51
|
What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. Biomolecules 2021; 11:biom11081094. [PMID: 34439761 PMCID: PMC8392395 DOI: 10.3390/biom11081094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Global warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up- and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS-mediated photodamage.
Collapse
|
52
|
Zhang Y, Giese J, Kerbler SM, Siemiatkowska B, Perez de Souza L, Alpers J, Medeiros DB, Hincha DK, Daloso DM, Stitt M, Finkemeier I, Fernie AR. Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis. MOLECULAR PLANT 2021; 14:1104-1118. [PMID: 33798747 DOI: 10.1016/j.molp.2021.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation is a well-established post-translational mechanism that regulates protein functions and metabolic pathways. It is known that several plant mitochondrial proteins are phosphorylated in a reversible manner. However, the identities of the protein kinases/phosphatases involved in this mechanism and their roles in the regulation of the tricarboxylic acid (TCA) cycle remain unclear. In this study, we isolated and characterized plants lacking two mitochondrially targeted phosphatases (Sal2 and PP2c63) along with pyruvate dehydrogenase kinase (PDK). Protein-protein interaction analysis, quantitative phosphoproteomics, and enzymatic analyses revealed that PDK specifically regulates pyruvate dehydrogenase complex (PDC), while PP2c63 nonspecifically regulates PDC. When recombinant PP2c63 and Sal2 proteins were added to mitochondria isolated from mutant plants, protein-protein interaction and enzymatic analyses showed that PP2c63 directly phosphorylates and modulates the activity of PDC, while Sal2 only indirectly affects TCA cycle enzymes. Characterization of steady-state metabolite levels and fluxes in the mutant lines further revealed that these phosphatases regulate flux through the TCA cycle, and that altered metabolism in the sal2 pp2c63 double mutant compromises plant growth. These results are discussed in the context of current models of the control of respiration in plants.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany
| | - Sandra M Kerbler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Beata Siemiatkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jessica Alpers
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
53
|
Liu T, Chen Q, Zhang L, Liu X, Liu C. The toxicity of selenium and mercury in Suaeda salsa after 7-days exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109022. [PMID: 33631342 DOI: 10.1016/j.cbpc.2021.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Mercury is one of the major pollutants in the ocean, selenium causes toxicity beyond a certain limit, but there are few comparative toxic studies between them in halophytes. The study was to investigate the toxic effects of selenium (Se4+) and mercury (Hg2+) in halophyte Suaeda salsa at the level of genes, proteins and metabolites after exposure for 7 days. By integrating the results of proteomics and metabolomics, the pathway changed under different treatments were revealed. In Se4+-treated group, the changed 3 proteins and 10 metabolites participated in the process of substance metabolism (amino acid, pyrimidine), citrate cycle, pentose phosphate pathway, photosynthesis, energy, and protein biosynthesis. In Hg2+-treated group, the changed 10 proteins and 10 metabolites were related to photosynthesis, glycolysis, substance metabolism (cysteine and methionine, amino acid, pyrimidine), ATP synthesis and binding, tolerance, sugar-phosphatase activity, and citrate cycle. In Se4++ Hg2+-treated group, the changed 5 proteins an 12 metabolites involved in stress defence, iron ion binding, mitochondrial respiratory chain, structural constituent of ribosome, citrate cycle, and amino acid metabolism. Furthermore, the separate and combined selenium and mercury both inhibited growth of S. salsa, enhanced activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), and disturbed osmotic regulation through the genes of choline monoxygenase and betaine aldehyde dehydrogenase. Our experiments also showed selenium could induce synergistic effects in S. salsa. In all, we successfully characterized the effects of selenium and mercury in plant which was helpful to evaluate the toxicity and interaction of marine pollutants.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian Chen
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Linbao Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, PR China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
54
|
Characterization of Light-Enhanced Respiration in Cyanobacteria. Int J Mol Sci 2020; 22:ijms22010342. [PMID: 33396191 PMCID: PMC7796093 DOI: 10.3390/ijms22010342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
In eukaryotic algae, respiratory O2 uptake is enhanced after illumination, which is called light-enhanced respiration (LER). It is likely stimulated by an increase in respiratory substrates produced during photosynthetic CO2 assimilation and function in keeping the metabolic and redox homeostasis in the light in eukaryotic cells, based on the interactions among the cytosol, chloroplasts, and mitochondria. Here, we first characterize LER in photosynthetic prokaryote cyanobacteria, in which respiration and photosynthesis share their metabolisms and electron transport chains in one cell. From the physiological analysis, the cyanobacterium Synechocystis sp. PCC 6803 performs LER, similar to eukaryotic algae, which shows a capacity comparable to the net photosynthetic O2 evolution rate. Although the respiratory and photosynthetic electron transports share the interchain, LER was uncoupled from photosynthetic electron transport. Mutant analyses demonstrated that LER is motivated by the substrates directly provided by photosynthetic CO2 assimilation, but not by glycogen. Further, the light-dependent activation of LER was observed even with exogenously added glucose, implying a regulatory mechanism for LER in addition to the substrate amounts. Finally, we discuss the physiological significance of the large capacity of LER in cyanobacteria and eukaryotic algae compared to those in plants that normally show less LER.
Collapse
|
55
|
Chen Y, Fu Z, Zhang H, Tian R, Yang H, Sun C, Wang L, Zhang W, Guo Z, Zhang X, Tang J. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2420-2435. [PMID: 32436613 PMCID: PMC7680550 DOI: 10.1111/pbi.13416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/03/2020] [Indexed: 05/30/2023]
Abstract
Cytosolic malate dehydrogenase (MDH) is a key enzyme that regulates the interconversion between malate and oxaloacetate (OAA). However, its role in modulating storage compound accumulation in maize endosperm is largely unknown. Here, we characterized a novel naturally occurring maize mdh4-1 mutant, which produces small, opaque kernels and exhibits reduced starch but enhanced lysine content. Map-based cloning, functional complementation and allelism analyses identified ZmMdh4 as the causal gene. Enzymatic assays demonstrated that ZmMDH4 predominantly catalyses the conversion from OAA to malate. In comparison, the activity of the mutant enzyme, which lacks one glutamic acid (Glu), was completed abolished, demonstrating that the Glu residue was essential for ZmMDH4 function. Knocking down ZmMdh4 in vivo led to a substantial metabolic shift towards glycolysis and a dramatic disruption in the activity of the mitochondrial complex I, which was correlated with transcriptomic alterations. Taken together, these results demonstrate that ZmMdh4 regulates the balance between mitochondrial respiration and glycolysis, ATP production and endosperm development, through a yet unknown feedback regulatory mechanism in mitochondria.
Collapse
Affiliation(s)
- Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Runmiao Tian
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Huili Yang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Canran Sun
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Lulin Wang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Wen Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
56
|
Munir S, Shahzad AN, Qureshi MK. Acuities into tolerance mechanisms via different bioassay during Brassicaceae-Alternaria brassicicola interaction and its impact on yield. PLoS One 2020; 15:e0242545. [PMID: 33259527 PMCID: PMC7707606 DOI: 10.1371/journal.pone.0242545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 01/28/2023] Open
Abstract
Heavy losses by dark leaf spot disease in oilseed Brassica have incited research towards identifying sources of genetic tolerance against causal pathogen, Alternaria brassicicola. Several morpho-molecular parameters were evaluated to test the performance of field mustard and rapeseed genotypes under artificial inoculation with this pathogen. During Brassica-Alternaria interaction, physio-biochemical defense response was witnessed in tolerant genotypes. Two tolerant genotypes (one for field mustard and one for rapeseed), i.e., EC250407 and EC1494 were identified. However, necrotic lesions were more prominent in susceptible genotypes with minimum chlorophyll (chlorophyll a, chlorophyll b and total chlorophyll) and carotenoids contents. Contrary to photosynthetic pigments, increase in total soluble protein (TSP) contents was observed with disease progression in susceptible genotypes. Tolerant genotypes of field mustard and rapeseed displayed remarkable increase in the activities of redox enzyme in infected leaves with least yield loss (6.47% and 5.74%) and disease severity index (DSI) of 2.9 and 2.1, respectively. However, yield/plant showed close association with other morpho-yield parameters, photosynthetic pigments and redox enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) activities except silique length and TSP. Based on the results of morpho-biochemical analyses, redox enzymes and morphological parameters; their interplay is proposed to determine the tolerance outcome of the Brassica-A. brassicicola interaction.
