51
|
Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules 2021; 26:molecules26030760. [PMID: 33540638 PMCID: PMC7867258 DOI: 10.3390/molecules26030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Humic substances (HSs) are chromogenic organic assemblies that are widespread in the environment, including soils, oceans, rivers, and coal-related resources. HSs are known to directly and indirectly stimulate plants based on their versatile organic structures. Their beneficial activities have led to the rapid market growth of agronomical HSs. However, there are still several technical issues and concerns to be addressed to advance sustainable agronomical practices for HSs and allow growers to use HSs reliably. First, it is necessary to elucidate the evident structure (component)–function relationship of HSs. Specifically, the core structural features of HSs corresponding to crop species, treatment method (i.e., soil, foliar, or immersion applications), and soil type-dependent plant stimulatory actions as well as specific plant responses (e.g., root genesis and stress resistance) should be detailed to identify practical crop treatment methodologies. These trials must then be accompanied by means to upgrade crop marketability to help the growers. Second, structural differences of HSs depending on extraction sources should be compared to develop quality control and assurance measures for agronomical uses of HSs. In particular, coal-related HSs obtainable in bulk amounts for large farmland applications should be structurally and functionally distinguishable from other natural HSs. The diversity of organic structures and components in coal-based HSs must thus be examined thoroughly to provide practical information to growers. Overall, there is a consensus amongst researchers that HSs have the potential to enhance soil quality and crop productivity, but appropriate research directions should be explored for growers’ needs and farmland applications.
Collapse
|
52
|
Jeong HJ, Oh MS, Rehman JU, Yoon HY, Kim JH, Shin J, Shin SG, Bae H, Jeon JR. Effects of Microbes from Coal-Related Commercial Humic Substances on Hydroponic Crop Cultivation: A Microbiological View for Agronomical Use of Humic Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:805-814. [PMID: 33249847 DOI: 10.1021/acs.jafc.0c05474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, coal-related humic substances (HSs) were examined to confirm whether sterilization treatments induce their inferior ability to stimulate lettuce in hydroponic cultivations. Interestingly, a drastic reduction in both lettuce biomass and microbial colony-forming units of the crop culture solutions was observed when the autoclaved HSs were treated. Some microbial genera (i.e., Bacillus and Aspergillus) identifiable in the bare HS-treated hydroponic systems were able to be isolated by direct inoculation of bare HS powders on conventional microbial nutrients, supporting that flourishing microbes in the hydroponic cultivations derive from bare HSs-treated. Moreover, coincubation of some isolated bacterial and fungal strains (i.e., Bacillus and Aspergillus genera) from HSs with lettuce resulted in a significant increase in plant biomass and enhanced resistance to NaCl-related abiotic stresses. Microbial volatile organic compounds renowned for plant stimulation were detected by using solid-phase microextraction coupled with gas chromatography-mass spectrometry. It was finally confirmed that the isolates are capable of utilizing carbon substrates such as pectin and tween 20 or 40, which are relevant to those of microbes isolated from peat and leonardite (i.e., HS extraction sources). Overall, our results suggest that microbiological factors could be considered when commercial coal-related HSs are applied in hydroponic crop cultivations.
Collapse
Affiliation(s)
- Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seung Oh
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Hwan Kim
- Advanced Geo-materials R&D Department, Korea Institute of Geoscience and Mineral Resources, Pohang Branch, Pohang 37559, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Hyomin Bae
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
53
|
Effectiveness of Humic Substances and Phenolic Compounds in Regulating Plant-Biological Functionality. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10101553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significant benefit of soil organic matter (SOM) to crop productivity is scientifically well documented. The main constituents and active fractions of SOM are humic substances (HS) and phenolic compounds. Since both these two components strongly impact plant–soil relationship, it is importantly from an ecological point of view to discriminate their biological effects and relating them to their composition. In this study we compared the biological effects of HS, and the soil water soluble phenols (SWSP) on growth, antioxidant activities, carbohydrates, proteins, phenols, and vitamins of Pinus laricio callus. Each extract was assessed for the content of low molecular weight organic acids, soluble carbohydrates, fatty acids, and phenolic acids. Moreover, Fourier transform infrared (FT-IR) and surface-enhanced Raman scattering (SERS) spectroscopies were applied to study their molecular structure. The results showed that HS produced better callus growth compared to the control and SWSP. Carbohydrates decreased in presence of HS while proteins, vitamin C and E increased. In contrast, in callus treated with SWSP the amount of glucose and fructose increased as well as all the antioxidant activities. The data evidenced that HS rich in tartaric and fatty acids had beneficial effects on callus growth contrary to soil water-soluble phenols rich in aldehydes, and syringic, ferulic, and benzoic acids.
Collapse
|
54
|
Leite JM, Pitumpe Arachchige PS, Ciampitti IA, Hettiarachchi GM, Maurmann L, Trivelin PCO, Prasad PVV, Sunoj SVJ. Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane ( Saccharum officinarum L.). Heliyon 2020; 6:e05100. [PMID: 33117897 PMCID: PMC7581923 DOI: 10.1016/j.heliyon.2020.e05100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/18/2019] [Accepted: 09/25/2020] [Indexed: 11/27/2022] Open
Abstract
Humic substances (HS) and humic acids (HA) are proven to enhance nutrient uptake and growth in plants. Foliar application of urea combined with HS and HA offers an alternative strategy to increase nitrogen use efficiency (NUE). The objective of this study was to understand the effects of foliar application of HA and HS along with urea on NUE and response of different biometric, biochemical and physiological traits of sugarcane with respect to cultivar, mode of foliar application, geographic location and intervals of foliar application. To study this, two different independent Experiments were conducted in green house facilities at two different agro-climatic zones (USA and Brazil) using two different predominant varieties, modes and intervals of foliar applications. The three different foliar applications used in this study were (1) urea (U), (2) mixture of urea and HS (U+HS) and (3) HA (U+HA). In both Experiments, 15N (nitrogen isotope) recovery or NUE was higher in U+HS followed by U+HA. However, magnitude of NUE changed according to the differences in two Experiments. Results showed that foliar application of U+HS and U+HA was rapidly absorbed and stored in the form of protein and starch. Also induced changes in photosynthesis, intrinsic water use efficiency, protein, total soluble sugars and starch signifying a synergistic effect of U+HS and U+HA on carbon and nitrogen metabolism. These results showed promising use of HS and HA with urea to improve NUE in sugarcane compared to using the urea alone. Simultaneously, mode, quantity, and interval of foliar application should be standardized based on the geographic locations and varieties to optimize the NUE.
Collapse
Affiliation(s)
- Jose M Leite
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA.,Department of Soil Science, University of Sao Paulo, Piracicaba, Brazil
| | | | | | | | - Leila Maurmann
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Paulo C O Trivelin
- Laboratory of Stable Isotopes, University of Sao Paulo, Piracicaba, Brazil
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - S V John Sunoj
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
55
|
Cha JY, Kang SH, Ali I, Lee SC, Ji MG, Jeong SY, Shin GI, Kim MG, Jeon JR, Kim WY. Humic acid enhances heat stress tolerance via transcriptional activation of Heat-Shock Proteins in Arabidopsis. Sci Rep 2020; 10:15042. [PMID: 32929162 PMCID: PMC7490348 DOI: 10.1038/s41598-020-71701-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Department of Agricultural Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Imdad Ali
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Cheol Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Department of Agricultural Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
56
|
Interaction between Humic Substances and Plant Hormones for Phosphorous Acquisition. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) deficiency is a major constraint in highly weathered tropical soils. Although phosphorous rock reserves may last for several hundred years, there exists an urgent need to research efficient P management for sustainable agriculture. Plant hormones play an important role in regulating plant growth, development, and reproduction. Humic substances (HS) are not only considered an essential component of soil organic carbon (SOC), but also well known as a biostimulant which can perform phytohormone-like activities to induce nutrient uptake. This review paper presents an overview of the scientific outputs in the relationship between HS and plant hormones. Special attention will be paid to the interaction between HS and plant hormones for nutrient uptake under P-deficient conditions.
Collapse
|
57
|
Galatro A, Ramos-Artuso F, Luquet M, Buet A, Simontacchi M. An Update on Nitric Oxide Production and Role Under Phosphorus Scarcity in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:413. [PMID: 32351528 PMCID: PMC7174633 DOI: 10.3389/fpls.2020.00413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 05/03/2023]
Abstract
Phosphate (P) is characterized by its low availability and restricted mobility in soils, and also by a high redistribution capacity inside plants. In order to maintain P homeostasis in nutrient restricted conditions, plants have developed mechanisms which enable P acquisition from the soil solution, and an efficient reutilization of P already present in plant cells. Nitric oxide (NO) is a bioactive molecule with a plethora of functions in plants. Its endogenous synthesis depends on internal and environmental factors, and is closely tied with nitrogen (N) metabolism. Furthermore, there is evidence demonstrating that N supply affects P homeostasis and that P deficiency impacts on N assimilation. This review will provide an overview on how NO levels in planta are affected by P deficiency, the interrelationship with N metabolism, and a summary of the current understanding about the influence of this reactive N species over the processes triggered by P starvation, which could modify P use efficiency.
