51
|
Wu S, Tohge T, Cuadros-Inostroza Á, Tong H, Tenenboim H, Kooke R, Méret M, Keurentjes JB, Nikoloski Z, Fernie AR, Willmitzer L, Brotman Y. Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions. MOLECULAR PLANT 2018; 11:118-134. [PMID: 28866081 DOI: 10.1016/j.molp.2017.08.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 05/07/2023]
Abstract
Metabolic genome-wide association studies (mGWAS), whereupon metabolite levels are regarded as traits, can help unravel the genetic basis of metabolic networks. A total of 309 Arabidopsis accessions were grown under two independent environmental conditions (control and stress) and subjected to untargeted LC-MS-based metabolomic profiling; levels of the obtained hydrophilic metabolites were used in GWAS. Our two-condition-based GWAS for more than 3000 semi-polar metabolites resulted in the detection of 123 highly resolved metabolite quantitative trait loci (p ≤ 1.0E-08), 24.39% of which were environment-specific. Interestingly, differently from natural variation in Arabidopsis primary metabolites, which tends to be controlled by a large number of small-effect loci, we found several major large-effect loci alongside a vast number of small-effect loci controlling variation of secondary metabolites. The two-condition-based GWAS was followed by integration with network-derived metabolite-transcript correlations using a time-course stress experiment. Through this integrative approach, we selected 70 key candidate associations between structural genes and metabolites, and experimentally validated eight novel associations, two of them showing differential genetic regulation in the two environments studied. We demonstrate the power of combining large-scale untargeted metabolomics-based GWAS with time-course-derived networks both performed under different abiotic environments for identifying metabolite-gene associations, providing novel global insights into the metabolic landscape of Arabidopsis.
Collapse
Affiliation(s)
- Si Wu
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Álvaro Cuadros-Inostroza
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; MetaSysX GmbH, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Hao Tong
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Hezi Tenenboim
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; MetaSysX GmbH, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Rik Kooke
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Michaël Méret
- MetaSysX GmbH, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Joost B Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
52
|
Li B, Tang M, Nelson A, Caligagan H, Zhou X, Clark-Wiest C, Ngo R, Brady SM, Kliebenstein DJ. Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis. THE PLANT CELL 2018; 30:178-195. [PMID: 29317470 PMCID: PMC5810574 DOI: 10.1105/tpc.17.00805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/07/2017] [Accepted: 01/05/2018] [Indexed: 05/20/2023]
Abstract
Plants use diverse mechanisms influenced by vast regulatory networks of indefinite scale to adapt to their environment. These regulatory networks have an unknown potential for epistasis between genes within and across networks. To test for epistasis within an adaptive trait genetic network, we generated and tested 47 Arabidopsis thaliana double mutant combinations for 20 transcription factors, which all influence the accumulation of aliphatic glucosinolates, the defense metabolites that control fitness. The epistatic combinations were used to test if there is more or less epistasis depending on gene membership within the same or different phenotypic subnetworks. Extensive epistasis was observed between the transcription factors, regardless of subnetwork membership. Metabolite accumulation displayed antagonistic epistasis, suggesting the presence of a buffering mechanism. Epistasis affecting enzymatic estimated activity was highly conditional on the tissue and environment and shifted between both antagonistic and synergistic forms. Transcriptional analysis showed that epistasis shifts depend on how the trait is measured. Because the 47 combinations described here represent a small sampling of the potential epistatic combinations in this genetic network, there is potential for significantly more epistasis. Additionally, the main effect of the individual gene was not predictive of the epistatic effects, suggesting that there is a need for further studies.
Collapse
Affiliation(s)
- Baohua Li
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California 95616
| | - Ayla Nelson
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
| | - Hart Caligagan
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
| | - Xue Zhou
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
| | - Caitlin Clark-Wiest
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
| | - Richard Ngo
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
53
|
Kerwin RE, Feusier J, Muok A, Lin C, Larson B, Copeland D, Corwin JA, Rubin MJ, Francisco M, Li B, Joseph B, Weinig C, Kliebenstein DJ. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field. THE NEW PHYTOLOGIST 2017; 215:1249-1263. [PMID: 28608555 DOI: 10.1111/nph.14646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Despite the growing number of studies showing that genotype × environment and epistatic interactions control fitness, the influences of epistasis × environment interactions on adaptive trait evolution remain largely uncharacterized. Across three field trials, we quantified aliphatic glucosinolate (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation was primarily influenced by additive and epistatic genetic variation, leaf damage was primarily influenced by environmental variation and relative fitness was primarily influenced by epistasis and epistasis × environment interactions. Epistasis × environment interactions accounted for up to 48% of the relative fitness variation in the field. At a single field site, the impact of epistasis on relative fitness varied significantly over 2 yr, showing that epistasis × environment interactions within a location can be temporally dynamic. These results suggest that the environmental dependency of epistasis can profoundly influence the response to selection, shaping the adaptive trajectories of natural populations in complex ways, and deserves further consideration in future evolutionary studies.
Collapse
Affiliation(s)
- Rachel E Kerwin
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Julie Feusier
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Alise Muok
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Catherine Lin
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Brandon Larson
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Daniel Copeland
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jason A Corwin
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Matthew J Rubin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Marta Francisco
- Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, 36143, Spain
| | - Baohua Li
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Bindu Joseph
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
- DynaMo Centre of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
54
|
Cohen H, Amir R. Dose-dependent effects of higher methionine levels on the transcriptome and metabolome of transgenic Arabidopsis seeds. PLANT CELL REPORTS 2017; 36:719-730. [PMID: 27271687 DOI: 10.1007/s00299-016-2003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 05/10/2023]
Abstract
Higher methionine levels in transgenic Arabidopsis seeds trigger the accumulation of stress-related transcripts and primary metabolites. These responses depend on the levels of methionine within seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. To reveal the regulatory role of the Arabidopsis thaliana CYSTATHIONINE γ-SYNTHASE (AtCGS), methionine main regulatory enzyme, in the synthesis of methionine in seeds, we generated transgenic RNAi seeds with targeted repression of AtCGS during late developmental stages of seeds. Unexpectedly, these seeds accumulated 2.5-fold more methionine than wild-type seeds. To study the nature of these seeds, transcriptomic and primary metabolite profiling were employed using Affymetrix ATH1 microarray and gas chromatography-mass spectrometry analyses, respectively. The results were compared to transgenic Arabidopsis seeds expressing a feedback-insensitive form of AtCGS (named SSE-AtD-CGS) that were previously showed to accumulate up to sixfold more soluble methionine than wild-type seeds. Statistical assessments showed that the nature of transcriptomic and metabolic changes that occurred in RNAi::AtCGS seeds were relatively similar, but to lesser extents, to those previously reported for SSE-AtD-CGS seeds, and linked to the induction of global transcriptomic and metabolic responses associated with stronger desiccation stress. As transgenic seeds obtained by both manipulations exhibited higher, but different methionine levels, the data strongly suggest that these changes depend on the absolute amounts of methionine within seeds and much less to the expression level of AtCGS.