Collapse
Affiliation(s)
- Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmad Naeem Shahzad
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
57
|
Moosavi SS, Abdi F, Abdollahi MR, Tahmasebi-Enferadi S, Maleki M. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:95-104. [PMID: 32920225 DOI: 10.1016/j.plaphy.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Drought is the most important abiotic stress limiting wheat production worldwide. Triticum boeoticum, as wild wheat, is a rich gene pool for breeding for drought stress tolerance. In this study, to identify the most drought-tolerant and susceptible genotypes, ten T. boeoticum accessions were evaluated under non-stress and drought-stress conditions for two years. Among the studied traits, water-use efficiency (WUE) was suggested as the most important trait to identify drought-tolerant genotypes. According to the desirable and undesirable areas of the bi-plot, Tb5 and Tb6 genotypes were less and more affected by drought stress, respectively. Therefore, their flag-leaves proteins were used for two-dimensional gel electrophoresis. While, Tb5 contained a high amount of yield, yield components, and WUE, Tb6 had higher levels of water use, phenological related traits, and root related characters. Of the 235 spots found in the studied accessions, 14 spots (11 and 3 spots of Tb5 and Tb6, respectively) were selected for sequencing. Of these 14 spots, 9 and 5 spots were upregulated and downregulated, respectively. The identified proteins were grouped into six functional protein clusters, which were mainly involved in photosynthesis (36%), carbohydrate metabolism (29%), chaperone (7%), oxidation and reduction (7%), lipid metabolism and biological properties of the membrane (7%) and unknown function (14%). We report for the first time that MICP, in the group of lipid metabolism proteins, was significantly changed into wild wheat in response to drought stress. Maybe, the present-identified proteins could play an important role to understand the molecular pathways of wheat drought tolerance. We believe comparing and evaluating the similarity-identified proteins of T. boeoticum with the previously identified proteins of Aegilops tauschii, can provide a new direction to improve wheat tolerance to drought stress.
Collapse
Affiliation(s)
- Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Fatemeh Abdi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sattar Tahmasebi-Enferadi
- Department of Molecular Plant Biotechnology, Faculty of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
58
|
Li YT, Liu MJ, Li Y, Liu P, Zhao SJ, Gao HY, Zhang ZS. Photoprotection by mitochondrial alternative pathway is enhanced at heat but disabled at chilling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:403-415. [PMID: 32683757 DOI: 10.1111/tpj.14931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 05/02/2023]
Abstract
The mitochondrial alternative pathway (AP) represents an important photoprotective mechanism for the chloroplast, but the temperature sensitivity of its photoprotective role is unknown. In this study, using the aox1a Arabidopsis mutant, the photoprotective role of the AP was verified under various temperatures, and the mechanism underlying the temperature sensitivity of the AP's photoprotective role was clarified. It was observed that the photoprotective role of the AP increased with rising temperature but was absent at low temperature. The photoprotective role of the AP was severely reduced under non-photorespiratory conditions. Disturbance of the AP inhibited the conversion of glycine to serine in mitochondria, which may restrain upstream photorespiratory metabolism and aggravate photoinhibition. With rising temperatures, photorespiration accelerated and the restraint of photorespiration caused by disturbance of the AP also increased, determining the temperature sensitivity of the AP's photoprotective role. We also verified that not only the AP but also the cytochrome pathway in mitochondria contributes to photoprotection by maintaining photorespiration.
Collapse
Affiliation(s)
- Yu-Ting Li
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Mei-Jun Liu
- Key laboratory of Grassland Resources and Ecology of Xinjiang, College of Grassland and Environment Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China
| | - Ying Li
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Peng Liu
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Shi-Jie Zhao
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Hui-Yuan Gao
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Zi-Shan Zhang
- State Key Lab of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China
| |
Collapse
|
59
|
Hu Y, Siddiqui MH, Li C, Jiang L, Zhang H, Zhao X. Polyamine Metabolism, Photorespiration, and Excitation Energy Allocation in Photosystem II Are Potentially Regulatory Hubs in Poplar Adaptation to Soil Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:1271. [PMID: 32983189 PMCID: PMC7479266 DOI: 10.3389/fpls.2020.01271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 05/13/2023]
Abstract
Nitrogen fertilization is common for poplar trees to improve growth and productivity. The utilization of N by poplar largely depends on fertilizer application patterns; however, the underlying regulatory hubs are not fully understood. In this study, N utilization and potentially physiological regulations of two poplar clones (XQH and BC5) were assessed through two related experiments (i: five levels of N supply and ii: conventional and exponential N additions). Poplar growth (leaf area) and N utilization significantly increased under fertilized compared to unfertilized conditions, whereas photosynthetic N utilization efficiency significantly decreased under low N supplies. Growth characteristics were better in the XQH than in the BC5 clone under the same N supplies, indicating higher N utilization efficiency. Leaf absorbed light energy, and thermal dissipation fraction was significantly different for XQH clone between conventional and exponential N additions. Leaf concentrations of putrescine (Put) and acetylated Put were significantly higher in exponential than in conventional N addition. Photorespiration significantly increased in leaves of XQH clone under exponential compared to conventional N addition. Our results indicate that an interaction of the clone and N supply pattern significantly occurs in poplar growth; leaf expansion and the storage N allocations are the central hubs in the regulation of poplar N utilization.
Collapse
Affiliation(s)
- Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Forestry College, Beihua University, Jilin, China
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chunming Li
- Institute of Forestry Science, Heilongjiang Academy of Forestry, Harbin, China
| | - Luping Jiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
60
|
A Long-Day Photoperiod and 6-Benzyladenine Promote Runner Formation through Upregulation of Soluble Sugar Content in Strawberry. Int J Mol Sci 2020; 21:ijms21144917. [PMID: 32664642 PMCID: PMC7403970 DOI: 10.3390/ijms21144917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Commercial strawberries are mainly propagated using daughter plants produced on aerial runners because asexual propagation is faster than seed propagation, and daughter plants retain the characteristics of the mother plant. This study was conducted to investigate the effective factors for runner induction, as well as the molecular mechanisms behind the runner induction. An orthogonal test with 4 factors (photoperiod, temperature, gibberellin, and 6-benzyladenine), each with 3 levels was performed. Proteins were also extracted from the crowns with or without runners and separated by two-dimensional electrophoresis. The results of the orthogonal test showed that a long-day (LD) environment was the most influential factor for the runner formation, and 50 mg·L−1 of 6-BA significantly increased the number of runners. A proteomic analysis revealed that 32 proteins were differentially expressed (2-fold, p < 0.05) in the strawberry crowns with and without runners. A total of 16 spots were up-regulated in the crowns with runners induced by LD treatment. Identified proteins were classified into seven groups according to their biological roles. The most prominent groups were carbohydrate metabolism and photosynthesis, which indicated that the carbohydrate content may increase during runner formation. A further analysis demonstrated that the soluble sugar content was positively correlated with the number of runners. Thus, it is suggested that the photoperiod and 6-BA break the dormancy of the axillary buds and produce runners by increasing the soluble sugar content in strawberry.
Collapse
|
61
|
You L, Zhang J, Li L, Xiao C, Feng X, Chen S, Guo L, Hu H. Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO2. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4093-4108. [PMID: 32206789 PMCID: PMC7337093 DOI: 10.1093/jxb/eraa148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays a pivotal role in the photosynthetic CO2 fixation of C4 plants. However, the functions of PEPCs in C3 plants are less well characterized, particularly in relation to low atmospheric CO2 levels. Of the four genes encoding PEPC in Arabidopsis, PPC2 is considered as the major leaf PEPC gene. Here we show that the ppc2 mutants suffered a growth arrest when transferred to low atmospheric CO2 conditions, together with decreases in the maximum efficiency of PSII (Fv/Fm) and lower levels of leaf abscisic acid (ABA) and carbohydrates. The application of sucrose, malate, or ABA greatly rescued the growth of ppc2 lines under low CO2 conditions. Metabolite profiling analysis revealed that the levels of glycine and serine were increased in ppc2 leaves, while the abundance of photosynthetic metabolites was decreased under these conditions. The transcript levels of encoding enzymes involved in glycine or serine metabolism was decreased in ppc2 in an ABI5-dependent manner. Like the ppc2 mutants, abi5-1 mutants had lower photosynthetic rates and Fv/Fm compared with the wild type under photorespiratory conditions (i.e. low CO2 availability). However, the growth of these mutants was similar to that of the wild type under non-photorespiratory (low O2) conditions. The constitutive expression of ABI5 prevented the growth arrest of ppc2 lines under low CO2 conditions. These findings demonstrate that PPC2 plays an important role in the acclimation of Arabidopsis plants to low CO2 availability by linking photorespiratory metabolism to primary metabolism, and that this is mediated, at least in part, through ABA- and ABI5-dependent processes.
