51
|
Biochemical Characterization of the Rice Cinnamyl Alcohol Dehydrogenase Gene Family. Molecules 2018; 23:molecules23102659. [PMID: 30332817 PMCID: PMC6222663 DOI: 10.3390/molecules23102659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/30/2022] Open
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is involved in the final step of the phenylpropanod pathway, catalyzing the NADPH-dependent reduction of hydroxy-cinnamaldehydes into the corresponding alcohols. The rice genome contains twelve CAD and CAD-like genes, collectively called OsCADs. To elucidate the biochemical function of the OsCADs, OsCAD1, 2, 6, and 7, which are highly expressed in rice, were cloned from rice tissues. The cloned OsCADs were heterologously expressed in Escherichia coli as His-tag fusion proteins. The activity assay of the recombinant OsCADs showed that OsCAD2, 6, and 7 have CAD activity toward hydroxycinnamaldehydes, but OsCAD1 has no detectable catalytic activity. The kinetic parameters of the enzyme reactions demonstrated that OsCAD2 has the highest catalytic activity among the examined enzymes. This result agrees well with the finding that the Zn binding and NADPH binding motifs and the residues constituting the substrate binding pocket in bona fide plant CADs were fully conserved in OsCAD2. Although they have large variations in the residue for the substrate binding pocket, OsCAD6 and 7 catalyzed the reduction of hydroxycinnamaldehydes with a similar efficiency. Alignment of amino acid sequences showed that OsCAD1 lacks the GxxxxP motif for NADPH binding and has mismatches in residues important in the reduction process, which could be responsible for the loss of catalytic activity. OsCAD2 belongs to CAD Class I with bona fide CADs from other plant species and is constitutively expressed throughout the developmental stages of rice, with preferential expression in actively lignifying tissues such as the root, stem, and panicle, suggesting that it is mainly involved in developmental lignification in rice. The expression of OsCAD2 was also induced by biotic and abiotic stresses such as Xanthomonas oryzae pv. oryzae (Xoo) infection and UV-irradiation, suggesting that it plays a role in the defense response of rice, in addition to a bona fide role in developmental lignification. OsCAD6 and 7 belong in CAD Class II. Their expression is relatively lower than that of OsCAD2 and is confined to certain tissues, such as the leaf sheath, stem, and panicle. The expression of OsCAD6 was stimulated by Xoo infection and UV-irradiation. Thus OsCAD6 appears to be an inducible OsCAD that is likely involved in the defense response of rice against biotic and abiotic stresses.
Collapse
|
52
|
Tanaka T, Ikeda A, Shiojiri K, Ozawa R, Shiki K, Nagai-Kunihiro N, Fujita K, Sugimoto K, Yamato KT, Dohra H, Ohnishi T, Koeduka T, Matsui K. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles. PLANT PHYSIOLOGY 2018; 178:552-564. [PMID: 30126866 PMCID: PMC6181032 DOI: 10.1104/pp.18.00632] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 05/19/2023]
Abstract
Green leaf volatiles (GLVs), including six-carbon (C6) aldehydes, alcohols, and esters, are formed when plant tissues are damaged. GLVs play roles in direct plant defense at wound sites, indirect plant defense via the attraction of herbivore predators, and plant-plant communication. GLV components provoke distinctive responses in their target recipients; therefore, the control of GLV composition is important for plants to appropriately manage stress responses. The reduction of C6-aldehydes into C6-alcohols is a key step in the control of GLV composition and also is important to avoid a toxic buildup of C6-aldehydes. However, the molecular mechanisms behind C6-aldehyde reduction remain poorly understood. In this study, we purified an Arabidopsis (Arabidopsis thaliana) NADPH-dependent cinnamaldehyde and hexenal reductase encoded by At4g37980, named here CINNAMALDEHYDE AND HEXENAL REDUCTASE (CHR). CHR T-DNA knockout mutant plants displayed a normal growth phenotype; however, we observed significant suppression of C6-alcohol production following partial mechanical wounding or herbivore infestation. Our data also showed that the parasitic wasp Cotesia vestalis was more attracted to GLVs emitted from herbivore-infested wild-type plants compared with GLVs emitted from chr plants, which corresponded with reduced C6-alcohol levels in the mutant. Moreover, chr plants were more susceptible to exogenous high-dose exposure to (Z)-3-hexenal, as indicated by their markedly lowered photosystem II activity. Our study shows that reductases play significant roles in changing GLV composition and, thus, are important in avoiding toxicity from volatile carbonyls and in the attraction of herbivore predators.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ayana Ikeda
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kaori Shiojiri
- Department of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Kazumi Shiki
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoko Nagai-Kunihiro
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenya Fujita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Koichi Sugimoto
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Toshiyuki Ohnishi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takao Koeduka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kenji Matsui
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
53
|
Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura M, Murakami S, Mukai M, Hattori T, Osakabe K, Ralph J, Sakamoto M, Umezawa T. Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:796-811. [PMID: 29890017 DOI: 10.1111/tpj.13988] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Steven D Karlen
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Mai Mukai
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - John Ralph
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
54
|
Huang P, Yoshida H, Yano K, Kinoshita S, Kawai K, Koketsu E, Hattori M, Takehara S, Huang J, Hirano K, Ordonio RL, Matsuoka M, Ueguchi-Tanaka M. OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:130-143. [PMID: 28574161 DOI: 10.1111/jipb.12557] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/29/2017] [Indexed: 05/22/2023]
Abstract
Previously, we found 123 transcription factors (TFs) as candidate regulators of secondary cell wall (SCW) formation in rice by using phylogenetic and co-expression network analyses. Among them, we examined in this work the role of OsIDD2, a zinc finger and indeterminate domain (IDD) family TF. Its overexpressors showed dwarfism, fragile leaves, and decreased lignin content, which are typical phenotypes of plants defective in SCW formation, whereas its knockout plants showed slightly increased lignin content. The RNA-seq and quantitative reverse transcription polymerase chain reaction analyses confirmed that some lignin biosynthetic genes were downregulated in the OsIDD2-overexpressing plants, and revealed the same case for other genes involved in cellulose synthesis and sucrose metabolism. The transient expression assay using rice protoplasts revealed that OsIDD2 negatively regulates the transcription of genes involved in lignin biosynthesis, cinnamyl alcohol dehydrogenase 2 and 3 (CAD2 and 3), and sucrose metabolism, sucrose synthase 5 (SUS5), whereas an AlphaScreen assay, which can detect the interaction between TFs and their target DNA sequences, directly confirmed the interaction between OsIDD2 and the target sequences located in the promoter regions of CAD2 and CAD3. Based on these observations, we conclude that OsIDD2 is negatively involved in SCW formation and other biological events by downregulating its target genes.
