51
|
Wurm CJ, Lindermayr C. Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:808-818. [PMID: 33128375 DOI: 10.1093/jxb/eraa404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is involved in a vast number of physiologically important processes in plants, such as organ development, stress resistance, and immunity. Transduction of NO bioactivity is generally achieved by post-translational modification of proteins, with S-nitrosation of cysteine residues as the predominant form. While traditionally the subcellular location of the factors involved was of lesser importance, recent studies identified the connection between NO and transcriptional activity and thereby raised the question about the route of NO into the nuclear sphere. Identification of NO-affected transcription factors and chromatin-modifying histone deacetylases implicated the important role of NO signaling in the plant nucleus as a regulator of epigenetic mechanisms and gene transcription. Here, we discuss the relationship between NO and its directly regulated protein targets in the nuclear environment, focusing on S-nitrosated chromatin modulators and transcription factors.
Collapse
Affiliation(s)
- Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
52
|
Hancock JT, Veal D. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:819-829. [PMID: 32687173 DOI: 10.1093/jxb/eraa331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are key signalling molecules in plants, but they do not work in isolation. NO is produced in cells, often increased in response to stress conditions, but many other reactive compounds used in signalling are generated and accumulate spatially and temporally together. This includes the reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), and hydrogen sulfide (H2S). Here, the interactions with such other reactive molecules is briefly reviewed. Furthermore, along with ROS and H2S, NO will potentially contribute to the overall intracellular redox of the cell. However, RNS will exist in redox couples and therefore the influence of the cellular redox on such couples will be explored. In discussions of the aberrations in intracellular redox it is usually oxidation, so-called oxidative stress, which is discussed. Here, we consider the notion of reductive stress and how this may influence the signalling which may be mediated by NO. By getting a more holistic view of NO biology, the influence on cell activity of NO and other RNS can be more fully understood, and may lead to the elucidation of methods for NO-based manipulation of plant physiology, leading to better stress responses and improved crops in the future.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| | - David Veal
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
53
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
54
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
55
|
Li ZC, Ren QW, Guo Y, Ran J, Ren XT, Wu NN, Xu HY, Liu X, Liu JZ. Dual Roles of GSNOR1 in Cell Death and Immunity in Tetraploid Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2021; 12:596234. [PMID: 33643341 PMCID: PMC7902495 DOI: 10.3389/fpls.2021.596234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
S-nitrosoglutathione reductase 1 (GSNOR1) is the key enzyme that regulates cellular homeostasis of S-nitrosylation. Although extensively studied in Arabidopsis, the roles of GSNOR1 in tetraploid Nicotiana species have not been investigated previously. To study the function of NtGSNOR1, we knocked out two NtGSNOR1 genes simultaneously in Nicotiana tabacum using clustered regularly interspaced short palindromic repeats (CRISPR)/caspase 9 (Cas9) technology. To our surprise, spontaneous cell death occurred on the leaves of the CRISPR/Cas9 lines but not on those of the wild-type (WT) plants, suggesting that NtGSNOR1 negatively regulates cell death. The natural cell death on the CRISPR/Cas9 lines could be a result from interactions between overaccumulated nitric oxide (NO) and hydrogen peroxide (H2O2). This spontaneous cell death phenotype was not affected by knocking out two Enhanced disease susceptibility 1 genes (NtEDS11a/1b) and thus was independent of the salicylic acid (SA) pathway. Unexpectedly, we found that the NtGSNOR1a/1b knockout plants displayed a significantly (p < 0.001) enhanced resistance to paraquat-induced cell death compared to WT plants, suggesting that NtGSNOR1 functions as a positive regulator of the paraquat-induced cell death. The increased resistance to the paraquat-induced cell death of the NtGSNOR1a/1b knockout plants was correlated with the reduced level of H2O2 accumulation. Interestingly, whereas the N gene-mediated resistance to Tobacco mosaic virus (TMV) was significantly enhanced (p < 0.001), the resistance to Pseudomonas syringae pv. tomato DC3000 was significantly reduced (p < 0.01) in the NtGSNOR1a/1b knockout lines. In summary, our results indicate that NtGSNOR1 functions as both positive and negative regulator of cell death under different conditions and displays distinct effects on resistance against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Zhen-Chao Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qian-Wei Ren
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xiao-Tian Ren
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ni-Ni Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hui-Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xia Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
56
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
57
|
Jedelská T, Sedlářová M, Lochman J, Činčalová L, Luhová L, Petřivalský M. Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp. HORTICULTURE RESEARCH 2021; 8:34. [PMID: 33518717 PMCID: PMC7848004 DOI: 10.1038/s41438-021-00469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Regulation of protein function by reversible S-nitrosation, a post-translational modification based on the attachment of nitroso group to cysteine thiols, has emerged among key mechanisms of NO signalling in plant development and stress responses. S-nitrosoglutathione is regarded as the most abundant low-molecular-weight S-nitrosothiol in plants, where its intracellular concentrations are modulated by S-nitrosoglutathione reductase. We analysed modulations of S-nitrosothiols and protein S-nitrosation mediated by S-nitrosoglutathione reductase in cultivated Solanum lycopersicum (susceptible) and wild Solanum habrochaites (resistant genotype) up to 96 h post inoculation (hpi) by two hemibiotrophic oomycetes, Phytophthora infestans and Phytophthora parasitica. S-nitrosoglutathione reductase activity and protein level were decreased by P. infestans and P. parasitica infection in both genotypes, whereas protein S-nitrosothiols were increased by P. infestans infection, particularly at 72 hpi related to pathogen biotrophy-necrotrophy transition. Increased levels of S-nitrosothiols localised in both proximal and distal parts to the infection site, which suggests together with their localisation to vascular bundles a signalling role in systemic responses. S-nitrosation targets in plants infected with P. infestans identified by a proteomic analysis include namely antioxidant and defence proteins, together with important proteins of metabolic, regulatory and structural functions. Ascorbate peroxidase S-nitrosation was observed in both genotypes in parallel to increased enzyme activity and protein level during P. infestans pathogenesis, namely in the susceptible genotype. These results show important regulatory functions of protein S-nitrosation in concerting molecular mechanisms of plant resistance to hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-625 00, Brno, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
58
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
59
|
Falak N, Imran QM, Hussain A, Yun BW. Transcription Factors as the "Blitzkrieg" of Plant Defense: A Pragmatic View of Nitric Oxide's Role in Gene Regulation. Int J Mol Sci 2021; 22:E522. [PMID: 33430258 PMCID: PMC7825681 DOI: 10.3390/ijms22020522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.