Collapse
Affiliation(s)
- Lei You
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jumei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | |
Collapse
|
62
|
Genomic dissection and expression analysis of stress-responsive genes in C4 panicoid models, Setaria italica and Setaria viridis. J Biotechnol 2020; 318:57-67. [DOI: 10.1016/j.jbiotec.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
|
63
|
Lim SL, Voon CP, Guan X, Yang Y, Gardeström P, Lim BL. In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD + fluorescent protein sensors. Nat Commun 2020; 11:3238. [PMID: 32591540 PMCID: PMC7320160 DOI: 10.1038/s41467-020-17056-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The challenge of monitoring in planta dynamic changes of NADP(H) and NAD(H) redox states at the subcellular level is considered a major obstacle in plant bioenergetics studies. Here, we introduced two circularly permuted yellow fluorescent protein sensors, iNAP and SoNar, into Arabidopsis thaliana to monitor the dynamic changes in NADPH and the NADH/NAD+ ratio. In the light, photosynthesis and photorespiration are linked to the redox states of NAD(P)H and NAD(P) pools in several subcellular compartments connected by the malate-OAA shuttles. We show that the photosynthetic increases in stromal NADPH and NADH/NAD+ ratio, but not ATP, disappear when glycine decarboxylation is inhibited. These observations highlight the complex interplay between chloroplasts and mitochondria during photosynthesis and support the suggestions that, under normal conditions, photorespiration supplies a large amount of NADH to mitochondria, exceeding its NADH-dissipating capacity, and the surplus NADH is exported from the mitochondria to the cytosol through the malate-OAA shuttle.
Collapse
Affiliation(s)
- Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiaoqian Guan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
64
|
Cho EJ, Nguyen QA, Lee YG, Song Y, Park BJ, Bae HJ. Enhanced Biomass Yield of and Saccharification in Transgenic Tobacco Over-Expressing β-Glucosidase. Biomolecules 2020; 10:E806. [PMID: 32456184 PMCID: PMC7278181 DOI: 10.3390/biom10050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacumL.) overexpressing thermostable β-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce β-glucosidase for lignocellulose conversion.
Collapse
Affiliation(s)
- Eun Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Quynh Anh Nguyen
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Yoon Gyo Lee
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
| | - Bok Jae Park
- Division of Business and Commerce, Chonnam National University, Yeosu 500-749, Korea;
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea; (E.J.C.); (Q.A.N.); (Y.S.)
- Department of Bioenergy science and Technology, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
65
|
Zhao Y, Yu H, Zhou JM, Smith SM, Li J. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. TRENDS IN PLANT SCIENCE 2020; 25:446-454. [PMID: 32304657 DOI: 10.1016/j.tplants.2020.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 05/02/2023]
Abstract
In photosynthetic cells, chloroplasts and mitochondria are the sites of the core redox reactions underpinning energy metabolism. Such reactions generate reactive oxygen species (ROS) when oxygen is partially reduced. ROS signaling leads to responses by cells which enable them to adjust to changes in redox status. Recent studies in Arabidopsis thaliana reveal that chloroplast NADH can be used to generate malate which is exported to the mitochondrion where its oxidation regenerates NADH. Oxidation of this NADH produces mitochondrial ROS (mROS) which can activate signaling systems to modulate energy metabolism, and in certain cases can lead to programmed cell death (PCD). We propose the term 'malate circulation' to describe such redistribution of reducing equivalents to mediate energy homeostasis in the cell.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
66
|
Elevated CO2 and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in Picrorhiza kurroa. J Proteomics 2020; 219:103755. [DOI: 10.1016/j.jprot.2020.103755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
|
67
|
Igamberdiev AU. Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion 2020; 52:218-230. [PMID: 32278088 DOI: 10.1016/j.mito.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
While in heterotrophic cells and in darkness mitochondria serve as main producers of energy, during photosynthesis this function is transferred to chloroplasts and the main role of mitochondria in bioenergetics turns to be the balance of the level of phosphorylation of adenylates and of reduction of pyridine nucleotides to avoid over-energization of the cell and optimize major metabolic fluxes. This is achieved via the establishment and regulation of local equilibria of the tricarboxylic acid (TCA) cycle enzymes malate dehydrogenase and fumarase in one branch and aconitase and isocitrate dehydrogenase in another branch. In the conditions of elevation of redox level, the TCA cycle is transformed into a non-cyclic open structure (hemicycle) leading to the export of the tricarboxylic acid (citrate) to the cytosol and to the accumulation of the dicarboxylic acids (malate and fumarate). While the buildup of NADPH in chloroplasts provides operation of the malate valve leading to establishment of NADH/NAD+ ratios in different cell compartments, the production of NADH by mitochondria drives citrate export by establishing conditions for the operation of the citrate valve. The latter regulates the intercompartmental NADPH/NADP+ ratio and contributes to the biosynthesis of amino acids and other metabolic products during photosynthesis.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
68
|
Zhu K, Zhang W, Sarwa R, Xu S, Li K, Yang Y, Li Y, Wang Z, Cao J, Li Y, Tan X. Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genet Mol Biol 2020; 43:e20190305. [PMID: 32154828 PMCID: PMC7198001 DOI: 10.1590/1678-4685-gmb-2019-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Rapeseed is one of important oil crops in China. Better understanding of the
regulation network of main agronomic traits of rapeseed could improve the
yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis
clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype
analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein
abundance, major regulators in metabolic processes, ROS metabolism, and
cytoskeleton formation were seen to be altered in this mutant. These results not
only revealed the relationship between biological processes and inflorescence
meristem development, but also suggest bioengineering strategies for the
improved breeding and production of Brassica napus.
Collapse
Affiliation(s)
- Keming Zhu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China.,Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, China
| | - Weiwei Zhang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Rehman Sarwa
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Shuo Xu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Kaixia Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yulong Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Zheng Wang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Jun Cao
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yaoming Li
- Jiangsu University, Institute of Agricultural Engineering, Zhenjiang, China
| | - Xiaoli Tan
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
69
|
Walker BJ, Kramer DM, Fisher N, Fu X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E301. [PMID: 32121540 PMCID: PMC7154899 DOI: 10.3390/plants9030301] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing.
Collapse
Affiliation(s)
- Berkley J. Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - David M. Kramer
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| |
Collapse
|
70
|
Kuhnert F, Stefanski A, Overbeck N, Drews L, Reichert AS, Stühler K, Weber APM. Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria. PLANT PHYSIOLOGY 2020; 182:692-706. [PMID: 31818904 PMCID: PMC6997695 DOI: 10.1104/pp.19.00732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/22/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter À BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types.
Collapse
Affiliation(s)
- Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Nina Overbeck
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
71
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
72
|
Law SR, Kellgren TG, Björk R, Ryden P, Keech O. Centralization Within Sub-Experiments Enhances the Biological Relevance of Gene Co-expression Networks: A Plant Mitochondrial Case Study. FRONTIERS IN PLANT SCIENCE 2020; 11:524. [PMID: 32582224 PMCID: PMC7287149 DOI: 10.3389/fpls.2020.00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 05/07/2023]
Abstract
UNLABELLED Gene co-expression networks (GCNs) can be prepared using a variety of mathematical approaches based on data sampled across diverse developmental processes, tissue types, pathologies, mutant backgrounds, and stress conditions. These networks are used to identify genes with similar expression dynamics but are prone to introducing false-positive and false-negative relationships, especially in the instance of large and heterogenous datasets. With the aim of optimizing the relevance of edges in GCNs and enhancing global biological insight, we propose a novel approach that involves a data-centering step performed simultaneously per gene and per sub-experiment, called centralization within sub-experiments (CSE). Using a gene set encoding the plant mitochondrial proteome as a case study, our results show that all CSE-based GCNs assessed had significantly more edges within the majority of the considered functional sub-networks, such as the mitochondrial electron transport chain and its complexes, than GCNs not using CSE; thus demonstrating that CSE-based GCNs are efficient at predicting canonical functions and associated pathways, here referred to as the core gene network. Furthermore, we show that correlation analyses using CSE-processed data can be used to fine-tune prediction of the function of uncharacterized genes; while its use in combination with analyses based on non-CSE data can augment conventional stress analyses with the innate connections underpinning the dynamic system being examined. Therefore, CSE is an effective alternative method to conventional batch correction approaches, particularly when dealing with large and heterogenous datasets. The method is easy to implement into a pre-existing GCN analysis pipeline and can provide enhanced biological relevance to conventional GCNs by allowing users to delineate a core gene network. AUTHOR SUMMARY Gene co-expression networks (GCNs) are the product of a variety of mathematical approaches that identify causal relationships in gene expression dynamics but are prone to the misdiagnoses of false-positives and false-negatives, especially in the instance of large and heterogenous datasets. In light of the burgeoning output of next-generation sequencing projects performed on a variety of species, and developmental or clinical conditions; the statistical power and complexity of these networks will undoubtedly increase, while their biological relevance will be fiercely challenged. Here, we propose a novel approach to generate a "core" GCN with enhanced biological relevance. Our method involves a data-centering step that effectively removes all primary treatment/tissue effects, which is simple to employ and can be easily implemented into pre-existing GCN analysis pipelines. The gain in biological relevance resulting from the adoption of this approach was assessed using a plant mitochondrial case study.