Collapse
Affiliation(s)
- Peng Huang
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hideki Yoshida
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Yano
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shunsuke Kinoshita
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kyosuke Kawai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Eriko Koketsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Masako Hattori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Sayaka Takehara
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Reynante Lacsamana Ordonio
- Plant Breeding and Biotechnology Division, Philippine Rice Research Institute, Maligaya, Science City of Munoz 3119, The Philippines
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
55
|
Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:904-923. [PMID: 28960566 DOI: 10.1111/tpj.13728] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/29/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis.
Collapse
Affiliation(s)
- Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min-Juan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gang-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mao-Mao Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Feng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chun-Hai Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
56
|
Cheng X, Li M, Li D, Zhang J, Jin Q, Sheng L, Cai Y, Lin Y. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear ( Pyrus bretschneideri) fruit. Biol Open 2017; 6:1602-1613. [PMID: 29141952 PMCID: PMC5703608 DOI: 10.1242/bio.026997] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
Abstract
The content of stone cells has significant effects on the flavour and quality of pear fruit. Previous research suggested that lignin deposition is closely related to stone cell formation. In the lignin biosynthetic pathway, cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD), dehydrogenase/reductase family members, catalyse the last two steps in monolignol synthesis. However, there is little knowledge of the characteristics of the CCR and CAD families in pear and their involvement in lignin synthesis of stone cells. In this study, 31 CCRs and 26 CADs were identified in the pear genome. Phylogenetic trees for CCRs and CADs were constructed; key amino acid residues were analysed, and three-dimensional structures were predicted. Using quantitative real-time polymerase chain reaction (qRT-PCR), PbCAD2, PbCCR1, -2 and -3 were identified as participating in lignin synthesis of stone cells in pear fruit. Subcellular localization analysis showed that the expressed proteins (PbCAD2, PbCCR1, -2 and -3) are found in the cytoplasm or at the cell membrane. These results reveal the evolutionary features of the CCR and CAD families in pear as well as the genes responsible for regulation of lignin synthesis and stone cell development in pear fruit.
Collapse
Affiliation(s)
- Xi Cheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Manli Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Jinyun Zhang
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Lingling Sheng
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei 230036, China
| |
Collapse
|
57
|
Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Légée F, Lapierre C, Pilate G, Ralph J, Boerjan W. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. PLANT PHYSIOLOGY 2017; 175:1018-1039. [PMID: 28878036 PMCID: PMC5664467 DOI: 10.1104/pp.17.00834] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 05/02/2023]
Abstract
In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8)S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry.
Collapse
Affiliation(s)
- Rebecca Van Acker
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Sandrien Desmet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726-4084
| | - Nicholas Santoro
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Cliff Foster
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Frédéric Légée
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France
| | - Catherine Lapierre
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France
| | | | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
58
|
Zhang W, Wu L, Ding Y, Yao X, Wu X, Weng F, Li G, Liu Z, Tang S, Ding C, Wang S. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). JOURNAL OF PLANT RESEARCH 2017; 130:859-871. [PMID: 28451936 DOI: 10.1007/s10265-017-0943-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/09/2017] [Indexed: 05/12/2023]
Abstract
Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.
Collapse
Affiliation(s)
- Wujun Zhang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
- Chongqing Academy of Agricultural Sciences/Chongqing Ratooning Rice Research Center, Chongqing, 402160, China
| | - Longmei Wu
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiong Yao
- Chongqing Academy of Agricultural Sciences/Chongqing Ratooning Rice Research Center, Chongqing, 402160, China
| | - Xiaoran Wu
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Weng
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhenghui Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - She Tang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaohua Wang
- Jiangsu Collaborative Innovation Center for Modern Crop Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
59
|
Jun SY, Walker AM, Kim H, Ralph J, Vermerris W, Sattler SE, Kang C. The Enzyme Activity and Substrate Specificity of Two Major Cinnamyl Alcohol Dehydrogenases in Sorghum ( Sorghum bicolor), SbCAD2 and SbCAD4. PLANT PHYSIOLOGY 2017; 174:2128-2145. [PMID: 28606901 PMCID: PMC5543964 DOI: 10.1104/pp.17.00576] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in monolignol biosynthesis, reducing sinapaldehyde, coniferaldehyde, and p-coumaraldehyde to their corresponding alcohols in an NADPH-dependent manner. Because of its terminal location in monolignol biosynthesis, the variation in substrate specificity and activity of CAD can result in significant changes in overall composition and amount of lignin. Our in-depth characterization of two major CAD isoforms, SbCAD2 (Brown midrib 6 [bmr6]) and SbCAD4, in lignifying tissues of sorghum (Sorghum bicolor), a strategic plant for generating renewable chemicals and fuels, indicates their similarity in both structure and activity to Arabidopsis (Arabidopsis thaliana) CAD5 and Populus tremuloides sinapyl alcohol dehydrogenase, respectively. This first crystal structure of a monocot CAD combined with enzyme kinetic data and a catalytic model supported by site-directed mutagenesis allows full comparison with dicot CADs and elucidates the potential signature sequence for their substrate specificity and activity. The L119W/G301F-SbCAD4 double mutant displayed its substrate preference in the order coniferaldehyde > p-coumaraldehyde > sinapaldehyde, with higher catalytic efficiency than that of both wild-type SbCAD4 and SbCAD2. As SbCAD4 is the only major CAD isoform in bmr6 mutants, replacing SbCAD4 with L119W/G301F-SbCAD4 in bmr6 plants could produce a phenotype that is more amenable to biomass processing.
