51
|
Jin F, Zhou Y, Zhang P, Huang R, Fan W, Li B, Li G, Song X, Pei D. Identification of Key Lipogenesis Stages and Proteins Involved in Walnut Kernel Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4306-4318. [PMID: 36854654 DOI: 10.1021/acs.jafc.2c08680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Walnuts are abundant in oil content, especially for polyunsaturated fatty acids, but the understanding of their formation is limited. We collected walnut (Juglans regia L.) kernels at 60, 74, 88, 102, 116, 130, and 144 days after pollination (designated S1-S7). The ultrastructure and accumulation of oil bodies (OBs) were observed using transmission electron microscopy (TEM), and the oil content, fatty acid composition, and proteomic changes in walnut kernels were determined. The oil content and OB accumulation increased during the development and rose sharply from S1 to S3 stages, which are considered the key lipogenesis stage. A total of 5442 proteins were identified and determined as differentially expressed proteins (DEPs) using label-free proteomic analysis. Fatty acid desaturases (FAD) 2, FAD3, oleosin, and caleosin were essential and upregulated from the S1 to S3 stages. Furthermore, the highly expressed oleosin gene JrOLE14.7 from walnuts was cloned and overexpressed in transgenic Brassica napus. The overexpression of JrOLE14.7 increased the oil content, diameter, hundred weight of seeds and changed the fatty acid composition and OB size of Brassica napus seeds. These findings provide insights into the molecular mechanism of oil biosynthesis and the basis for the genetic improvement of walnuts.
Collapse
Affiliation(s)
- Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Pu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guangzhu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
52
|
Chen K, Yin Y, Ding Y, Chao H, Li M. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. Int J Mol Sci 2023; 24:ijms24044201. [PMID: 36835614 PMCID: PMC9967339 DOI: 10.3390/ijms24044201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Brassica napus is the most important oilseed crop in the world, and the lipid was stored in the oil body (OB) in the form of triacylglycerol. At present, most of studies on the relationship between oil body morphology and seed oil content in B. napus was focused on mature seeds. In the present study, the OBs in different developing seeds of B. napus with relatively high oil content (HOC) of about 50% and low oil content (LOC) of about 39% were analyzed. It was revealed that the size of OBs was first increased and then decreased in both materials. And in late seed developmental stages, the average OB size of rapeseed with HOC was higher than that of LOC, while it was reversed in the early seed developmental stages. No significant difference was observed on starch granule (SG) size in HOC and LOC rapeseed. Further results indicated that the expression of genes that involved in malonyl-CoA metabolism, fatty acid carbon chain extension, lipid metabolism, and starch synthesis in the rapeseed with HOC was higher than that of rapeseed with LOC. These results give some new insight for understanding the dynamics of OBs and SGs in embryos of B. napus.
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
53
|
Study on oil body emulsion gels stabilized by composited polysaccharides through microgel particles compaction and natural gelation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
55
|
Gao Y, Zheng Y, Yao F, Chen F. Effects of pH and temperature on the stability of peanut oil bodies: New insights for embedding active ingredients. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Jia Y, Yao M, He X, Xiong X, Guan M, Liu Z, Guan C, Qian L. Transcriptome and Regional Association Analyses Reveal the Effects of Oleosin Genes on the Accumulation of Oil Content in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:3140. [PMID: 36432869 PMCID: PMC9698637 DOI: 10.3390/plants11223140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Rapeseed stores lipids in the form of oil bodies. Oil bodies in the seeds of higher plants are surrounded by oleosins. Adjusting oleosin protein levels can prevent the fusion of oil bodies and maintain oil body size during seed development. However, oil contents are affected by many factors, and studies on the complex molecular regulatory mechanisms underlying the variations in seed oil contents of B. napus are limited. In this study, a total of 53 BnOLEO (B. napus oleosin) genes were identified in the genome of B. napus through a genome-wide analysis. The promoter sequences of oleosin genes consisted of various light-, hormone-, and stress-related cis-acting elements, along with transcription factor (TF) binding sites, for 25 TF families in 53 BnOLEO genes. The differentially expressed oleosin genes between two high- and two low-oil-content accessions were explored. BnOLEO3-C09, BnOLEO4-A02, BnOLEO4-A09, BnOLEO2-C04, BnOLEO1-C01, and BnOLEO7-A03 showed higher expressions in the high-oil-content accessions than in low-oil-content accessions, at 25, 35, and 45 days after pollination (DAP) in two different environments. A regional association analysis of 50 re-sequenced rapeseed accessions was used to further analyze these six BnOLEO genes, and it revealed that the nucleotide variations in the BnOLEO1-C01 and BnOLEO7-A03 gene regions were related to the phenotypic variations in seed oil content. Moreover, a co-expression network analysis revealed that the BnOLEO genes were directly linked to lipid/fatty acid metabolism, TF, lipid transport, and carbohydrate genes, thus forming a molecular network involved in seed oil accumulation. These favorable haplotypes can be utilized in molecular marker-assisted selection in order to further improve seed oil contents in rapeseed.