Collapse
Affiliation(s)
- Andrea Galatro
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Melisa Luquet
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
| | - Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
58
|
Vujinović T, Zanin L, Venuti S, Contin M, Ceccon P, Tomasi N, Pinton R, Cesco S, De Nobili M. Biostimulant Action of Dissolved Humic Substances From a Conventionally and an Organically Managed Soil on Nitrate Acquisition in Maize Plants. FRONTIERS IN PLANT SCIENCE 2020; 10:1652. [PMID: 32038669 PMCID: PMC6974922 DOI: 10.3389/fpls.2019.01652] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/22/2019] [Indexed: 05/26/2023]
Abstract
Conversion of conventional farming (CF) to organic farming (OF) is claimed to allow a sustainable management of soil resources, but information on changes induced on dissolved organic matter (DOM) are scarce. Among DOM components, dissolved humic substances (DHS) were shown to possess stimulatory effects on plant growth. DHS were isolated from CF and OF soil leacheates collected from soil monolith columns: first in November (bare soils) and then in April and June (bare and planted soils). DHS caused an enhancement of nitrate uptake rates in maize roots and modulated several genes involved in nitrogen acquisition. The DHS from OF soil exerted a stronger biostimulant action on the nitrate uptake system, but the first assimilatory step of nitrate was mainly activated by DHS derived from CF soil. To validate the physiological response of plants to DHS exposure, real-time RT-PCR analyses were performed on those genes most involved in nitrate acquisition, such as ZmNRT2.1, ZmNRT2.2, ZmMHA2 (coding for two high-affinity nitrate transporters and a PM H+-proton pump), ZmNADH:NR, ZmNADPH:NR, and ZmNiR (coding for nitrate reductases and nitrite reductase). All tested DHS fractions induced the upregulation of nitrate reductase (NR), and in particular the OF2 DHS stimulated the expression of both tested transcripts encoding for two NR isoforms. Characteristics of DHS varied during the experiment in both OF and CF soils: a decrease of high molecular weight fractions in the OF soil, a general increase in the carboxylic groups content, as well as diverse structural modifications in OF vs. CF soils were observed. These changes were accelerated in planted soils. Similarity of chemical properties of DHS with the more easily obtainable water-soluble humic substance extracted from peat (WEHS) and the correspondence of their biostimulant actions confirm the validity of studies which employ WEHS as an easily available source of DHS to investigate biostimulant actions on agricultural crops.
Collapse
Affiliation(s)
- Tihana Vujinović
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Laura Zanin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Silvia Venuti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Marco Contin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Paolo Ceccon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Roberto Pinton
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Maria De Nobili
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
59
|
Jindo K, Olivares FL, Malcher DJDP, Sánchez-Monedero MA, Kempenaar C, Canellas LP. From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions as Biostimulant and Biocontrol Agent. FRONTIERS IN PLANT SCIENCE 2020; 11:426. [PMID: 32528482 PMCID: PMC7247854 DOI: 10.3389/fpls.2020.00426] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 05/21/2023]
Abstract
The demand for biostimulants has been growing at an annual rate of 10 and 12.4% in Europe and Northern America, respectively. The beneficial effects of humic substances (HS) as biostimulants of plant growth have been well-known since the 1980s, and they can be supportive to a circular economy if they are extracted from different renewable resources of organic matter including harvest residues, wastewater, sewage sludge, and manure. This paper presents an overview of the scientific outputs on application methods of HS in different conditions. Firstly, the functionality of HS in the primary and secondary metabolism under stressed and non-stressed cropping conditions is discussed along with crop protection against pathogens. Secondly, the advantages and limitations of five different types of HS application under open-fields and greenhouse conditions are described. Key factors, such as the chemical structure of HS, application method, optimal rate, and field circumstances, play a crucial role in enhancing plant growth by HS treatment as a biostimulant. If we can get a better grip on these factors, HS has the potential to become a part of circular agriculture.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | - Fábio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Rio de Janeiro, Brazil
| | - Deyse Jacqueline da Paixão Malcher
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Rio de Janeiro, Brazil
| | - Miguel Angel Sánchez-Monedero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafolog a y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Cient ficas (CSIC), Campus Universitario de Espinardo, Murcia, Spain
- *Correspondence: Miguel Angel Sánchez-Monedero,
| | - Corné Kempenaar
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Rio de Janeiro, Brazil
| |
Collapse
|
60
|
Olaetxea M, Mora V, Bacaicoa E, Baigorri R, Garnica M, Fuentes M, Zamarreño AM, Spíchal L, García‐Mina JM. Root ABA and H +-ATPase are key players in the root and shoot growth-promoting action of humic acids. PLANT DIRECT 2019; 3:e00175. [PMID: 31624800 PMCID: PMC6785783 DOI: 10.1002/pld3.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 09/07/2019] [Indexed: 05/02/2023]
Abstract
Although the ability of humic (HA) and fulvic acids (FA) to improve plant growth has been demonstrated, knowledge about the mechanisms responsible for the direct effects of HA and FA on the promotion of plant growth is scarce and fragmentary. Our study investigated the causal role of both root PM H+-ATPase activity and ABA in the SHA-promoting action on both root and shoot growth. The involvement of these processes in the regulation of shoot cytokinin concentration and activity was also studied. Our aim was to integrate such plant responses for providing new insights to the current model on the mode of action of HA for promoting root and shoot growth. Experiments employing specific inhibitors and using Cucumis sativus L. plants show that both the root PM H+-ATPase activity and root ABA play a crucial role in the root growth-promoting action of SHA. With regard to the HA-promoting effects on shoot growth, two pathways of events triggered by the interaction of SHA with plant roots are essential for the increase in root PM H+-ATPase activity-which also mediates an increase in cytokinin concentration and action in the shoot-and the ABA-mediated increase in hydraulic conductivity (Lpr).
Collapse
Affiliation(s)
- Maite Olaetxea
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Verónica Mora
- Plant Physiology and Plant‐Microorganism Interaction LaboratoryInstituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET) y Universidad Nacional de Río Cuarto (UNRC)CórdobaArgentina
| | - Eva Bacaicoa
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Roberto Baigorri
- Technical and Development DepartmentTimac Agro EspañaLodosaSpain
| | - Maria Garnica
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Marta Fuentes
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Angel Maria Zamarreño
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics Palacký University, Centre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacky´ UniversityOlomoucCzech Republic
| | - José María García‐Mina
- Department of Environmental Biology (Biological and Agricultural Chemistry Group (BACh) CMI-Roullier GroupFaculty of SciencesUniversity of NavarraPamplonaSpain
| |
Collapse
|
61
|
Ravazzolo L, Trevisan S, Manoli A, Boutet-Mercey SP, Perreau FO, Quaggiotti S. The Control of Zealactone Biosynthesis and Exudation is Involved in the Response to Nitrogen in Maize Root. PLANT & CELL PHYSIOLOGY 2019; 60:2100-2112. [PMID: 31147714 DOI: 10.1093/pcp/pcz108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Nitrate acts as a signal in regulating plant development in response to environment. In particular nitric oxide, auxin and strigolactones (SLs) were supposed to cooperate to regulate the maize root response to this anion. In this study, a combined approach based on liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry and on physiological and molecular analyses was adopted to specify the involvement of SLs in the maize response to N. Our results showed that N deficiency strongly induces SL exudation, likely through stimulating their biosynthesis. Nitrate provision early counteracts and also ammonium lowers SL exudation, but less markedly. Exudates obtained from N-starved and ammonium-provided seedlings stimulated Phelipanche germination, whereas when seeds were treated with exudates harvested from nitrate-provided plants no germination was observed. Furthermore, our findings support the idea that the inhibition of SL production observed in response to nitrate and ammonium would contribute to the regulation of lateral root development. Moreover, the transcriptional regulation of a gene encoding a putative maize WBC transporter, in response to various nitrogen supplies, together with its mRNA tissue localization, supported its role in SL allocation. Our results highlight the dual role of SLs as molecules able to signal outwards a nutritional need and as endogenous regulators of root architecture adjustments to N, thus synchronizing plant growth with nitrogen acquisition.
