51
|
Barros JAS, Magen S, Lapidot-Cohen T, Rosental L, Brotman Y, Araújo WL, Avin-Wittenberg T. Autophagy is required for lipid homeostasis during dark-induced senescence. PLANT PHYSIOLOGY 2021; 185:1542-1558. [PMID: 33793926 PMCID: PMC8133563 DOI: 10.1093/plphys/kiaa120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 05/31/2023]
Abstract
Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| | - Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Brazil
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram 9190401, Israel
| |
Collapse
|
52
|
Jurado-Flores A, Romero LC, Gotor C. Label-Free Quantitative Proteomic Analysis of Nitrogen Starvation in Arabidopsis Root Reveals New Aspects of H 2S Signaling by Protein Persulfidation. Antioxidants (Basel) 2021; 10:508. [PMID: 33805243 PMCID: PMC8064375 DOI: 10.3390/antiox10040508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Hydrogen sulfide (H2S)-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the posttranslational modification of cysteine residues to form a persulfidated thiol motif. We developed a comparative and label-free quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in N-starved Arabidopsis thaliana roots by using the tag-switch method. In this work, we identified 5214 unique proteins from root tissue that were persulfidated, 1674 of which were quantitatively analyzed and found to show altered persulfidation levels in vivo under N deprivation. These proteins represented almost 13% of the entire annotated proteome in Arabidopsis. Bioinformatic analysis revealed that persulfidated proteins were involved in a wide range of biological functions, regulating important processes such as primary metabolism, plant responses to stresses, growth and development, RNA translation and protein degradation. Quantitative mass spectrometry analysis allowed us to obtain a comprehensive view of hydrogen sulfide signaling via changes in the persulfidation levels of key protein targets involved in ubiquitin-dependent protein degradation and autophagy, among others.
Collapse
Affiliation(s)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain;
| |
Collapse
|
53
|
Rigault M, Citerne S, Masclaux-Daubresse C, Dellagi A. Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii. Sci Rep 2021; 11:3624. [PMID: 33574453 PMCID: PMC7878789 DOI: 10.1038/s41598-021-83067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a ubiquitous vesicular process for protein and organelle recycling in eukaryotes. In plant, autophagy is reported to play pivotal roles in nutrient recycling, adaptation to biotic and abiotic stresses. The role of autophagy in plant immunity remains poorly understood. Several reports showed enhanced susceptibility of different Arabidopsis autophagy mutants (atg) to necrotrophic fungal pathogens. Interaction of necrotrophic bacterial pathogens with autophagy is overlooked. We then investigated such interaction by inoculating the necrotrophic enterobacterium Dickeya dadantii in leaves of the atg2 and atg5 mutants and an ATG8a overexpressing line. Overexpressing ATG8a enhances plant tolerance to D. dadantii. While atg5 mutant displayed similar susceptibility to the WT, the atg2 mutant exhibited accelerated leaf senescence and enhanced susceptibility upon infection. Both phenotypes were reversed when the sid2 mutation, abolishing SA signaling, was introduced in the atg2 mutant. High levels of SA signaling in atg2 mutant resulted in repression of the jasmonic acid (JA) defense pathway known to limit D. dadantii progression in A. thaliana. We provide evidence that in atg2 mutant, the disturbed hormonal balance leading to higher SA signaling is the main factor causing increased susceptibility to the D. dadantii necrotroph by repressing the JA pathway and accelerating developmental senescence.
Collapse
Affiliation(s)
- Martine Rigault
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRAE Centre de Versailles-Grignon, Université Paris-Saclay, Route de St Cyr (RD 10), 78000, Versailles Cedex, France.
| |
Collapse
|
54
|
Cheng L, Zeng Y, Hu S, Zhang N, Cheung KCP, Li B, Leung KS, Jiang L. Systematic prediction of autophagy-related proteins using Arabidopsis thaliana interactome data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:708-720. [PMID: 33128829 DOI: 10.1111/tpj.15065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a self-degradative process that is crucial for maintaining cellular homeostasis by removing damaged cytoplasmic components and recycling nutrients. Such an evolutionary conserved proteolysis process is regulated by the autophagy-related (Atg) proteins. The incomplete understanding of plant autophagy proteome and the importance of a proteome-wide understanding of the autophagy pathway prompted us to predict Atg proteins and regulators in Arabidopsis. Here, we developed a systems-level algorithm to identify autophagy-related modules (ARMs) based on protein subcellular localization, protein-protein interactions, and known Atg proteins. This generates a detailed landscape of the autophagic modules in Arabidopsis. We found that the newly identified genes in each ARM tend to be upregulated and coexpressed during the senescence stage of Arabidopsis. We also demonstrated that the Golgi apparatus ARM, ARM13, functions in the autophagy process by module clustering and functional analysis. To verify the in silico analysis, the Atg candidates in ARM13 that are functionally similar to the core Atg proteins were selected for experimental validation. Interestingly, two of the previously uncharacterized proteins identified from the ARM analysis, AGD1 and Sec14, exhibited bona fide association with the autophagy protein complex in plant cells, which provides evidence for a cross-talk between intracellular pathways and autophagy. Thus, the computational framework has facilitated the identification and characterization of plant-specific autophagy-related proteins and novel autophagy proteins/regulators in higher eukaryotes.