Collapse
Affiliation(s)
- Hagai Cohen
- Laboratory of Plant Science, Migal Galilee Technology Center, 12100, Kiryat Shmona, Israel
- Faculty of Biology, Technion, Israel Institute of Technology, 32000, Haifa, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, 12100, Kiryat Shmona, Israel.
- Tel-Hai College, 11016, Upper Galilee, Israel.
| |
Collapse
|
55
|
Kakizaki T, Kitashiba H, Zou Z, Li F, Fukino N, Ohara T, Nishio T, Ishida M. A 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish. PLANT PHYSIOLOGY 2017; 173:1583-1593. [PMID: 28100450 PMCID: PMC5338677 DOI: 10.1104/pp.16.01814] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/16/2017] [Indexed: 05/22/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites whose degradation products confer intrinsic flavors and aromas to Brassicaceae vegetables. Several structures of GSLs are known in the Brassicaceae, and the biosynthetic pathway and regulatory networks have been elucidated in Arabidopsis (Arabidopsis thaliana). GSLs are precursors of chemical defense substances against herbivorous pests. Specific GSLs can act as feeding blockers or stimulants, depending on the pest species. Natural selection has led to diversity in the GSL composition even within individual species. However, in radish (Raphanus sativus), glucoraphasatin (4-methylthio-3-butenyl glucosinolate) accounts for more than 90% of the total GSLs, and little compositional variation is observed. Because glucoraphasatin is not contained in other members of the Brassicaceae, like Arabidopsis and cabbage (Brassica oleracea), the biosynthetic pathways for glucoraphasatin remain unclear. In this report, we identified and characterized a gene encoding GLUCORAPHASATIN SYNTHASE 1 (GRS1) by genetic mapping using a mutant that genetically lacks glucoraphasatin. Transgenic Arabidopsis, which overexpressed GRS1 cDNA, accumulated glucoraphasatin in the leaves. GRS1 encodes a 2-oxoglutarate-dependent dioxygenase, and it is abundantly expressed in the leaf. To further investigate the biosynthesis and transportation of GSLs in radish, we grafted a grs1 plant onto a wild-type plant. The grafting experiment revealed a leaf-to-root long-distance glucoraphasatin transport system in radish and showed that the composition of GSLs differed among the organs. Based on these observations, we propose a characteristic biosynthesis pathway for glucoraphasatin in radish. Our results should be useful in metabolite engineering for breeding of high-value vegetables.
Collapse
Affiliation(s)
- Tomohiro Kakizaki
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.);
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Hiroyasu Kitashiba
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Zhongwei Zou
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Feng Li
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Nobuko Fukino
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Takayoshi Ohara
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Takeshi Nishio
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| | - Masahiko Ishida
- Division of Vegetable Breeding, Institute of Vegetable and Floriculture Science, NARO, Ano, Tsu, Mie 514-2392, Japan (T.K., N.F., T.O., M.I.)
- and Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan (H.K., Z.Z., F.L., T.N.)
| |
Collapse
|
56
|
The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Sci Rep 2017; 7:40728. [PMID: 28094805 PMCID: PMC5240624 DOI: 10.1038/srep40728] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
The genus Barbarea has emerged as a model for evolution and ecology of plant defense compounds, due to its unusual glucosinolate profile and production of saponins, unique to the Brassicaceae. One species, B. vulgaris, includes two ‘types’, G-type and P-type that differ in trichome density, and their glucosinolate and saponin profiles. A key difference is the stereochemistry of hydroxylation of their common phenethylglucosinolate backbone, leading to epimeric glucobarbarins. Here we report a draft genome sequence of the G-type, and re-sequencing of the P-type for comparison. This enables us to identify candidate genes underlying glucosinolate diversity, trichome density, and study the genetics of biochemical variation for glucosinolate and saponins. B. vulgaris is resistant to the diamondback moth, and may be exploited for “dead-end” trap cropping where glucosinolates stimulate oviposition and saponins deter larvae to the extent that they die. The B. vulgaris genome will promote the study of mechanisms in ecological biochemistry to benefit crop resistance breeding.
Collapse
|
57
|
Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
58
|
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Bréhélin C. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:894. [PMID: 28611809 PMCID: PMC5447075 DOI: 10.3389/fpls.2017.00894] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Lipid droplets (LDs) are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER) or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1); both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence that LDs in leaves share tenuous physical continuity as well as numerous contact sites with the ER membrane. Thus, our data suggest that leaf LDs are functionally distinct from seed LDs and that their biogenesis is strictly controlled by AtSRP1 at restricted sites of the ER.
Collapse
Affiliation(s)
- Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420 Centre National de la Recherche Scientifique, US4 Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Françoise Immel
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Denis Coulon
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- Bordeaux INPTalence, France
| | - Nicolas Esnay
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Karine Tuphile
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphanie Pascal
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphane Claverol
- Proteome Platform, Functional Genomic Center of Bordeaux, University of BordeauxBordeaux, France
| | - Laëtitia Fouillen
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Claire Bréhélin
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- *Correspondence: Claire Bréhélin
| |
Collapse
|
59
|
Olsen CE, Huang XC, Hansen CIC, Cipollini D, Ørgaard M, Matthes A, Geu-Flores F, Koch MA, Agerbirk N. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates. PHYTOCHEMISTRY 2016; 132:33-56. [PMID: 27743600 DOI: 10.1016/j.phytochem.2016.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 05/22/2023]
Abstract
As a basis for future investigations of evolutionary trajectories and biosynthetic mechanisms underlying variations in glucosinolate structures, we screened members of the crucifer tribe Cardamineae by HPLC-MS/MS, isolated and identified glucosinolates by NMR, searched the literature for previous data for the tribe, and collected HPLC-MS/MS data for nearly all glucosinolates known from the tribe as well as some related structures (70 in total). This is a considerable proportion of the approximately 142 currently documented natural glucosinolates. Calibration with authentic references allowed distinction (or elucidation) of isomers in many cases, such as distinction of β-hydroxyls, methylthios, methylsulfinyls and methylsulfonyls. A mechanism for fragmentation of secondary β-hydroxyls in MS was elucidated, and two novel glucosinolates were discovered: 2-hydroxy-3-methylpentylglucosinolate in roots of Cardamine pratensis and 2-hydroxy-8-(methylsulfinyl)octylglucosinolate in seeds of Rorippa amphibia. A large number of glucosinolates (ca. 54 with high structural certainty and a further 28 or more suggested from tandem MS), representing a wide structural variation, is documented from the tribe. This included glucosinolates apparently derived from Met, Phe, Trp, Val/Leu, Ile and higher homologues. Normal side chain elongation and side chain decoration by oxidation or methylation was observed, as well as rare abnormal side chain decoration (hydroxylation of aliphatics at the δ rather than β-position). Some species had diverse profiles, e.g. R. amphibia and C. pratensis (19 and 16 individual glucosinolates, respectively), comparable to total diversity in literature reports of Armoracia rusticana (17?), Barbarea vulgaris (20-24), and Rorippa indica (>20?). The ancestor or the tribe would appear to have used Trp, Met, and homoPhe as glucosinolate precursor amino acids, and to exhibit oxidation of thio to sulfinyl, formation of alkenyls, β-hydroxylation of aliphatic chains and hydroxylation and methylation of indole glucosinolates. Two hotspots of apparent biochemical innovation and loss were identified: C. pratensis and the genus Barbarea. Diversity in other species mainly included structures also known from other crucifers. In addition to a role of gene duplication, two contrasting genetic/biochemical mechanisms for evolution of such combined diversity and redundancy are discussed: (i) involvement of widespread genes with expression varying during evolution, and (ii) mutational changes in substrate specificities of CYP79F and GS-OH enzymes.