Collapse
Affiliation(s)
- Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå Universitet, Umeå, Sweden
| | - Therese G. Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
| | - Rafael Björk
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
| | - Patrik Ryden
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
- *Correspondence: Patrik Ryden,
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå Universitet, Umeå, Sweden
- Olivier Keech,
| |
Collapse
|
73
|
Liu Y, Qu J, Zhang L, Xu X, Wei G, Zhao Z, Ren M, Cao M. Identification and characterization of the TCA cycle genes in maize. BMC PLANT BIOLOGY 2019; 19:592. [PMID: 31881988 PMCID: PMC6935159 DOI: 10.1186/s12870-019-2213-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The tricarboxylic acid (TCA) cycle is crucial for cellular energy metabolism and carbon skeleton supply. However, the detailed functions of the maize TCA cycle genes remain unclear. RESULTS In this study, 91 TCA genes were identified in maize by a homology search, and they were distributed on 10 chromosomes and 1 contig. Phylogenetic results showed that almost all maize TCA genes could be classified into eight major clades according to their enzyme families. Sequence alignment revealed that several genes in the same subunit shared high protein sequence similarity. The results of cis-acting element analysis suggested that several TCA genes might be involved in signal transduction and plant growth. Expression profile analysis showed that many maize TCA cycle genes were expressed in specific tissues, and replicate genes always shared similar expression patterns. Moreover, qPCR analysis revealed that some TCA genes were highly expressed in the anthers at the microspore meiosis phase. In addition, we predicted the potential interaction networks among the maize TCA genes. Next, we cloned five TCA genes located on different TCA enzyme complexes, Zm00001d008244 (isocitrate dehydrogenase, IDH), Zm00001d017258 (succinyl-CoA synthetase, SCoAL), Zm00001d025258 (α-ketoglutarate dehydrogenase, αKGDH), Zm00001d027558 (aconitase, ACO) and Zm00001d044042 (malate dehydrogenase, MDH). Confocal observation showed that their protein products were mainly localized to the mitochondria; however, Zm00001d025258 and Zm00001d027558 were also distributed in the nucleus, and Zm00001d017258 and Zm00001d044042 were also located in other unknown positions in the cytoplasm. Through the bimolecular fluorescent complimentary (BiFC) method, it was determined that Zm00001d027558 and Zm00001d044042 could form homologous dimers, and both homologous dimers were mainly distributed in the mitochondria. However, no heterodimers were detected between these five genes. Finally, Arabidopsis lines overexpressing the above five genes were constructed, and those transgenic lines exhibited altered primary root length, salt tolerance, and fertility. CONCLUSION Sequence compositions, duplication patterns, phylogenetic relationships, cis-elements, expression patterns, and interaction networks were investigated for all maize TCA cycle genes. Five maize TCA genes were overexpressed in Arabidopsis, and they could alter primary root length, salt tolerance, and fertility. In conclusion, our findings may help to reveal the molecular function of the TCA genes in maize.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610213 China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jingtao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Gui Wei
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhuofan Zhao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610213 China
| | - Moju Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
74
|
Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, Shankar R, Kumar R. Regulation of color transition in purple tea (Camellia sinensis). PLANTA 2019; 251:35. [PMID: 31853722 DOI: 10.1007/s00425-019-03328-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Comparative proteomics and metabolomics study of juvenile green, light purple and dark purple leaf to identify key proteins and metabolites that putatively govern color transition in Camellia sinensis. Color transition from juvenile green to dark purple leaf in Camellia sinensis is a complex process and thought to be regulated by an intricate balance of genes, proteins and metabolites expression. A molecular-level understanding of proteins and metabolites expression is needed to define metabolic process underpinning color transition in C. sinensis. Here, purple leaf growth of C. sinensis cultivar was divided into three developmental stages viz. juvenile green (JG), light purple (LP) and dark purple (DP) leaf. Scanning electron microscope (SEM) analysis revealed a clear morphological variation such as cell size, shape and texture as tea leaf undergoing color transition. Proteomic and metabolomic analyses displayed the temporal changes in proteins and metabolites that occur in color transition process. In total, 211 differentially expressed proteins (DEPs) were identified presumably involved in secondary metabolic processes particularly, flavonoids/anthocyanin biosynthesis, phytohormone regulation, carbon and nitrogen assimilation and photosynthesis, among others. Subcellular localization of three candidate proteins was further evaluated by their transient expression in planta. Interactome study revealed that proteins involved in primary metabolism, precursor metabolite, photosynthesis, phytohormones, transcription factor and anthocyanin biosynthesis were found to be interact directly or indirectly and thus, regulate color transition from JG to DP leaf. The present study not only corroborated earlier findings but also identified novel proteins and metabolites that putatively govern color transition in C. sinensis. These findings provide a platform for future studies that may be utilized for metabolic engineering/molecular breeding in an effort to develop more desirable traits.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shweta Thakur
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ajay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Prakash Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ravi Shankar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
75
|
Wu X, Han Y, Zhu X, Shah A, Wang W, Sheng Y, Fan T, Cao S. Negative regulation of cadmium tolerance in Arabidopsis by MMDH2. PLANT MOLECULAR BIOLOGY 2019; 101:507-516. [PMID: 31617145 DOI: 10.1007/s11103-019-00923-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8. The molecular mechanism by which plants respond to stress caused by cadmium (Cd), one of the most toxic heavy metals to plants, is not well understood. Here, we show that MMDH2, a gene encoding mitochondrial malate dehydrogenase, is involved in Cd stress tolerance in Arabidopsis. The expression of MMDH2 was repressed by Cd stress. The mmdh2 knockdown mutants showed enhanced Cd tolerance, while the MMDH2-overexpressing lines were sensitive to Cd. Under normal and Cd stress conditions, lower H2O2 levels were detected in mmdh2 mutant plants than in wild-type plants. In contrast, higher H2O2 levels were found in MMDH2-overexpressing lines, and they were negatively correlated with malondialdehyde levels. In addition, the expression of the PDR8, a gene encoding a Cd efflux pump, increased and decreased in the mmdh2 mutant and MMDH2-overexpressing lines, in association with lower and higher Cd concentrations, respectively. These results suggest that the MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8.
Collapse
Affiliation(s)
- Xi Wu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yangyang Han
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangyu Zhu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Alia Shah
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yibao Sheng
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Fan
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
76
|
Cerqueira JVA, Silveira JAG, Carvalho FEL, Cunha JR, Lima Neto MC. The regulation of P700 is an important photoprotective mechanism to NaCl-salinity in Jatropha curcas. PHYSIOLOGIA PLANTARUM 2019; 167:404-417. [PMID: 30737801 DOI: 10.1111/ppl.12908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 05/11/2023]
Abstract
Salinity commonly affects photosynthesis and crop production worldwide. Salt stress disrupts the fine balance between photosynthetic electron transport and the Calvin cycle reactions, leading to over-reduction and excess energy within the thylakoids. The excess energy triggers reactive oxygen species (ROS) overproduction that causes photoinhibition in both photosystems (PS) I and II. However, the role of PSI photoinhibition and its physiological mechanisms for photoprotection have not yet been fully elucidated. In the present study, we analyzed the effects of 15 consecutive days of 100 mM NaCl in Jatropha curcas plants, primarily focusing on the photosynthetic electron flow at PSI level. We found that J. curcas plants have important photoprotective mechanisms to cope with the harmful effects of salinity. We show that maintaining P700 in an oxidized state is an important photoprotector mechanism, avoiding ROS burst in J. curcas exposed to salinity. In addition, upon photoinhibition of PSI, the highly reduced electron transport chain triggers a significant increase in H2 O2 content which can lead to the production of hydroxyl radical by Mehler reactions in chloroplast, thereby increasing PSI photoinhibition.