Collapse
Affiliation(s)
- Lixin Cheng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuai Hu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ning Zhang
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Kenneth C P Cheung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
55
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
56
|
Li G, Deng L, Huang N, Sun F. The Biological Roles of lncRNAs and Future Prospects in Clinical Application. Diseases 2021; 9:diseases9010008. [PMID: 33450825 PMCID: PMC7838801 DOI: 10.3390/diseases9010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.
Collapse
Affiliation(s)
- Guohui Li
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
| | - Liang Deng
- School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China; (G.L.); (L.D.)
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Nan Huang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China;
- Correspondence: ; Tel.: +86-021-6630-6909
| |
Collapse
|
57
|
Lin Y, Guo R, Ji C, Zhou J, Jiang L. New insights into AtNBR1 as a selective autophagy cargo receptor in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1839226. [PMID: 33124509 PMCID: PMC7781739 DOI: 10.1080/15592324.2020.1839226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Selective autophagy, mediated by cargo receptors and recruiting specific targets to autophagosomes for degradation and recycling, plays an important role in quality control and cellular homeostasis in eukaryotes. The Arabidopsis AtNBR1 shares a similar domain organization with the mammalian autophagic receptors p62 and NBR1. We recently demonstrated that AtNBR1 functions as a selective autophagy receptor for the exocyst component AtExo70E2, a marker for the Exocyst-positive organelle (EXPO), which was achieved via a specific ATG8-AtNBR1-AtExo70E2 interaction in Arabidopsis. Here we further showed that nbr1 CRISPR mutants exhibit an early senescence phenotype under short-day growth conditions, which can be restored by complementation with expression of AtNBR1pro::AtNBR1-GFP in the mutant. Interestingly, in addition to the typical cytosolic and punctate patterns, YFP-AtNBR1 also exhibited a microtubule pattern particularly in the cortical layer. Treatments with the microtubule depolymerizer oryzalin but not the microfilament depolymerizer latrunculin B abolished the microtubule pattern and affected the vacuolar delivery of YFP-AtNBR1 upon autophagy induction. These results indicated that microtubules may be required for AtNBR1 to shuttle its cargos to the vacuole during plant autophagy. The present study thus sheds new light on the recognition and movement pattern of AtNBR1 in selective autophagy in Arabidopsis.
Collapse
Affiliation(s)
- Youshun Lin
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Rongfang Guo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changyang Ji
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CONTACT Changyang Ji,
| | - Jun Zhou
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Jun Zhou,
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Liwen Jiang, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
58
|
Qi H, Xia FN, Xiao S. Autophagy in plants: Physiological roles and post-translational regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:161-179. [PMID: 32324339 DOI: 10.1111/jipb.12941] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway. Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation, and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems, the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination, lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
59
|
Laureano-Marín AM, Aroca Á, Pérez-Pérez ME, Yruela I, Jurado-Flores A, Moreno I, Crespo JL, Romero LC, Gotor C. Abscisic Acid-Triggered Persulfidation of the Cys Protease ATG4 Mediates Regulation of Autophagy by Sulfide. THE PLANT CELL 2020; 32:3902-3920. [PMID: 33037147 PMCID: PMC7721334 DOI: 10.1105/tpc.20.00766] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 05/16/2023]
Abstract
Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.