Collapse
Affiliation(s)
- Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
- Department of Medical Biochemistry and Biophysics, Umea University, 90187 Umea, Sweden
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| |
Collapse
|
60
|
Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, Romero LC, Shen J, Ge Z, Zhang Z, Shen W, Yuan X, Xie Y. Hydrogen sulfide, a signaling molecule in plant stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:146-160. [PMID: 33058490 DOI: 10.1111/jipb.13022] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 05/22/2023]
Abstract
Gaseous molecules, such as hydrogen sulfide (H2 S) and nitric oxide (NO), are crucial players in cellular and (patho)physiological processes in biological systems. The biological functions of these gaseous molecules, which were first discovered and identified as gasotransmitters in animals, have received unprecedented attention from plant scientists in recent decades. Researchers have arrived at the consensus that H2 S is synthesized endogenously and serves as a signaling molecule throughout the plant life cycle. However, the mechanisms of H2 S action in redox biology is still largely unexplored. This review highlights what we currently know about the characteristics and biosynthesis of H2 S in plants. Additionally, we summarize the role of H2 S in plant resistance to abiotic stress. Moreover, we propose and discuss possible redox-dependent mechanisms by which H2 S regulates plant physiology.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Didi Zhao
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, 41092, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, 41092, Spain
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhirong Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
61
|
Sahid S, Roy C, Paul S, Datta R. Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7331-7346. [PMID: 32853345 DOI: 10.1093/jxb/eraa400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Lectin proteins play an important role in biotic and abiotic stress responses in plants. Although the rice lectin protein Osr40c1 has been reported to be regulated by drought stress, the mechanism of its drought tolerance activity has not been studied so far. In this study, it is shown that expression of the Osr40c1 gene correlates with the drought tolerance potential of various rice cultivars. Transgenic rice plants overexpressing Osr40c1 were significantly more tolerant to drought stress than the wild-type plants. Furthermore, ectopic expression of the Osr40c1 gene in tobacco yielded a similar result. Interestingly, the protein displayed a nucleo-cytoplasmic localization and was found to interact with a number of drought-responsive proteins such as S-adenosylmethionine synthase 2 (OsSAM2), stress-associated protein 8 (OsSAP8), DNA-binding protein MNB1B (OsMNB1B), and histone 4 (OsH4). Silencing of each of these protein partners led to drought sensitivity in otherwise tolerant Osr40c1-expressing transgenic tobacco lines indicating that these partners were crucial for the Osr40c1-mediated drought tolerance in planta. Moreover, the association of Osr40c1 with these partners occurred specifically under drought stress forming a multi-protein complex. Together, our findings delineate a novel role of Osr40c1 in imparting drought tolerance by regulating OsMNB1B, OsSAM2, and OsH4 proteins, which presumably enables OsSAP8 to induce downstream gene expression.
Collapse
Affiliation(s)
- Salman Sahid
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
- Department of Botany, Dr A. P. J. Abdul Kalam Government College, New Town, Kolkata, West Bengal, India
| | - Chandan Roy
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Soumitra Paul
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Riddhi Datta
- Department of Botany, Dr A. P. J. Abdul Kalam Government College, New Town, Kolkata, West Bengal, India
| |
Collapse
|
62
|
Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol 2020; 38:101806. [PMID: 33316743 PMCID: PMC7744773 DOI: 10.1016/j.redox.2020.101806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Protein S-nitrosylation plays a fundamental role in cell signaling and nitrosoglutathione (GSNO) is considered as the main nitrosylating signaling molecule. Enzymatic systems controlling GSNO homeostasis are thus crucial to indirectly control the formation of protein S-nitrosothiols. GSNO reductase (GSNOR) is the key enzyme controlling GSNO levels by catalyzing its degradation in the presence of NADH. Here, we found that protein extracts from the microalga Chlamydomonas reinhardtii catabolize GSNO via two enzymatic systems having specific reliance on NADPH or NADH and different biochemical features. Scoring the Chlamydomonas genome for orthologs of known plant GSNORs, we found two genes encoding for putative and almost identical GSNOR isoenzymes. One of the two, here named CrGSNOR1, was heterologously expressed and purified. Its kinetic properties were determined and the three-dimensional structures of the apo-, NAD+- and NAD+/GSNO-forms were solved. These analyses revealed that CrGSNOR1 has a strict specificity towards GSNO and NADH, and a conserved folding with respect to other plant GSNORs. The catalytic zinc ion, however, showed an unexpected variability of the coordination environment. Furthermore, we evaluated the catalytic response of CrGSNOR1 to thermal denaturation, thiol-modifying agents and oxidative modifications as well as the reactivity and position of accessible cysteines. Despite being a cysteine-rich protein, CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have null or limited effects on CrGSNOR1 activity and folding, highlighting a certain resistance of the algal enzyme to redox modifications. The molecular mechanisms and structural features underlying the response to thiol-based modifications are discussed. Chlamydomonas protein extracts catalyze NAD(P)H-dependent GSNO degradation. Chlamydomonas GSNOR1 is a zinc-containing protein strictly relying on GSNO and NADH. The 3D-structure of CrGSNOR1 revealed a conserved folding with other plant GSNORs. CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have limited effects on CrGSNOR1 activity.
Collapse
|
63
|
Hancock JT. Nitric Oxide Signaling in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1550. [PMID: 33198158 PMCID: PMC7697264 DOI: 10.3390/plants9111550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an integral part of cell signaling mechanisms in animals and plants. In plants, its enzymatic generation is still controversial. Evidence points to nitrate reductase being important, but the presence of a nitric oxide synthase-like enzyme is still contested. Regardless, NO has been shown to mediate many developmental stages in plants, and to be involved in a range of physiological responses, from stress management to stomatal aperture closure. Downstream from its generation are alterations of the actions of many cell signaling components, with post-translational modifications of proteins often being key. Here, a collection of papers embraces the differing aspects of NO metabolism in plants.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
64
|
Moore M, Wesemann C, Gossmann N, Sahm A, Krüger J, Sczyrba A, Dietz KJ. ConCysFind: a pipeline tool to predict conserved amino acids of protein sequences across the plant kingdom. BMC Bioinformatics 2020; 21:490. [PMID: 33129266 PMCID: PMC7603750 DOI: 10.1186/s12859-020-03749-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Post-translational modifications (PTM) of amino acid (AA) side chains in peptides control protein structure and functionality. PTMs depend on the specific AA characteristics. The reactivity of cysteine thiol-based PTMs are unique among all proteinaceous AA. This pipeline aims to ease the identification of conserved AA of polypeptides or protein families based on the phylogenetic occurrence in the plant kingdom. The tool is customizable to include any species. The degree of AA conservation is taken as indicator for structural and functional significance, especially for PTM-based regulation. Further, this pipeline tool gives insight into the evolution of these potentially regulatory important peptides. RESULTS The web-based or stand-alone pipeline tool Conserved Cysteine Finder (ConCysFind) was developed to identify conserved AA such as cysteine, tryptophan, serine, threonine, tyrosin and methionine. ConCysFind evaluates multiple alignments considering the proteome of 21 plant species. This exemplar study focused on Cys as evolutionarily conserved target for multiple redox PTM. Phylogenetic trees and tables with the compressed results of the scoring algorithm are generated for each Cys in the query polypeptide. Analysis of 33 translation elongation and release factors alongside of known redox proteins from Arabidopsis thaliana for conserved Cys residues confirmed the suitability of the tool for identifying conserved and functional PTM sites. Exemplarily, the redox sensitivity of cysteines in the eukaryotic release factor 1-1 (eRF1-1) was experimentally validated. CONCLUSION ConCysFind is a valuable tool for prediction of new potential protein PTM targets in a broad spectrum of species, based on conserved AA throughout the plant kingdom. The identified targets were successfully verified through protein biochemical assays. The pipeline is universally applicable to other phylogenetic branches by customization of the database.