Collapse
Affiliation(s)
- Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Xiao-Chen Huang
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Cecilie I C Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annemarie Matthes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
60
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
61
|
Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content. Molecules 2016; 21:molecules21060787. [PMID: 27322230 PMCID: PMC6273970 DOI: 10.3390/molecules21060787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023] Open
Abstract
Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA). The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062) and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total glucosinolates detected compared to the other three cabbage lines. The reason for the genotypic variation in gene expression and glucosinolate accumulation is a subject of further investigation.
Collapse
|
62
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
63
|
Lachowiec J, Queitsch C, Kliebenstein DJ. Molecular mechanisms governing differential robustness of development and environmental responses in plants. ANNALS OF BOTANY 2016; 117:795-809. [PMID: 26473020 PMCID: PMC4845800 DOI: 10.1093/aob/mcv151] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 08/25/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. SCOPE AND CONCLUSIONS This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48197, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA 98155, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA and DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
64
|
Seo MS, Jin M, Chun JH, Kim SJ, Park BS, Shon SH, Kim JS. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. PLANT MOLECULAR BIOLOGY 2016; 90:503-16. [PMID: 26820138 PMCID: PMC4766241 DOI: 10.1007/s11103-016-0437-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/09/2016] [Indexed: 05/09/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites that have anticarcinogenic activity and play defense roles in plants of the Brassicaceae family. MYB28 is known as a transcription factor that regulates aliphatic GSL biosynthesis in Arabidopsis thaliana. Brassicaceae plants have three orthologous copies of AtMYB28 derived from recent genome triplication. These BrMYB28 genes have a high level of sequence homology, with 81-87% similarities in the coding DNA sequence compared to Arabidopsis. Overexpression of three paralogous BrMYB28 genes in transgenic Chinese cabbage increased the total GSL content in all T1 generation plants and in two inbred lines of homozygous T2 plants. The highest total GSL contents were detected in homozygous T2 lines overexpressing BrMYB28.1, which showed an approximate fivefold increase compared to that of nontransgenic plants. The homozygous T2 lines with overexpressed BrMYB28.1 also showed an increased content of aliphatic, indolic, and aromatic GSLs compared to that of nontransgenic plants. Furthermore, all of the three BrMYB28 genes were identified as negative regulators of BrAOP2 and positive regulators of BrGSL-OH in the homozygous T2 lines. These data indicate the regulatory mechanism of GSL biosynthesis in B. rapa is unlike that in A. thaliana. Our results will provide useful information for elucidating the regulatory mechanism of GSL biosynthesis in polyploid plants.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Mina Jin
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Jin-Hyuk Chun
- Department of Biological Environment and Chemistry, College of Agriculture and Life Science, Chungnam National University, Yuseong-gu, Daejeon, Korea.
| | - Sun-Ju Kim
- Department of Biological Environment and Chemistry, College of Agriculture and Life Science, Chungnam National University, Yuseong-gu, Daejeon, Korea.
| | - Beom-Seok Park
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Seong-Han Shon
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration (RDA), Wansan-gu, Jeonju, Korea.
| |
Collapse
|
65
|
Liu T, Zhang X, Yang H, Agerbirk N, Qiu Y, Wang H, Shen D, Song J, Li X. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation. FRONTIERS IN PLANT SCIENCE 2016; 7:83. [PMID: 26904055 PMCID: PMC4744896 DOI: 10.3389/fpls.2016.00083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/17/2016] [Indexed: 05/22/2023]
Abstract
The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P-type and the resistant G-type, even though saponins are the main DBM-resistance causing metabolites in G-type plants. Indol-3-ylmethylglucosinolate was induced in the G-type only. These data will aid our understanding of the biosynthesis and induction of aromatic glucosinolates at the molecular level and also increase our knowledge of the complex mechanisms underpinning defense induction in plants.
Collapse
Affiliation(s)
- Tongjin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Haohui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Yang Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Haiping Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Di Shen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Jiangping Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of AgricultureBeijing, China
- *Correspondence: Xixiang Li
| |
Collapse
|
66
|
Francisco M, Joseph B, Caligagan H, Li B, Corwin JA, Lin C, Kerwin R, Burow M, Kliebenstein DJ. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway. FRONTIERS IN PLANT SCIENCE 2016; 7:774. [PMID: 27313596 PMCID: PMC4887508 DOI: 10.3389/fpls.2016.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.
Collapse
Affiliation(s)
- Marta Francisco
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific ResearchPontevedra, Spain
| | - Bindu Joseph
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Hart Caligagan
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Baohua Li
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Jason A. Corwin
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Catherine Lin
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Rachel Kerwin
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Meike Burow
- DynaMo Center of Excellence, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
- DynaMo Center of Excellence, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
- *Correspondence: Daniel J. Kliebenstein
| |
Collapse
|
67
|
Francisco M, Joseph B, Caligagan H, Li B, Corwin JA, Lin C, Kerwin RE, Burow M, Kliebenstein DJ. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense. FRONTIERS IN PLANT SCIENCE 2016; 7:1010. [PMID: 27462337 PMCID: PMC4940622 DOI: 10.3389/fpls.2016.01010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 05/17/2023]
Abstract
A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.
Collapse
Affiliation(s)
- Marta Francisco
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific ResearchPontevedra, Spain
| | - Bindu Joseph
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Hart Caligagan
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Jason A. Corwin
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Catherine Lin
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Rachel E. Kerwin
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Meike Burow
- DynaMo Center, University of CopenhagenCopenhagen, Denmark
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- DynaMo Center, University of CopenhagenCopenhagen, Denmark
- *Correspondence: Daniel J. Kliebenstein
| |
Collapse
|
68
|
Cacho NI, Kliebenstein DJ, Strauss SY. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. THE NEW PHYTOLOGIST 2015; 208:915-27. [PMID: 26192213 DOI: 10.1111/nph.13561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/08/2015] [Indexed: 05/12/2023]
Abstract
We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California. One Shields Avenue, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Sharon Y Strauss
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
69
|
Soltis NE, Kliebenstein DJ. Natural Variation of Plant Metabolism: Genetic Mechanisms, Interpretive Caveats, and Evolutionary and Mechanistic Insights. PLANT PHYSIOLOGY 2015; 169:1456-68. [PMID: 26272883 PMCID: PMC4634085 DOI: 10.1104/pp.15.01108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/12/2015] [Indexed: 05/06/2023]
Abstract
Combining quantitative genetics studies with metabolomics/metabolic profiling platforms, genomics, and transcriptomics is creating significant progress in identifying the causal genes controlling natural variation in metabolite accumulations and profiles. In this review, we discuss key mechanistic and evolutionary insights that are arising from these studies. This includes the potential role of transport and other processes in leading to a separation of the site of mechanistic causation and metabolic consequence. A reilluminated observation is the potential for genomic variation in the organelle to alter phenotypic variation alone and in epistatic interaction with the nuclear genetic variation. These studies are also highlighting new aspects of metabolic pleiotropy both in terms of the breadth of loci altering metabolic variation as well as the potential for broader effects on plant defense regulation of the metabolic variation than has previously been predicted. We also illustrate caveats that can be overlooked when translating quantitative genetics descriptors such as heritability and per-locus r(2) to mechanistic or evolutionary interpretations.