Collapse
Affiliation(s)
- João V A Cerqueira
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Joaquim A G Silveira
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Fabrício E L Carvalho
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Juliana R Cunha
- Department of Molecular Biology and Biochemistry, Federal University of Ceará, Fortaleza, 60440-970, Brazil
| | - Milton C Lima Neto
- Bioscience Institute, São Paulo State University (UNESP), São Vicente, 11330-900, Brazil
| |
Collapse
|
77
|
Teng X, Zhong M, Zhu X, Wang C, Ren Y, Wang Y, Zhang H, Jiang L, Wang D, Hao Y, Wu M, Zhu J, Zhang X, Guo X, Wang Y, Wan J. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1914-1927. [PMID: 30860317 PMCID: PMC6737025 DOI: 10.1111/pbi.13108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 05/18/2023]
Abstract
Starch is the most important form of energy storage in cereal crops. Many key enzymes involved in starch biosynthesis have been identified. However, the molecular mechanisms underlying the regulation of starch biosynthesis are largely unknown. In this study, we isolated a novel floury endosperm rice (Oryza sativa) mutant flo16 with defective starch grain (SG) formation. The amylose content and amylopectin structure were both altered in the flo16 mutant. Map-based cloning and complementation tests demonstrated that FLO16 encodes a NAD-dependent cytosolic malate dehydrogenase (CMDH). The ATP contents were decreased in the mutant, resulting in significant reductions in the activity of starch synthesis-related enzymes. Our results indicated that FLO16 plays a critical role in redox homeostasis that is important for compound SG formation and subsequent starch biosynthesis in rice endosperm. Overexpression of FLO16 significantly improved grain weight, suggesting a possible application of FLO16 in rice breeding. These findings provide a novel insight into the regulation of starch synthesis and seed development in rice.
Collapse
Affiliation(s)
- Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Mingsheng Zhong
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
78
|
Santos Dória M, Silva Guedes M, de Andrade Silva EM, Magalhães de Oliveira T, Pirovani CP, Kupper KC, Bastianel M, Micheli F. Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata. Int J Biol Macromol 2019; 136:410-423. [PMID: 31199975 DOI: 10.1016/j.ijbiomac.2019.06.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
Alternaria brown spot (ABS) is a disease caused by the necrotrophic fungus Alternaria alternata, which induces necrotic lesions on fruits and young leaves due to the production of the host-specific ACT toxin by the fungus. To better understand the citrus-A. alternata interaction and to identify putative resistance proteins, as well as the receptor of the ACT toxin, citrus plants susceptible ('Minneola' mandarin) and resistant ('Clemenules' tangor) to A. alternata, infected or not (control) with the pathogen were analyzed by proteomics. Protein changes were observed between citrus genotypes after infection, and 150 candidate proteins were obtained. A general scheme of the metabolic processes involved in susceptible and resistant citrus-A. alternata interactions was designed. Susceptible plants presented a high level of proteins involved in stress response at the final stages of the infection, whereas resistant plants presented high level of ROS proteins, metabolic proteins, and proteins involved in the immune system process. Proteins like ferredoxin and cyclophilin are specific to the susceptible variety and may be good candidates as fungal effector-interacting proteins. This is the first citrus-A. alternata proteomics analysis, which has allowed a better understanding of the molecular bases of the citrus response to ABS disease.
Collapse
Affiliation(s)
- Milena Santos Dória
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | - Meg Silva Guedes
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | | | | | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil
| | - Katia Cristina Kupper
- Centro de Citricultura "Sylvio Moreira", Instituto Agronômico de Campinas (IAC), SP, Brazil
| | - Marinês Bastianel
- Centro de Citricultura "Sylvio Moreira", Instituto Agronômico de Campinas (IAC), SP, Brazil
| | - Fabienne Micheli
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), BA, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
79
|
Shameer S, Ratcliffe RG, Sweetlove LJ. Leaf Energy Balance Requires Mitochondrial Respiration and Export of Chloroplast NADPH in the Light. PLANT PHYSIOLOGY 2019; 180:1947-1961. [PMID: 31213510 PMCID: PMC6670072 DOI: 10.1104/pp.19.00624] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Key aspects of leaf mitochondrial metabolism in the light remain unresolved. For example, there is debate about the relative importance of exporting reducing equivalents from mitochondria for the peroxisomal steps of photorespiration versus oxidation of NADH to generate ATP by oxidative phosphorylation. Here, we address this and explore energetic coupling between organelles in the light using a diel flux balance analysis model. The model included more than 600 reactions of central metabolism with full stoichiometric accounting of energy production and consumption. Different scenarios of energy availability (light intensity) and demand (source leaf versus a growing leaf) were considered, and the model was constrained by the nonlinear relationship between light and CO2 assimilation rate. The analysis demonstrated that the chloroplast can theoretically generate sufficient ATP to satisfy the energy requirements of the rest of the cell in addition to its own. However, this requires unrealistic high light use efficiency and, in practice, the availability of chloroplast-derived ATP is limited by chloroplast energy dissipation systems, such as nonphotochemical quenching, and the capacity of the chloroplast ATP export shuttles. Given these limitations, substantial mitochondrial ATP synthesis is required to fulfill cytosolic ATP requirements, with only minimal, or zero, export of mitochondrial reducing equivalents. The analysis also revealed the importance of exporting reducing equivalents from chloroplasts to sustain photorespiration. Hence, the chloroplast malate valve and triose phosphate-3-phosphoglycerate shuttle are predicted to have important metabolic roles, in addition to their more commonly discussed contribution to the avoidance of photooxidative stress.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
80
|
Tcherkez G, Limami AM. Net photosynthetic CO 2 assimilation: more than just CO 2 and O 2 reduction cycles. THE NEW PHYTOLOGIST 2019; 223:520-529. [PMID: 30927445 DOI: 10.1111/nph.15828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Net photosynthetic assimilation in C3 plants is mostly viewed as a simple balance between CO2 fixation by Rubisco-catalyzed carboxylation and CO2 production by photorespiration (and to a lower extent, by day respiration) that can be easily manipulated during gas exchange experiments using the CO2 : O2 ratio of the environment. However, it now becomes clear that it is not so simple, because the photosynthetic response to gaseous conditions involves 'ancillary' metabolisms, even in the short-term. That is, carbon and nitrogen utilization by pathways other than the Calvin cycle and the photorespiratory cycle, as well as rapid signaling events, can influence the observed rate of net photosynthesis. The potential impact of such ancillary metabolisms is assessed as well as how it must be taken into account to avoid misinterpretation of photosynthetic CO2 response curves or low O2 effects in C3 leaves.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Anis M Limami
- IRHS Centre INRA d'Angers, Université d'Angers, 42 rue George Morel, 49070, Beaucouzé, France
| |
Collapse
|
81
|
Zhao Y, Xu F, Liu J, Guan F, Quan H, Meng F. The adaptation strategies of Herpetospermum pedunculosum (Ser.) Baill at altitude gradient of the Tibetan plateau by physiological and metabolomic methods. BMC Genomics 2019; 20:451. [PMID: 31159723 PMCID: PMC6547600 DOI: 10.1186/s12864-019-5778-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herpetospermum pedunculosum (Ser.) Baill is annual scandent herbs. They are used in the treatment of piles, inflammation of the stomach and the intestines. It can survive the extreme environment of the Tibetan Plateau (TP). However, the underlying mechanisms of this adaptation to H. pedunculosum from TP remain unclear. Here, we combined physiological and metabolomics methods to analyze H. pedunculosum response to altitude gradient differences. RESULTS At high altitude, increases in the activities of Ascorbate peroxidase (APX), Glutathione reductase (GR), Dehydroascorbate reductase (DHAR), Monodehydroascorbate reductase (MDHAR), Superoxide dismutase (SOD) have been observed in leaves. Total Glutathion content, total Ascorbate content and the ASA (ascorbic acid)/docosahexaenoic acid (DHA) ration were highly elevated from low altitude to high altitude. In addition, high altitude induces decrease of the Anthocyanidin content (ANTH) and increase of abscisic acid content (ABA). The GC-MS analyses identified of 50 metabolites from leaves of H. pedunculosum. In addition, a metabolic network was constructed based on metabolomic datasets using a weighted correlation network analysis (WGCNA) approach. The network analysis uncovered 4 distinguished metabolic modules highly associated with I, II, III and IV respectively. Furthermore, the analysis successfully classified 50 samples into seven groups: carbohydrates, amino acids, organic acids, lipid components, polyamine, secondary metabolism and others. CONCLUSIONS In the present study, the content of parts of amino acid components increased in samples collected at higher altitudes, and most of metabolites, including carbohydrates and organic acids were assigned to the carbon metabolic pathway comprising reductive pentose phosphate pathway, glycolysis and TCA cycle, indicating the direct relationship between adaptability and the carbon metabolic pathway and amino acids in H. pedunculosum response to high altitude. The results of this study laid the foundation of the molecular mechanism on H. pedunculosum from high altitude.