Collapse
Affiliation(s)
- Se-Young Jun
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| | - Alexander M Walker
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Hoon Kim
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53726
| | - John Ralph
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53726
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32610
- University of Florida, Genetics Institute, Gainesville, Florida 32610
| | - Scott E Sattler
- United States Department of Agriculture-Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, Nebraska 68583
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington 99164
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
60
|
Takeda Y, Koshiba T, Tobimatsu Y, Suzuki S, Murakami S, Yamamura M, Rahman MM, Takano T, Hattori T, Sakamoto M, Umezawa T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. PLANTA 2017; 246:337-349. [PMID: 28421330 DOI: 10.1007/s00425-017-2692-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- EARTHNOTE Co. Ltd., Nago, Okinawa, 905-1152, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Md Mahabubur Rahman
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Global Sustainability Studies, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
61
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
62
|
Hirano K, Masuda R, Takase W, Morinaka Y, Kawamura M, Takeuchi Y, Takagi H, Yaegashi H, Natsume S, Terauchi R, Kotake T, Matsushita Y, Sazuka T. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1. PLANTA 2017; 246:61-74. [PMID: 28357539 DOI: 10.1007/s00425-017-2685-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 05/28/2023]
Abstract
The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Reiko Masuda
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Wakana Takase
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoichi Morinaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Zensho Holdings Co., Ltd., Tokyo, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Takeuchi
- Rice Breeding Research Team, NARO Institute of Crop Science, Tsukuba, Ibaraki, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | | | | | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
63
|
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. PLANT PHYSIOLOGY 2017; 174:972-985. [PMID: 28385728 PMCID: PMC5462022 DOI: 10.1104/pp.16.01973] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/30/2017] [Indexed: 05/02/2023]
Abstract
Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3',5'-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuri Takeda
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shiro Suzuki
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaomi Yamamura
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
64
|
Liu H, Guo Z, Gu F, Ke S, Sun D, Dong S, Liu W, Huang M, Xiao W, Yang G, Liu Y, Guo T, Wang H, Wang J, Chen Z. 4-Coumarate-CoA Ligase-Like Gene OsAAE3 Negatively Mediates the Rice Blast Resistance, Floret Development and Lignin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 7:2041. [PMID: 28119718 PMCID: PMC5222848 DOI: 10.3389/fpls.2016.02041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 05/23/2023]
Abstract
Although adenosine monophosphate (AMP) binding domain is widely distributed in multiple plant species, detailed molecular functions of AMP binding proteins (AMPBPs) in plant development and plant-pathogen interaction remain unclear. In the present study, we identified an AMPBP OsAAE3 from a previous analysis of early responsive genes in rice during Magnaporthe oryzae infection. OsAAE3 is a homolog of Arabidopsis AAE3 in rice, which encodes a 4-coumarate-Co-A ligase (4CL) like protein. A phylogenetic analysis showed that OsAAE3 was most likely 4CL-like 10 in an independent group. OsAAE3 was localized to cytoplasm, and it could be expressed in various tissues. Histochemical staining of transgenic plants carrying OsAAE3 promoter-driven GUS (β-glucuronidase) reporter gene suggested that OsAAE3 was expressed in all tissues of rice. Furthermore, OsAAE3-OX plants showed increased susceptibility to M. Oryzae, and this finding was attributable to decreased expression of pathogen-related 1a (PR1) and low level of peroxidase (POD) activity. Moreover, OsAAE3 over-expression resulted in increased content of H2O2, leading to programmed cell-death induced by reactive oxygen species (ROS). In addition, OsAAE3 over-expression repressed the floret development, exhibiting dramatically twisted glume and decreased fertility rate of anther. Meanwhile, the expressions of lignin biosynthesis genes were significantly decreased in OsAAE3-OX plants, thereby leading to reduced lignin content. Taken together, OsAAE3 functioned as a negative regulator in rice blast resistance, floret development, and lignin biosynthesis. Our findings further expanded the knowledge in functions of AMBPs in plant floret development and the regulation of rice-fungus interaction.
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Zhenhua Guo
- Department of Rice Breeding, Jiamusi Rice Research Institute of Heilongjiang Academy of Agricultural SciencesJiamusi, China
| | - Fengwei Gu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Shanwen Ke
- Department of Plant Breeding, College of Agricultural, South China Agricultural UniversityGuangzhou, China
| | - Dayuan Sun
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences/Guangdong Provincial key Laboratory of High Technology for Plant ProtectionGuangzhou, China
| | - Shuangyu Dong
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Wei Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
65
|
Lin F, Manisseri C, Fagerström A, Peck ML, Vega-Sánchez ME, Williams B, Chiniquy DM, Saha P, Pattathil S, Conlin B, Zhu L, Hahn MG, Willats WGT, Scheller HV, Ronald PC, Bartley LE. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development. PLANT & CELL PHYSIOLOGY 2016; 57:2058-2075. [PMID: 27481893 DOI: 10.1093/pcp/pcw125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/09/2016] [Indexed: 05/02/2023]
Abstract
Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Chithra Manisseri
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexandra Fagerström
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Matthew L Peck
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Miguel E Vega-Sánchez
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Monsanto Company, Chesterfield Village Campus, Chesterfield, MO 63017, USA
| | - Brian Williams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Dawn M Chiniquy
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Prasenjit Saha
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Sivakumar Pattathil
- Bioenergy Science Center, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Brian Conlin
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Lan Zhu
- Department of Statistics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael G Hahn
- Bioenergy Science Center, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Pamela C Ronald
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
66
|
Abstract
Brown midrib mutants in sorghum are associated with reduced lignin content and increased cell wall digestibility. In this study, we characterized a bmr-6 sorghum mutant, which shows reddish pigment in the midrib and stem after the fifth-leaf stage. Compared to wild type, Kalson lignin content of bmr-6 is decreased significantly. We used histological analysis to determine that the mutant exhibited a modified pattern of lignin staining and found an increased polysaccharide content. We cloned BMR-6 gene, a gene encoded a cinnamyl alcohol dehydrogenase (CAD), using a map-based cloning approach. Genetic complementation confirmed that CAD is responsible for the BMR-6 phenotype. BMR-6 gene was expressed in all tested sorghum tissues, with the highest being in midrib and stem. Transient expression assays in Nicotiana benthamiana leaves demonstrated cytomplasmic localization of BMR-6. We found that the expression level of bmr-6 was significantly decreased in the mutant but expression of SbCAD3 and SbCAD5 were significantly increased. Our results indicate that BMR-6 not only affects the distribution of lignin but also the biosynthesis of lignin in sorghum.