Collapse
Affiliation(s)
- Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Corinna Wesemann
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Nikolaj Gossmann
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Arne Sahm
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Jan Krüger
- Computational Metagenomics, Bielefeld University, 33501 Bielefeld, Germany
| | - Alexander Sczyrba
- Computational Metagenomics, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| |
Collapse
|
65
|
Jedelská T, Luhová L, Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1426. [PMID: 33114295 PMCID: PMC7690881 DOI: 10.3390/plants9111426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
| | | | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (T.J.); (L.L.)
| |
Collapse
|
66
|
Jahnová J, Činčalová L, Sedlářová M, Jedelská T, Sekaninová J, Mieslerová B, Luhová L, Barroso JB, Petřivalský M. Differential modulation of S-nitrosoglutathione reductase and reactive nitrogen species in wild and cultivated tomato genotypes during development and powdery mildew infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:297-310. [PMID: 32795911 DOI: 10.1016/j.plaphy.2020.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
Nitric oxide plays an important role in the pathogenesis of Pseudoidium neolycopersici, the causative agent of tomato powdery mildew. S-nitrosoglutathione reductase, the key enzyme of S-nitrosothiol homeostasis, was investigated during plant development and following infection in three genotypes of Solanum spp. differing in their resistance to P. neolycopersici. Levels and localization of reactive nitrogen species (RNS) including NO, S-nitrosoglutathione (GSNO) and peroxynitrite were studied together with protein nitration and the activity of nitrate reductase (NR). GSNOR expression profiles and enzyme activities were modulated during plant development and important differences among Solanum spp. genotypes were observed, accompanied by modulation of NO, GSNO, peroxynitrite and nitrated proteins levels. GSNOR was down-regulated in infected plants, with exception of resistant S. habrochaites early after inoculation. Modulations of GSNOR activities in response to pathogen infection were found also on the systemic level in leaves above and below the inoculation site. Infection strongly increased NR activity and gene expression in resistant S. habrochaites in contrast to susceptible S. lycopersicum. Obtained data confirm the key role of GSNOR and modulations of RNS during plant development under normal conditions and point to their involvement in molecular mechanisms of tomato responses to biotrophic pathogens on local and systemic levels.
Collapse
Affiliation(s)
- Jana Jahnová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Barbora Mieslerová
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
67
|
Gupta KJ, Kolbert Z, Durner J, Lindermayr C, Corpas FJ, Brouquisse R, Barroso JB, Umbreen S, Palma JM, Hancock JT, Petrivalsky M, Wendehenne D, Loake GJ. Regulating the regulator: nitric oxide control of post-translational modifications. THE NEW PHYTOLOGIST 2020; 227:1319-1325. [PMID: 32339293 DOI: 10.1111/nph.16622] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is perfectly suited for the role of a redox signalling molecule. A key route for NO bioactivity occurs via protein S-nitrosation, and involves the addition of a NO moiety to a protein cysteine (Cys) thiol (-SH) to form an S-nitrosothiol (SNO). This process is thought to underpin a myriad of cellular processes in plants that are linked to development, environmental responses and immune function. Here we collate emerging evidence showing that NO bioactivity regulates a growing number of diverse post-translational modifications including SUMOylation, phosphorylation, persulfidation and acetylation. We provide examples of how NO orchestrates these processes to mediate plant adaptation to a variety of cellular cues.
Collapse
Affiliation(s)
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary
| | - Jorg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, Jaén, 23071, Spain
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Marek Petrivalsky
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
68
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
69
|
Haque T, Eaves DJ, Lin Z, Zampronio CG, Cooper HJ, Bosch M, Smirnoff N, Franklin-Tong VE. Self-Incompatibility Triggers Irreversible Oxidative Modification of Proteins in Incompatible Pollen. PLANT PHYSIOLOGY 2020; 183:1391-1404. [PMID: 32321844 PMCID: PMC7333688 DOI: 10.1104/pp.20.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/07/2020] [Indexed: 06/08/2023]
Abstract
Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.
Collapse
Affiliation(s)
- Tamanna Haque
- School of Biosciences, College of Life and Environmental Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Deborah J Eaves
- School of Biosciences, College of Life and Environmental Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zongcheng Lin
- School of Biosciences, College of Life and Environmental Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Cleidiane G Zampronio
- School of Biosciences, College of Life and Environmental Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen J Cooper
- School of Biosciences, College of Life and Environmental Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
70
|
Yu J, Li Y, Qin Z, Guo S, Li Y, Miao Y, Song C, Chen S, Dai S. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxid Redox Signal 2020; 33:35-57. [PMID: 31989831 DOI: 10.1089/ars.2019.7823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Plant chloroplasts generate reactive oxygen species (ROS) during photosynthesis, especially under stresses. The sulfhydryl groups of protein cysteine residues are susceptible to redox modifications, which regulate protein structure and function, and thus different signaling and metabolic processes. The ROS-governed protein thiol redox switches play important roles in chloroplasts. Recent Advances: Various high-throughput thiol redox proteomic approaches have been developed, and they have enabled the improved understanding of redox regulatory mechanisms in chloroplasts. For example, the thioredoxin-modulated antioxidant enzymes help to maintain cellular ROS homeostasis. The light- and dark-dependent redox regulation of photosynthetic electron transport, the Calvin/Benson cycle, and starch biosynthesis ensures metabolic coordination and efficient energy utilization. In addition, redox cascades link the light with the dynamic changes of metabolites in nitrate and sulfur assimilation, shikimate pathway, and biosynthesis of fatty acid hormone as well as purine, pyrimidine, and thiamine. Importantly, redox regulation of tetrapyrrole and chlorophyll biosynthesis is critical to balance the photodynamic tetrapyrrole intermediates and prevent oxidative damage. Moreover, redox regulation of diverse elongation factors, chaperones, and kinases plays an important role in the modulation of gene expression, protein conformation, and posttranslational modification that contribute to photosystem II (PSII) repair, state transition, and signaling in chloroplasts. Critical Issues: This review focuses on recent advances in plant thiol redox proteomics and redox protein networks toward understanding plant chloroplast signaling, metabolism, and stress responses. Future Directions: Using redox proteomics integrated with biochemical and molecular genetic approaches, detailed studies of cysteine residues, their redox states, cross talk with other modifications, and the functional implications will yield a holistic understanding of chloroplast stress responses.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Yongfang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| |
Collapse
|
71
|
Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants. Biochem J 2020; 477:1865-1878. [DOI: 10.1042/bcj20190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
Abstract
The antagonism between thiol oxidation and reduction enables efficient control of protein function and is used as central mechanism in cellular regulation. The best-studied mechanism is the dithiol-disulfide transition in the Calvin Benson Cycle in photosynthesis, including mixed disulfide formation by glutathionylation. The adjustment of the proper thiol redox state is a fundamental property of all cellular compartments. The glutathione redox potential of the cytosol, stroma, matrix and nucleoplasm usually ranges between −300 and −320 mV. Thiol reduction proceeds by short electron transfer cascades consisting of redox input elements and redox transmitters such as thioredoxins. Thiol oxidation ultimately is linked to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Enhanced ROS production under stress shifts the redox network to more positive redox potentials. ROS do not react randomly but primarily with few specific redox sensors in the cell. The most commonly encountered reaction within the redox regulatory network however is the disulfide swapping. The thiol oxidation dynamics also involves transnitrosylation. This review compiles present knowledge on this network and its central role in sensing environmental cues with focus on chloroplast metabolism.