Collapse
Affiliation(s)
- Yong Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fuling Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Fachun Guan
- Jilin Academy of Agricultural Science, Changchun, 130033, China
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Hong Quan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
82
|
Abadie C, Tcherkez G. In vivo phosphoenolpyruvate carboxylase activity is controlled by CO 2 and O 2 mole fractions and represents a major flux at high photorespiration rates. THE NEW PHYTOLOGIST 2019; 221:1843-1852. [PMID: 30267568 DOI: 10.1111/nph.15500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Phosphenolpyruvate carboxylase (PEPC)-catalysed fixation of bicarbonate to C4 acids is commonly believed to represent a rather small flux in illuminated leaves. In addition, its potential variation with O2 and CO2 is not documented and thus is usually neglected in gas-exchange studies. Here, we used quantitative NMR analysis of sunflower leaves labelled with 13 CO2 (99% 13 C) under controlled conditions and measured the amount of 13 C found in the four C-atom positions in malate, the major product of PEPC activity. We found that amongst malate 13 C-isotopomers present after labelling, most molecules were labelled at both C-1 and C-4, showing the incorporation of 13 C at C-4 by PEPC fixation and subsequent redistribution to C-1 by fumarase (malate-fumarate equilibrium). In addition, absolute quantification of 13 C content showed that PEPC fixation increased at low CO2 or high O2 , and represented up to 1.8 μmol m-2 s-1 , that is, 40% of net assimilation measured by gas exchange under high O2 /CO2 conditions. Our results show that PEPC fixation represents a quantitatively important CO2 -fixing activity that varies with O2 and/or CO2 mole fraction and this challenges the common interpretation of net assimilation in C3 plants, where PEPC activity is often disregarded or considered to be constant at a very low rate.
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, Australian National University, 2601, Canberra, ACT, Australia
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, 2601, Canberra, ACT, Australia
| |
Collapse
|
83
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:76-91. [PMID: 30658287 DOI: 10.1016/j.plaphy.2018.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The activities of TCA cycle enzymes viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase as well as levels of different organic acids viz., pyruvic acid, citric acid, succinic acid and malic acid were studied in two rice cultivars viz. cv. Nonabokra and cv. MTU 1010 differing in salt tolerance grown under 25, 50 and 100 mM NaCl salinity levels. A contrasting response to salt stress on enzyme activities of TCA cycle and accumulation of organic acid was observed between two cultivars during twenty-one days period of study. Salinity caused enhanced organic acid production and increase in all five enzyme activities in cv. Nonabokra whereas in cv. MTU 1010 decrease in both organic acid production and enzymes activities were noted. Joint application of exogenous silicon along with NaCl, altered the organic acids levels and activities of enzymes in both cultivars of rice seedlings conferring tolerance against salt induced stress. Rice cv. MTU 1010 showed better response to exogenous silicon on parameters tested compared to cv. Nonabokra.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
84
|
Lim SD, Lee S, Choi WG, Yim WC, Cushman JC. Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C 4 Metabolism Cycle Genes of CAM in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:101. [PMID: 30804970 PMCID: PMC6378705 DOI: 10.3389/fpls.2019.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/22/2019] [Indexed: 05/21/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to hotter and drier climates. Introducing the CAM photosynthetic machinery into C3 (or C4) photosynthesis plants (CAM Biodesign) represents a potentially breakthrough strategy for improving WUE while maintaining high productivity. To optimize the success of CAM Biodesign approaches, the functional analysis of individual C4 metabolism cycle genes is necessary to identify the essential genes for robust CAM pathway introduction. Here, we isolated and analyzed the subcellular localizations of 13 enzymes and regulatory proteins of the C4 metabolism cycle of CAM from the common ice plant in stably transformed Arabidopsis thaliana. Six components of the carboxylation module were analyzed including beta-carbonic anhydrase (McBCA2), phosphoenolpyruvate carboxylase (McPEPC1), phosphoenolpyruvate carboxylase kinase (McPPCK1), NAD-dependent malate dehydrogenase (McNAD-MDH1, McNAD-MDH2), and NADP-dependent malate dehydrogenase (McNADP-MDH1). In addition, seven components of the decarboxylation module were analyzed including NAD-dependent malic enzyme (McNAD-ME1, McNAD-ME2), NADP-dependent malic enzyme (McNADP-ME1, NADP-ME2), pyruvate, orthophosphate dikinase (McPPDK), pyruvate, orthophosphate dikinase-regulatory protein (McPPDK-RP), and phosphoenolpyruvate carboxykinase (McPEPCK). Ectopic overexpression of most C4-metabolism cycle components resulted in increased rosette diameter, leaf area, and leaf fresh weight of A. thaliana except for McNADP-MDH1, McPPDK-RP, and McPEPCK. Overexpression of most carboxylation module components resulted in increased stomatal conductance and dawn/dusk titratable acidity (TA) as an indirect measure of organic acid (mainly malate) accumulation in A. thaliana. In contrast, overexpression of the decarboxylating malic enzymes reduced stomatal conductance and TA. This comprehensive study provides fundamental insights into the relative functional contributions of each of the individual components of the core C4-metabolism cycle of CAM and represents a critical first step in laying the foundation for CAM Biodesign.
Collapse
Affiliation(s)
| | | | | | | | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
85
|
MDH and CAT increase the germination of cryopreserved Paeonia pollen by regulating the ROS and apoptosis-like events. ACTA ACUST UNITED AC 2019. [DOI: 10.17660/actahortic.2019.1234.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
86
|
Selinski J, Scheibe R. Malate valves: old shuttles with new perspectives. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:21-30. [PMID: 29933514 PMCID: PMC6586076 DOI: 10.1111/plb.12869] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 05/18/2023]
Abstract
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co-enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the 'light malate valve' plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP+ /NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ('dark malate valve') is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.
Collapse
Affiliation(s)
- J. Selinski
- Department of Animal, Plant, and Soil ScienceAustralian Research Council Centre of Excellence in Plant Energy BiologySchool of Life ScienceLa Trobe University BundooraBundooraAustralia
| | - R. Scheibe
- Division of Plant PhysiologyDepartment of Biology/ChemistryUniversity of OsnabrueckOsnabrueckGermany
| |
Collapse
|
87
|
Zhang Y, Fernie AR. On the role of the tricarboxylic acid cycle in plant productivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1199-1216. [PMID: 29917310 DOI: 10.1111/jipb.12690] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
88
|
Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V. Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:529-541. [PMID: 30098585 DOI: 10.1016/j.plaphy.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 05/23/2023]
Abstract
Drought is a major concern for sustainable yield under changing environment. Soybean, an economically important oil and protein crop, is prone to drought resulting in yield instability. Salicylic acid (SA), a multifaceted growth hormone, modulates a series of parallel processes to confer drought tolerance thereby relieving yield limitations. The present study was performed in soybean plants treated with SA (0.5 mM) through seed pretreatment under drought regimes: severe stress (50% RWC) and moderate stress (75% RWC), and rehydration. Differential leaf proteome profiling with morphological, physiological and antioxidative metabolism studies were performed at two developmental stages (vegetative and flowering). This explained the tolerance attribution to soybean throughout the development attaining yield stability. Abundance of proteins involved in photosynthesis and ATP synthesis generated energy driving metabolic processes towards plant growth, development and stress acclimation. Carbon (C) metabolism proteins involved in growth, osmoregulation and C partition relieved drought-induced C impairment under SA. Defensive mechanisms against redox imbalance and protein misfolding and degradation under stress were enhanced as depicted by the abundance of proteins involved in redox balance and protein synthesis, assembly and degradation at vegetative stage. Redox signaling in chloroplast and its interplay with SA signaling triggered different defense responses as shown through thioredoxin protein abundance. Amino acid metabolism proteins abundance resulted in increased osmoprotectants accumulation like proline at initial stage which contributed later towards N (nitrogen) remobilization to developing sink. At later stage, abundance of these proteins maintained redox homeostasis and N remobilization for improved sink strength. The redox homeostasis was supported by the increased antioxidative metabolism in SA treated plants. The downregulation of proteins at flowering also contributed towards N remobilization. Yield potential was improved by SA under drought through acclimation with enhanced N and C remobilization to sink as demonstrated by increased yield parameters like seed number and weight per plant, thousand seed weight and harvest index. The potential of SA in conferring drought tolerance to plants to maintain sustainable yield possess future research interests.