Collapse
Affiliation(s)
- Laura Ravazzolo
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Universit� 16, Legnaro, Padova, Italy
| | - Sara Trevisan
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Universit� 16, Legnaro, Padova, Italy
| | - Alessandro Manoli
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Universit� 16, Legnaro, Padova, Italy
| | - Stï Phanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Franï Ois Perreau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Universit� 16, Legnaro, Padova, Italy
| |
Collapse
|
62
|
Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Sci Rep 2019; 9:12019. [PMID: 31427667 PMCID: PMC6700139 DOI: 10.1038/s41598-019-48509-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Humic substances have been widely used as plant growth promoters to improve the yield of agricultural crops. However, the mechanisms underlying this effect remain unclear. Root soluble protein profiles in plants 11 days after planting and cultivated with and without humic acids (HA, 50 mg CL-1), were analyzed using the label-free quantitative proteomic approach. Cultivation of maize with HA resulted in higher fresh weight of roots than in untreated plants (control). Plants treated with HA showed increased number, diameter and length of roots. In the proteomics analysis, differences were detected in the following categories: energy metabolism, cytoskeleton, cellular transport, conformation and degradation of proteins, and DNA replication. Thirty-four proteins were significantly more abundant in the seedlings treated with HA, whereas only nine proteins were abundant in the control. The effects on root architecture, such as the induction of lateral roots and biomass increase were accompanied by changes in the energy metabolism-associated proteins. The results show that the main effect of HA is protective, mainly associated with increased expression of the 2-cys peroxidase, putative VHS/GAT, and glutathione proteins. Indeed, these proteins had the highest fold-difference. Overall, these results improve our understanding of the molecular mechanisms of HA-promoted plant growth.
Collapse
|
63
|
Nunes RO, Domiciano GA, Alves WS, Melo ACA, Nogueira FCS, Canellas LP, Olivares FL, Zingali RB, Soares MR. Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Sci Rep 2019. [PMID: 31427667 DOI: 10.1038/s41598-019-48509-48502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Humic substances have been widely used as plant growth promoters to improve the yield of agricultural crops. However, the mechanisms underlying this effect remain unclear. Root soluble protein profiles in plants 11 days after planting and cultivated with and without humic acids (HA, 50 mg CL-1), were analyzed using the label-free quantitative proteomic approach. Cultivation of maize with HA resulted in higher fresh weight of roots than in untreated plants (control). Plants treated with HA showed increased number, diameter and length of roots. In the proteomics analysis, differences were detected in the following categories: energy metabolism, cytoskeleton, cellular transport, conformation and degradation of proteins, and DNA replication. Thirty-four proteins were significantly more abundant in the seedlings treated with HA, whereas only nine proteins were abundant in the control. The effects on root architecture, such as the induction of lateral roots and biomass increase were accompanied by changes in the energy metabolism-associated proteins. The results show that the main effect of HA is protective, mainly associated with increased expression of the 2-cys peroxidase, putative VHS/GAT, and glutathione proteins. Indeed, these proteins had the highest fold-difference. Overall, these results improve our understanding of the molecular mechanisms of HA-promoted plant growth.
Collapse
Affiliation(s)
- Rosane Oliveira Nunes
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselli Abrahão Domiciano
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilber Sousa Alves
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia Amaral Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Cesar Sousa Nogueira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Pasqualoto Canellas
- Biological Inputs to Agriculture Development Center, State University of Northern of Rio de Janeiro, UENF, Rio de Janeiro, Brazil
| | - Fábio Lopes Olivares
- Biological Inputs to Agriculture Development Center, State University of Northern of Rio de Janeiro, UENF, Rio de Janeiro, Brazil
| | - Russolina Benedeta Zingali
- Medical Biochemistry Institute Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Regina Soares
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
64
|
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S, Terzano R, Cesco S. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:923. [PMID: 31396245 PMCID: PMC6668597 DOI: 10.3389/fpls.2019.00923] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/01/2019] [Indexed: 05/19/2023]
Abstract
Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process. In particular, this review provides information (1) on the processes and mechanisms occurring in the hydroponic solutions that ensure an adequate nutrient concentration and thus an optimal nutrient acquisition without leading to nutritional disorders influencing ultimately also crop quality (e.g., solubilization/precipitation of nutrients/elements in the hydroponic solution, substrate specificity in the nutrient uptake process, nutrient competition/antagonism and interactions among nutrients); (2) on new emerging technologies that might improve the management of soilless cropping systems such as the use of nanoparticles and beneficial microorganism like plant growth-promoting rhizobacteria (PGPRs); (3) on tools (multi-element sensors and interpretation algorithms based on machine learning logics to analyze such data) that might be exploited in a smart agriculture approach to monitor the availability of nutrients/elements in the hydroponic solution and to modify its composition in realtime. These aspects are discussed considering what has been recently demonstrated at the scientific level and applied in the industrial context.
Collapse
Affiliation(s)
- Paolo Sambo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Andrea Giro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Guido Orzes
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabrizio Mazzetto
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
65
|
Lee JG, Yoon HY, Cha JY, Kim WY, Kim PJ, Jeon JR. Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnol Adv 2019; 37:107416. [PMID: 31323257 DOI: 10.1016/j.biotechadv.2019.107416] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/10/2019] [Accepted: 07/14/2019] [Indexed: 11/16/2022]
Abstract
Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.
Collapse
Affiliation(s)
- Jeong Gu Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea; RILS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
66
|
Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9060306] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abiotic stresses strongly affect plant growth, development, and quality of production; final crop yield can be really compromised if stress occurs in plants’ most sensitive phenological phases. Additionally, the increase of crop stress tolerance through genetic improvements requires long breeding programmes and different cultivation environments for crop performance validation. Biostimulants have been proposed as agronomic tools to counteract abiotic stress. Indeed, these products containing bioactive molecules have a beneficial effect on plants and improve their capability to face adverse environmental conditions, acting on primary or secondary metabolism. Many companies are investing in new biostimulant products development and in the identification of the most effective bioactive molecules contained in different kinds of extracts, able to elicit specific plant responses against abiotic stresses. Most of these compounds are unknown and their characterization in term of composition is almost impossible; therefore, they could be classified on the basis of their role in plants. Biostimulants have been generally applied to high-value crops like fruits and vegetables; thus, in this review, we examine and summarise literature on their use on vegetable crops, focusing on their application to counteract the most common environmental stresses.
Collapse
|
67
|
Abd El-Aziz FEZA, Bashandy SR. Dose-dependent effects of Pseudomonas trivialis rhizobacteria and synergistic growth stimulation effect with earthworms on the common radish. RHIZOSPHERE 2019; 10:100156. [DOI: 10.1016/j.rhisph.2019.100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
68
|
Zanin L, Tomasi N, Cesco S, Varanini Z, Pinton R. Humic Substances Contribute to Plant Iron Nutrition Acting as Chelators and Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:675. [PMID: 31178884 PMCID: PMC6538904 DOI: 10.3389/fpls.2019.00675] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
Improvement of plant iron nutrition as a consequence of metal complexation by humic substances (HS) extracted from different sources has been widely reported. The presence of humified fractions of the organic matter in soil sediments and solutions would contribute, depending on the solubility and the molecular size of HS, to build up a reservoir of Fe available for plants which exude metal ligands and to provide Fe-HS complexes directly usable by plant Fe uptake mechanisms. It has also been shown that HS can promote the physiological mechanisms involved in Fe acquisition acting at the transcriptional and post-transcriptional level. Furthermore, the distribution and allocation of Fe within the plant could be modified when plants were supplied with water soluble Fe-HS complexes as compared with other natural or synthetic chelates. These effects are in line with previous observations showing that treatments with HS were able to induce changes in root morphology and modulate plant membrane activities related to nutrient acquisition, pathways of primary and secondary metabolism, hormonal and reactive oxygen balance. The multifaceted action of HS indicates that soluble Fe-HS complexes, either naturally present in the soil or exogenously supplied to the plants, can promote Fe acquisition in a complex way by providing a readily available iron form in the rhizosphere and by directly affecting plant physiology. Furthermore, the possibility to use Fe-HS of different sources, size and solubility may be considered as an environmental-friendly tool for Fe fertilization of crops.
Collapse
Affiliation(s)
- Laura Zanin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Zeno Varanini
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Roberto Pinton
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
69
|
Eo J, Park KC. Effect of vermicompost application on root growth and ginsenoside content of Panax ginseng. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:458-463. [PMID: 30641356 DOI: 10.1016/j.jenvman.2018.12.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Vermicomposts are valuable by-products of organic wastes and can be used to improve soil environments in ginseng production. We compared the effects of food waste vermicompost (FWV), cow manure vermicompost (CMV) and paper sludge vermicompost (PSV) on several ginseng root production variables. Interactions between soil chemical properties, root growth, ginsenoside content and plant mineral content were also investigated. In the PSV treatment, the root yield increased by 40 t ha-1 compared to the untreated control. Nitrate concentration correlated negatively with root yield, and none of the vermicompost treatments differed significantly from the control in terms of root loss. Soil pH correlated positively with root weight, and total ginsenoside content did not vary among treatments, although some individual ginsenosides did differ among treatments. Root iron content correlated strongly with total ginsenoside content, and total ginsenoside content correlated negatively with root yield. Overall, our results showed that the root yield increase was not due to nutrient increase. Vermicompost was safe to use in relation to root rot disease, and it favourably elevated the pH of fields converted from rice paddies to ginseng production. Ginsenoside was not involved in defence mechanisms against root rot disease. Root iron content may have been involved in the metabolism of ginsenoside, and there was an apparent trade-off between ginsenoside content and root yield. Finally, vermicompost application altered resource allocation and soil chemical properties, which led to novel interactions between root parameters and components.