Collapse
Affiliation(s)
- Ana M Laureano-Marín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - M Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50059 Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to Consejo Superior de Investigaciones Científicas, 50059 Zaragoza, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
60
|
Wijerathna-Yapa A, Stroeher E, Fenske R, Li L, Duncan O, Millar AH. Proteomics for Autophagy Receptor and Cargo Identification in Plants. J Proteome Res 2020; 20:129-138. [PMID: 33241938 DOI: 10.1021/acs.jproteome.0c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a catabolic process facilitating the degradation of cytoplasmic proteins and organelles in a lysosome- or vacuole-dependent manner in plants, animals, and fungi. Proteomic studies have demonstrated that autophagy controls and shapes the proteome and has identified both receptor and cargo proteins inside autophagosomes. In a smaller selection of studies, proteomics has been used for the analysis of post-translational modifications that target proteins for elimination and protein-protein interactions between receptors and cargo, providing a better understanding of the complex regulatory processes controlling autophagy. In this perspective, we highlight how proteomic studies have contributed to our understanding of autophagy in plants against the backdrop of yeast and animal studies. We then provide a framework for how the future application of proteomics in plant autophagy can uncover the mechanisms and outcomes of sculpting organelles during plant development, particularly through the identification of autophagy receptors and cargo in plants.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009 Crawley, Western Australia, Australia
| | - Elke Stroeher
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009 Crawley, Western Australia, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009 Crawley, Western Australia, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009 Crawley, Western Australia, Australia.,Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009 Crawley, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, 6009 Crawley, Western Australia, Australia
| |
Collapse
|
61
|
Kikuchi Y, Nakamura S, Woodson JD, Ishida H, Ling Q, Hidema J, Jarvis RP, Hagihara S, Izumi M. Chloroplast Autophagy and Ubiquitination Combine to Manage Oxidative Damage and Starvation Responses. PLANT PHYSIOLOGY 2020; 183:1531-1544. [PMID: 32554506 PMCID: PMC7401110 DOI: 10.1104/pp.20.00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/04/2020] [Indexed: 05/18/2023]
Abstract
Autophagy and the ubiquitin-proteasome system are the major degradation processes for intracellular components in eukaryotes. Although ubiquitination acts as a signal inducing organelle-targeting autophagy, the interaction between ubiquitination and autophagy in chloroplast turnover has not been addressed. In this study, we found that two chloroplast-associated E3 enzymes, SUPPRESSOR OF PPI1 LOCUS1 and PLANT U-BOX4 (PUB4), are not necessary for the induction of either piecemeal autophagy of chloroplast stroma or chlorophagy of whole damaged chloroplasts in Arabidopsis (Arabidopsis thaliana). Double mutations of an autophagy gene and PUB4 caused synergistic phenotypes relative to single mutations. The double mutants developed accelerated leaf chlorosis linked to the overaccumulation of reactive oxygen species during senescence and had reduced seed production. Biochemical detection of ubiquitinated proteins indicated that both autophagy and PUB4-associated ubiquitination contributed to protein degradation in the senescing leaves. Furthermore, the double mutants had enhanced susceptibility to carbon or nitrogen starvation relative to single mutants. Together, these results indicate that autophagy and chloroplast-associated E3s cooperate for protein turnover, management of reactive oxygen species accumulation, and adaptation to starvation.
Collapse
Affiliation(s)
- Yuta Kikuchi
- Graduate School of Life Sciences, Tohoku University, 980-0845 Sendai, Japan
| | - Sakuya Nakamura
- Center for Sustainable Resource Science, RIKEN, 351-0198 Wako, Japan
| | - Jesse D Woodson
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721-0036
| | - Hiroyuki Ishida
- Graduate School of Agricultural Science, Tohoku University, 980-0845 Sendai, Japan
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 980-0845 Sendai, Japan
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, 351-0198 Wako, Japan
| | - Masanori Izumi
- Center for Sustainable Resource Science, RIKEN, 351-0198 Wako, Japan
- PRESTO, Japan Science and Technology Agency, 322-0012 Kawaguchi, Japan
| |
Collapse
|
62
|
Abstract
Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
63
|
Wun CL, Quan Y, Zhuang X. Recent Advances in Membrane Shaping for Plant Autophagosome Biogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:565. [PMID: 32547570 PMCID: PMC7270194 DOI: 10.3389/fpls.2020.00565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is an intracellular degradation process, which is highly conserved in eukaryotes. During this process, unwanted cytosolic constituents are sequestered and delivered into the vacuole/lysosome by a double-membrane organelle known as an autophagosome. The autophagosome initiates from a membrane sac named the phagophore, and after phagophore expansion and closure, the outer membrane fuses with the vacuole/lysosome to release the autophagic body into the vacuole. Membrane sources derived from the endomembrane system (e.g., Endoplasmic Reticulum, Golgi and endosome) have been implicated to contribute to autophagosome in different steps (initiation, expansion or maturation). Therefore, coordination between the autophagy-related (ATG) proteins and membrane tethers from the endomembrane system is required during autophagosome biogenesis. In this review, we will update recent findings with a focus on comparing the selected core ATG complexes and the endomembrane tethering machineries for shaping the autophagosome membrane in yeast, mammal, and plant systems.