Collapse
|
72
|
Zhou H, Zhang J, Shen J, Zhou M, Yuan X, Xie Y. Redox-based protein persulfidation in guard cell ABA signaling. PLANT SIGNALING & BEHAVIOR 2020; 15:1741987. [PMID: 32178559 PMCID: PMC7238880 DOI: 10.1080/15592324.2020.1741987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen sulfide (H2S) is a versatile signaling molecule that regulates multiple physiological processes in plants, including growth and development, immunity, and stress response as well. Signaling triggered by H2S is proposed to occur via persulfidation, an oxidative post-translational modification (PTM) of cysteine residues (-SH) to persulfides (-SSH). Notwithstanding the growing body of information for the plant persulfidation proteome, the gap between the molecular mechanism of H2S and physiological functions of protein persulfidation remains large. In this mini-review, we discussed the specific regulatory mechanism of persulfidation on guard cell abscisic acid (ABA) signaling and the possible link of persulfidation, sulfenylation, and S-nitrosylation within the framework of redox-based regulation.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Xingxing Yuan Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
- CONTACT Yanjie Xie Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
73
|
Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, Zhang Y, Li S, Zhang Y, Cui J, Zhou Y, Shen W, Zhou T. Nitric Oxide Enhances Rice Resistance to Rice Black-Streaked Dwarf Virus Infection. RICE (NEW YORK, N.Y.) 2020; 13:24. [PMID: 32291541 PMCID: PMC7156532 DOI: 10.1186/s12284-020-00382-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV) causes one of the most important rice virus diseases of plants in East Asia. However, molecular mechanism(s)controlling rice resistance to infection is largely unknown. RESULTS In this paper, we showed that RBSDV infection in rice significantly induced nitric oxide (NO) production. This finding was further validated through a genetic approach using a RBSDV susceptible (Nipponbare) and a RBSDV resistant (15HPO187) cultivar. The production of endogenous NO was muchhigher in the 15HPO187 plants, leading to a much lower RBSDV disease incidence. Pharmacological studies showed that the applications of NO-releasingcompounds (i.e., sodium nitroprusside [SNP] and nitrosoglutathione [GSNO]) to rice plants reduced RBSDV disease incidence. After RBSDV infection, the levels of OsICS1, OsPR1b and OsWRKY 45 transcripts were significantly up-regulated by NO in Nipponbare. The increased salicylic acid contents were also observed. After the SNP treatment, protein S-nitrosylation in rice plants was also increased, suggesting that the NO-triggered resistance to RBSDV infection was partially mediated at the post-translational level. Although Osnia2 mutant rice produced less endogenous NO after RBSDV inoculation and showed a higher RBSDV disease incidence, its RBSDV susceptibility could be reduced by SNP treatment. CONCLUSIONS Collectively, our genetic and molecular evidence revealed that endogenous NO was a vital signal responsible for rice resistance to RBSDV infection.
Collapse
Affiliation(s)
- Rongfei Lu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Liu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yudong Shao
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejuan Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yali Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Jin Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
74
|
Otasevic V, Stancic A, Korac A, Jankovic A, Korac B. Reactive oxygen, nitrogen, and sulfur species in human male fertility. A crossroad of cellular signaling and pathology. Biofactors 2020; 46:206-219. [PMID: 31185138 DOI: 10.1002/biof.1535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022]
Abstract
Infertility is a significant global health problem that currently affects one of six couples in reproductive age. The quality of male reproductive cells dramatically decreased over the last years and almost every aspect of modern life additionally worsen sperm functional parameters that consequently markedly increase male infertility. This clearly points out the importance of finding a new approach to treat male infertility. Redox signaling mediated by reactive oxygen, nitrogen and sulfur species (ROS, RNS, and RSS respectively), has appeared important for sperm reproductive function. Present review summarizes the current knowledge of ROS, RNS, and RSS in male reproductive biology and identifies potential targets for development of novel pharmacological and therapeutic approaches for male infertility by targeted therapeutic modulation of redox signaling.
Collapse
Affiliation(s)
- Vesna Otasevic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Aleksandra Korac
- University of Belgrade, Faculty of Biology, Center for Electron Microscopy, Belgrade, Serbia
| | - Aleksandra Jankovic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Belgrade, Serbia
| |
Collapse
|
75
|
Stiti N, Podgórska KA, Bartels D. S-Nitrosation impairs activity of stress-inducible aldehyde dehydrogenases from Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110389. [PMID: 32005394 DOI: 10.1016/j.plantsci.2019.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Nitric oxide (NO) is an intracellular messenger that mediates stress responses. Several plant aldehyde dehydrogenase (ALDH) genes are expressed during abiotic stress conditions to reduce the level of cytotoxic aldehydes. We investigated a possible interference between NO and ALDHs, using the isoform ALDH3H1 of Arabidopsis thaliana as model. The physiological NO donor; S-nitrosoglutathione (GSNO), inhibits ALDH3H1 in a time- and concentration-dependent manner. Mutagenesis and ESI-MS/MS analyses show that all Cys residues of ALDH3H1 are targets of GSNO-mediated S-nitrosation. Chemical labelling indicates that the deactivation is due to the conversion of the catalytic thiol into a catalytically non-active nitrosothiol. GSNO has the same effect on the chloroplastic ALDH3I1, suggesting that susceptibility of the catalytic Cys to NO is a common feature of ALDHs. S-Nitrosation and enzymatic inhibition of ALDH were reverted by reducing agents. Our study proves that the function of ALDHs does not exclusively depend on transcriptional regulation, with stress-induced expression, but may be also susceptible to posttranslational regulation through S-nitrosation. We discuss the potential involvement of S-nitrosoglutathione reductase (GSNOR), binding specific cofactors and reducing partners in a protective system of ALDHs in vivo, which will be experimentally corroborated in our forthcoming study.