Collapse
Affiliation(s)
- Jinu Eo
- National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea.
| | - Kee-Choon Park
- National Institute of Agricultural Sciences, RDA, Wanju, 55365, Republic of Korea
| |
Collapse
|
70
|
Kaur P, Bali S, Sharma A, Kohli SK, Vig AP, Bhardwaj R, Thukral AK, Abd Allah EF, Wijaya L, Alyemeni MN, Ahmad P. Cd induced generation of free radical species in Brassica juncea is regulated by supplementation of earthworms in the drilosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:663-675. [PMID: 30476847 DOI: 10.1016/j.scitotenv.2018.11.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 05/03/2023]
Abstract
The antioxidant defense system of Brassica juncea under Cd stress was examined on supplementation of earthworms in the rhizosphere at different concentrations of Cd (0.50, 0.75, 1.00 and 1.25 mM i.e. 56, 84, 112 and 140 mg kg-1 respectively). Seedlings were raised in small pots containing soil spiked with Cd and earthworms under controlled conditions for 15 days. Improved Cd accumulation, as well as enhanced plant dry weight and metal tolerance were observed following the addition of earthworms. Earthworm supplementation reduced reactive oxygen species (ROS) generation by 7.3% for hydrogen peroxide (H2O2), 7.1% for superoxide anion (O2-), and 8.4% for malondialdehyde (MDA) in plants treated with 1.25 mM (140 mg kg-1) Cd. Confocal microscopy revealed improved cell viability and reduced H2O2 content due to enhanced antioxidative activity. Activity and expression levels of genes coding for antioxidative enzymes (superoxide dismutase; SOD, catalase; CAT, guaicol peroxidase; POD, glutathione reductase; GR, and glutathione-S-transferase; GST) were higher in plants raised in soils inoculated with earthworms, with expression of SOD increasing by 58.8%, CAT by 75%, POD by 183%, GR by 106.6%, and GST by 11.8%. Moreover, plant pigment (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids) concentrations increased by 8%, 9.1%, 9.1%, and 7.7% respectively, in plants grown in soils supplemented with earthworms. The results of our study suggest that the addition of earthworms to soil increases antioxidative enzyme activities, gene expression in plants, and ROS inhibition, which enhances tolerance to Cd during the phytoextraction process.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Ashwani Kumar Thukral
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Leonard Wijaya
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar 190001, Jammu and Kashmir, India.
| |
Collapse
|
71
|
Marastoni L, Pii Y, Maver M, Valentinuzzi F, Cesco S, Mimmo T. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:118-126. [PMID: 30660677 DOI: 10.1016/j.plaphy.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/17/2023]
Abstract
Azospirillum brasilense was reported to up-regulate iron (Fe) uptake mechanisms, such as Fe reduction and rhizosphere acidification, in both Fe sufficient and deficient cucumber plants (Cucumis sativus L.). Strategy I plants take up both Fe and copper (Cu) after their reduction mediated by the ferric-chelate reductase oxidase (FRO) enzyme. Interestingly, in cucumber genome only one FRO gene is reported. Thus, in the present study we applied a bioinformatics approach to identify the member of cucumber FRO gene family and allowed the identification of at least three CsFRO genes, one of which was the already identified, i.e. CsFRO1. The expression patterns of the newly identified transcripts were investigated in hydroponically grown cucumber plants treated with different Fe and Cu nutritional regimes. Gene expression was then correlated with morphological (i.e. root architecture) and physiological (Fe(III) reducing activity) parameters to shed light on: i) the CsFRO homologue responsible of the increased reduction activity in Fe-sufficient plants inoculated with A. brasilense cucumber plants, and ii) the possible effect of A. brasilense in ameliorating the symptoms of Cu toxicity in cucumber plants. The data obtained showed that all the CsFRO genes were expressed in the root tissues of cucumber plants and responded to Cu starvation, combined Cu/Fe deficiency and Cu toxicity. Only CsFRO3 was modulated by the A. brasilense in Fe-sufficient plants suggesting for the first time a different specificity of action of the three isoenzymes depending not only on the nutritional regime (either deficiency or toxicity) but also on the presence of the PGPR. Furthermore, results suggest that the PGPR could even ameliorate the stress symptoms caused by both the double (i.e. Cu and Fe) and Cu deficiency as well as Cu toxicity modulating, on one hand, the growth of the root system and, on the other hand, the root nutrient uptake.
Collapse
Affiliation(s)
- Laura Marastoni
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy.
| | - Mauro Maver
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| |
Collapse
|
72
|
Pii Y, Aldrighetti A, Valentinuzzi F, Mimmo T, Cesco S. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1313-1324. [PMID: 30715422 DOI: 10.1093/jxb/ery433] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/11/2019] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) represents one of the limiting factors for crop growth and productivity and to date has been widely supplied via external application of fertilizers. However, the use of plant growth-promoting rhizobacteria (PGPR) might represent a valuable tool to further improve plant nutrition. This study examines the influence of Azospirillum brasilense strain Cd on nitrate uptake in maize (Zea mays) plants, focusing on the high-affinity transport system (HATS). Plants were induced with nitrate (500 µM) and either inoculated or not with Azospirillum. Inoculation decreased the nitrate uptake rate in induced plants, suggesting that Azospirillum may negatively affect HATS in the short term. The expression dynamics of ZmNF-YA and ZmLBD37 suggested that Azospirillum affected the N balance in the plants, most probably by supplying them with reduced N, i.e. NH4+. This was further corroborated by measurements of total N and the expression of ammonium transporter genes. Overall, our data demonstrate that Azospirillum can counteract the plant response to nitrate induction, albeit without compromising N nutrition. This suggests that the agricultural application of microbial inoculants requires fine-tuning of external fertilizer inputs.
Collapse
Affiliation(s)
- Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Anna Aldrighetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
73
|
Li Y, Guo LX, Zhou QZ, Chen D, Liu JZ, Xu XM, Wang JH. Characterization of Humic Substances in the Soils of Ophiocordyceps sinensis Habitats in the Sejila Mountain, Tibet: Implication for the Food Source of Thitarodes Larvae. Molecules 2019; 24:E246. [PMID: 30634712 PMCID: PMC6359227 DOI: 10.3390/molecules24020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
Humic substances in soil are considered to be an alternative food to the tender plant roots for Thitarodes larvae in the habitats of Ophiocordyceps sinensis in the Qinghai-Tibetan Plateau. However, there is no report involving the evaluation of their potential as a food source from the composition and structure of habitat soils. In this work, the composition and structure of humic substances in habitat soils from the Sejila Mountain, Tibet were characterized by diverse techniques for evaluating the nutritional value and possibility of humus as the food source for Thitarodes larvae. Fourier transform infrared spectroscopy revealed that humic acid may possess superior ability to provide the molecular segments for biosynthesizing lipids more than other humic fractions. Combining with the analysis of solid-state 13C nuclear magnetic resonance spectrum, the fractions of hydrophobic fulvic acid and hydrophilic fulvic acid are further considered as a potential food source for Thitarodes larvae. Overall, humic substances in habitat soils are rich in the molecular segments for biosynthesizing lipids and other important nutrients, which may provide the energy and material sources for maintaining the survival of Thitarodes larvae in the absence of tender plant roots, particularly in the annual cold winter. Combining with the evidence of physico-chemical parameters of habitat soils and stable carbon isotopic composition of major tender plant roots in the Sejila Mountain, the composition and structure of humic substances in habitat soils may provide a novel idea for the eco-friendly and semi-wild cultivation of Thitarodes larvae with low cost.
Collapse
Affiliation(s)
- Yan Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China.
| | - Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Qian-Zhi Zhou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Di Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jin-Zhong Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiao-Ming Xu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China.
| |
Collapse
|
74
|
Roomi S, Masi A, Conselvan GB, Trevisan S, Quaggiotti S, Pivato M, Arrigoni G, Yasmin T, Carletti P. Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks. FRONTIERS IN PLANT SCIENCE 2018; 9:1812. [PMID: 30619394 PMCID: PMC6299182 DOI: 10.3389/fpls.2018.01812] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/21/2018] [Indexed: 05/06/2023]
Abstract
Background and Aim: Humic substances (HSs) influence the chemical and physical properties of the soil, and are also known to affect plant physiology and nutrient uptake. This study aimed to elucidate plant metabolic pathways and physiological processes influenced by HS activity. Methods: Arabidopsis roots were treated with HS for 8 h. Quantitative mass spectrometry-based proteomics analysis of root proteins was performed using the iTRAQ (Isobaric Tag for Relative and Absolute Quantification) technique. Out of 902 protein families identified and quantified for HS treated vs. untreated roots, 92 proteins had different relative content. Bioinformatic tools such as STRING, KEGG, IIS and Cytoscape were used to interpret the biological function, pathway analysis and visualization of network amongst the identified proteins. Results: From this analysis it was possible to evaluate that all of the identified proteins were functionally classified into several categories, mainly redox homeostasis, response to inorganic substances, energy metabolism, protein synthesis, cell trafficking, and division. Conclusion: In the present study an overview of the metabolic pathways most modified by HS biological activity is provided. Activation of enzymes of the glycolytic pathway and up regulation of ribosomal protein indicated a stimulation in energy metabolism and protein synthesis. Regulation of the enzymes involved in redox homeostasis suggest a pivotal role of reactive oxygen species in the signaling and modulation of HS-induced responses.