Collapse
Affiliation(s)
- Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616 (N.E.S., D.J.K.); andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616 (N.E.S., D.J.K.); andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| |
Collapse
|
70
|
Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 2015; 10:e0140491. [PMID: 26465156 PMCID: PMC4605783 DOI: 10.1371/journal.pone.0140491] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/25/2015] [Indexed: 01/27/2023] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.
Collapse
|
71
|
Agerbirk N, Olsen CE. Glucosinolate hydrolysis products in the crucifer Barbarea vulgaris include a thiazolidine-2-one from a specific phenolic isomer as well as oxazolidine-2-thiones. PHYTOCHEMISTRY 2015; 115:143-151. [PMID: 25467719 DOI: 10.1016/j.phytochem.2014.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Two isomeric phenolic glucosinolates, m- and p-hydroxyl derivatives of epiglucobarbarin [(R)-2-hydroxy-2-phenylethylglucosinolate], co-occur in an eastern chemotype (P-type) of the crucifer Barbarea vulgaris along with epiglucobarbarin itself. Levels of the phenolic derivatives in B. vulgaris were low in summer but higher during fall and winter, allowing isolation of all three glucosinolates. Hydrolysis in vitro, catalyzed by Sinapis alba myrosinase at near neutral pH, resulted in expectable oxazolidine-2-thione type hydrolysis products of epiglucobarbarin and its m-hydroxyl derivative. In contrast, a thiazolidine-2-one type product was formed in vitro from p-hydroxy epiglucobarbarin and characterized by UV, IR, MS/MS and 2D NMR. Maceration of leaf material resulted in disappearance of the glucosinolates and formation of the same oxazolidine-2-thione and thiazolidine-2-one products as found in vitro. The detected amounts were comparable to initial amounts of precursor glucosinolates. The corresponding oxazolidine-2-thione type product was also detected quantitatively from glucobarbarin in foliage of a western genotype (G-type). We suggest that p-hydroxy epiglucobarbarin is initially converted into the conventional oxazolidine-2-thione, which would further rearrange to a thiazolidine-2-one due to the activating effect of the p-hydroxyl group. We conclude that a subtle difference between isomeric phenolic glucosinolates results in significantly different natural hydrolysis products.
Collapse
Affiliation(s)
- Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Carl Erik Olsen
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
72
|
Brown AF, Yousef GG, Reid RW, Chebrolu KK, Thomas A, Krueger C, Jeffery E, Jackson E, Juvik JA. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1431-47. [PMID: 25930056 DOI: 10.1007/s00122-015-2517-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/11/2015] [Indexed: 05/09/2023]
Abstract
The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL profiles.
Collapse
Affiliation(s)
- Allan F Brown
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Agerbirk N, Olsen CE, Heimes C, Christensen S, Bak S, Hauser TP. Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris. PHYTOCHEMISTRY 2015; 115:130-142. [PMID: 25277803 DOI: 10.1016/j.phytochem.2014.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/25/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
Two distinct glucosinolate (GSL) chemotypes (P and G-types) of Barbarea vulgaris (Brassicaceae) were known from southern Scandinavia, but whether the types were consistent in a wider geographic area was not known. Populations (26) from Eastern and Central Europe were analyzed for GSLs in order to investigate whether the two types were consistent in this area. Most (21) could be attributed to one of the previously described GSL profile types, the P-type (13 populations) and the G-type (8 populations), based on differences in the stereochemistry of 2-hydroxylation, presence or absence of phenolic glucobarbarin derivatives, and qualitative differences in indole GSL decoration (tested for a subset of 8+6 populations only). The distinction agreed with previous molecular genetic analysis of the same individuals. Geographically, the P-type typically occurred in Eastern Europe while the G-type mainly occurred in Central Europe. Of the remaining five populations, minor deviations were observed in some individuals from two populations genetically assigned to the G-type, and a hybrid population from Finland contained an additional dihydroxyphenethyl GSL isomer attributed to a combinatorial effect of P-type and G-type genes. Major exceptions to the typical GSL profiles were observed in two populations: (1) A G-type population from Slovenia deviated by a high frequency of a known variant in glucobarbarin biosynthesis ('NAS form') co-occurring with usual G-type individuals. (2) A population from Caucasus exhibited a highly deviating GSL profile dominated by p-hydroxyphenethyl GSL that was insignificant in other accessions, as well as two GSLs investigated by NMR, m-hydroxyphenethylGSL and a partially identified m,p disubstituted hydroxy-methoxy derivative of phenethylGSL. Tandem HPLC-MS of seven NMR-identified desulfoGSLs was carried out and interpreted for increased certainty in peak identification and as a tool for partial structure elucidation. The distinct, geographically separated chemotypes and rare variants are discussed in relation to future taxonomic revision and the genetics and ecology of GSLs in B. vulgaris.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Christine Heimes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Stina Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
74
|
Kerwin R, Feusier J, Corwin J, Rubin M, Lin C, Muok A, Larson B, Li B, Joseph B, Francisco M, Copeland D, Weinig C, Kliebenstein DJ. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. eLife 2015; 4. [PMID: 25867014 PMCID: PMC4396512 DOI: 10.7554/elife.05604] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI:http://dx.doi.org/10.7554/eLife.05604.001 ‘Genetic variation’ describes the naturally occurring differences in DNA sequences that are found among individuals of the same species. These genetic differences arise from random mutations and may be passed on to their offspring. Some of these mutations may improve the ability of an individual to survive and reproduce—known as fitness—and are likely to become more common in the population. Other mutations may reduce an individual's fitness and are likely to be lost. However, it is believed that most of the mutations will have no effect on the fitness of individuals. It is not known why many of these ‘neutral’ genetic differences are maintained in populations. Some researchers have proposed that they are kept by chance and that there is no direct advantage to the population of keeping them unless these neutral mutations later become beneficial. However, other researchers think that the genetic variation itself may improve the fitness of the population by allowing it to quickly adapt to changes in the environment. Arabidopsis thaliana is a small plant that lives in many different environments and has high levels of genetic variation in many of its physical traits. One of these traits is the production of molecules called glucosinolates, which help the plants to defend against herbivores and infection by microbes. Previous studies have suggested that variation in the genes that make glucosinolates may improve the fitness of A. thaliana populations. To test this idea, Kerwin et al. carried out a field trial using A. thaliana plants that were genetically identical except for some of the genes involved in the production of glucosinolates. Kerwin et al. grew the plants in several different environments over several years. The field trial shows that variation in these genes affected the fitness of the plants in each of the different environments. However, the fitness benefit depended on the environment, and no single gene variant provided the best fitness across all environments, or over all the years of the trial. Kerwin et al.'s findings suggest that changes in the environment may contribute to the maintenance of genetic variation in the genes that make glucosinolates. This raises the questions of how many other genes in plants (or other species such as humans) have genetic variation that contributes to fitness across varied environments; and how can this link be tested in natural settings. DOI:http://dx.doi.org/10.7554/eLife.05604.002
Collapse
Affiliation(s)
- Rachel Kerwin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Matthew Rubin
- Department of Botany, University of Wyoming, Laramie, United States
| | - Catherine Lin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Alise Muok
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Brandon Larson
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Bindu Joseph
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Marta Francisco
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Cynthia Weinig
- Department of Genetics, University of Utah, Salt Lake City, United States
| | | |
Collapse
|
75
|
Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:4032-7. [PMID: 25775585 DOI: 10.1073/pnas.1421416112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.