Collapse
Affiliation(s)
- Naïm Stiti
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Karolina Anna Podgórska
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
76
|
R. M. SK, Wang Y, Zhang X, Cheng H, Sun L, He S, Hao F. Redox Components: Key Regulators of Epigenetic Modifications in Plants. Int J Mol Sci 2020; 21:ijms21041419. [PMID: 32093110 PMCID: PMC7073030 DOI: 10.3390/ijms21041419] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
Epigenetic modifications including DNA methylation, histone modifications, and chromatin remodeling are crucial regulators of chromatin architecture and gene expression in plants. Their dynamics are significantly influenced by oxidants, such as reactive oxygen species (ROS) and nitric oxide (NO), and antioxidants, like pyridine nucleotides and glutathione in plants. These redox intermediates regulate the activities and expression of many enzymes involved in DNA methylation, histone methylation and acetylation, and chromatin remodeling, consequently controlling plant growth and development, and responses to diverse environmental stresses. In recent years, much progress has been made in understanding the functional mechanisms of epigenetic modifications and the roles of redox mediators in controlling gene expression in plants. However, the integrated view of the mechanisms for redox regulation of the epigenetic marks is limited. In this review, we summarize recent advances on the roles and mechanisms of redox components in regulating multiple epigenetic modifications, with a focus of the functions of ROS, NO, and multiple antioxidants in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Shibin He
- Correspondence: (S.H.); (F.H.); Tel.: +86-371-23881387 (F.H.)
| | - Fushun Hao
- Correspondence: (S.H.); (F.H.); Tel.: +86-371-23881387 (F.H.)
| |
Collapse
|
77
|
Lindermayr C, Rudolf EE, Durner J, Groth M. Interactions between metabolism and chromatin in plant models. Mol Metab 2020; 38:100951. [PMID: 32199818 PMCID: PMC7300381 DOI: 10.1016/j.molmet.2020.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND One of the fascinating aspects of epigenetic regulation is that it provides means to rapidly adapt to environmental change. This is particularly relevant in the plant kingdom, where most species are sessile and exposed to increasing habitat fluctuations due to global warming. Although the inheritance of epigenetically controlled traits acquired through environmental impact is a matter of debate, it is well documented that environmental cues lead to epigenetic changes, including chromatin modifications, that affect cell differentiation or are associated with plant acclimation and defense priming. Still, in most cases, the mechanisms involved are poorly understood. An emerging topic that promises to reveal new insights is the interaction between epigenetics and metabolism. SCOPE OF REVIEW This study reviews the links between metabolism and chromatin modification, in particular histone acetylation, histone methylation, and DNA methylation, in plants and compares them to examples from the mammalian field, where the relationship to human diseases has already generated a larger body of literature. This study particularly focuses on the role of reactive oxygen species (ROS) and nitric oxide (NO) in modulating metabolic pathways and gene activities that are involved in these chromatin modifications. As ROS and NO are hallmarks of stress responses, we predict that they are also pivotal in mediating chromatin dynamics during environmental responses. MAJOR CONCLUSIONS Due to conservation of chromatin-modifying mechanisms, mammals and plants share a common dependence on metabolic intermediates that serve as cofactors for chromatin modifications. In addition, plant-specific non-CG methylation pathways are particularly sensitive to changes in folate-mediated one-carbon metabolism. Finally, reactive oxygen and nitrogen species may fine-tune epigenetic processes and include similar signaling mechanisms involved in environmental stress responses in plants as well as animals.
Collapse
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany.
| | - Eva Esther Rudolf
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany
| | - Martin Groth
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany.
| |
Collapse
|
78
|
Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Kumawat S, Singh A, Prasad M, Sonah H, Sharma TR, Deshmukh R. Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. PHYSIOLOGIA PLANTARUM 2020; 168:437-455. [PMID: 31587278 DOI: 10.1111/ppl.13028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Gases such as ethylene, hydrogen peroxide (H2 O2 ), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2 S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2 S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2 S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2 S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2 S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2 S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2 S and NO in plants, particularly under stress conditions.
Collapse
Affiliation(s)
- Sheelavanta M Shivaraj
- Département de phytologie, University Laval, Quebec City, QC, Canada
- National Institute for Plant Biotechnology, New Delhi, India
| | - Sanskriti Vats
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Javaid A Bhat
- Soybean Research Institution, Nanjing Agricultural University, Jiangsu Sheng, China
| | - Priyanka Dhakte
- National Institute of Plant Genome Research, New Delhi, India
| | - Vinod Goyal
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Haryana, India
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Tilak R Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | | |
Collapse
|
79
|
Paul S, Roychoudhury A. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. PHYSIOLOGIA PLANTARUM 2020; 168:374-393. [PMID: 31479515 DOI: 10.1111/ppl.13021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 05/15/2023]
Abstract
Plants are exposed to a plethora of abiotic stresses such as drought, salinity, heavy metal and temperature stresses at different stages of their life cycle, from germination to seedling till the reproductive phase. As protective mechanisms, plants release signaling molecules that initiate a cascade of stress-signaling events, leading either to programmed cell death or plant acclimation. Hydrogen sulfide (H2 S) and nitric oxide (NO) are considered as new 'gasotransmitter' molecules that play key roles in regulating gene expression, posttranslational modification (PTM), as well as cross-talk with other hormones. Although the exact role of NO in plants remains unclear and is species dependent, various studies have suggested a positive correlation between NO accumulation and environmental stress in plants. These molecules are also involved in a large array of stress responses and act synergistically or antagonistically as signaling components, depending on their respective concentration. This study provides a comprehensive update on the signaling interplay between H2 S and NO in the regulation of various physiological processes under multiple abiotic stresses, modes of action and effects of exogenous application of these two molecules under drought, salt, heat and heavy metal stresses. However, the complete picture of the signaling cascades mediated by H2 S and NO is still elusive. Recent researches indicate that during certain plant processes, such as stomatal closure, H2 S could act upstream of NO signaling or downstream of NO in response to abiotic stresses by improving antioxidant activity in most plant species. In addition, PTMs of antioxidative pathways by these two molecules are also discussed.
Collapse
Affiliation(s)
- Saikat Paul
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| |
Collapse
|
80
|
Foyer CH, Baker A, Wright M, Sparkes IA, Mhamdi A, Schippers JHM, Van Breusegem F. On the move: redox-dependent protein relocation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:620-631. [PMID: 31421053 DOI: 10.1093/jxb/erz330] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/01/2019] [Indexed: 05/04/2023]
Abstract
Compartmentation of proteins and processes is a defining feature of eukaryotic cells. The growth and development of organisms is critically dependent on the accurate sorting of proteins within cells. The mechanisms by which cytosol-synthesized proteins are delivered to the membranes and membrane compartments have been extensively characterized. However, the protein complement of any given compartment is not precisely fixed and some proteins can move between compartments in response to metabolic or environmental triggers. The mechanisms and processes that mediate such relocation events are largely uncharacterized. Many proteins can in addition perform multiple functions, catalysing alternative reactions or performing structural, non-enzymatic functions. These alternative functions can be equally important functions in each cellular compartment. Such proteins are generally not dual-targeted proteins in the classic sense of having targeting sequences that direct de novo synthesized proteins to specific cellular locations. We propose that redox post-translational modifications (PTMs) can control the compartmentation of many such proteins, including antioxidant and/or redox-associated enzymes.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alison Baker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Plant Sciences, University of Leeds, Leeds, UK
| | - Megan Wright
- The Astbury Centre for Structural Biology, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Imogen A Sparkes
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Amna Mhamdi
- VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank Van Breusegem
- VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
81
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
82
|
Khan M, Imran QM, Shahid M, Mun BG, Lee SU, Khan MA, Hussain A, Lee IJ, Yun BW. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:602. [PMID: 31888479 PMCID: PMC6937950 DOI: 10.1186/s12870-019-2210-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/18/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.