Collapse
Affiliation(s)
- Sohaib Roomi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | | | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padua and Azienda Ospedaliera di Padova, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| |
Collapse
|
75
|
Busato JG, de Carvalho CM, Zandonadi DB, Sodré FF, Mol AR, de Oliveira AL, Navarro RD. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35811-35820. [PMID: 29170925 DOI: 10.1007/s11356-017-0795-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L-1 HA increased significantly both dry and wet root matter in lettuce but the CO2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H+ extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.
Collapse
Affiliation(s)
- Jader Galba Busato
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Caixa Postal 4508, Brasília, DF, 70910-970, Brazil.
| | - Caroline Moreira de Carvalho
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Caixa Postal 4508, Brasília, DF, 70910-970, Brazil
| | - Daniel Basilio Zandonadi
- Laboratório de Biotecnologia Vegetal, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-ambiental, Universidade Federal do Rio de Janeiro, Avenida São José Barreto, 764, Macaé, RJ, 27965-045, Brazil
| | - Fernando Fabriz Sodré
- Instituto de Química, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Caixa Postal 4478, Brasília, DF, 70910-970, Brazil
| | - Alan Ribeiro Mol
- Instituto de Química, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Caixa Postal 4478, Brasília, DF, 70910-970, Brazil
| | - Aline Lima de Oliveira
- Instituto de Química, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Caixa Postal 4478, Brasília, DF, 70910-970, Brazil
| | - Rodrigo Diana Navarro
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Caixa Postal 4508, Brasília, DF, 70910-970, Brazil
| |
Collapse
|
76
|
Organic Amendments Influence Soil Water Depletion, Root Distribution, and Water Productivity of Summer Maize in the Guanzhong Plain of Northwest China. WATER 2018. [DOI: 10.3390/w10111640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Organic amendments improve general soil conditions and stabilize crop production, but their effects on the soil hydrothermal regime, root distribution, and their contributions to water productivity (WP) of maize have not been fully studied. A two-year field experiment was conducted to investigate the impacts of organic amendments on soil temperature, water storage depletion (SWSD), root distribution, grain yield, and the WP of summer maize (Zea mays L.) in the Guanzhong Plain of Northwest China. The control treatment (CO) applied mineral fertilizer without amendments, and the three amended treatments applied mineral fertilizer with 20 Mg ha−1 of wheat straw (MWS), farmyard manure (MFM), and bioorganic fertilizer (MBF), respectively. Organic amendments decreased SWSD compared to CO, and the lowest value was obtained in MBF, followed by MWS and MFM. Meanwhile, the lowest mean topsoil (0–10 cm) temperature was registered in MWS. Compared to CO, organic amendments generally improved the root length density (RLD) and root weight density (RWD) of maize. MBF showed the highest RLD across the whole soil profile, while MWS yielded the greatest RWD to 20 cm soil depth. Consequently, organic amendments increased grain yield by 9.9–40.3% and WP by 8.6–47.1% compared to CO, and the best performance was attained in MWS and MBF. We suggest that MWS and MBF can benefit the maize agriculture in semi-arid regions for higher yield, and WP through regulating soil hydrothermal conditions and improving root growth.
Collapse
|
77
|
Torabian S, Farhangi-Abriz S, Rathjen J. Biochar and lignite affect H +-ATPase and H +-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:141-149. [PMID: 29879587 DOI: 10.1016/j.plaphy.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 05/01/2023]
Abstract
This research was conducted to evaluate effects of biochar (50 and 100 g kg-1 soil) and lignite (50 and 100 g kg-1 soil) treatments on H+-ATPase and H+-PPase activity of root tonoplast, nutrient content, and performance of mung bean under salt stress. High saline conditions increased H+-ATPase and H+-PPase activities in root tonoplast, sodium (Na) content, reactive oxygen species (H2O2 and O2-) generation, relative electrolyte leakage (REL) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) activity in root and leaf, but decreased relative water content (RWC), chlorophyll content index, leaf area, potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) content of plant tissues, root and shoot dry weight of mung bean. Lignite and biochar treatments decreased the H+-ATPase and H+-PPase activities of root tonoplast under salt stress. Moreover, these treatments increased the cation exchange capacity of soil and nutrient values in plant tissues. Biochar and lignite diminished the generation of reactive oxygen species and DPPH activity in root and leaf cells, and these superior effects improved chlorophyll content index, leaf area and growth of mung bean under both conditions. In general, the results of this study demonstrated that biochar and lignite decreased the entry of Na ion into the cells, enriched plant cells with nutrients, and consequently improved mung bean performance under salt toxicity.
Collapse
Affiliation(s)
- Shahram Torabian
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, 5064, Australia.
| | - Salar Farhangi-Abriz
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Judith Rathjen
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
78
|
Yamasaki R, Maeda T, Wood TK. Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:211. [PMID: 30061933 PMCID: PMC6058355 DOI: 10.1186/s13068-018-1208-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND We previously reversed methanogenesis in microbial fuel cells (MFCs) to produce electricity for the first time from methane by combining an engineered archaeal strain that produces methyl-coenzyme M reductase from unculturable anaerobic methanotrophs (to capture methane and secrete acetate) with Geobacter sulfurreducens (to produce electrons from the generated acetate) and methane-acclimated sludge (to provide electron shuttles). RESULTS Here, the power density in MFCs was increased 77-fold to 5216 mW/m2 and the current density in MFCs was increased 73-fold to 7.3 A/m2 by reducing the surface area of the cathode (to make reasonable comparisons to other MFCs), by changing the order the strains of the consortium were added to the anode compartment, and by adding additional electron carriers (e.g., humic acids and cytochrome C). CONCLUSIONS This power density and current density are comparable to the best for any MFC, including those with Shewanella and Geobacter spp. that utilize non-gaseous substrates. In addition, we demonstrate the methane MFC may be used to power a fan by storing the energy in a capacitor. Hence, MFCs that convert methane to electricity are limited by electron carriers.
Collapse
Affiliation(s)
- Ryota Yamasaki
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400 USA
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196 Japan
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400 USA
| |
Collapse
|
79
|
Palumbo G, Schiavon M, Nardi S, Ertani A, Celano G, Colombo CM. Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic Material Derived From Municipal Solid Waste (MSW). FRONTIERS IN PLANT SCIENCE 2018; 9:1028. [PMID: 30079073 PMCID: PMC6062822 DOI: 10.3389/fpls.2018.01028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/25/2018] [Indexed: 05/10/2023]
Abstract
Olive mill wastewaters (OMW) contain significant levels of phenolic compounds with antimicrobial/phytotoxic activity and high amounts of undecomposed organic matter that may exert negative effects on soil biology. Among OMW detoxification techniques, those focusing on oxidative degradation of phenolic compounds are relevant. The composting (bio-oxidation) process in particular, exploits exothermic oxidation reactions by microorganisms to transform the organic matrix of OMW into an amendment biologically stable and feasible to use in agriculture. This process consists of an active phase during which organic compounds are rapidly decomposed, and a curing phase characterized by a slow breakdown of the remaining materials with the formation of humic substances (HS) as by-products. In this study, bio-oxidation of OMW was performed using a pre-treated organic material derived from municipal solid waste (MSW). The obtained amendment (OMWF) was stable and in accordance with the legislative parameters of mixed organic amendments. HS were then extracted from OMWF and MSW (control amendment, Amd-C), and differences in structural properties of their humic acid (HA) fraction were highlighted via spectroscopy (Fourier Transform Infrared) and Dynamic Light Scattering. To assay a potential use of HA as biostimulants for crops, 12-day old Zea Mays L. plants were supplied with HA at 0.5 mg and 1 mg C L-1 for 2 days. HA from both amendments increased plant growth, but HA from OMWF was more effective at both dosages (plus 35-37%). Also, HA from OMWF enhanced both nitrogen assimilation and glycolysis by increasing the activity of nitrate reductase (∼1.8-1.9 fold), phosphoglucose isomerase (PGI) (∼1.8-2 fold) and pyruvate kinase (PK) (∼1.5-1.8 fold), while HA from Amd-C targeted glycolysis preferentially. HA from OMWF, however, significantly stimulated plant nutrition only at lower dosage, perhaps because certain undetermined compounds from detoxified OMW and incorporated in HA altered the root membrane permeability, thus preventing the increase of nutrient uptake. Conversely, HA from Amd-C increased nutrient accumulation in maize at both dosages. In conclusion, our results indicate that the amendment obtained via OMW composting using MSW had a reduced pollution load in terms of phenolic compounds, and HA extracted from OMWF could be used as valuable biostimulants during maize cultivation.