Collapse
|
76
|
Jensen LM, Jepsen HSK, Halkier BA, Kliebenstein DJ, Burow M. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:697. [PMID: 26442014 PMCID: PMC4561820 DOI: 10.3389/fpls.2015.00697] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/02/2023]
Abstract
Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOP (null) accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments.
Collapse
Affiliation(s)
- Lea M. Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Henriette S. K. Jepsen
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Barbara A. Halkier
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Daniel J. Kliebenstein
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Meike Burow
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
- *Correspondence: Meike Burow, Department of Plant and Environmental Sciences, DNRF Center DynaMo, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
77
|
Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari C, Benson DS, Steinmann M, Gray JA, Brady SM, Kliebenstein DJ. Promoter-based integration in plant defense regulation. PLANT PHYSIOLOGY 2014; 166:1803-20. [PMID: 25352272 PMCID: PMC4256871 DOI: 10.1104/pp.114.248716] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/28/2014] [Indexed: 05/18/2023]
Abstract
A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive glucosinolate metabolites in Arabidopsis (Arabidopsis thaliana). A systematic yeast one-hybrid study was used to identify hundreds of unique potential regulatory interactions with a nearly complete complement of 21 promoters for the aliphatic glucosinolate pathway. Conducting high-throughput phenotypic validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses to the local environment. Furthermore, the pattern of TF/promoter interactions could partially explain mutant phenotypes. This work shows that defense chemistry within Arabidopsis has a highly intricate transcriptional regulatory system that may allow for the optimization of defense metabolite accumulation across a broad array of environments.
Collapse
Affiliation(s)
- Baohua Li
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Allison Gaudinier
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Michelle Tang
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Mallorie Taylor-Teeples
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Ngoc T Nham
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Cyrus Ghaffari
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Darik Scott Benson
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Margaret Steinmann
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Jennifer A Gray
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Siobhan M Brady
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| | - Daniel J Kliebenstein
- Departments of Plant Sciences (B.L., M.T., N.T.N. C.G., D.S.B., M.S., J.A.G., D.J.K.) and Plant Biology (A.G., M.T., M.T.-T., J.A.G., S.M.B.) and Genome Center (A.G., M.T., M.T.-T., J.A.G., S.M.B.), University of California, Davis, California 95616; andDynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark (D.J.K.)
| |
Collapse
|
78
|
Cohen H, Israeli H, Matityahu I, Amir R. Seed-specific expression of a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE in Arabidopsis stimulates metabolic and transcriptomic responses associated with desiccation stress. PLANT PHYSIOLOGY 2014; 166:1575-92. [PMID: 25232013 PMCID: PMC4226362 DOI: 10.1104/pp.114.246058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With an aim to elucidate novel metabolic and transcriptional interactions associated with methionine (Met) metabolism in seeds, we have produced transgenic Arabidopsis (Arabidopsis thaliana) seeds expressing a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE, a key enzyme of Met synthesis. Metabolic profiling of these seeds revealed that, in addition to higher levels of Met, the levels of many other amino acids were elevated. The most pronounced changes were the higher levels of stress-related amino acids (isoleucine, leucine, valine, and proline), sugars, intermediates of the tricarboxylic acid cycle, and polyamines and lower levels of polyols, cysteine, and glutathione. These changes reflect stress responses and an altered mitochondrial energy metabolism. The transgenic seeds also had higher contents of total proteins and starch but lower water contents. In accordance with the metabolic profiles, microarray analysis identified a strong induction of genes involved in defense mechanisms against osmotic and drought conditions, including those mediated by the signaling cascades of ethylene and abscisic acid. These changes imply that stronger desiccation processes occur during seed development. The expression levels of transcripts controlling the levels of Met, sugars, and tricarboxylic acid cycle metabolites were also significantly elevated. Germination assays showed that the transgenic seeds had higher germination rates under salt and osmotic stresses and in the presence of ethylene substrate and abscisic acid. However, under oxidative conditions, the transgenic seeds displayed much lower germination rates. Altogether, the data provide new insights on the factors regulating Met metabolism in Arabidopsis seeds and on the mechanisms by which elevated Met levels affect seed composition and behavior.
Collapse
Affiliation(s)
- Hagai Cohen
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Hadasa Israeli
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Ifat Matityahu
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, Kiryat Shmona 12100, Israel (H.C., H.I., I.M., R.A.);Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel (H.C., R.A.); andTel-Hai College, Upper Galilee 11016, Israel (R.A.)
| |
Collapse
|
79
|
Hofberger JA, Lyons E, Edger PP, Chris Pires J, Eric Schranz M. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. Genome Biol Evol 2014; 5:2155-73. [PMID: 24171911 PMCID: PMC3845643 DOI: 10.1093/gbe/evt162] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success.
Collapse
Affiliation(s)
- Johannes A Hofberger
- Biosystematics Group, Wageningen University & Research Center, Wageningen, Gelderland, The Netherlands
| | | | | | | | | |
Collapse
|
80
|
Farrow SC, Facchini PJ. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:524. [PMID: 25346740 PMCID: PMC4191161 DOI: 10.3389/fpls.2014.00524] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/16/2014] [Indexed: 05/18/2023]
Abstract
Oxidative enzymes catalyze many different reactions in plant metabolism. Among this suite of enzymes are the 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs). Cytochromes P450 (CYPs) as often considered the most versatile oxidative enzymes in nature, but the diversity and complexity of reactions catalyzed by 2-ODDs is superior to the CYPs. The list of oxidative reactions catalyzed by 2-ODDs includes hydroxylations, demethylations, desaturations, ring closure, ring cleavage, epimerization, rearrangement, halogenation, and demethylenation. Furthermore, recent work, including the discovery of 2-ODDs involved in epigenetic regulation, and others catalyzing several characteristic steps in specialized metabolic pathways, support the argument that 2-ODDs are among the most versatile and important oxidizing biological catalysts. In this review, we survey and summarize the pertinent literature with a focus on several key reactions catalyzed by 2-ODDs, and discuss the significance and impact of these enzymes in plant metabolism.