Collapse
Affiliation(s)
| | | | | | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, KPK, Mardan, Pakistan
| | - In-Jung Lee
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
83
|
Rigui AP, Carvalho V, Wendt Dos Santos AL, Morvan-Bertrand A, Prud'homme MP, Machado de Carvalho MA, Gaspar M. Fructan and antioxidant metabolisms in plants of Lolium perenne under drought are modulated by exogenous nitric oxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:205-215. [PMID: 31707248 DOI: 10.1016/j.plaphy.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/27/2023]
Abstract
Drought is a major environmental factor that can trigger oxidative stress and affect plant growth and productivity. Previous studies have shown that exogenous nitric oxide (NO) can minimize oxidative stress-related damage through the modulation of antioxidant enzyme activity. Fructan accumulation also has an important role in drought tolerance, since these carbohydrates participate in osmoregulation, membrane protection and oxidant scavenging. Currently, there are few studies investigating NO-regulated fructan metabolism in response to abiotic stresses. In the present study, we sought to determine if treating plants of Lolium perenne with S-nitrosoglutathione (GSNO), a NO donor, improved drought tolerance. Two-month-old plants received water (control), GSNO and reduced glutathione (GSH) as foliar spray treatments and were then maintained under drought or well-watered conditions for 23 days. At the end of drought period, we evaluated growth, pigment content and antioxidant and fructan metabolisms. None of these conditions influenced dry mass accumulation, but the leaves of plants treated with GSNO exhibited a slight increase in pigment content under drought. GSNO treatment also induced 1-SST activity, which was associated with a 3-fold increase in fructan content. GSNO-treated plants presented higher GR activity and, consequently, increased GSH levels. L. perenne cv. AberAvon was relatively tolerant to the water stress condition employed herein, maintaining ROS homeostasis and mitigating oxidative stress, possibly due to fructan, ascorbate and glutathione pools.
Collapse
Affiliation(s)
- Athos Poli Rigui
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil; Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CEP, 04301-902, São Paulo, SP, Brazil
| | - Victória Carvalho
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, Brazil; Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica, CEP, 04301-902, São Paulo, SP, Brazil
| | | | - Annette Morvan-Bertrand
- Ecophysiologie Végétale Agronomie et Nutritions N.C.S. Normandie Univ, UNICAEN, INRA, EVA, 14000, Caen, France
| | - Marie-Pascale Prud'homme
- Ecophysiologie Végétale Agronomie et Nutritions N.C.S. Normandie Univ, UNICAEN, INRA, EVA, 14000, Caen, France
| | | | - Marília Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, CEP, 04301-902, São Paulo, SP, Brazil.
| |
Collapse
|
84
|
Feng J, Chen L, Zuo J. Protein S-Nitrosylation in plants: Current progresses and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1206-1223. [PMID: 30663237 DOI: 10.1111/jipb.12780] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based posttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein. S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. During the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins in plants. Emerging evidence indicates that protein S-nitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
85
|
A forty year journey: The generation and roles of NO in plants. Nitric Oxide 2019; 93:53-70. [DOI: 10.1016/j.niox.2019.09.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
|
86
|
Gong B, Yan Y, Zhang L, Cheng F, Liu Z, Shi Q. Unravelling GSNOR-Mediated S-Nitrosylation and Multiple Developmental Programs in Tomato Plants. PLANT & CELL PHYSIOLOGY 2019; 60:2523-2537. [PMID: 31350547 DOI: 10.1093/pcp/pcz143] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/15/2019] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) impacts multiple developmental events and stress responses in plants. S-nitrosylation, regulated by S-nitrosoglutathione reductase (GSNOR), is considered as an important route for NO bioactivity. However, genetic evidence for GSNOR-mediated plant development and S-nitrosylation remains elusive in crop species. Genetic and site-specific nitrosoproteomic approach was used to obtain GSNOR-mediated phenotype and S-nitrosylated network. Knockdown of GSNOR increased the endogenous NO level and S-nitrosylation, resulting in higher germination rate, inhibition of root and hypocotyl growth, decreased photosynthesis, reduced plant growth, altered plant architecture, dysplastic pollen grains, and low fructification rate and fruit yield. For nitrosoproteomic analysis, 395 endogenously S-nitrosylated proteins with 554 S-nitrosylation sites were identified within a wide range of biological processes, especially for energy metabolism. Physiological and exogenous energy-support testing were consistent with the omic result, suggesting that GSNOR-mediated S-nitrosylation of energy metabolism plays key roles in impacting plant growth and development. Taken together, GSNOR is actively involved in the regulation of multiple developmental processes related to agronomically important traits. In addition, our results provide valuable resources and new clues for the study of S-nitrosylation-regulated metabolism in plants.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yanyan Yan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
| | - Lili Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
| | - Fei Cheng
- Qingdao Agricultural University, Qingdao, P.R. China
| | - Zhen Liu
- Jingjie PTM Biolab Co. Ltd, Hangzhou, P.R. China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China
| |
Collapse
|
87
|
Niu L, Yu J, Liao W, Xie J, Yu J, Lv J, Xiao X, Hu L, Wu Y. Proteomic Investigation of S-Nitrosylated Proteins During NO-Induced Adventitious Rooting of Cucumber. Int J Mol Sci 2019; 20:E5363. [PMID: 31661878 PMCID: PMC6862188 DOI: 10.3390/ijms20215363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) acts an essential signaling molecule that is involved in regulating various physiological and biochemical processes in plants. However, whether S-nitrosylation is a crucial molecular mechanism of NO is still largely unknown. In this study, 50 μM S-nitrosoglutathione (GSNO) treatment was found to have a maximum biological effect on promoting adventitious rooting in cucumber. Meanwhile, removal of endogenous NO significantly inhibited the development of adventitious roots implying that NO is responsible for promoting the process of adventitious rooting. Moreover, application of GSNO resulted in an increase of intracellular S-nitrosothiol (SNO) levels and endogenous NO production, while decreasing the S-nitrosoglutathione reductase (GSNOR) activity during adventitious rooting, implicating that S-nitrosylation might be involved in NO-induced adventitious rooting in cucumber. Furthermore, the identification of S-nitrosylated proteins was performed utilizing the liquid chromatography/mass spectrometry/mass spectrometry (LC-MS/MS) and biotin-switch technique during the development of adventitious rooting. Among these proteins, the activities and S-nitrosylated level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tubulin alpha chain (TUA), and glutathione reductase (GR) were further analyzed as NO direct targets. Our results indicated that NO might enhance the S-nitrosylation level of GAPDH and GR, and was found to subsequently reduce these activities and transcriptional levels. Conversely, S-nitrosylation of TUA increased the expression level of TUA. The results implied that S-nitrosylation of key proteins seems to regulate various pathways through differential S-nitrosylation during adventitious rooting. Collectively, these results suggest that S-nitrosylation could be involved in NO-induced adventitious rooting, and they also provide fundamental evidence for the molecular mechanism of NO signaling during adventitious rooting in cucumber explants.