Collapse
|
67
|
Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC PLANT BIOLOGY 2016; 16:28. [PMID: 26811086 PMCID: PMC4727291 DOI: 10.1186/s12870-016-0717-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/18/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. RESULTS Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. CONCLUSION Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| | - Mark C Jordan
- Morden Reasearch and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
68
|
Rong W, Luo M, Shan T, Wei X, Du L, Xu H, Zhang Z. A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease. FRONTIERS IN PLANT SCIENCE 2016; 7:1723. [PMID: 27899932 PMCID: PMC5110560 DOI: 10.3389/fpls.2016.01723] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/02/2016] [Indexed: 05/18/2023]
Abstract
Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.). In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs) have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies toward both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1) and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1) were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.
Collapse
|
69
|
Yoon J, Choi H, An G. Roles of lignin biosynthesis and regulatory genes in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:902-12. [PMID: 26297385 PMCID: PMC5111759 DOI: 10.1111/jipb.12422] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/19/2015] [Indexed: 05/02/2023]
Abstract
Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non-lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Department of Life SciencePohang University of Science and TechnologyPohang790‐784Korea
| | - Heebak Choi
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Department of Life SciencePohang University of Science and TechnologyPohang790‐784Korea
| | - Gynheung An
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Graduate School of BiotechnologyKyung Hee UniversityYongin446‐701Korea
| |
Collapse
|
70
|
Molecular Breeding of Sorghum bicolor, A Novel Energy Crop. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:221-57. [PMID: 26811289 DOI: 10.1016/bs.ircmb.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.
Collapse
|
71
|
Noda S, Koshiba T, Hattori T, Yamaguchi M, Suzuki S, Umezawa T. The expression of a rice secondary wall-specific cellulose synthase gene, OsCesA7, is directly regulated by a rice transcription factor, OsMYB58/63. PLANTA 2015; 242:589-600. [PMID: 26070439 DOI: 10.1007/s00425-015-2343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
A rice MYB transcription factor, OsMYB58/63, was found to directly upregulate the expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase A7 ( OsCesA7 ); in contrast, the Arabidopsis putative orthologs AtMYB58 and AtMYB63 have been shown to specifically activate lignin biosynthesis. Although indirect evidence has shown that grass plants are similar to but partially different from dicotyledonous ones in transcriptional regulation of lignocellulose biosynthesis, little is known about the differences. This study showed that a rice MYB transcription factor, OsMYB58/63, directly upregulated the expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase A7 (OsCesA7). Gene co-expression analysis showed that, in rice, OsMYB58/63 and several rice MYB genes were co-expressed with genes encoding lignocellulose biosynthetic enzymes. The expression levels of OsMYB55/61, OsMYB55/61-L, OsMYB58/63, and OsMYB42/85 were commonly found to be high in culm internodes and nodes. All four MYB transcription factors functioned as transcriptional activators in yeast cells. OsMYB58/63 most strongly transactivated the expression of OsCesA7 in rice protoplasts. Moreover, recombinant OsMYB58/63 protein was bound to two distinct cis-regulatory elements, AC-II and SMRE3, in the OsCesA7 promoter. This is in sharp contrast to the role of Arabidopsis orthologs, AtMYB58 and AtMYB63, which had been reported to specifically activate lignin biosynthesis. The promoter analysis revealed that AC elements, which are the binding sites for MYB58 and MYB63, were lacking in cellulose and xylan biosynthetic genes in Arabidopsis, but present in cellulose, xylan, and lignin biosynthetic genes in rice, implying that the difference of transcriptional regulation between rice and Arabidopsis is due to the distinct composition of promoters. Our results provide a new insight into transcriptional regulation in grass lignocellulose biosynthesis.
Collapse
Affiliation(s)
- Soichiro Noda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
72
|
Anderson NA, Tobimatsu Y, Ciesielski PN, Ximenes E, Ralph J, Donohoe BS, Ladisch M, Chapple C. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. THE PLANT CELL 2015; 27:2195-209. [PMID: 26265762 PMCID: PMC4568507 DOI: 10.1105/tpc.15.00373] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/13/2015] [Accepted: 07/25/2015] [Indexed: 05/17/2023]
Abstract
Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.
Collapse
Affiliation(s)
- Nickolas A Anderson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 Heartland Plant Innovations, Manhattan, Kansas 66502
| | - Yuki Tobimatsu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 DOE Great Lakes Bioenergy Research Center and Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726 Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Peter N Ciesielski
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Eduardo Ximenes
- Department of Agricultural and Biological Engineering and the Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana 47907
| | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 DOE Great Lakes Bioenergy Research Center and Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726 Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Bryon S Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael Ladisch
- Department of Agricultural and Biological Engineering and the Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana 47907 Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
73
|
Tang R, Zhang XQ, Li YH, Xie XM. Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum. J Genet 2015; 93:145-58. [PMID: 24840831 DOI: 10.1007/s12041-014-0355-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key enzyme involved in lignin biosynthesis, catalyses the last step in monolignol synthesis and has a major role in genetic regulation of lignin production. In the present study, a 1 342-bp cDNA fragment of CAD gene, named PpCAD, was isolated from Pennisetum purpureum using strategies of homologous clone and rapid amplification of cDNA end. It was translated into an intact protein sequence including 366 amino acid residues by ORF Finder. The genomic full-length DNA of PpCAD was a 3 738-bp sequence containing four exons and three introns, among which the 114-bp exon was considered to be a conserved region compared with other CADs. Basic bioinformatic analysis presumed that the PpCAD was a nonsecretory and hydrophobic protein with five possible transmembrane helices. The phylogenetic analysis indicated that the PpCAD belonged to the class of bona fide CADs involved in lignin synthesis and it showed a high similarity (nearly 90%) with CAD protein sequences of Sorghum bicolor, Panicum virgatum and Zea mays in Gramineae. Furthere, PpCAD amino acid sequence was demonstrated to have some conserved motifs such as Zn-binding site, Zn-catalytic centre and NADP(H) binding domain after aligning with other bona fide CADs. Three-dimensional homology modelling of PpCAD showed that the protein had some exclusive features of bona fide CADs.