Collapse
Affiliation(s)
| | - Peter J. Facchini
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
81
|
Qian H, Sun B, Miao H, Cai C, Xu C, Wang Q. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering. Food Chem 2014; 168:321-6. [PMID: 25172716 DOI: 10.1016/j.foodchem.2014.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/15/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale.
Collapse
Affiliation(s)
- Hongmei Qian
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Bo Sun
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Huiying Miao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Congxi Cai
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Chaojiong Xu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
82
|
Kawai Y, Ono E, Mizutani M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:328-43. [PMID: 24547750 DOI: 10.1111/tpj.12479] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 05/20/2023]
Abstract
The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation/hydroxylation reactions. Despite their biochemical significance in metabolism, a systematic analysis of plant 2OGDs remains to be accomplished. We present a phylogenetic classification of 479 2OGDs in six plant models, ranging from green algae to angiosperms. These were classified into three classes - DOXA, DOXB and DOXC - based on amino acid sequence similarity. The DOXA class includes plant homologs of Escherichia coli AlkB, which is a prototype of 2OGD involved in the oxidative demethylation of alkylated nucleic acids and histones. The DOXB class is conserved across all plant taxa and is involved in proline 4-hydroxylation in cell wall protein synthesis. The DOXC class is involved in specialized metabolism of various phytochemicals, including phytohormones and flavonoids. The vast majority of 2OGDs from land plants were classified into the DOXC class, but only seven from Chlamydomonas, suggesting that this class has diversified during land plant evolution. Phylogenetic analysis assigned DOXC-class 2OGDs to 57 phylogenetic clades. 2OGD genes involved in gibberellin biosynthesis were conserved among vascular plants, and those involved in flavonoid and ethylene biosynthesis were shared among seed plants. Several angiosperm-specific clades were found to be involved in various lineage-specific specialized metabolisms, but 31 of the 57 DOXC-class clades were only found in a single species. Therefore, the evolution and diversification of DOXC-class 2OGDs is partly responsible for the diversity and complexity of specialized metabolites in land plants.
Collapse
Affiliation(s)
- Yosuke Kawai
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | | | | |
Collapse
|
83
|
Araújo WL, Martins AO, Fernie AR, Tohge T. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. FRONTIERS IN PLANT SCIENCE 2014; 5:552. [PMID: 25360142 PMCID: PMC4197682 DOI: 10.3389/fpls.2014.00552] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/26/2014] [Indexed: 05/18/2023]
Abstract
The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekular PflanzenphysiologiePotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institut für Molekular Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Brandenburg, Germany e-mail:
| | - Takayuki Tohge
- Max-Planck-Institut für Molekular PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
84
|
Joseph B, Corwin JA, Züst T, Li B, Iravani M, Schaepman-Strub G, Turnbull LA, Kliebenstein DJ. Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense within Arabidopsis. THE PLANT CELL 2013; 25:1929-45. [PMID: 23749847 PMCID: PMC3723604 DOI: 10.1105/tpc.113.112615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/09/2013] [Accepted: 05/16/2016] [Indexed: 05/18/2023]
Abstract
To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis.
Collapse
Affiliation(s)
- Bindu Joseph
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Jason A. Corwin
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Tobias Züst
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland
| | - Baohua Li
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Majid Iravani
- Department of Natural Resources, Isfahan University of Technology, 83111-84156 Isfahan, Iran
| | - Gabriela Schaepman-Strub
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland
| | - Lindsay A. Turnbull
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich CH-8057, Switzerland
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
- Address correspondence to
| |
Collapse
|
85
|
Mathur V, Tytgat TOG, de Graaf RM, Kalia V, Sankara Reddy A, Vet LEM, van Dam NM. Dealing with double trouble: consequences of single and double herbivory in Brassica juncea. CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
86
|
Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 2012; 168:1694-717. [PMID: 22983743 DOI: 10.1007/s12010-012-9890-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
Glucosinolates (GSL) and their derivatives are well known for the characteristic roles they play in plant defense as signaling molecules and as bioactive compounds for human health. More than 130 GSLs have been reported so far, and most of them belong to the Brassicaceae family. Several enzymes and transcription factors involved in the GSL biosynthesis have been studied in the model plant, Arabidopsis, and in a few other Brassica crop species. Recent studies in GSL research have defined the regulation, distribution, and degradation of GSL biosynthetic pathways; however, the underlying mechanism behind transportation of GSLs in plants is still largely unknown. This review highlights the recent advances in the metabolic engineering of GSLs in plants and discusses their potential applications.
Collapse
|
87
|
Kliebenstein DJ, Osbourn A. Making new molecules - evolution of pathways for novel metabolites in plants. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:415-23. [PMID: 22683039 DOI: 10.1016/j.pbi.2012.05.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/09/2012] [Indexed: 05/22/2023]
Abstract
Plants have adapted to their environments by diversifying in various ways. This diversification is reflected at the phytochemical level in their production of numerous specialized secondary metabolites that provide protection against biotic and abiotic stresses. Plant speciation is therefore intimately linked to metabolic diversification, yet we do not currently have a deep understanding of how new metabolic pathways evolve. Recent evidence indicates that genes for individual secondary metabolic pathways can be either distributed throughout the genome or clustered, but the relative frequencies of these two pathway organizations remain to be established. While it is possible that clustering is a feature of pathways that have evolved in recent evolutionary time, the answer to this and how dispersed and clustered pathways may be related remain to be addressed. Recent advances enabled by genomics and systems biology are beginning to yield the first insights into network evolution in plant metabolism. This review focuses on recent progress in understanding the evolution of clustered and dispersed pathways for new secondary metabolites in plants.