Collapse
Affiliation(s)
- Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jian Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
88
|
Mu C, Zhou L, Shan L, Li F, Li Z. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). THE NEW PHYTOLOGIST 2019; 223:1856-1872. [PMID: 30985940 DOI: 10.1111/nph.15850] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 05/25/2023]
Abstract
Salinity is among the major factors limiting crop production worldwide. Despite having moderate salt-tolerance, cotton (Gossypium spp.) suffers severe yield losses to salinity stresses, largely due to being grown on saline-alkali and dry lands. To identify genetic determinants conferring salinity tolerance in cotton, we deployed a functional genomic screen using a cotton cDNA library in a virus-induced gene silencing (VIGS) vector. We have revealed that silencing of GhDsPTP3a, which encodes a protein phosphatase, increases cotton tolerance to salt stress. Yeast two-hybrid screens indicated that GhDsPTP3a interacts with GhANN8b, an annexin protein, which plays a positive role in regulating cotton response to salinity stress. Salt stress induces GhANN8b phosphorylation, which is subsequently dephosphorylated by GhDsPTP3a. Ectopic expression of GhDsPTP3a and GhANN8b oppositely regulates plant salt tolerance and calcium influx. In addition, we have revealed that silencing of GhDsPTP3a or GhANN8b exerts opposing roles in regulating GhSOS1 transcript levels, and ectopic expression of GhANN8b elevates Na+ efflux in Arabidopsis under salinity stress. Our study demonstrates that a cotton phosphatase GhDsPTP3a and an annexin protein GhANN8b interact and reversely modulate Ca2+ and Na+ fluxes in cotton salinity responses.
Collapse
Affiliation(s)
- Chun Mu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lin Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
89
|
Gong B, Shi Q. Identifying S-nitrosylated proteins and unraveling S-nitrosoglutathione reductase-modulated sodic alkaline stress tolerance in Solanum lycopersicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:84-93. [PMID: 31277045 DOI: 10.1016/j.plaphy.2019.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 05/13/2023]
Abstract
S-nitrosylation, regulated by S-nitrosoglutathione reductase (GSNOR), is considered as an important route for nitric oxide (NO)-modulated stress tolerance in plants. However, genetic evidence for the GSNOR-mediated integrated regulation of S-nitrosylation and plant stress response remains elusive until now. In the present study, we used a site-specific nitrosoproteomic approach to identify 334 endogenously S-nitrosylated proteins with 425 S-nitrosylated sites from the wild type (WT) and GSNOR-knockdown (G) tomato plants under both control (C) and sodic alkaline stress (S) conditions. In detail, the results revealed 68, 92, 54 and 56 up-regulated, as well as 10, 36, 14 and 10 down-regulated S-nitrosylated proteins in G-C/WT-C, G-S/WT-S, WT-S/WT-C, and G-S/G-C, which is the first dataset for S-nitrosylated proteins in Solanaceae. These S-nitrosylated proteins are involved in a wide range of various metabolic, cellular and catalytic processes. Based on this data, proteins involving in NO homeostasis control, signaling of Ca2+, ethylene and MAPK, reactive oxygen species (ROS) scavenging, osmotic regulation, as well as energy support pathway have been identified and selected as the key and sensitive targets that were regulated by GSNOR-modulated S-nitrosylation in response to sodic alkaline stress. Taken together, GSNOR is actively involved in the regulation of sodic alkaline stress tolerance by S-nitrosylation. And the present study provided valuable resources and new clues for the study of S-nitrosylation-regulated metabolism in tomato plants.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
90
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
91
|
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Barroso JB. The function of S-nitrosothiols during abiotic stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4429-4439. [PMID: 31111892 DOI: 10.1093/jxb/erz197] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs). S-nitrosation is a reversible redox NO-PTM that consists of the addition of NO to a specific thiol group of a cysteine residue, leading to formation of S-nitrosothiols (SNOs). SNOs are more stable than NO and therefore they can extend and spread the in vivo NO signaling. The development of robust and reliable detection methods has allowed the identification of hundreds of S-nitrosated proteins involved in a wide range of physiological and stress-related processes in plants. For example, SNOs have a physiological function in plant development, hormone metabolism, nutrient uptake, and photosynthesis, among many other processes. The role of S-nitrosation as a regulator of plant responses to salinity and drought stress through the modulation of specific protein targets has also been well established. However, there are many S-nitrosated proteins that have been identified under different abiotic stresses for which the specific roles have not yet been identified. In this review, we examine current knowledge of the specific role of SNOs in the signaling events that lead to plant responses to abiotic stress, with a particular focus on examples where their functions have been well characterized at the molecular level.
Collapse
Affiliation(s)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | | |
Collapse
|
92
|
Corpas FJ, González-Gordo S, Cañas A, Palma JM. Nitric oxide and hydrogen sulfide in plants: which comes first? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4391-4404. [PMID: 30715479 DOI: 10.1093/jxb/erz031] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is a signal molecule regarded as being involved in myriad functions in plants under physiological, pathogenic, and adverse environmental conditions. Hydrogen sulfide (H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions similar to those of NO. Depending on their respective concentrations, both these molecules act synergistically or antagonistically as signals or damage promoters in plants. Nevertheless, available evidence shows that the complex biological connections between NO and H2S involve multiple pathways and depend on the plant organ and species, as well as on experimental conditions. Cysteine-based redox switches are prone to reversible modification; proteomic and biochemical analyses have demonstrated that certain target proteins undergo post-translational modifications such as S-nitrosation, caused by NO, and persulfidation, caused by H2S, both of which affect functionality. This review provides a comprehensive update on NO and H2S in physiological processes (seed germination, root development, stomatal movement, leaf senescence, and fruit ripening) and under adverse environmental conditions. Existing data suggest that H2S acts upstream or downstream of the NO signaling cascade, depending on processes such as stomatal closure or in response to abiotic stress, respectively.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Amanda Cañas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
93
|
Hancock JT. Considerations of the importance of redox state for reactive nitrogen species action. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4323-4331. [PMID: 30793204 DOI: 10.1093/jxb/erz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are immensely important signalling molecules in plants, being involved in a range of physiological responses. However, the exact way in which NO fits into signal transduction pathways is not always easy to understand. Here, some of the issues that should be considered are discussed. This includes how NO may interact directly with other reactive signals, such as reactive oxygen and sulfur species, how NO metabolism is almost certainly compartmentalized, that threshold levels of RNS may need to be reached to have effects, and how the intracellular redox environment may impact on NO signalling. Until better tools are available to understand how NO is generated in cells, where it accumulates, and to what levels it reaches, it will be hard to get a full understanding of NO signalling. The interaction of RNS metabolism with the intracellular redox environment needs further investigation. A changing redox poise will impact on whether RNS species can thrive in or around cells. Such mechanisms will determine whether specific RNS can indeed control the responses needed by a cell.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
94
|