Collapse
|
64
|
Li F, Zhang M, Zhang C, Zhou X. Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. THE NEW PHYTOLOGIST 2020; 225:1746-1761. [PMID: 31621924 DOI: 10.1111/nph.16268] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/07/2019] [Indexed: 05/10/2023]
Abstract
Autophagy is an evolutionarily conserved degradation pathway in the cytoplasm and has emerged as a key defense mechanism against invading pathogens. However, there is no evidence showing nuclear autophagy in plants. Here, we show that a geminivirus nuclear protein, C1 of tomato leaf curl Yunnan virus (TLCYnV) induces autophagy and interacts directly with the core autophagy-related protein ATG8h. The interaction between ATG8h and C1 leads to the translocation of the C1 protein from the nucleus to the cytoplasm and the decreased protein accumulation of C1, which is dependent on the exportin1-mediated nuclear export pathway. The degradation of C1 is blocked by autophagy inhibitors and compromised when the autophagy-related genes (ATGs) ATG8h, ATG5, or ATG7 are knocked down. Similarly, silencing of these ATGs also promotes TLCYnV infection in Nicotiana benthamiana and Solanum lycopersicum plants. The mutation of a potential ATG8 interacting motif (AIM) in C1 abolishes its interaction with ATG8h in the cytoplasm but favors its interaction with Fibrillarin1 in the nucleolus. TLCYnV carrying the AIM mutation displays enhanced pathogenicity in solanaceous plants. Taken together, these data suggest that a new type of nuclear autophagy-mediated degradation of viral proteins through an exportin1-dependent nuclear export pathway restricts virus infection in plants.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
65
|
Coordination and Crosstalk between Autophagosome and Multivesicular Body Pathways in Plant Stress Responses. Cells 2020; 9:cells9010119. [PMID: 31947769 PMCID: PMC7017292 DOI: 10.3390/cells9010119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, autophagosomes and multivesicular bodies (MVBs) are two closely related partners in the lysosomal/vacuolar protein degradation system. Autophagosomes are double membrane-bound organelles that transport cytoplasmic components, including proteins and organelles for autophagic degradation in the lysosomes/vacuoles. MVBs are single-membrane organelles in the endocytic pathway that contain intraluminal vesicles whose content is either degraded in the lysosomes/vacuoles or recycled to the cell surface. In plants, both autophagosome and MVB pathways play important roles in plant responses to biotic and abiotic stresses. More recent studies have revealed that autophagosomes and MVBs also act together in plant stress responses in a variety of processes, including deployment of defense-related molecules, regulation of cell death, trafficking and degradation of membrane and soluble constituents, and modulation of plant hormone metabolism and signaling. In this review, we discuss these recent findings on the coordination and crosstalk between autophagosome and MVB pathways that contribute to the complex network of plant stress responses.
Collapse
|
66
|
Li HL, Wang X, Ji XL, Qiao ZW, You CX, Hao YJ. Genome-Wide Identification of Apple Ubiquitin SINA E3 Ligase and Functional Characterization of MdSINA2. FRONTIERS IN PLANT SCIENCE 2020; 11:1109. [PMID: 32793265 PMCID: PMC7393226 DOI: 10.3389/fpls.2020.01109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
SINA (Seven in absentia) proteins are a small family of ubiquitin ligases that play important roles in regulating plant growth and developmental processes as well as in responses to diverse types of biotic and abiotic stress. However, the characteristics of the apple SINA family have not been previously studied. Here, we identified 11 MdSINAs members in the apple genome based on their conserved, N-terminal RING and C-terminal SINA domains. We also reconstructed a phylogeny of these genes; characterized their chromosomal location, structure, and motifs; and identified two major groups of MdSINA genes. Subsequent qRT-PCR analyses were used to characterize the expression of MdSINA genes in various tissues and organs, and levels of expression were highest in leaves. MdSINAs were significantly induced under ABA and carbon- and nitrate-starvation treatment. Except for MdSINA1 and MdSINA7, the other MdSINA proteins could interact with each other. Moreover, MdSINA2 was found to be localized in the nucleus using Agrobacterium-mediated transient expression. Western-blot analysis showed that MdSINA2 accumulated extensively under light, decreased under darkness, and became insensitive to light when the RING domain was disrupted. Finally, ABA-hypersensitive phenotypes were confirmed by transgenic calli and the ectopic expression of MdSINA2 in Arabidopsis. In conclusion, our results suggest that MdSINA genes participate in the responses to different types of stress, and that MdSINA2 might act as a negative regulator in the ABA stress response.
Collapse
|
67
|
Kajikawa M, Fukuzawa H. Algal Autophagy Is Necessary for the Regulation of Carbon Metabolism Under Nutrient Deficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:36. [PMID: 32117375 PMCID: PMC7012896 DOI: 10.3389/fpls.2020.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 05/04/2023]
Abstract
Autophagy is a mechanism to recycle intracellular constituents such as amino acids and other carbon- and nitrogen (N)-containing compounds. Although autophagy-related (ATG) genes required for autophagy are encoded by many algal genomes, their functional importance in microalgae in nutrient-deficiency has not been appraised using ATG-defective mutants. Recently, by characterization of an insertional mutant of the ATG8 encoding a ubiquitin-like protein indispensable for autophagosome formation in a green alga Chlamydomonas reinhardtii, we have provided evidence that supports the following notions. ATG8 protein is required for the degradation of lipid droplets and triacylglycerol (TAG) triggered by resupply of N to cell culture in N-deficient conditions. ATG8 protein is also necessary for starch accumulation under phosphorus-deficient conditions. Algal autophagy is not necessary for inheritance of chloroplast and mitochondrial genomes. In this review, we discuss the physiological roles of algal autophagy associated with nutrient deficiency revealed by the genetic and biochemical analyses using disruption mutants and reagents that inhibit the fatty acid biosynthesis and vacuolar H+-ATPase.