Collapse
|
88
|
Schilmiller AL, Pichersky E, Last RL. Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:338-344. [PMID: 22244679 DOI: 10.1016/j.pbi.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Specialized (traditionally called 'secondary') metabolism can be thought of as a hydra with hundreds of thousands of compounds produced by thousands of enzymes across the entire plant kingdom. Until recently, plants that produce the most interesting and valuable metabolites were recalcitrant to modern molecular biology approaches for gene and pathway discovery. Recent advances in technologies for genomic, transcriptomic, proteomic, and metabolomic methods now allow for deployment of 'systems biology' approaches to help elucidate unknown steps in specialized metabolite pathways, for example through co-expression analyses. Inexpensive transcriptome and whole genome sequencing (WGS) promises to provide direct access to metabolic pathways in plants not currently used as reference organisms. For example, WGS has uncovered cases of physical proximity of genes of specialized metabolism. Further integration of multiple 'omics' datasets through advances in bioinformatics tools will increase our knowledge of pathway architecture and regulation at an ever-increasing rate. As such the era of systems biology is rapidly providing a broader and deeper understanding of plant specialized metabolism.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
89
|
Kliebenstein DJ. Plant defense compounds: systems approaches to metabolic analysis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:155-73. [PMID: 22726120 DOI: 10.1146/annurev-phyto-081211-172950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Systems biology attempts to answer biological questions by integrating across diverse genomic data sets. With the increasing ability to conduct genomics experiments, this integrative approach is being rapidly applied across numerous biological research communities. One of these research communities investigates how plants utilize secondary metabolites or defense metabolites to defend against attack by pathogens and other biotic organisms. This use of systems biology to integrate across transcriptomics, metabolomics, and genomics is significantly enhancing the rate of discovery of genes, metabolites, and bioactivities for plant defense compounds as well as extending our knowledge of how these compounds are regulated. Plant defense compounds are also providing a unique proving platform to develop new approaches that enhance the ability to conduct systems biology with existing and previously unforseen genomics data sets. This review attempts to illustrate both how systems biology is helping the study of plant defense compounds and vice versa.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
90
|
Feng J, Long Y, Shi L, Shi J, Barker G, Meng J. Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. THE NEW PHYTOLOGIST 2012; 193:96-108. [PMID: 21973035 DOI: 10.1111/j.1469-8137.2011.03890.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Glucosinolates are a major class of secondary metabolites found in the Brassicaceae, whose degradation products are proving to be increasingly important for human health and in crop protection. • The genetic and metabolic basis of glucosinolate accumulation was dissected through analysis of total glucosinolate concentration and its individual components in both leaves and seeds of a doubled-haploid (DH) mapping population of oilseed rape/canola (Brassica napus). • The quantitative trait loci (QTL) that had an effect on glucosinolate concentration in either or both of the organs were integrated, resulting in 105 metabolite QTL (mQTL). Pairwise correlations between individual glucosinolates and prior knowledge of the metabolic pathways involved in the biosynthesis of different glucosinolates allowed us to predict the function of genes underlying the mQTL. Moreover, this information allowed us to construct an advanced metabolic network and associated epistatic interactions responsible for the glucosinolate composition in both leaves and seeds of B. napus. • A number of previously unknown potential regulatory relationships involved in glucosinolate synthesis were identified and this study illustrates how genetic variation can affect a biochemical pathway.
Collapse
Affiliation(s)
- Ji Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqin Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guy Barker
- Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
91
|
Jimenez-Gomez JM, Corwin JA, Joseph B, Maloof JN, Kliebenstein DJ. Genomic analysis of QTLs and genes altering natural variation in stochastic noise. PLoS Genet 2011; 7:e1002295. [PMID: 21980300 PMCID: PMC3183082 DOI: 10.1371/journal.pgen.1002295] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/31/2011] [Indexed: 11/19/2022] Open
Abstract
Quantitative genetic analysis has long been used to study how natural variation of genotype can influence an organism's phenotype. While most studies have focused on genetic determinants of phenotypic average, it is rapidly becoming understood that stochastic noise is genetically determined. However, it is not known how many traits display genetic control of stochastic noise nor how broadly these stochastic loci are distributed within the genome. Understanding these questions is critical to our understanding of quantitative traits and how they relate to the underlying causal loci, especially since stochastic noise may be directly influenced by underlying changes in the wiring of regulatory networks. We identified QTLs controlling natural variation in stochastic noise of glucosinolates, plant defense metabolites, as well as QTLs for stochastic noise of related transcripts. These loci included stochastic noise QTLs unique for either transcript or metabolite variation. Validation of these loci showed that genetic polymorphism within the regulatory network alters stochastic noise independent of effects on corresponding average levels. We examined this phenomenon more globally, using transcriptomic datasets, and found that the Arabidopsis transcriptome exhibits significant, heritable differences in stochastic noise. Further analysis allowed us to identify QTLs that control genomic stochastic noise. Some genomic QTL were in common with those altering average transcript abundance, while others were unique to stochastic noise. Using a single isogenic population, we confirmed that natural variation at ELF3 alters stochastic noise in the circadian clock and metabolism. Since polymorphisms controlling stochastic noise in genomic phenotypes exist within wild germplasm for naturally selected phenotypes, this suggests that analysis of Arabidopsis evolution should account for genetic control of stochastic variance and average phenotypes. It remains to be determined if natural genetic variation controlling stochasticity is equally distributed across the genomes of other multi-cellular eukaryotes.
Collapse
Affiliation(s)
- Jose M. Jimenez-Gomez
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Jason A. Corwin
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Bindu Joseph
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Julin N. Maloof
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
92
|
Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol 2011; 9:e1001125. [PMID: 21857804 PMCID: PMC3156686 DOI: 10.1371/journal.pbio.1001125] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/07/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genome-wide association (GWA) is gaining popularity as a means to study the architecture of complex quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart adaptive advantages within field trials. While little is known about how variation in the external or internal environment of an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses and developmental processes of the plant lending it to be an excellent model for studying conditional GWA. METHODOLOGY/PRINCIPAL FINDINGS To understand how development and environment can influence GWA, we conducted a study using 96 Arabidopsis thaliana accessions, >40 GSL phenotypes across three conditions (one developmental comparison and one environmental comparison) and ∼230,000 SNPs. Developmental stage had dramatic effects on the outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many additional genes may control natural variation in these traits. We developed a novel co-expression network approach to prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL accumulation within A. thaliana using single gene isogenic lines. CONCLUSIONS/SIGNIFICANCE Together, these results suggest that complex traits imparting environmentally contingent adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional genomic information can rapidly identify causal loci en masse.
Collapse
Affiliation(s)
- Eva K. F. Chan
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
- Monsanto Company, Vegetable Seeds Division, Woodland, California, United States of America
| | - Heather C. Rowe
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Jason A. Corwin
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Bindu Joseph
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California–Davis, Davis, California, United States of America
| |
Collapse
|
93
|
Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa. Gene 2011; 487:135-42. [PMID: 21835231 DOI: 10.1016/j.gene.2011.07.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 01/01/2023]
Abstract
Glucosinolates (GS) are a group of amino acid-derived secondary metabolites found throughout the Cruciferae family. Glucosinolates and their degradation products play important roles in pathogen and insect interactions, as well as in human health. In order to elucidate the glucosinolate biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses of Arabidopsis thaliana and B. rapa on a genome-wide level. We identified 102 putative genes in B. rapa as the orthologs of 52 GS genes in A. thaliana. All but one gene was successfully mapped on 10 chromosomes. Most GS genes exist in more than one copy in B. rapa. A high co-linearity in the glucosinolate biosynthetic pathway between A. thaliana and B. rapa was also established. The homologous GS genes in B. rapa and A. thaliana share 59-91% nucleotide sequence identity and 93% of the GS genes exhibit synteny between B. rapa and A. thaliana. Moreover, the structure and arrangement of the B. rapa GS (BrGS) genes correspond with the known evolutionary divergence of B. rapa, and may help explain the profiles and accumulation of GS in B. rapa.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Horticultural Crop Genetic Improvement, MOA, PR China.