Collapse
Affiliation(s)
- Ran Tang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | | | | | | |
Collapse
|
74
|
Chemical and Radiation Mutagenesis: Induction and Detection by Whole Genome Sequencing. GENETICS AND GENOMICS OF BRACHYPODIUM 2015. [DOI: 10.1007/7397_2015_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
75
|
Dowd PF, Sattler SE. Helicoverpa zea (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) Responses to Sorghum bicolor (Poales: Poaceae) Tissues From Lowered Lignin Lines. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:162. [PMID: 25601946 PMCID: PMC4535129 DOI: 10.1093/jisesa/ieu162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The presence of lignin within biomass impedes the production of liquid fuels. Plants with altered lignin content and composition are more amenable to lignocellulosic conversion to ethanol and other biofuels but may be more susceptible to insect damage where lignin is an important resistance factor. However, reduced lignin lines of switchgrasses still retained insect resistance in prior studies. Therefore, we hypothesized that sorghum lines with lowered lignin content will also retain insect resistance. Sorghum excised leaves and stalk pith Sorghum bicolor (L.) Moench (Poales: Poaceae) from near isogenic brown midrib (bmr) 6 and 12 mutants lines, which have lowered lignin content and increased lignocellulosic ethanol conversion efficiency, were examined for insect resistance relative to wild-type (normal BTx623). Greenhouse and growth chamber grown plant tissues were fed to first-instar larvae of corn earworms, Helicoverpa zea (Boddie) and fall armyworms Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), two sorghum major pests. Younger bmr leaves had significantly greater feeding damage in some assays than wild-type leaves, but older bmr6 leaves generally had significantly less damage than wild-type leaves. Caterpillars feeding on the bmr6 leaves often weighed significantly less than those feeding on wild-type leaves, especially in the S. frugiperda assays. Larvae fed the pith from bmr stalks had significantly higher mortality compared with those larvae fed on wild-type pith, which suggested that bmr pith was more toxic. Thus, reducing lignin content or changing subunit composition of bioenergy grasses does not necessarily increase their susceptibility to insects and may result in increased resistance, which would contribute to sustainable production.
Collapse
Affiliation(s)
- Patrick F Dowd
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 N. University St. Peoria, IL 61604
| | - Scott E Sattler
- USDA, Agricultural Research Service, Grain, Forage and Bioenergy Research Unit, 137 Keim Hall, East Campus, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
76
|
Bagniewska-Zadworna A, Barakat A, Łakomy P, Smoliński DJ, Zadworny M. Lignin and lignans in plant defence: insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:111-121. [PMID: 25443838 DOI: 10.1016/j.plantsci.2014.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignol, the main component of lignin. Lignins, deposited in the secondary cell wall, play a role in plant defence against pathogens. We re-analysed the phylogeny of CAD/CAD-like genes using sequences from recently sequenced genomes, and analysed the temporal and spatial expression profiles of CAD/CAD-like genes in Populus trichocarpa healthy and infected plants. Three fungal pathogens (Rhizoctonia solani, Fusarium oxysporum, and Cytospora sp.), varying in lifestyle and pathogenicity, were used for plant infection. Phylogenetic analyses showed that CAD/CAD-like genes were distributed in classes represented by all members from angiosperm lineages including basal angiosperms and Selaginella. The analysed genes showed different expression profiles during development and demonstrated that three genes were involved in primary xylem maturation while five may function in secondary xylem formation. Expression analysis following inoculation with fungal pathogens, showed that five genes were induced in either stem or leaves. These results add further evidence that CAD/CAD-like genes have evolved specialised functions in plant development and defence against various pest and pathogens. Two genes (PoptrCAD11 and PoptrCAD15), which were induced under various stresses, could be treated as universal markers of plant defence using lignification or lignan biosynthesis.
Collapse
Affiliation(s)
- Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA.
| | - Piotr Łakomy
- Department of Forest Pathology, Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
| | - Dariusz J Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
77
|
Konovalov AA, Shundrina IK, Karpova EV, Nefedov AA, Goncharov NP. Inheritance and phenotype expression of functional and null alleles of aromatic alcohol dehydrogenase (CAD) in diploid wheats. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Chao N, Liu SX, Liu BM, Li N, Jiang XN, Gai Y. Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa. PLANTA 2014; 240:1097-112. [PMID: 25096165 DOI: 10.1007/s00425-014-2128-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/13/2014] [Indexed: 05/18/2023]
Abstract
Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.
Collapse
Affiliation(s)
- Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No 35, Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
79
|
Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Sci Rep 2014; 4:6567. [PMID: 25298209 PMCID: PMC4190510 DOI: 10.1038/srep06567] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, 'Leaf Star', with superior lodging resistance and a gh phenotype similar to one of its parents, 'Chugoku 117'. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety.
Collapse
|
80
|
Jin Y, Zhang C, Liu W, Qi H, Chen H, Cao S. The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns. PLoS One 2014; 9:e101730. [PMID: 25019207 PMCID: PMC4096510 DOI: 10.1371/journal.pone.0101730] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development.
Collapse
Affiliation(s)
- Yazhong Jin
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, PR China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilong jiang, PR China
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Wei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Hao Chen
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| | - Songxiao Cao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
81
|
New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS One 2014; 9:e86870. [PMID: 24586255 PMCID: PMC3929325 DOI: 10.1371/journal.pone.0086870] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.
Collapse
|
82
|
Chantreau M, Grec S, Gutierrez L, Dalmais M, Pineau C, Demailly H, Paysant-Leroux C, Tavernier R, Trouvé JP, Chatterjee M, Guillot X, Brunaud V, Chabbert B, van Wuytswinkel O, Bendahmane A, Thomasset B, Hawkins S. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC PLANT BIOLOGY 2013; 13:159. [PMID: 24128060 PMCID: PMC3853753 DOI: 10.1186/1471-2229-13-159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/09/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. RESULTS A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. CONCLUSIONS We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.