Collapse
Affiliation(s)
- Giuseppe Palumbo
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Andrea Ertani
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Giuseppe Celano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano, Italy
| | - Claudio M. Colombo
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
80
|
Wei S, Wu M, Li G, Liu M, Jiang C, Li Z. Fungistatic Activity of Multiorigin Humic Acids in Relation to Their Chemical Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7514-7521. [PMID: 29987927 DOI: 10.1021/acs.jafc.8b01931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Humic acid (HA) has an inhibitory effect on phytopathogenic fungi, but the structure-activity relationship remains unclear. HAs were extracted from 14 different materials, and their fungistatic activities and elemental C, N, S, and O contents were measured. Cross-polarization magic-angle spinning 13C nuclear magnetic resonance (CPMAS 13C NMR) was used to measure the organic carbon composition. The results showed that all HAs suppressed phytopathogenic fungi growth, with Yunnan lignite HAs showing the highest inhibition (85.3%) against Physalospora piricola. The soil and compost HA aromaticity (ARO) was <50%, except for black soil HAs, while the ARO of all coal HAs was >60%. The ARO of meadow and moss peat HAs was <50%, while the ARO of woody peat HAs was 50.61%. Mantel test and redundancy analysis (RDA) were applied to evaluate the structure-activity relationship. The Mantel test revealed that the N, S, O, N/O, carbonyl C, aromatic C-O, and anomeric C contents were significantly correlated with fungistatic activity. The RDA analysis showed that the S content was positively correlated with fungistatic activity, while the O content was negatively correlated. The carbonyl C content had a positive correlation with fungistatic activity, while the anomeric C and aromatic C-O content had a negative correlation. A high S content and an active composition (carbonyl C) in HAs would lead to a high degree of fungistatic activity. Phytotoxicity test indicated all HAs were beneficial to plant growth. This work identified the basic properties of HAs from various raw materials that control their fungistatic activities.
Collapse
Affiliation(s)
- Shiping Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guilong Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunyu Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , No. 71, East Beijing Road , P.O. Box 821, Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
81
|
|
82
|
Pittarello M, Busato JG, Carletti P, Zanetti LV, da Silva J, Dobbss LB. Effects of different humic substances concentrations on root anatomy and Cd accumulation in seedlings of Avicennia germinans (black mangrove). MARINE POLLUTION BULLETIN 2018; 130:113-122. [PMID: 29866537 DOI: 10.1016/j.marpolbul.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Mangrove areas are among most threatened tropical ecosystems worldwide. Among polluting agents Cadmium is often found in high concentrations in mangrove sediments. Humic substances, complex biomolecules formed in soil and sediments during animal and plant residuals decomposition, have a known biostimulant activity and can be adopted to counteract various plant stresses. This study explores, in controlled conditions, the effect of humic substances on Avicennia germinans seedlings, with or without cadmium contamination. Humic compounds significantly changed plant root architecture, and, when coupled with cadmium, root anatomy and Cortex to Vascular Cylinder diameter ratio. These modifications led to lower Cd uptake by humic substances-treated plants. Humic substances amendment could be effective, depending on their concentrations, on improving plant health in mangrove areas, for forest recuperation and/or dredged sediments phytoremediation purposes.
Collapse
Affiliation(s)
- Marco Pittarello
- University of Vila Velha, Ecology of organic matter laboratory, Biopraticas Compound, Vila Velha, ES, Brazil.
| | - Jader Galba Busato
- University of Brasilia, Faculty of Agronomy and Veterinary Medicine, University Campus Darcy Ribeiro, Sciences Central Institute, Federal District, Brazil
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Leonardo Valandro Zanetti
- Federal University of Espirito Santo, Biological sciences Department, Botany Sector, Vitoria, ES, Brazil
| | - Juscimar da Silva
- Embrapa Hortaliças, Rodovia BR-060, Km 09, Fazenda Tamanduà, CEP70351-970 Brasilia, DF, Brazil
| | - Leonardo Barros Dobbss
- Federal University of Vales do Jequitinhonha e Mucuri, Institute of Agricultural Sciences, Unaí, MG, Brazil
| |
Collapse
|
83
|
Wang YM, Zhou DM, Yuan XY, Zhang XH, Li Y. Modeling the interaction and toxicity of Cu-Cd mixture to wheat roots affected by humic acids, in terms of cell membrane surface characteristics. CHEMOSPHERE 2018; 199:76-83. [PMID: 29433030 DOI: 10.1016/j.chemosphere.2018.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/30/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Responses of wheat (Triticum aestivum L.) seedling roots to the mixtures of copper (Cu), cadmium (Cd) and humic acids (HA) were investigated using the solution culture experiments, focusing on the interaction patterns between multiple metals and their influences on root proton release. A concentration-addition multiplication (CA) model was introduced into the modeling analysis. In comparison with metal ion activities in bulk-phase solutions, the incorporation of ion activities at the root cell membrane surfaces (CMs) (denoted as {Cu2+}0 and {Cd2+}0) into the CA model could significantly improve their correlation with RRE (relative root elongation) from 0.819 to 0.927. Modeling analysis indicated that the co-existence of {Cu2+}0 significantly enhanced the rhizotoxicity of {Cd2+}0, while no significant effect of {Cd2+}0 on the {Cu2+}0 rhizotoxicity. 10 mg/L HA stimulated the root elongation even under metal stress. Although high concentration of metal ions inhibited the root proton release rate (ΔH+), both the low concentration of metal ions and HA treatments increased the values of ΔH+. In HA-Cu-Cd mixtures, actions of metal ions on ΔH+ values were varied intricately among treatments but well modeled by the CA model. We concluded from the CA models that the electrostatic effect is vitally important for explaining the effect of {Cu2+}0 on the rhizotoxicity of {Cd2+}0, while it plays no unique role in understanding the influence of {Cd2+}0 on the rhizotoxicity of {Cu2+}0. Thus our study provide a novel way for modeling multiple metals behaviors in the environment and understanding the mechanisms of ion interactions.
Collapse
Affiliation(s)
- Yi-Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Xu-Yin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiao-Hui Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
84
|
Kaur A, Singh B, Ohri P, Wang J, Wadhwa R, Kaul SC, Pati PK, Kaur A. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PLoS One 2018; 13:e0194314. [PMID: 29659590 PMCID: PMC5901777 DOI: 10.1371/journal.pone.0194314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022] Open
Abstract
Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20-100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Baldev Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jia Wang
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sunil C. Kaul
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- * E-mail: (AK); (PKP); (SCK)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (AK); (PKP); (SCK)
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail: (AK); (PKP); (SCK)
| |
Collapse
|
85
|
Efficacy of the Vermicomposts of Different Organic Wastes as “Clean” Fertilizers: State-of-the-Art. SUSTAINABILITY 2018. [DOI: 10.3390/su10041205] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vermicomposting is a process in which earthworms are utilized to convert biodegradable organic waste into humus-like vermicast. Past work, mainly on vermicomposting of animal droppings, has shown that vermicompost is an excellent organic fertilizer and is also imbibed with pest-repellent properties. However, there is no clarity whether vermicomposts of organic wastes other than animal droppings are as plant-friendly as the manure-based vermicomposts are believed to be. It is also not clear as to whether the action of a vermicompost as a fertilizer depends on the species of plants being fertilized by it. This raises questions whether vermicomposts are beneficial (or harmful) at all levels of application or if there is a duality in their action which is a function of their rate of application. The present work is an attempt to seek answers to these questions. To that end, all hitherto published reports on the action of vermicomposts of different substrates on different species of plants have been assessed. The study reveals that, in general, vermicomposts of all animal/plant based organic wastes are highly potent fertilizers. They also possess some ability to repel plant pests. The factors that shape these properties have been assessed and the knowledge gaps that need to be bridged have been identified.
Collapse
|
86
|
Dobbss LB, Dos Santos TC, Pittarello M, de Souza SB, Ramos AC, Busato JG. Alleviation of iron toxicity in Schinus terebinthifolius Raddi (Anacardiaceae) by humic substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9416-9425. [PMID: 29349744 DOI: 10.1007/s11356-018-1193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
One of the industrial pillars of Espírito Santo state, South East of Brazil, is iron-mining products processing. This activity brings to a high level of coastal pollution due to deposition of iron particulate on fragile ecosystems as mangroves and restinga. Schinus therebinthifolius (aroeira) is a widespread restinga species. This work tested iron toxicity alleviation by vermicompost humic substances (HS) added to aroeira seedlings in hydroponic conditions. Catalase, peroxidase, and ascorbate peroxidase are antioxidant enzymes that work as reactive oxygen species (ROS) scavengers: they increase their activity as an answer to ROS concentration rise that is the consequence of metal accumulation or humic substance stimulation. S. terebinthifolius seedlings treated with HS and Fe augmented their antioxidant enzyme activities significantly less than seedlings treated separately with HS and Fe; their significantly lower Fe accumulation and the slight increase of root and leaf area confirm the biostimulating effect of HS and their role in blocking Fe excess outside the roots. The use of HS can be useful for the recovery of areas contaminated by heavy metals.