Collapse
Affiliation(s)
- Marisha Sharma
- Plant Ecology and Environmental Sciences Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Sunil K Gupta
- Plant Ecology and Environmental Sciences Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Baisakhi Majumder
- Plant Ecology and Environmental Sciences Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Vivek K Maurya
- Plant Ecology and Environmental Sciences Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Farah Deeba
- Plant Ecology and Environmental Sciences Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Vivek Pandey
- Plant Ecology and Environmental Sciences Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
89
|
Schreier TB, Cléry A, Schläfli M, Galbier F, Stadler M, Demarsy E, Albertini D, Maier BA, Kessler F, Hörtensteiner S, Zeeman SC, Kötting O. Plastidial NAD-Dependent Malate Dehydrogenase: A Moonlighting Protein Involved in Early Chloroplast Development through Its Interaction with an FtsH12-FtsHi Protease Complex. THE PLANT CELL 2018; 30:1745-1769. [PMID: 29934433 PMCID: PMC6139691 DOI: 10.1105/tpc.18.00121] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 05/18/2023]
Abstract
Malate dehydrogenases (MDHs) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid, and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function.
Collapse
Affiliation(s)
- Tina B Schreier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Michael Schläfli
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Florian Galbier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martha Stadler
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Emilie Demarsy
- Laboratory of Plant Physiology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Daniele Albertini
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Benjamin A Maier
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | | | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Oliver Kötting
- Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
90
|
Shevtsov S, Nevo-Dinur K, Faigon L, Sultan LD, Zmudjak M, Markovits M, Ostersetzer-Biran O. Control of organelle gene expression by the mitochondrial transcription termination factor mTERF22 in Arabidopsis thaliana plants. PLoS One 2018; 13:e0201631. [PMID: 30059532 PMCID: PMC6066234 DOI: 10.1371/journal.pone.0201631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022] Open
Abstract
Mitochondria are key sites for cellular energy metabolism and are essential to cell survival. As descendants of eubacterial symbionts (specifically α-proteobacteria), mitochondria contain their own genomes (mtDNAs), RNAs and ribosomes. Plants need to coordinate their energy demands during particular growth and developmental stages. The regulation of mtDNA expression is critical for controlling the oxidative phosphorylation capacity in response to physiological or environmental signals. The mitochondrial transcription termination factor (mTERF) family has recently emerged as a central player in mitochondrial gene expression in various eukaryotes. Interestingly, the number of mTERFs has been greatly expanded in the nuclear genomes of plants, with more than 30 members in different angiosperms. The majority of the annotated mTERFs in plants are predicted to be plastid- or mitochondria-localized. These are therefore expected to play important roles in organellar gene expression in angiosperms. Yet, functions have been assigned to only a small fraction of these factors in plants. Here, we report the characterization of mTERF22 (At5g64950) which functions in the regulation of mtDNA transcription in Arabidopsis thaliana. GFP localization assays indicate that mTERF22 resides within the mitochondria. Disruption of mTERF22 function results in reduced mtRNA accumulation and altered organelle biogenesis. Transcriptomic and run-on experiments suggest that the phenotypes of mterf22 mutants are attributable, at least in part, to altered mitochondria transcription, and indicate that mTERF22 affects the expression of numerous mitochondrial genes in Arabidopsis plants.
Collapse
Affiliation(s)
- Sofia Shevtsov
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Keren Nevo-Dinur
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Lior Faigon
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Laure D. Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Michal Zmudjak
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Mark Markovits
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
91
|
Jozefowicz AM, Hartmann A, Matros A, Schum A, Mock HP. Nitrogen Deficiency Induced Alterations in the Root Proteome of a Pair of Potato (Solanum tuberosum L.) Varieties Contrasting for their Response to Low N. Proteomics 2018; 17. [PMID: 29087609 DOI: 10.1002/pmic.201700231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/13/2017] [Indexed: 12/20/2022]
Abstract
Improving crop nitrogen use efficiency is important both from the economic and the environmental viewpoint. Here, the aim is to highlight differences between the proteomic response of the roots of two potato cultivars contrasting in their response to nitrogen (N) deficiency, in an effort to understand which proteins and metabolic pathways contribute to the tolerance of N deprivation. The two cultivars ''Topas'' (tolerant) and ''Lambada'' (sensitive) are grown under both an N sufficient and an N deficient regime, using an in vitro-based cultivation system. Responsive proteins are identified and quantified using label-free quantitative shotgun proteomics. The contrasting cultivars differed with respect to components of the glutamine synthetase/glutamine oxoglutarate aminotransferase pathway, tricarboxylic acid cycle, the glycolysis/gluconeogenesis pathway as well as protein and amino acid synthesis machinery. Additional differences are associated with protein catabolism and defense mechanisms.
Collapse
Affiliation(s)
- Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Anja Hartmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Annegret Schum
- Julius Kühn-Institut (JKI) Bundesforschungsinstitut für Kulturpflanzen, Sanitz, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
92
|
Igamberdiev AU, Bykova NV. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic Biol Med 2018; 122:74-85. [PMID: 29355740 DOI: 10.1016/j.freeradbiomed.2018.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
Organic acids play a crucial role in numerous metabolic processes accompanied by transfer of electrons and protons and linked to the reduction/oxidation of major redox couples in plant cells, such as NAD, NADP, glutathione, and ascorbate. Fluxes through the pathways metabolizing organic acids modulate redox states in cell compartments, contribute to generation of reactive oxygen and nitrogen species, and mediate signal transduction processes. Organic acid metabolism not only functions to equilibrate the redox potential in plant cells but also to transfer redox equivalents between cell compartments supporting various metabolic processes. The most important role in this transfer belongs to different forms of malate dehydrogenase interconverting malate and oxaloacetate or forming pyruvate (malic enzymes). During photosynthesis malate serves as a major form of transfer of redox equivalents from chloroplasts to the cytosol and other compartments via the malate valve. On the other hand, mitochondria, via alterations of their redox potential, become a source of citrate that can be transported to the cytosol and support biosynthesis of amino acids. Citrate is also an important retrograde signalling compound that regulates transcription of several genes including those encoding the alternative oxidase. The alternative oxidase, which is activated by increased redox potential and by pyruvate, is, in turn, important for the maintenance of redox potential in mitochondria. The roles of organic acids in establishing redox equilibrium, supporting ionic gradients on membranes, acidification of the extracellular medium, and regulation of production of reactive oxygen and nitrogen species are discussed.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | - Natalia V Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada R6M 1Y5
| |
Collapse
|
93
|
Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. TREE PHYSIOLOGY 2018; 38:1605-1622. [PMID: 29917117 DOI: 10.1093/treephys/tpy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 05/25/2023]
Affiliation(s)
- Zhi-jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, PR China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Gui-feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Mei-rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Zan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Xue-yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Hai-lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
94
|
Cheng L, Wang Y, Liu Y, Zhang Q, Gao H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. PHYSIOLOGIA PLANTARUM 2018; 163:103-123. [PMID: 29135031 DOI: 10.1111/ppl.12670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 05/24/2023]
Abstract
Among the multiple environmental signals and hormonal factors regulating potato tuberization, gibberellins (GAs) are important components of the signaling pathways in these processes. To understand the GAs-signaling response mechanism of potato tuberization, a comparative proteomics approach was applied to analyze proteome change of potato tuberization in vitro subjected to a range of exogenous GA3 treatments (0, 0.01, 0.1 and 1.0 μM) using two-dimensional gel electrophoresis. Quantitative image analyses showed that a total of 37 protein spots have their abundance significantly altered more than 2-fold. Among these proteins, 13 proteins were up-regulated, 13 proteins were down-regulated, one protein was absent and 10 proteins were induced after treatment by exogenous GA3 . The MALDI-TOF/TOF MS analyses led to the identification of differentially abundant proteins that are mainly involved in bioenergy and metabolism, storage, signaling, cell defense and rescue, transcription, chaperones, transport. Furthermore, the comparative analysis of GA3 -responsive proteome allowed for general elucidation of underlying molecular mechanisms of potato tuberization inhibited by exogenous GA3 . Most of these cellular processes were not conducive to the transition from stolon elongation to tuber formation, including a blockage of starch and storage protein accumulation, the accelerated carbohydrate catabolism, a blockage of JA biosynthesis but an elevated endogenous GAs level, the amplification of GA3 signal transduction by other signaling pathways, and the regulation of cellular RNA metabolism for controlling tuberization. Our results firstly integrated physiology and proteome data to provide new insights into GA3 -signaling response mechanisms of potato tuberization in vitro.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yueshan Liu