Collapse
|
68
|
Qi H, Li J, Xia FN, Chen JY, Lei X, Han MQ, Xie LJ, Zhou QM, Xiao S. Arabidopsis SINAT Proteins Control Autophagy by Mediating Ubiquitylation and Degradation of ATG13. THE PLANT CELL 2020; 32:263-284. [PMID: 31732704 PMCID: PMC6961628 DOI: 10.1105/tpc.19.00413] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
In eukaryotes, autophagy maintains cellular homeostasis by recycling cytoplasmic components. The autophagy-related proteins (ATGs) ATG1 and ATG13 form a protein kinase complex that regulates autophagosome formation; however, mechanisms regulating ATG1 and ATG13 remain poorly understood. Here, we show that, under different nutrient conditions, the RING-type E3 ligases SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA1 (SINAT1), SINAT2, and SINAT6 control ATG1 and ATG13 stability and autophagy dynamics by modulating ATG13 ubiquitylation in Arabidopsis (Arabidopsis thaliana). During prolonged starvation and recovery, ATG1 and ATG13 were degraded through the 26S proteasome pathway. TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR1a (TRAF1a) and TRAF1b interacted in planta with ATG13a and ATG13b and required SINAT1 and SINAT2 to ubiquitylate and degrade ATG13s in vivo. Moreover, lysines K607 and K609 of ATG13a protein contributed to K48-linked ubiquitylation and destabilization, and suppression of autophagy. Under starvation conditions, SINAT6 competitively interacted with ATG13 and induced autophagosome biogenesis. Furthermore, under starvation conditions, ATG1 promoted TRAF1a protein stability in vivo, suggesting feedback regulation of autophagy. Consistent with ATGs functioning in autophagy, the atg1a atg1b atg1c triple knockout mutants exhibited premature leaf senescence, hypersensitivity to nutrient starvation, and reduction in TRAF1a stability. Therefore, these findings demonstrate that SINAT family proteins facilitate ATG13 ubiquitylation and stability and thus regulate autophagy.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Yu Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mu-Qian Han
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Ming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
69
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|
70
|
Bozkurt HS, Quigley EMM. The probiotic Bifidobacterium in the management of Coronavirus: A theoretical basis. Int J Immunopathol Pharmacol 2020; 34:2058738420961304. [PMID: 33103512 PMCID: PMC7786419 DOI: 10.1177/2058738420961304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a viral pandemic that primarily manifests with respiratory distress but may also lead to symptoms and signs associated with the gastrointestinal tract. It is characteristically associated with a hyper-immune response, also referred to as a 'cytokine storm'. Probiotics are living microorganisms that have been shown to have positive effects on immune response in man with some bacteria; some strains of Bifidobacteria, for example, possess especially potent immune modulating effects. These bacteria have the potential to ameliorate the 'cytokine storm' through a differential effect on pro- and anti-inflammatory cytokines. In the management of COVID-19 and other coronovirus-mediated illnesses, probiotic bacteria also have the potential to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Hüseyin S Bozkurt
- Maltepe University, Medicine Faculty, Clinic of Gastroenterology, Istanbul, Turkey
| | - Eamonn MM Quigley
- Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| |
Collapse
|
71
|
Lai LTF, Ye H, Zhang W, Jiang L, Lau WCY. Structural Biology and Electron Microscopy of the Autophagy Molecular Machinery. Cells 2019; 8:E1627. [PMID: 31842460 PMCID: PMC6952983 DOI: 10.3390/cells8121627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly regulated bulk degradation process that plays a key role in the maintenance of cellular homeostasis. During autophagy, a double membrane-bound compartment termed the autophagosome is formed through de novo nucleation and assembly of membrane sources to engulf unwanted cytoplasmic components and targets them to the lysosome or vacuole for degradation. Central to this process are the autophagy-related (ATG) proteins, which play a critical role in plant fitness, immunity, and environmental stress response. Over the past few years, cryo-electron microscopy (cryo-EM) and single-particle analysis has matured into a powerful and versatile technique for the structural determination of protein complexes at high resolution and has contributed greatly to our current understanding of the molecular mechanisms underlying autophagosome biogenesis. Here we describe the plant-specific ATG proteins and summarize recent structural and mechanistic studies on the protein machinery involved in autophagy initiation with an emphasis on those by single-particle analysis.