Collapse
Affiliation(s)
- Maxime Chantreau
- Université Lille Nord de France, Lille 1 UMR 1281, Villeneuve d'Ascq cedex F-59650, France
- INRA UMR, 281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d’Ascq F-59650, France
| | - Sébastien Grec
- Université Lille Nord de France, Lille 1 UMR 1281, Villeneuve d'Ascq cedex F-59650, France
- INRA UMR, 281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d’Ascq F-59650, France
| | - Laurent Gutierrez
- CRRBM, UFR des Sciences, UPJV, 33 rue Saint Leu, Amiens cedex 80039, France
| | - Marion Dalmais
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, INRA, 2 rue Gaston Crémieux CP 5708, Evry cedex 91057, France
| | | | - Hervé Demailly
- CRRBM, UFR des Sciences, UPJV, 33 rue Saint Leu, Amiens cedex 80039, France
| | | | | | - Jean-Paul Trouvé
- Terre de Lin, société cooperative agricole, Saint-Pierre-Le-Viger, 76 740, France
| | - Manash Chatterjee
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat 396195, India
- National University of Ireland Galway (NUIG), University Road, Galway, Ireland
| | | | - Véronique Brunaud
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, INRA, 2 rue Gaston Crémieux CP 5708, Evry cedex 91057, France
| | - Brigitte Chabbert
- INRA, UMR614 Fractionnement des AgroRessources et Environnement, Reims F-51100, France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et Environnement, Reims F-51100, France
| | | | - Abdelhafid Bendahmane
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, INRA, 2 rue Gaston Crémieux CP 5708, Evry cedex 91057, France
| | - Brigitte Thomasset
- CNRS-FRE 3580, GEC, Université de Technologie de Compiègne, CS 60319, Compiègnecedex 60203, France
| | - Simon Hawkins
- Université Lille Nord de France, Lille 1 UMR 1281, Villeneuve d'Ascq cedex F-59650, France
- INRA UMR, 281 Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d’Ascq F-59650, France
| |
Collapse
|
83
|
Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Identification of Transcription Factors Involved in Rice Secondary Cell Wall Formation. ACTA ACUST UNITED AC 2013; 54:1791-802. [DOI: 10.1093/pcp/pct122] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
84
|
Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Survey of Genes Involved in Rice Secondary Cell Wall Formation Through a Co-Expression Network. ACTA ACUST UNITED AC 2013; 54:1803-21. [DOI: 10.1093/pcp/pct121] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
85
|
Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, Sarath G, Hazen SP. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol 2013; 13:61. [PMID: 23902793 PMCID: PMC3734214 DOI: 10.1186/1472-6750-13-61] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Lignin is a significant barrier in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired CAD or COMT activity have attracted considerable agronomic interest for their altered lignin composition and improved digestibility. Here, we identified and functionally characterized candidate genes encoding CAD and COMT enzymes in the grass model species Brachypodium distachyon with the aim of improving crops for efficient biofuel production. RESULTS We developed transgenic plants overexpressing artificial microRNA designed to silence BdCAD1 or BdCOMT4. Both transgenes caused altered flowering time and increased stem count and weight. Downregulation of BdCAD1 caused a leaf brown midrib phenotype, the first time this phenotype has been observed in a C3 plant. While acetyl bromide soluble lignin measurements were equivalent in BdCAD1 downregulated and control plants, histochemical staining and thioacidolysis indicated a decrease in lignin syringyl units and reduced syringyl/guaiacyl ratio in the transgenic plants. BdCOMT4 downregulated plants exhibited a reduction in total lignin content and decreased Maule staining of syringyl units in stem. Ethanol yield by microbial fermentation was enhanced in amiR-cad1-8 plants. CONCLUSION These results have elucidated two key genes in the lignin biosynthetic pathway in B. distachyon that, when perturbed, may result in greater stem biomass yield and bioconversion efficiency.
Collapse
Affiliation(s)
- Gina M Trabucco
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dominick A Matos
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Scott J Lee
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Aaron J Saathoff
- USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Henry D Priest
- The Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Todd C Mockler
- The Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Gautam Sarath
- USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
| |
Collapse
|
86
|
Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula. Proc Natl Acad Sci U S A 2013; 110:13660-5. [PMID: 23901113 DOI: 10.1073/pnas.1312234110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure.
Collapse
|
87
|
Bouvier d'Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cézard L, Legée F, Lebris P, Legay S, Whitehead C, McQueen-Mason SJ, Gomez LD, Jouanin L, Lapierre C, Sibout R. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:496-508. [PMID: 23078216 DOI: 10.1111/tpj.12053] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 05/17/2023]
Abstract
Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin-related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose-to-ethanol conversion process. Down-regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21-3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8-O-4- and 4-O-5-coupled sinapaldehyde units, as well as resistant inter-unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester-linked to cell walls was measured for the first time in a lignin-related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild-type BdCAD1 allele restored the wild-type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild-type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre-treated with alkaline easier without compromising plant growth.
