes in other model eukaryotes, we identify 244 candidate EMB genes without paralogs that represent promising targets for reverse genetics. These candidates should facilitate the recovery of additional genes required for seed development.
Collapse
Affiliation(s)
- Iris Tzafrir
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
McHale NA, Koning RE. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. THE PLANT CELL 2004; 16:1730-40. [PMID: 15194817 PMCID: PMC514157 DOI: 10.1105/tpc.021816] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 04/16/2004] [Indexed: 05/18/2023]
Abstract
Leaf initiation in the peripheral zone of the shoot apical meristem involves a transition to determinate cell fate, but indeterminacy is maintained in the vascular cambium, a tissue critical to the continuous growth of vascular tissue in leaves and stems. We show that the orientation of cambial growth is regulated by microRNA (miRNA)-directed cleavage of mRNA from the Nicotiana sylvestris ortholog of PHAVOLUTA (NsPHAV). Loss of miRNA regulation in semidominant phv1 mutants misdirects lateral growth of leaf midveins and stem vasculature away from the shoot, disrupting vascular connections in stem nodes. The phv1 mutation also expands the central zone in vegetative and inflorescence meristems, implicating miRNA and NsPHAV in regulation of meristem structure. In flowers, phv1 causes reiteration of carpel initiation, a phenocopy for loss of CARPEL FACTORY/DICER LIKE1, indicating that miRNA is critical to the termination of indeterminacy in floral meristems. Results point to a common role for miRNA in spatial and temporal restriction of HD-ZIPIII mediated indeterminacy in apical and vascular meristems.
Collapse
Affiliation(s)
- Neil A McHale
- Department of Biochemistry and Genetics, Connecticut Agricultural Experiment Station, New Haven 06504, USA.
| | | |
Collapse
|
100
|
Oudejans CBM, Mulders J, Lachmeijer AMA, van Dijk M, Könst AAM, Westerman BA, van Wijk IJ, Leegwater PAJ, Kato HD, Matsuda T, Wake N, Dekker GA, Pals G, ten Kate LP, Blankenstein MA. The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod 2004; 10:589-98. [PMID: 15208369 DOI: 10.1093/molehr/gah080] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
By affected sib-pair linkage analysis of 24 families with pre-eclampsia, we confirm a susceptibility locus on chromosome 10q22.1 in Dutch females: a multipoint non-parametric linkage score of 3.6 near marker D10S1432 was obtained. Haplotype analysis showed a parent-of-origin effect: maximal allele sharing in the affected sibs was found for maternally derived alleles in all families, but not for the paternally derived alleles. As matrilineal inheritance suggests the presence of maternally expressed imprinted genes, while imprinting operates predominantly in (extra)embryonic tissues, all genes (n=132) known on 10q22 between GATA121A08 and D10S580 were screened for seven sequence-related features associated with imprinting and subsequently tested for expression in first trimester placenta. Placental expression of genes selected in this way (n=55) was compared with expression in androgenetic placentas of identical gestational age. Two regions on 10q22 were identified with developmentally co-repressed genes with non-random chromosomal distribution. Interestingly, these two clusters, near CTNNA3 and KCNMA1 and each containing five genes with down-regulated expression in androgenetic placentas, coincided with the regions with maximal maternal allele sharing seen in the pre-eclamptic sisters. Our linkage and expression data are compatible with the concept that pre-eclampsia involves maternally expressed imprinted genes that operate in the first trimester placenta.
Collapse
Affiliation(s)
- Cees B M Oudejans
- Departments of Clinical Chemistry and Clinical Genetics and Human Genetics, VU University Medical Center, 1081 HV Amsterdam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|