Collapse
Affiliation(s)
- Louis Tung Faat Lai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Ye
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Wilson Chun Yu Lau
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
72
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
73
|
Borek S, Stefaniak S, Śliwiński J, Garnczarska M, Pietrowska-Borek M. Autophagic Machinery of Plant Peroxisomes. Int J Mol Sci 2019; 20:E4754. [PMID: 31557865 PMCID: PMC6802006 DOI: 10.3390/ijms20194754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
Peroxisomes are cell organelles that play an important role in plants in many physiological and developmental processes. The plant peroxisomes harbor enzymes of the β-oxidation of fatty acids and the glyoxylate cycle; photorespiration; detoxification of reactive oxygen and nitrogen species; as well as biosynthesis of hormones and signal molecules. The function of peroxisomes in plant cells changes during plant growth and development. They are transformed from organelles involved in storage lipid breakdown during seed germination and seedling growth into leaf peroxisomes involved in photorespiration in green parts of the plant. Additionally, intensive oxidative metabolism of peroxisomes causes damage to their components. Therefore, unnecessary or damaged peroxisomes are degraded by selective autophagy, called pexophagy. This is an important element of the quality control system of peroxisomes in plant cells. Despite the fact that the mechanism of pexophagy has already been described for yeasts and mammals, the molecular mechanisms by which plant cells recognize peroxisomes that will be degraded via pexophagy still remain unclear. It seems that a plant-specific mechanism exists for the selective degradation of peroxisomes. In this review, we describe the physiological role of pexophagy in plant cells and the current hypotheses concerning the mechanism of plant pexophagy.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Jan Śliwiński
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| |
Collapse
|
74
|
Machado SR, Rodrigues TM. Autophagy and vacuolar biogenesis during the nectary development. PLANTA 2019; 250:519-533. [PMID: 31104130 DOI: 10.1007/s00425-019-03190-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/14/2019] [Indexed: 05/26/2023]
Abstract
Different autophagy pathways are a driver of vacuolar biogenesis and are development stage specific during the extrafloral nectary development in Citharexylum myrianthum. Plant autophagy plays an important role in various developmental processes such as seed germination, pollen maturation and leaf senescence. However, studies that address the evidence of autophagy and its role in the development of plant glands are scarce and largely restricted to laticifers. Regarding nectary, studies have repeatedly pointed to signs of degradation associated with the end of the secretory cycle, without exploring autophagy. Likewise, the relationship between autophagy and biogenesis of vacuoles remains an unexplored issue. In this study, using conventional and microwave fixation in association with ultracytochemical methods for transmission electron microscopy, we investigated the occurrence of autophagy and its implication in the differentiation of extrafloral nectary in Citharexylum myrianthum (Verbenaceae) under natural conditions, focusing on the vacuole biogenesis. We described a variety of vacuole types associated with the stage of nectary epidermis development, which differs with respect to origin, function and nature of the products to be stored. Three distinct autophagy pathways were detected: macroautophagy, microautophagy (both restricted to the undifferentiated epidermal cells, at the presecretory stage) and megaautophagy (circumscribed to the differentiated epidermal cells, at the postsecretory stage). Our study clearly demonstrated that the vacuole variety and autophagy processes in the nectary epidermal cells are development specific. This study highlights the role of autophagy in vacuole biogenesis and its implications for the development of nectary and opens new venues for future studies on regulation mechanisms for autophagy in plant secretory structures under normal conditions.
Collapse
Affiliation(s)
- Silvia R Machado
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu City, SP, Brazil.
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu City, SP, Brazil.
| | - Tatiane M Rodrigues
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu City, SP, Brazil
| |
Collapse
|
75
|
Fan J, Yu L, Xu C. Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. THE PLANT CELL 2019; 31:1598-1613. [PMID: 31036588 PMCID: PMC6635848 DOI: 10.1105/tpc.19.00170] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 04/19/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
76
|
Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. Linking Autophagy to Abiotic and Biotic Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:413-430. [PMID: 30824355 PMCID: PMC6475611 DOI: 10.1016/j.tplants.2019.02.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium; Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay.
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
77
|
Margalha L, Confraria A, Baena-González E. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2261-2274. [PMID: 30793201 DOI: 10.1093/jxb/erz066] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/07/2019] [Indexed: 05/11/2023]
Abstract
The evolutionarily conserved protein kinase complexes SnRK1 and TOR are central metabolic regulators essential for plant growth, development, and stress responses. They are activated by opposite signals, and the outcome of their activation is, in global terms, antagonistic. Similarly to their yeast and animal counterparts, SnRK1 is activated by the energy deficit often associated with stress to restore homeostasis, while TOR is activated in nutrient-rich conditions to promote growth. Recent evidence suggests that SnRK1 represses TOR in plants, revealing evolutionary conservation also in their crosstalk. Given their importance for integrating environmental information into growth and developmental programs, these signaling pathways hold great promise for reducing the growth penalties caused by stress. Here we review the literature connecting SnRK1 and TOR to plant stress responses. Although SnRK1 and TOR emerge mostly as positive regulators of defense and growth, respectively, the outcome of their activities in plant growth and performance is not always straightforward. Manipulation of both pathways under similar experimental setups, as well as further biochemical and genetic analyses of their molecular and functional interaction, is essential to fully understand the mechanisms through which these two metabolic pathways contribute to stress responses, growth, and development.