Collapse
Affiliation(s)
- Madeleine Bouvier d'Yvoire
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, Route de St Cyr (RD10), 78026, Versailles, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yamamoto T, Nakamura A, Iwai H, Ishii T, Ma JF, Yokoyama R, Nishitani K, Satoh S, Furukawa J. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. JOURNAL OF PLANT RESEARCH 2012; 125:771-9. [PMID: 22527842 DOI: 10.1007/s10265-012-0489-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/28/2012] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa L.) is a typical Si-accumulating plant and is able to accumulate Si up to >10 % of shoot dry weight. The cell wall has been reported to become thicker under Si-deficient condition. To clarify the relationship between Si accumulation and cell wall components, the physical properties of, and macromolecular components and Si content in, the pectic, hemicellulosic, and cellulosic fractions prepared from rice seedlings grown in hydroponics with or without 1.5 mM silicic acid were analyzed. In the absence of Si (the -Si condition), leaf blades drooped, but physical properties were enhanced. Sugar content in the cellulosic fraction and lignin content in the total cell wall increased under -Si condition. After histochemical staining, there was an increase in cellulose deposition in short cells and the cell layer just beneath the epidermis in the -Si condition, but no significant change in the pattern of lignin deposition. Expression of the genes involved in secondary cell wall synthesis, OsCesA4, OsCesA7, OsPAL, OsCCR1 and OsCAD6 was up-regulated under -Si condition, but expression of OsCesA1, involved in primary cell wall synthesis, did not increase. These results suggest that an increase in secondary cell wall components occurs in rice leaves to compensate for Si deficiency.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Chen W, VanOpdorp N, Fitzl D, Tewari J, Friedemann P, Greene T, Thompson S, Kumpatla S, Zheng P. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. PLANT MOLECULAR BIOLOGY 2012; 80:289-97. [PMID: 22847075 DOI: 10.1007/s11103-012-9948-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/21/2012] [Indexed: 05/13/2023]
Abstract
Maize brown midrib1 (bm1) mutant plants have reduced lignin content and offer significant advantages when used in silage and biofuel applications. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the conversion of hydroxycinnamyl aldehydes to monolignols, a key step in lignin biosynthesis. Maize CAD2 has been implicated as the underlying gene for bm1 phenotypes since bm1 plants have reduced CAD activity and lower CAD2 transcript level. Here, we describe a Dow AgroSciences maize bm1 mutant (bm1-das1) that contains a 3,444-bp transposon insertion in the first intron of CAD2 gene. As a result of chimeric RNA splicing, cad2 mRNA from bm1-das1 contains a 409-bp insert between its 1st and 2nd exons. This insertion creates a premature stop codon and is predicted to result in a truncated protein of 48 amino acids (AA), compared to 367 AA for the wild type (WT) CAD2. We have also sequenced cad2 from the reference allele bm1-ref in 515D bm1 stock and showed that it contains a two-nucleotide (AC) insertion in the 3rd exon, which is predicted to result in a truncated protein of 147 AA. The levels of cad2 mRNA in the midribs of bm1-das1 and bm1-ref are reduced by 91 and 86 % respectively, leading to reductions in total lignin contents by 24 and 30 %. Taken together, our data show that mutations in maize CAD2 are responsible for maize bm1 phenotypes. Based on specific changes in bm1-das1 and bm1-ref, high throughput TaqMan and KBioscience's allele specific PCR assays capable of differentiating mutant and WT alleles have been developed to accelerate bm1 molecular breeding.
Collapse
Affiliation(s)
- Wei Chen
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Li X, Ma D, Chen J, Pu G, Ji Y, Lei C, Du Z, Liu B, Ye H, Wang H. Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:85-95. [PMID: 22794921 DOI: 10.1016/j.plantsci.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 05/18/2023]
Abstract
It is well known in the literature that cinnamyl alcohol dehydrogenase (CAD) reduces hydroxycinnamyl aldehydes, such as coumaryl, coniferyl, and sinapyl aldehydes, to their corresponding alcohols in the presence of NADPH, and these alcohols act as the precursors of lignin biosynthesis. Here, we report the isolation of a cDNA encoding an NADP(+)-dependent CAD, designated as AaCAD, from the cDNA library using glandular secretory trichomes of Artemisia annua as the source of mRNA. A phylogenetic analysis indicated that AaCAD was clustered with AtCAD4 and AtCAD5, which were involved in monolignol biosynthesis from Arabidopsis. Semi-quantitative RT-PCR showed that the AaCAD transcript was abundant mostly in leaf and root, followed by flower, and lowest in stem. Functional and enzymatic assays showed that the recombinant enzyme was able to reversibly reduce a variety of common CADs substrates, namely geranial, cinnamyl aldehyde, sinapyl aldehyde, coniferyl aldehyde, and a sesquiterpenoid artemisinic aldehyde, to geraniol, cinnamyl alcohol, sinapyl alcohol, coniferyl alcohol, and artemisinic alcohol respectively. Besides, considering that AaCAD was identified from the glandular secretory trichomes of A. annua, and that the recombinant enzyme exhibited reductase activity by using artemisinic aldehyde as substrate, some possible role of AaCAD in artemisinin biosynthesis is also discussed.
Collapse
Affiliation(s)
- Xing Li
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongming Ma
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, China
| | - Jianlin Chen
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, China
| | - Gaobin Pu
- Shandong Yingcai University, 250104 Jinan, China
| | - Yunpeng Ji
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, 450002 Zhengzhou, China
| | - Zhigao Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, China
| | - Benye Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, China
| | - Hechun Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, China
| | - Hong Wang
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
91
|
Kaur H, Shaker K, Heinzel N, Ralph J, Gális I, Baldwin IT. Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies. PLANT PHYSIOLOGY 2012; 159:1545-70. [PMID: 22645069 PMCID: PMC3425196 DOI: 10.1104/pp.112.196717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/03/2012] [Indexed: 05/02/2023]
Abstract
The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.
Collapse
Affiliation(s)
| | | | | | - John Ralph
- Department of Molecular Ecology (H.K., N.H., I.G., I.T.B.) and Department of Biosynthesis/Nuclear Magnetic Resonance (K.S.), Max-Planck Institute for Chemical Ecology, Jena 07745, Germany; Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (J.R.); and Institute of Plant Science and Resources, Okayama University, Okayama 710–0046, Japan (I.G.)
| | - Ivan Gális
- Department of Molecular Ecology (H.K., N.H., I.G., I.T.B.) and Department of Biosynthesis/Nuclear Magnetic Resonance (K.S.), Max-Planck Institute for Chemical Ecology, Jena 07745, Germany; Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (J.R.); and Institute of Plant Science and Resources, Okayama University, Okayama 710–0046, Japan (I.G.)
| | - Ian T. Baldwin
- Department of Molecular Ecology (H.K., N.H., I.G., I.T.B.) and Department of Biosynthesis/Nuclear Magnetic Resonance (K.S.), Max-Planck Institute for Chemical Ecology, Jena 07745, Germany; Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (J.R.); and Institute of Plant Science and Resources, Okayama University, Okayama 710–0046, Japan (I.G.)
| |
Collapse
|
92
|
Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleau JP, Berenguer J, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. MOLECULAR PLANT 2012; 5:817-30. [PMID: 22147756 DOI: 10.1093/mp/ssr097] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.
Collapse
Affiliation(s)
- Silvia Fornalé
- Laboratori de Genetica Molecular Vegetal, Centre de Recerca en AgriGenomica (CRAG), Consorci CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Hong L, Qian Q, Tang D, Wang K, Li M, Cheng Z. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. PLANTA 2012; 236:141-51. [PMID: 22286805 DOI: 10.1007/s00425-012-1598-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 05/08/2023]
Abstract
The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.