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Qingquan Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Huihui Gao
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
95
|
Rurek M, Czołpińska M, Pawłowski TA, Krzesiński W, Spiżewski T. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes. Int J Mol Sci 2018; 19:ijms19030877. [PMID: 29547512 PMCID: PMC5877738 DOI: 10.3390/ijms19030877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
96
|
Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 2018. [PMID: 29540758 PMCID: PMC5939044 DOI: 10.1038/s41422-018-0024-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) is a fundamental biological process. Deficiency in MOSAIC DEATH 1 (MOD1), a plastid-localized enoyl-ACP reductase, leads to the accumulation of reactive oxygen species (ROS) and PCD, which can be suppressed by mitochondrial complex I mutations, indicating a signal from chloroplasts to mitochondria. However, this signal remains to be elucidated. In this study, through cloning and analyzing a series of mod1 suppressors, we reveal a comprehensive organelle communication pathway that regulates the generation of mitochondrial ROS and triggers PCD. We show that mutations in PLASTIDIAL NAD-DEPENDENT MALATE DEHYDROGENASE (plNAD-MDH), chloroplastic DICARBOXYLATE TRANSPORTER 1 (DiT1) and MITOCHONDRIAL MALATE DEHYDROGENASE 1 (mMDH1) can each rescue the ROS accumulation and PCD phenotypes in mod1, demonstrating a direct communication from chloroplasts to mitochondria via the malate shuttle. Further studies demonstrate that these elements play critical roles in the redox homeostasis and plant growth under different photoperiod conditions. Moreover, we reveal that the ROS level and PCD are significantly increased in malate-treated HeLa cells, which can be dramatically attenuated by knockdown of the human gene MDH2, an ortholog of Arabidopsis mMDH1. These results uncover a conserved malate-induced PCD pathway in plant and animal systems, revolutionizing our understanding of the communication between organelles.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiyong Xin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Plant Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lin Bai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xun Huang
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
97
|
Kandoi D, Mohanty S, Tripathy BC. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. PROTOPLASMA 2018; 255:547-563. [PMID: 28942523 DOI: 10.1007/s00709-017-1168-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/22/2023]
Abstract
The plastidic C4 Zea mays NADP-malate dehydrogenase (ZmNADP-MDH), responsible for catalysis of oxaloacetate to malate, was overexpressed in Arabidopsis thaliana to assess its impact on photosynthesis and tolerance to salinity stress. Different transgenic lines were produced having ~3-6-fold higher MDH protein abundance and NADP-MDH enzyme activity than vector control. The overexpressors had similar chlorophyll, carotenoid, and protein content as that of vector control. Their photosynthetic electron transport rates, carbon assimilation rate, and consequently fresh weight and dry weight were almost similar. However, these overexpressors were tolerant to salt stress (150 mM NaCl). In saline environment, the Fv/Fm ratio, yield of photosystem II, chlorophyll, and protein content were higher in ZmNADP-MDH overexpressor than vector control. Under identical conditions, the generation of reactive oxygen species (H2O2) and production of malondialdehyde, a membrane lipid peroxidation product, were lower in overexpressors. In stress environment, the structural distortion of granal organization and swelling of thylakoids were less pronounced in ZmNADP-MDH overexpressing plants as compared to the vector control. Chloroplastic NADP-MDH in consort with cytosolic and mitochondrial NAD-MDH plays an important role in exporting reducing power (NADPH) and exchange of metabolites between different cellular compartments that maintain the redox homeostasis of the cell via malate valve present in chloroplast envelope membrane. The tolerance of NADP-MDH overexpressors to salt stress could be due to operation of an efficient malate valve that plays a major role in maintaining the cellular redox environment.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
98
|
Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules 2018; 23:E535. [PMID: 29495548 PMCID: PMC6017353 DOI: 10.3390/molecules23030535] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/11/2022] Open
Abstract
Abiotic stresses such as drought, heat or salinity are major causes of yield loss worldwide. Recent studies have revealed that the acclimation of plants to a combination of different environmental stresses is unique and therefore cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. The efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Here, we report on the role of melatonin in the protection of the photosynthetic apparatus through the increase in ROS detoxification in tomato plants grown under the combination of salinity and heat, two of the most common abiotic stresses known to act jointly. Plants treated with exogenous melatonin showed a different modulation in the expression on some antioxidant-related genes and their related enzymes. More specifically, ascorbate peroxidase, glutathione reductase, glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase (APX, GR, GPX and Ph-GPX, resepctively) showed an antagonistic regulation as compared to plants that did not receive melatonin. This translated into a better antioxidant capacity and to a lesser ROS accumulation under stress combination. The performance of the photosynthesis parameters and the photosystems was also increased in plants treated with exogenous melatonin under the combination of salinity and heat. In accordance with these findings, tomato plants treated with melatonin were found to grow better under stress combination that the non-treated ones. Our study highlights the important role that exogenous melatonin plays in the acclimation of plants to a combination of two different abiotic stresses, and how this compound can specifically regulate oxidative stress-related genes and enzymes to increase plant tolerance.
Collapse
Affiliation(s)
- Vicente Martinez
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Manuel Nieves-Cordones
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Maria Lopez-Delacalle
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Reyes Rodenas
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Teresa C. Mestre
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Francisco Garcia-Sanchez
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Francisco Rubio
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Pedro A. Nortes
- CEBAS-CSIC, Department of Irrigation, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain;
| | - Ron Mittler
- Univ North Texas, Department of Biological Sciences, College of Arts & Sciences, 1155 Union Circle 305220, Denton, TX 76203, USA;
| | - Rosa M. Rivero
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| |
Collapse
|
99
|
Carvajal F, Rosales R, Palma F, Manzano S, Cañizares J, Jamilena M, Garrido D. Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics 2018; 19:125. [PMID: 29415652 PMCID: PMC5804050 DOI: 10.1186/s12864-018-4500-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. Results RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. Conclusions This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4500-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Carvajal
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - R Rosales
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - F Palma
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain
| | - S Manzano
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - J Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), CIAIMBITAL, University of Almería, La Cañada de San Urbano s/n, 04120, Almería, Spain
| | - D Garrido
- Department of Plant Physiology, Facultad de Ciencias, University of Granada, Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
100
|
Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria. Int J Mol Sci 2017; 18:ijms18112428. [PMID: 29149092 PMCID: PMC5713396 DOI: 10.3390/ijms18112428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondria are remarkable with respect to the presence of numerous group II introns which reside in many essential genes. The removal of the organellar introns from the coding genes they interrupt is essential for respiratory functions, and is facilitated by different enzymes that belong to a diverse set of protein families. These include maturases and RNA helicases related proteins that function in group II intron splicing in different organisms. Previous studies indicate a role for the nMAT2 maturase and the RNA helicase PMH2 in the maturation of different pre-RNAs in Arabidopsis mitochondria. However, the specific roles of these proteins in the splicing activity still need to be resolved. Using transcriptome analyses of Arabidopsis mitochondria, we show that nMAT2 and PMH2 function in the splicing of similar subsets of group II introns. Fractionation of native organellar extracts and pulldown experiments indicate that nMAT2 and PMH2 are associated together with their intron-RNA targets in large ribonucleoprotein particle in vivo. Moreover, the splicing efficiencies of the joint intron targets of nMAT2 and PMH2 are more strongly affected in a double nmat2/pmh2 mutant-line. These results are significant as they may imply that these proteins serve as components of a proto-spliceosomal complex in plant mitochondria.
Collapse
|