Collapse
Affiliation(s)
- Leonor Margalha
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,Oeiras, Portugal
| | - Ana Confraria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,Oeiras, Portugal
| | | |
Collapse
|
78
|
Chung T. How phosphoinositides shape autophagy in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:146-158. [PMID: 30824047 DOI: 10.1016/j.plantsci.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/06/2023]
Abstract
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
79
|
Izumi M, Nakamura S, Li N. Autophagic Turnover of Chloroplasts: Its Roles and Regulatory Mechanisms in Response to Sugar Starvation. FRONTIERS IN PLANT SCIENCE 2019; 10:280. [PMID: 30967883 PMCID: PMC6439420 DOI: 10.3389/fpls.2019.00280] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/20/2019] [Indexed: 05/29/2023]
Abstract
Photosynthetic reactions in chloroplasts convert atmospheric carbon dioxide into starch and soluble sugars during the day. Starch, a transient storage form of sugar, is broken down into sugars as a source for respiratory energy production at night. Chloroplasts thus serve as the main sites of sugar production for photoautotrophic plant growth. Autophagy is an evolutionarily conserved intracellular process in eukaryotes that degrades organelles and proteins. Numerous studies have shown that autophagy is actively induced in sugar-starved plants. When photosynthetic sugar production is inhibited by environmental cues, chloroplasts themselves may become an attractive alternative energy source to sugars via their degradation. Here, we summarize the process of autophagic turnover of chloroplasts and its roles in plants in response to sugar starvation. We hypothesize that piecemeal-type chloroplast autophagy is specifically activated in plants in response to sugar starvation.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Sakuya Nakamura
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nan Li
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
80
|
Ktistakis NT. ER platforms mediating autophagosome generation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158433. [PMID: 30890442 DOI: 10.1016/j.bbalip.2019.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
The origin of the autophagosomal membrane started to be debated by scientists working in the field within one year of the modern definition of autophagy in 1963. There is now converging evidence from older and newer studies that the endoplasmic reticulum is involved in formation of autophagosomes. Thus, it is possible to trace from early morphological work - done without the benefit of molecular descriptions - to recent studies - dissecting how specific proteins nucleate autophagosome biogenesis - a long series of experimental findings that are beginning to answer the 55-year old question with some confidence. The view that has emerged is that specialised regions of the endoplasmic reticulum, in dynamic cross talk with most intracellular organelles via membrane contact sites, provide a platform for autophagosome biogenesis.
Collapse
|
81
|
Jia M, Liu X, Xue H, Wu Y, Shi L, Wang R, Chen Y, Xu N, Zhao J, Shao J, Qi Y, An L, Sheen J, Yu F. Noncanonical ATG8-ABS3 interaction controls senescence in plants. NATURE PLANTS 2019; 5:212-224. [PMID: 30664732 PMCID: PMC6368864 DOI: 10.1038/s41477-018-0348-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis is essential for cellular functions and longevity, and the loss of proteostasis is one of the hallmarks of senescence. Autophagy is an evolutionarily conserved cellular degradation pathway that is critical for the maintenance of proteostasis. Paradoxically, autophagy deficiency leads to accelerated protein loss by unknown mechanisms. We discover that the ABNORMAL SHOOT3 (ABS3) subfamily of multidrug and toxic compound extrusion transporters promote senescence under natural and carbon-deprivation conditions in Arabidopsis thaliana. The senescence-promoting ABS3 pathway functions in parallel with the longevity-promoting autophagy to balance plant senescence and survival. Surprisingly, ABS3 subfamily multidrug and toxic compound extrusion proteins interact with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) at the late endosome to promote senescence and protein degradation without canonical cleavage and lipidation of ATG8. This non-autophagic ATG8-ABS3 interaction paradigm is probably conserved among dicots and monocots. Our findings uncover a previously unknown non-autophagic function of ATG8 and an unrecognized senescence regulatory pathway controlled by ATG8-ABS3-mediated proteostasis.
Collapse
Affiliation(s)
- Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Rui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Department of Molecular Genetics, Center for Applied Plant Science, Ohio State University, Columbus, OH, USA
| | - Yu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ni Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
82
|
Naumann C, Müller J, Sakhonwasee S, Wieghaus A, Hause G, Heisters M, Bürstenbinder K, Abel S. The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy. PLANT PHYSIOLOGY 2019; 179:460-476. [PMID: 30510038 PMCID: PMC6426416 DOI: 10.1104/pp.18.01379] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 05/08/2023]
Abstract
Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Collapse
Affiliation(s)
- Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Siriwat Sakhonwasee
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Annika Wieghaus
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcus Heisters
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
83
|
Zhuang X, Jiang L. Chloroplast Degradation: Multiple Routes Into the Vacuole. FRONTIERS IN PLANT SCIENCE 2019; 10:359. [PMID: 30972092 PMCID: PMC6443708 DOI: 10.3389/fpls.2019.00359] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/07/2019] [Indexed: 05/05/2023]
Abstract
Chloroplasts provide energy for all plants by producing sugar during photosynthesis. To adapt to various environmental and developmental cues, plants have developed specific strategies to control chloroplast homeostasis in plant cells, including chloroplast degradation during leaf senescence and the transition of chloroplasts into other types of plastids during the day-night cycle. In recent years, autophagy has emerged as an essential mechanism for selective degradation of chloroplast materials (also known as chlorophagy) in the vacuole. Different types of membrane structures have been implicated to involve in the delivery of distinct chloroplast contents. Here we provide a current overview on chlorophagy and discuss the possible chloroplast receptors and upstream signals in this process.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Xiaohong Zhuang,