Collapse
Affiliation(s)
- Lilan Hong
- State Key Laboratory of Plant Genomics, Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | | | | | | | | | | |
Collapse
|
94
|
Santiago R, Alarcón B, de Armas R, Vicente C, Legaz ME. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. PHYSIOLOGIA PLANTARUM 2012; 145:245-59. [PMID: 22248248 DOI: 10.1111/j.1399-3054.2012.01577.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD.
Collapse
Affiliation(s)
- Rocío Santiago
- Department of Plant Biology I (Plant Physiology), Faculty of Biology, Complutense University, 12 José Antonio Novais Av., Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
95
|
Jung HJG, Samac DA, Sarath G. Modifying crops to increase cell wall digestibility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:65-77. [PMID: 22325867 DOI: 10.1016/j.plantsci.2011.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter.
Collapse
Affiliation(s)
- Hans-Joachim G Jung
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
96
|
Gray J, Caparrós-Ruiz D, Grotewold E. Grass phenylpropanoids: regulate before using! PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:112-20. [PMID: 22284715 DOI: 10.1016/j.plantsci.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway is responsible for the synthesis of lignin as well as a large number of compounds of fundamental importance for the biology of plants. Over the years, important knowledge has accumulated on how dicotyledoneous plants control various branches of phenylpropanoid accumulation, but comparable information on the grasses is lagging significantly behind. In addition to playing fundamental roles in biotic and abiotic interactions, phenylpropanoids in the grasses play a very important function in the reinforcement of cell wall components. Understanding how phenylpropanoid metabolism is controlled in the grasses has been complicated by recent genome duplications, the difficulties in making transgenic plants and the absence of mutants in many genes. Recent studies in a particular subgroup of R2R3-MYB transcription factors suggest that they might play a central role in regulating a small set of phenylpropanoid genes, opening the door for the identification of other related regulators, and perhaps also finding out which combinations of biosynthesis genes function in particular cell types for the formation of specific compounds. This information will be essential for the rational metabolic engineering of this pathway, either to increase biomass or decrease phenolic accumulation for better accessibility of polysaccharides for forage quality and biofuel production.
Collapse
Affiliation(s)
- John Gray
- Dept. Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | |
Collapse
|
97
|
Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M. OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. PLANT CELL REPORTS 2012; 31:91-101. [PMID: 21912859 DOI: 10.1007/s00299-011-1142-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 05/07/2023]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step of monolignol biosynthesis. The rice genome contains 12 CAD-like genes, and whereas the proteins encoded by OsCAD2 and OsCAD7 are known to function in monolignol biosynthesis, the degree to which these enzymes contribute to this process and the involvement of the enzymes encoded by the remaining ten genes is unclear. This paper investigates the role of OsCAD2 and the nine other OsCAD-like proteins in monolignol biosynthesis. Among the OsCAD genes analyzed, OsCAD2, an enzyme belonging to the bona fide CAD phylogenetic group, was the most abundantly expressed gene in the uppermost internode, and was expressed at levels that were more than seven times greater than those of the second most abundantly expressed gene, OsCAD1. Promoter-GUS analysis of OsCAD2 (pCAD::GUS) in the internode, sheath, and roots revealed that GUS expression was strong in tissues that accumulated high levels of lignin. Furthermore, expression always preceded lignin accumulation, showing the tight correlation between OsCAD2 expression and monolignol biosynthesis. Additionally, expression of pCAD::GUS was well synchronized with that of rice caffeic acid 3-O-methyltransferase (OsCOMT::GUS), suggesting that the two enzymes function cooperatively during monolignol biosynthesis. Co-expression network analysis of eight OsCAD genes further revealed that, among the OsCAD genes, expression of OsCAD2 was most tightly associated with the transcription of lignin biosynthesis-related genes. These results suggest that OsCAD2 is largely responsible for monolignol biosynthesis in rice, which is similar to that indicated for the predominant role of other plant bona fide CAD protein to monolignol biosynthesis.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 2011; 6:e16416. [PMID: 21298014 PMCID: PMC3029337 DOI: 10.1371/journal.pone.0016416] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/15/2010] [Indexed: 02/01/2023] Open
Abstract
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. "Alamo" with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin.
Collapse
Affiliation(s)
- Aaron J. Saathoff
- Grain, Forage, and Bioenergy Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, Nebraska, United States of America
| | - Gautam Sarath
- Grain, Forage, and Bioenergy Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, Nebraska, United States of America
| | - Elaine K. Chow
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
| | - Bruce S. Dien
- Bioenergy Research Unit, United States Department of Agriculture-Agricultural Research Service, Peoria, Illinois, United States of America
| | - Christian M. Tobias
- Genomics and Gene Discovery Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, California, United States of America
| |
Collapse
|
99
|
Banerjee J, Das N, Dey P, Maiti MK. Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 2010; 402:637-43. [PMID: 20971065 DOI: 10.1016/j.bbrc.2010.10.073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 11/22/2022]
Abstract
Our recent report documented that the rice germin-like protein1 (OsGLP1), being a cell wall-associated protein involves in disease resistance in rice and possesses superoxide dismutase (SOD) activity as recognized by heterologous expression in tobacco. In the present study, the transgenic tobacco plants were analyzed further to decipher the detailed physiological and biochemical functions of the OsGLP1 and its associated SOD activity. The transgenic tobacco lines expressing SOD-active OsGLP1 showed tolerance against biotic and abiotic stresses mitigated by hyper-accumulating H(2)O(2) upon infection by fungal pathogen (Fusarium solani) and treatment to chemical oxidizing agent (ammonium persulfate), respectively. Histological staining revealed enhanced cross-linking of the cell wall components in the stem tissues of the transgenic plants. Fourier transform infrared spectroscopy (FTIR) analysis of the biopolymer from the stem tissues of the transgenic and untransformed plants revealed differential banding pattern of the spectra corresponding to various functional groups. Our findings demonstrate that the OsGLP1 with its inherent SOD activity is responsible for hyper-accumulation of H(2)O(2) and reinforcement of the cell wall components.
Collapse
Affiliation(s)
- Joydeep Banerjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | | |
Collapse
|
100
|
Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of Bona Fide CAD. J Mol Evol 2010; 71:202-18. [PMID: 20721545 DOI: 10.1007/s00239-010-9378-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.
Collapse
|