Stasolla C, Huang S, Hill RD, Igamberdiev AU. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4365-4377. [PMID: 30838401 DOI: 10.1093/jxb/erz084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Plant growth and development rely on the orchestration of cell proliferation, differentiation, and ultimately death. After varying rounds of divisions, cells respond to positional cues by acquiring a specific fate and embarking upon distinct developmental pathways which might differ significantly from those of adjacent cells exposed to diverse cues. Differential cell behavior is most apparent in response to stress, when some cells might be more vulnerable than others to the same stress condition. This appears to be the case for stem cells which show abnormal features of differentiation and ultimately signs of deterioration at the onset of specific types of stress such as hypoxia and water deficit. A determining factor influencing cell behavior during growth and development, and cell response during conditions of stress is nitric oxide (NO), the level of which can be regulated by phytoglobins (Pgbs), known scavengers of NO. The modulation of NO by Pgbs can be cell, tissue, and/or organ specific, as revealed by the expression patterns of Pgbs dictated by the presence of distinct cis-regulatory elements in their promoters. This review discusses how the temporal and spatial Pgb expression pattern influences NO-mediated responses and ultimately cell fate acquisition in plant developmental processes.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
95
|
Jedelská T, Kraiczová VŠ, Berčíková L, Činčalová L, Luhová L, Petřivalský M. Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase. Biomolecules 2019; 9:E393. [PMID: 31438648 PMCID: PMC6788187 DOI: 10.3390/biom9090393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Veronika Šmotková Kraiczová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, CZ-77900 Olomouc, Czech Republic
| | - Lucie Berčíková
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
96
|
Telman W, Dietz KJ. Thiol redox-regulation for efficient adjustment of sulfur metabolism in acclimation to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4223-4236. [PMID: 30868161 DOI: 10.1093/jxb/erz118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Sulfur assimilation and sulfur metabolism are tightly controlled at the transcriptional, post-transcriptional, and post-translational levels in order to meet the demand for reduced sulfur in growth and metabolism. These regulatory mechanisms coordinate the cellular sulfhydryl supply with carbon and nitrogen assimilation in particular. Redox homeostasis is an important cellular parameter intimately connected to sulfur by means of multiple thiol modifications. Post-translational thiol modifications such as disulfide formation, sulfenylation, S-nitrosylation, persulfidation, and S-glutathionylation allow for versatile switching and adjustment of protein functions. This review focuses on redox-regulation of enzymes involved in the sulfur assimilation pathway, namely adenosine 5´-phosphosulfate reductase (APR), adenosine 5´-phosphosulfate kinase (APSK), and γ-glutamylcysteine ligase (GCL). The activity of these enzymes is adjusted at the transcriptional and post-translational level depending on physiological requirements and the state of the redox and reactive oxygen species network, which are tightly linked to abiotic stress conditions. Hormone-dependent fine-tuning contributes to regulation of sulfur assimilation. Thus, the link between oxylipin signalling and sulfur assimilation has been substantiated by identification of the so-called COPS module in the chloroplast with its components cyclophilin 20-3, O-acetylserine thiol lyase, 2-cysteine peroxiredoxin, and serine acetyl transferase. We now have a detailed understanding of how regulation enables the fine-tuning of sulfur assimilation under both normal and abiotic stress conditions.
Collapse
Affiliation(s)
- Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr. 25, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, Bielefeld, Germany
| |
Collapse
|
97
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
98
|
Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 2019; 88:10-26. [DOI: 10.1016/j.niox.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
99
|
Zhang ZW, Fu YF, Zhou YH, Wang CQ, Lan T, Chen GD, Zeng J, Chen YE, Yuan M, Yuan S, Hu JY. Nitrogen and nitric oxide regulate Arabidopsis flowering differently. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:177-184. [PMID: 31084870 DOI: 10.1016/j.plantsci.2019.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 05/27/2023]
Abstract
Both nitrogen (N) and nitric oxide (NO) postpone plant flowering. However, we still don't know whether N and NO trigger the same signaling pathways leading to flowering delay. Our previous study found that ferredoxin NADP+ oxidoreductase (FNR1) and the blue-light receptor cryptochrome 1 (CRY1) are involved in nitrogen-regulated flowering-time control. However, NO-induced late-flowering does not require FNR1 or CRY1. Sucrose supply counteracts the flowering delay induced by NO. However high-N-induced late-flowering could not be reversed by 5% sucrose supplementation. The high nitrogen condition decreased the amplitudes of all transcripts of the circadian clock. While NO increased the amplitudes of circadian transcripts of CRY1, LHY (LATE ELONGATED HYPOCOTYL), CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and TOC1 (TIMING OF CAB EXPRESSION 1), but decreased the amplitudes of circadian transcripts of CO (CONSTANS) and GI (GIGANTEA). 5% sucrose supplementation reversed the declines in amplitudes of circadian transcripts of CO and GI after the NO treatment. NO induced S-nitrosation modification on oscillators CO and GI, but not on the other oscillators of the circadian clock. Sucrose supply interestingly reduced S-nitrosation levels of GI and CO proteins. Thus N and NO rely on overlapping but distinct signaling pathways on plant flowering.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang-Hong Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jin-Yao Hu
- Research Center for Eco-Enviromental Engineering, Mianyang Normal University, Mianyang, 621000, Sichuan, China.
| |
Collapse
|
100
|
Silva LS, Alves MQ, Seabra AR, Carvalho HG. Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide 2019; 88:73-86. [PMID: 31026500 DOI: 10.1016/j.niox.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
The identification of S-nitrosated substrates and their target cysteine residues is a crucial step to understand the signaling functions of nitric oxide (NO) inside the cells. Here, we show that the key nitrogen metabolic enzyme glutamine synthetase (GS) is a S-nitrosation target in Medicago truncatula and characterize the molecular determinants and the effects of this NO-induced modification on different GS isoenzymes. We found that all the four M. truncatula GS isoforms are S-nitrosated, but despite the high percentage of amino acid identity between the four proteins, S-nitrosation only affects the activity of the plastid-located enzymes, leading to inactivation. A biotin-switch/mass spectrometry approach revealed that cytosolic and plastid-located GSs share an S-nitrosation site at a conserved cysteine residue, but the plastidic enzymes contain additional S-nitrosation sites at non-conserved cysteines, which are accountable for enzyme inactivation. By site-directed mutagenesis, we identified Cys369 as the regulatory S-nitrosation site relevant for the catalytic function of the plastid-located GS and an analysis of the structural environment of the SNO-targeted cysteines in cytosolic and plastid-located isoenzymes explains their differential regulation by S-nitrosation and elucidates the mechanistic by which S-nitrosation of Cys369 leads to enzyme inactivation. We also provide evidence that both the cytosolic and plastid-located GSs are endogenously S-nitrosated in leaves and root nodules of M. truncatula, supporting a physiological meaning for S-nitrosation. Taken together, these results provide new insights into the molecular details of the differential regulation of individual GS isoenzymes by NO-derived molecules and open new paths to explore the biological significance of the NO-mediated regulation of this essential metabolic enzyme.
Collapse
Affiliation(s)
- Liliana S Silva
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal
| | - Mariana Q Alves
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ana R Seabra
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal
| | - Helena G Carvalho
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal.
| |
Collapse
|