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
84
|
Tang J, Bassham DC. Autophagy in crop plants: what's new beyond Arabidopsis? Open Biol 2018; 8:180162. [PMID: 30518637 PMCID: PMC6303781 DOI: 10.1098/rsob.180162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we review recent progress on understanding autophagy in crops and discuss potential future research directions.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
85
|
Ding X, Zhang X, Otegui MS. Plant autophagy: new flavors on the menu. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:113-121. [PMID: 30267997 DOI: 10.1016/j.pbi.2018.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Autophagy mediates the delivery of cytoplasmic content to vacuoles or lysosomes for degradation or storage. The best characterized autophagy route called macroautophagy involves the sequestration of cargo in double-membrane autophagosomes and is conserved in eukaryotes, including plants. Recently, several new receptors, some of them plant-specific, that select cargo for macroautophagy have been identified. Some of these receptors appear to participate in regulation of competing catabolic pathways, for example proteasome-mediated versus autophagic degradation under specific stress conditions. Vacuolar microautophagy, a process by which the vacuole directly engulf cytoplasmic material, also occurs in plants but its underlying molecular mechanisms are yet to be elucidated.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Xiaoguo Zhang
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Marisa S Otegui
- Department of Botany, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, United States; Laboratory of Molecular and Cellular Biology, 1525 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Genetics, 405 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
86
|
Zhuang X, Chung KP, Luo M, Jiang L. Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective. TRENDS IN PLANT SCIENCE 2018; 23:677-692. [PMID: 29929776 DOI: 10.1016/j.tplants.2018.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
The autophagosome is a double-membrane compartment formed during autophagy that sequesters and delivers cargoes for their degradation or recycling into the vacuole. Analyses of the AuTophaGy-related (ATG) proteins have unveiled dynamic mechanisms for autophagosome biogenesis. Recent advances in plant autophagy research highlight a complex interplay between autophagosome biogenesis and the endoplasmic reticulum (ER): on the one hand ER serves as a membrane source for autophagosome initiation and a signaling platform for autophagy regulation; on the other hand ER turnover is connected to selective autophagy. We provide here an integrated view of ER-based autophagosome biogenesis in plants in comparison with the newest findings in yeast and mammals, with an emphasis on the hierarchy of the core ATG proteins, ATG9 trafficking, and ER-resident regulators in autophagy.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; These authors contributed equally to this work.
| | - Kin Pan Chung
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Current address: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1 14476, Potsdam-Golm, Germany; These authors contributed equally to this work
| | - Mengqian Luo
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Center for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
87
|
Affiliation(s)
- Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Correspondence:
| |
Collapse
|
88
|
Marion J, Le Bars R, Besse L, Batoko H, Satiat-Jeunemaitre B. Multiscale and Multimodal Approaches to Study Autophagy in Model Plants. Cells 2018; 7:E5. [PMID: 29315263 PMCID: PMC5789278 DOI: 10.3390/cells7010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway. In this review, we describe useful protocols for studying autophagy in the plant cell, taking into account some specificities of the plant model.
Collapse
Affiliation(s)
- Jessica Marion
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| | - Romain Le Bars
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| | - Laetitia Besse
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| | - Henri Batoko
- Institute of Life Sciences, UCL/ISV, University of Louvain, Croix du Sud 4, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Béatrice Satiat-Jeunemaitre
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91 198 Gif-sur-Yvette, France; (J.M.); (R.L.B.); (L.B.); (B.S.-J.)
| |
Collapse
|
89
|
Cui Y, He Y, Cao W, Gao J, Jiang L. The Multivesicular Body and Autophagosome Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1837. [PMID: 30619408 PMCID: PMC6299029 DOI: 10.3389/fpls.2018.01837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/27/2018] [Indexed: 05/03/2023]
Abstract
In eukaryotic cells, the endomembrane system consists of multiple membrane-bound organelles, which play essential roles in the precise transportation of various cargo proteins. In plant cells, vacuoles are regarded as the terminus of catabolic pathways whereas the selection and transport of vacuolar cargoes are mainly mediated by two types of organelles, multivesicular bodies (MVBs) also termed prevacuolar compartments (PVCs) and autophagosomes. MVBs are single-membrane bound organelles with intraluminal vesicles and mediate the transport between the trans-Golgi network (TGN) and vacuoles, while autophagosomes are double-membrane bound organelles, which mediate cargo delivery to the vacuole for degradation and recycling during autophagy. Great progress has been achieved recently in identification and characterization of the conserved and plant-unique regulators involved in the MVB and autophagosome pathways. In this review, we present an update on the current knowledge of these key regulators and pay special attention to their conserved protein domains. In addition, we discuss the possible interplay between the MVB and autophagosome pathways in regulating vacuolar degradation in plants.
Collapse
Affiliation(s)
- Yong Cui
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Yong Cui, Liwen Jiang,
| | - Yilin He
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenhan Cao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Yong Cui, Liwen Jiang,
| |
Collapse
|
90
|
Szymanski D, Bassham D, Munnik T, Sakamoto W. Cellular Dynamics: Cellular Systems in the Time Domain. PLANT PHYSIOLOGY 2018; 176:12-15. [PMID: 29317523 PMCID: PMC5761760 DOI: 10.1104/pp.17.01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|