| | | | | | | | | | | | | |
Collapse
|
94
|
Fernie AR, Klee HJ. The use of natural genetic diversity in the understanding of metabolic organization and regulation. FRONTIERS IN PLANT SCIENCE 2011; 2:59. [PMID: 22645543 PMCID: PMC3355787 DOI: 10.3389/fpls.2011.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/12/2011] [Indexed: 05/02/2023]
Abstract
The study of metabolic regulation has traditionally focused on analysis of specific enzymes, emphasizing kinetic properties, and the influence of protein interactions and post-translational modifications. More recently, reverse genetic approaches permit researchers to directly determine the effects of a deficiency or a surplus of a given enzyme on the biochemistry and physiology of a plant. Furthermore, in many model species, gene expression atlases that give important spatial information concerning the quantitative expression level of metabolism-associated genes are being produced. In parallel, "top-down" approaches to understand metabolic regulation have recently been instigated whereby broad genetic diversity is screened for metabolic traits and the genetic basis of this diversity is defined thereafter. In this article we will review recent examples of this latter approach both in the model species Arabidopsis thaliana and the crop species tomato (Solanum lycopersicum). In addition to highlighting examples in which this genetic diversity approach has proven promising, we will discuss the challenges associated with this approach and provide a perspective for its future utility.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| | - Harry J. Klee
- Horticultural Sciences Department and the Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| |
Collapse
|
95
|
Bioinformatic analysis of molecular network of glucosinolate biosynthesis. Comput Biol Chem 2010; 35:10-8. [PMID: 21247808 DOI: 10.1016/j.compbiolchem.2010.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/30/2010] [Accepted: 12/13/2010] [Indexed: 01/01/2023]
Abstract
Glucosinolates constitute a major group of secondary metabolites in Arabidopsis, which play an important role in plant interaction with pathogens and insects. Advances in glucosinolate research have defined the biosynthetic pathways. However, cross-talk and interaction between glucosinolate pathway and other molecular pathways are largely unknown. Here three bioinformatics tools were used to explore novel components and pathway connections in glucosinolate network. Although none of the software tools were prefect to predict glucosinolate genes, combination of results generated by all the tools led to successful prediction of all known glucosinolate genes. This approach was used to predict new genes in glucosinolate network. A total of 330 genes were found with high potential to relate to glucosinolate biosynthesis. Among them 64 genes were selected to construct glucosinolate network because their individual connection to at least one known glucosinolate gene was predicted by all the software tools. Microarray data of candidate gene mutants were used for validation of the results. The mutants of nine genes predicted by glucosinolate seed genes all exhibited changes in the expression of glucosinolate genes. Four of the genes have been well-known to functionally interact with glucosinolate biosynthesis. These results indicate that the approach we took provides a powerful way to reveal new players in glucosinolate networks. Creation of an in silico network of glucosinolate biosynthesis will allow the generation of many testable hypotheses and ultimately enable predictive biology.
Collapse
|
96
|
Paul-Victor C, Züst T, Rees M, Kliebenstein DJ, Turnbull LA. A new method for measuring relative growth rate can uncover the costs of defensive compounds in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:1102-1111. [PMID: 20561205 DOI: 10.1111/j.1469-8137.2010.03325.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
*Most plants suffer some degree of herbivore attack and many actively defend themselves against such an event. However, while such defence is generally assumed to be costly, it has sometimes proved difficult to demonstrate the costs of defensive compounds. *Here, we present a method for analysing growth rates which allows the effects of variation in initial plant size to be properly accounted for and apply it to 30 lines from a recombinant inbred population of Arabidopsis thaliana. We then relate different measures of relative growth rate (RGR) to damage caused by a specialist lepidopteran insect and to levels of putative defensive compounds measured on the same lines. *We show that seed size variation within the recombinant inbred population is large enough to generate differences in RGR, even when no other physiological differences exist. However, once size-standardized, RGR was positively correlated with herbivore damage (fast-growing lines suffered more damage) and was negatively correlated with the concentration of several glucosinolate compounds. *We conclude that defensive compounds do have a growth cost and that the production of such compounds results in reduced herbivore damage. However, size standardization of RGR was essential to uncovering the growth costs of defensive compounds.
Collapse
Affiliation(s)
- Cloé Paul-Victor
- Institute of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, University of Zurich, Zurich CH-8057, Switzerland
| | - Tobias Züst
- Institute of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, University of Zurich, Zurich CH-8057, Switzerland
| | - Mark Rees
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Lindsay A Turnbull
- Institute of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
97
|
Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis. Amino Acids 2010; 39:1067-75. [DOI: 10.1007/s00726-010-0681-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
98
|
Voelckel C, Mirzaei M, Reichelt M, Luo Z, Pascovici D, Heenan PB, Schmidt S, Janssen B, Haynes PA, Lockhart PJ. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon. BMC Evol Biol 2010; 10:151. [PMID: 20482888 PMCID: PMC2886070 DOI: 10.1186/1471-2148-10-151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/20/2010] [Indexed: 11/30/2022] Open
Abstract
Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins) and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase), the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases), water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase) and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis). Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study. Our results indicate that protein profiling provides a valuable tool for validating transcript profiles in studies of adaptive divergence.
Collapse
Affiliation(s)
- Claudia Voelckel
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ziegler J, Facchini PJ, Geissler R, Schmidt J, Ammer C, Kramell R, Voigtländer S, Gesell A, Pienkny S, Brandt W. Evolution of morphine biosynthesis in opium poppy. PHYTOCHEMISTRY 2009; 70:1696-707. [PMID: 19665152 DOI: 10.1016/j.phytochem.2009.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 05/11/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (-)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
Collapse
Affiliation(s)
- Jörg Ziegler
- Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 2009; 185:991-1007. [PMID: 19737743 DOI: 10.1534/genetics.109.108522] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the improvement and decline in cost of high-throughput genotyping and phenotyping technologies, genome-wide association (GWA) studies are fast becoming a preferred approach for dissecting complex quantitative traits. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of quantitative traits. GSLs are key defenses against insects in the wild and the relatively large number of cloned quantitative trait locus (QTL) controlling GSL traits allows comparison of GWA to previous QTL analyses. To better understand the specieswide genomic architecture controlling plant-insect interactions and the relative strengths of GWA and QTL studies, we conducted a GWA mapping study using 96 A. thaliana accessions, 43 GSL phenotypes, and approximately 230,000 SNPs. Our GWA analysis identified the two major polymorphic loci controlling GSL variation (AOP and MAM) in natural populations within large blocks of positive associations encompassing dozens of genes. These blocks of positive associations showed extended linkage disequilibrium (LD) that we hypothesize to have arisen from balancing or fluctuating selective sweeps at both the AOP and MAM loci. These potential sweep blocks are likely linked with the formation of new defensive chemistries that alter plant fitness in natural environments. Interestingly, this GWA analysis did not identify the majority of previously identified QTL even though these polymorphisms were present in the GWA population. This may be partly explained by a nonrandom distribution of phenotypic variation across population subgroups that links population structure and GSL variation, suggesting that natural selection can hinder the detection of phenotype-genotype associations in natural populations.
Collapse
|