Collapse
Affiliation(s)
- Leonardo Barros Dobbss
- Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Instituto de Ciências Agrárias (ICA), Avenida Vereador João Narciso, 1380, Cachoeira, Unaí, MG, 38610-000, Brazil.
| | - Tamires Cruz Dos Santos
- Centro de Biociências e Biotecnologia (CBB), Laboratório de Biotecnologia (LBT), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marco Pittarello
- Universidade Vila Velha (UVV), Campus N. Sra. da Penha, Complexo Biopráticas, Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Sávio Bastos de Souza
- Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Alessandro Coutinho Ramos
- Centro de Biociências e Biotecnologia (CBB). Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Jader Galba Busato
- Faculdade de Agronomia e Veterinária (FAV), Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Caixa Postal 4508, Brasília, DF, 70910-970, Brazil
| |
Collapse
|
87
|
Shah ZH, Rehman HM, Akhtar T, Alsamadany H, Hamooh BT, Mujtaba T, Daur I, Al Zahrani Y, Alzahrani HAS, Ali S, Yang SH, Chung G. Humic Substances: Determining Potential Molecular Regulatory Processes in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:263. [PMID: 29593751 PMCID: PMC5861677 DOI: 10.3389/fpls.2018.00263] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Humic substances (HSs) have considerable effects on soil fertility and crop productivity owing to their unique physiochemical and biochemical properties, and play a vital role in establishing biotic and abiotic interactions within the plant rhizosphere. A comprehensive understanding of the mode of action and tissue distribution of HS is, however, required, as this knowledge could be useful for devising advanced rhizospheric management practices. These substances trigger various molecular processes in plant cells, and can strengthen the plant's tolerance to various kinds of abiotic stresses. HS manifest their effects in cells through genetic, post-transcriptional, and post-translational modifications of signaling entities that trigger different molecular, biochemical, and physiological processes. Understanding of such fundamental mechanisms will provide a better perspective for defining the cues and signaling crosstalk of HS that mediate various metabolic and hormonal networks operating in plant systems. Various regulatory activities and distribution strategies of HS have been discussed in this review.
Collapse
Affiliation(s)
- Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hafiz M. Rehman
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
| | - Tasneem Akhtar
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hameed Alsamadany
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bahget T. Hamooh
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tahir Mujtaba
- Plant and Forest Biotechnology Umeå, Plant Science Centre, Swedish University of Agriculture Sciences, Umeå, Sweden
| | - Ihsanullah Daur
- Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yahya Al Zahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Shawkat Ali
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Seung H. Yang
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
| | - Gyuhwa Chung
- Department of Electronics and Biomedical Engineering, Chonnam National University, Gwangju, South Korea
- *Correspondence: Gyuhwa Chung,
| |
Collapse
|
88
|
Khaleda L, Park HJ, Yun DJ, Jeon JR, Kim MG, Cha JY, Kim WY. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis. Mol Cells 2017; 40:966-975. [PMID: 29276942 PMCID: PMC5750715 DOI: 10.14348/molcells.2017.0229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/05/2017] [Accepted: 11/05/2017] [Indexed: 11/27/2022] Open
Abstract
Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.
Collapse
Affiliation(s)
- Laila Khaleda
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029,
Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029,
Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029,
Korea
| | - Jong-Rok Jeon
- Department of Agriculture Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828,
Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828,
Korea
- Department of Agriculture Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
89
|
Morozesk M, Bonomo MM, Souza IDC, Rocha LD, Duarte ID, Martins IO, Dobbss LB, Carneiro MTWD, Fernandes MN, Matsumoto ST. Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis. CHEMOSPHERE 2017; 184:309-317. [PMID: 28601664 DOI: 10.1016/j.chemosphere.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Biological process treatment of landfill leachate produces a significant amount of sludge, characterized by high levels of organic matter from which humic acids are known to activate several enzymes of energy metabolism, stimulating plant growth. This study aimed to characterize humic acids extracted from landfill sludge and assess the effects on plants exposed to different concentrations (0.5, 1, 2 and 4 mM C L-1) by chemical and biological analysis, to elucidate the influence of such organic material and minimize potential risks of using sludge in natura. Landfill humic acids showed high carbon and nitrogen levels, which may represent an important source of nutrients for plants. Biochemical analysis demonstrated an increase of enzyme activity, especially H+-ATPase in 2 mM C L-1 landfill humic acid. Additionally, cytogenetic alterations were observed in meristematic and F1 cells, through nuclear abnormalities and micronuclei. Multivariate statistical analysis provided integration of physical, chemical and biological data. Despite all the nutritional benefits of humic acids and their activation of plant antioxidant systems, the observed biological effects showed concerning levels of mutagenicity.
Collapse
Affiliation(s)
- Mariana Morozesk
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Marina Marques Bonomo
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Iara da Costa Souza
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Lívia Dorsch Rocha
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil
| | - Ian Drumond Duarte
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil
| | - Ian Oliveira Martins
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil
| | - Leonardo Barros Dobbss
- Institute of Agricultural Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Avenida Vereador Joao Narciso, 1380, 38610-000, Unai, Minas Gerais, Brazil
| | | | - Marisa Narciso Fernandes
- Physiological Science Department, Federal University of Sao Carlos, Av. Washington Luiz, Km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | - Silvia Tamie Matsumoto
- Biological Science Department, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitoria, Espirito Santo, Brazil.
| |
Collapse
|
90
|
Scaglia B, Pognani M, Adani F. The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:36-45. [PMID: 28259834 DOI: 10.1016/j.scitotenv.2017.02.223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Biostimulants improve plant growth by stimulating nutrient uptake and efficiency, improving tolerance to abiotic stress and raising crop quality. Biostimulants are currently only recognised in five categories. However, the recent interest in this sector has led to the identification of some new ones. The aim of this work was to study the auxin-like activity of digestate dissolved organic matter (DOM) obtained from full scale anaerobic digester plants. All DOMs had biostimulant capacity comparable with humic acid and amino acids. The auxin-like activities depended mainly on the hydrophobic DOM fractions for the presence of auxin-active and other auxin-like molecules. Significant correlations were found for the auxin-effect in relation to auxin-active molecules and fatty acids responsible for most of the auxin-like effects (67% of the total importance in giving auxin-like activity) while a minor or null contribution was attributable to the carboxylic acids and aminoacid categories. Therefore, the anaerobic digestion process seems to be a useful biotechnology to produce biostimulants. Basing on these first results, the expanding anaerobic digestion sector could become important for the production of new biostimulant classes to meet the agricultural sector's new requirements and saving on raw materials.
Collapse
Affiliation(s)
- Barbara Scaglia
- Gruppo Ricicla Labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, Milano, Italy.
| | - Michele Pognani
- Gruppo Ricicla Labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, Milano, Italy
| |
Collapse
|
91
|
Wu Y, Xia YP, Zhang JP, Du F, Zhang L, Ma YD, Zhou H. Low humic acids promote in vitro lily bulblet enlargement by enhancing roots growth and carbohydrate metabolism. J Zhejiang Univ Sci B 2017; 17:892-904. [PMID: 27819136 DOI: 10.1631/jzus.b1600231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Lilium Oriental Hybrids 'Sorbonne' under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (≥2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyrophosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and root length peaked at 14.5 and 5.75 cm, respectively. The fresh bulblet weight and diameter reached 468 mg (2.9 times that under the control treatment) and 11.68 mm, respectively. Further, sucrose/starch utilization and conversion were accelerated and carbon famine was delayed as a result with an average relative bulblet weight of 80.09%. To our knowledge, this is the first HA application and mechanism research into starch metabolism in both in vitro and in vivo condition in bulbous crops.
Collapse
Affiliation(s)
- Yun Wu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ping Xia
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jia-Ping Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fang Du
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.,College of Horticulture, Shanxi Agricultural University, Taigu 030800, China
| | - Lin Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi-di Ma
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
92
|
Soobhany N, Mohee R, Garg VK. A comparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11228-11239. [PMID: 28299564 DOI: 10.1007/s11356-017-8774-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
This work was conducted to evaluate and compare the responses of Phaseolus vulgaris to three types of composts and vermicomposts derived from municipal solid waste (MSW). Different amendment rates were used and evaluated for their effect on germination, growth, and marketable yield. MSW-derived vermicomposts and composts were substituted into mineral brown-earth soil, applied at rates of 0 (control), 10, 20, 30, 40, 50, and 100% (v/v) in plastic pots of 7.2-L capacity. Green beans which are grown in 40% vermicompost/soil mixtures and compost/soil mixtures yielded 78.3-89.5% higher fruit weights as compared to control. Results showed that MSW vermicomposts consistently outperformed equivalent quantities of composts in terms of fruit yield, shoot, and root dry weights, which can be attributed to the contributions of physicochemical properties and nutrients content (N, P, and K) in the potting experiments. Consequently, it seemed likely that MSW vermicompost provided other biological inputs such as plant growth regulators (PGRs) and plant growth hormones (PGHs), which could have a considerably positive effect on the growth and yields of P. vulgaris as compared to composts. More in-depth scientific investigation is required in order to identify the distinctive effects and the exact mechanisms of these PGRs in MSW vermicomposts which influenced plant growth responses.
Collapse
Affiliation(s)
- Nuhaa Soobhany
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Reduit, Moka, 80837, Mauritius.
| | - Romeela Mohee
- Office of Vice Chancellor, University of Mauritius, Reduit, Moka, 80837, Mauritius
| | - Vinod Kumar Garg
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 155001, India
| |
Collapse
|
93
|
Cha JY, Kim TW, Choi JH, Jang KS, Khaleda L, Kim WY, Jeon JR. Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of Arabidopsis thaliana: A Green Route for Synthesizing Humic-like Fertilizers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1167-1177. [PMID: 28112921 DOI: 10.1021/acs.jafc.6b04700] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fungal laccases have been highlighted as a catalytic tool for transforming phenols. Here we demonstrate that fungal laccase-catalyzed oxidations can transform naturally occurring phenols into plant fertilizers with properties very similar to those of commercial humic acids. Treatments of Arabidopsis thaliana with highly cross-linked polyphenolic products obtained from a mixture of catechol and vanillic acid were able to enhance the germination and salt tolerance of this plant. These results revealed that humic-like organic fertilizers can be produced via in vitro enzymatic oxidation reactions. In particular, the root elongation pattern resulting from the laccase products was comparable to that resulting from an auxin-like compound. A detailed structural comparison of the phenol variants and commercial humic acids revealed their similarities and differences. Analyses based on SEM, EFM, ERP, and zeta-potential measurement showed that they both formed globular granules bearing various hydrophilic/polar groups in aqueous and solid conditions. Solid-phase 13C NMR, FT-IR-ATR, and elemental analyses showed that more nitrogen-based functional and aliphatic groups were present in the commercial humic acids. Significant differences were also identifiable with respect to particle size and specific surface area. High-resolution (15 T) FT-ICR mass spectrometry-based van Krevelen diagrams showed the compositional features of the variants to be a subset of those of the humic acids. Overall, our study unraveled essential structural features of polyaromatics that affect the growth of plants, and also provided novel bottom-up ecofriendly and finely tunable pathways for synthesizing humic-like fertilizers.
Collapse
Affiliation(s)
| | | | - Jung Hoon Choi
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
- Department of Biotechnology and Bioinformatics, Korea University , Sejong 30019, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute , Cheongju 28119, Republic of Korea
| | | | | | | |
Collapse
|
94
|
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. FRONTIERS IN PLANT SCIENCE 2017; 7:2049. [PMID: 28184225 PMCID: PMC5266735 DOI: 10.3389/fpls.2016.02049] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Collapse
Affiliation(s)
- Oleg I. Yakhin
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of SciencesUfa, Russia
- R&D Company Eco PrirodaUlkundy, Russia
| | | | | | - Patrick H. Brown
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| |
Collapse
|
95
|
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. FRONTIERS IN PLANT SCIENCE 2017; 7:2049. [PMID: 28184225 DOI: 10.3389/fpls] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 05/27/2023]
Abstract
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Collapse
Affiliation(s)
- Oleg I Yakhin
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of SciencesUfa, Russia; R&D Company Eco PrirodaUlkundy, Russia
| | | | | | - Patrick H Brown
- Department of Plant Sciences, University of California, Davis Davis, CA, USA
| |
Collapse
|
96
|
Santi C, Zamboni A, Varanini Z, Pandolfini T. Growth Stimulatory Effects and Genome-Wide Transcriptional Changes Produced by Protein Hydrolysates in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:433. [PMID: 28424716 PMCID: PMC5371660 DOI: 10.3389/fpls.2017.00433] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/14/2017] [Indexed: 05/07/2023]
Abstract
Protein hydrolysates are an emerging class of crop management products utilized for improving nutrient assimilation and mitigating crop stress. They generally consist of a mixture of peptides and free amino acids derived from the hydrolysis of plant or animal sources. The present work was aimed at studying the effects and the action mechanisms of a protein hydrolysate derived from animal residues on maize root growth and physiology in comparison with the effects induced by either free amino acids or inorganic N supply. The application of the protein hydrolysate caused a remarkable enhancement of root growth. In particular, in the protein hydrolysate-treated plants the length and surface area of lateral roots were about 7 and 1.5 times higher than in plants treated with inorganic N or free amino acids, respectively. The root growth promoting effect of the protein hydrolysate was associated with an increased root accumulation of K, Zn, Cu, and Mn when compared with inorganic N and amino acids treatments. A microarray analysis allowed to dissect the transcriptional changes induced by the different treatments demonstrating treatment-specific effects principally on cell wall organization, transport processes, stress responses and hormone metabolism.
Collapse
|
97
|
Ertani A, Schiavon M, Nardi S. Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays. FRONTIERS IN PLANT SCIENCE 2017; 8:1159. [PMID: 28725232 PMCID: PMC5496959 DOI: 10.3389/fpls.2017.01159] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/16/2017] [Indexed: 05/02/2023]
Abstract
An alfalfa-based protein hydrolysate (EM) has been tested in tomato (Solanum lycopersicon L.) plants at two different concentrations (0.1 and 1 mL L-1) to get insight on its efficacy as biostimulant in this species and to unravel possible metabolic targets and molecular mechanisms that may shed light on its mode of action. EM was efficient in promoting the fresh biomass and content in chlorophyll and soluble sugars of tomato plants, especially when it was applied at the concentration of 1 mL L-1. This effect on plant productivity was likely related to the EM-dependent up-regulation of genes identified via microarray and involved in primary carbon and nitrogen metabolism, photosynthesis, nutrient uptake and developmental processes. EM also up-regulated a number of genes implied in the secondary metabolism that leads to the synthesis of compounds (phenols and terpenes) functioning in plant development and interaction with the environment. Concomitantly, phenol content was enhanced in EM-treated plants. Several new genes have been identified in tomato as potential targets of EM action, like those involved in detoxification processes from reactive oxygen species and xenobiotic (particularly glutathione/ascorbate cycle-related and ABC transporters), and defense against abiotic and biotic stress. The model hypothesized is that elicitors present in the EM formulation like auxins, phenolics, and amino acids, may trigger a signal transduction pathway via modulation of the intracellular levels of the hormones ethylene, jasmonic acid and abscissic acid, which then further prompt the activation of a cascade events requiring the presence and activity of many kinases and transcription factors to activate stress-related genes. The genes identified suggest these kinases and transcription factors as players involved in a complex crosstalk between biotic and abiotic stress signaling pathways. We conclude that EM acts as a biostimulant in tomato due to its capacity to stimulate plant productivity and up-regulate stress-related responses. Its use in agricultural practices may reduce the need of inorganic fertilizers and pesticides, thereby reducing the environmental impact of productive agriculture.
Collapse
Affiliation(s)
- Andrea Ertani
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of PadovaPadua, Italy
- *Correspondence: Andrea Ertani,
| | - Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of PadovaPadua, Italy
- Biology Department, Colorado State University, Fort CollinsCO, United States
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of PadovaPadua, Italy
| |
Collapse
|
98
|
Braga LPP, Yoshiura CA, Borges CD, Horn MA, Brown GG, Drake HL, Tsai SM. Disentangling the influence of earthworms in sugarcane rhizosphere. Sci Rep 2016; 6:38923. [PMID: 27976685 PMCID: PMC5156904 DOI: 10.1038/srep38923] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022] Open
Abstract
For the last 150 years many studies have shown the importance of earthworms for plant growth, but the exact mechanisms involved in the process are still poorly understood. Many important functions required for plant growth can be performed by soil microbes in the rhizosphere. To investigate earthworm influence on the rhizosphere microbial community, we performed a macrocosm experiment with and without Pontoscolex corethrurus (EW+ and EW−, respectively) and followed various soil and rhizosphere processes for 217 days with sugarcane. In EW+ treatments, N2O concentrations belowground (15 cm depth) and relative abundances of nitrous oxide genes (nosZ) were higher in bulk soil and rhizosphere, suggesting that soil microbes were able to consume earthworm-induced N2O. Shotgun sequencing (total DNA) revealed that around 70 microbial functions in bulk soil and rhizosphere differed between EW+ and EW− treatments. Overall, genes indicative of biosynthetic pathways and cell proliferation processes were enriched in EW+ treatments, suggesting a positive influence of worms. In EW+ rhizosphere, functions associated with plant-microbe symbiosis were enriched relative to EW− rhizosphere. Ecological networks inferred from the datasets revealed decreased niche diversification and increased keystone functions as an earthworm-derived effect. Plant biomass was improved in EW+ and worm population proliferated.
Collapse
Affiliation(s)
- Lucas P P Braga
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Brazil
| | - Clovis D Borges
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Brazil
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany.,Department of Ecological Microbiology, University of Bayreuth, Germany
| | | | - Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, Germany
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
99
|
Adrian PB, Priya OV, Chip A. Nitrogen Dynamics of Vermicompost Use in Sustainable Agriculture. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jssem2016.0587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
100
|
|