Collapse
|
57
|
Peixoto B, Baena-González E. Management of plant central metabolism by SnRK1 protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7068-7082. [PMID: 35708960 PMCID: PMC9664233 DOI: 10.1093/jxb/erac261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 05/07/2023]
Abstract
SUCROSE NON-FERMENTING1 (SNF1)-RELATED KINASE 1 (SnRK1) is an evolutionarily conserved protein kinase with key roles in plant stress responses. SnRK1 is activated when energy levels decline during stress, reconfiguring metabolism and gene expression to favour catabolism over anabolism, and ultimately to restore energy balance and homeostasis. The capacity to efficiently redistribute resources is crucial to cope with adverse environmental conditions and, accordingly, genetic manipulations that increase SnRK1 activity are generally associated with enhanced tolerance to stress. In addition to its well-established function in stress responses, an increasing number of studies implicate SnRK1 in the homeostatic control of metabolism during the regular day-night cycle and in different organs and developmental stages. Here, we review how the genetic manipulation of SnRK1 alters central metabolism in several plant species and tissue types. We complement this with studies that provide mechanistic insight into how SnRK1 modulates metabolism, identifying changes in transcripts of metabolic components, altered enzyme activities, or direct regulation of enzymes or transcription factors by SnRK1 via phosphorylation. We identify patterns of response that centre on the maintenance of sucrose levels, in an analogous manner to the role described for its mammalian orthologue in the control of blood glucose homeostasis. Finally, we highlight several knowledge gaps and technical limitations that will have to be addressed in future research aiming to fully understand how SnRK1 modulates metabolism at the cellular and whole-plant levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | |
Collapse
|
58
|
Scholz P, Chapman KD, Mullen RT, Ischebeck T. Finding new friends and revisiting old ones - how plant lipid droplets connect with other subcellular structures. THE NEW PHYTOLOGIST 2022; 236:833-838. [PMID: 35851478 DOI: 10.1111/nph.18390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The number of described contact sites between different subcellular compartments and structures in eukaryotic cells has increased dramatically in recent years and, as such, has substantially reinforced the well-known premise that these kinds of connections are essential for overall cellular organization and the proper functioning of cellular metabolic and signaling pathways. Here, we discuss contact sites involving plant lipid droplets (LDs), including LD-endoplasmic reticulum (ER) connections that mediate the biogenesis of new LDs at the ER, LD-peroxisome connections, that facilitate the degradation of LD-stored triacylglycerols (TAGs), and the more recently discovered LD-plasma membrane connections, which involve at least three novel proteins, but have a yet unknown physiological function(s).
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kent D Chapman
- Bio-Discovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, 48143, Münster, Germany
| |
Collapse
|
59
|
Ge S, Zhang RX, Wang YF, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang YK. The Arabidopsis Rab protein RABC1 affects stomatal development by regulating lipid droplet dynamics. THE PLANT CELL 2022; 34:4274-4292. [PMID: 35929087 PMCID: PMC9614440 DOI: 10.1093/plcell/koac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.
Collapse
Affiliation(s)
| | | | - Yi-Fei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiaheng Chu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | |
Collapse
|
60
|
Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, Braus GH, Herrfurth C, Feussner I, Sharma S, Carlsson AS, de Vries J, Hofvander P, Ischebeck T. A seed-like proteome in oil-rich tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:518-534. [PMID: 36050843 DOI: 10.1111/tpj.15964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Collapse
Affiliation(s)
- Philipp William Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Shrikant Sharma
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Per Hofvander
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| |
Collapse
|
61
|
Burciaga-Monge A, López-Tubau JM, Laibach N, Deng C, Ferrer A, Altabella T. Effects of impaired steryl ester biosynthesis on tomato growth and developmental processes. FRONTIERS IN PLANT SCIENCE 2022; 13:984100. [PMID: 36247562 PMCID: PMC9557751 DOI: 10.3389/fpls.2022.984100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Steryl esters (SE) are stored in cytoplasmic lipid droplets and serve as a reservoir of sterols that helps to maintain free sterols (FS) homeostasis in cell membranes throughout plant growth and development, and provides the FS needed to meet the high demand of these key plasma membrane components during rapid plant organ growth and expansion. SE are also involved in the recycling of sterols and fatty acids released from membranes during plant tissues senescence. SE are synthesized by sterol acyltransferases, which catalyze the transfer of long-chain fatty acid groups to the hydroxyl group at C3 position of FS. Depending on the donor substrate, these enzymes are called acyl-CoA:sterol acyltransferases (ASAT), when the substrate is a long-chain acyl-CoA, and phospholipid:sterol acyltransferases (PSAT), which use a phospholipid as a donor substrate. We have recently identified and preliminary characterized the tomato (Solanum lycopersicum cv. Micro-Tom) SlASAT1 and SlPSAT1 enzymes. To gain further insight into the biological role of these enzymes and SE biosynthesis in tomato, we generated and characterized CRISPR/Cas9 single knock-out mutants lacking SlPSAT1 (slpsat1) and SlASAT1 (slasat1), as well as the double mutant slpsat1 x slasat1. Analysis of FS and SE profiles in seeds and leaves of the single and double mutants revealed a strong depletion of SE in slpsat1, that was even more pronounced in the slpsat1 x slasat1 mutant, while an increase of SE levels was observed in slasat1. Moreover, SlPSAT1 and SlASAT1 inactivation affected in different ways several important cellular and physiological processes, like leaf lipid bo1dies formation, seed germination speed, leaf senescence, and the plant size. Altogether, our results indicate that SlPSAT1 has a predominant role in tomato SE biosynthesis while SlASAT1 would mainly regulate the flux of the sterol pathway. It is also worth to mention that some of the metabolic and physiological responses in the tomato mutants lacking functional SlPSAT1 or SlASAT1 are different from those previously reported in Arabidopsis, being remarkable the synergistic effect of SlASAT1 inactivation in the absence of a functional SlPSAT1 on the early germination and premature senescence phenotypes.
Collapse
Affiliation(s)
- Alma Burciaga-Monge
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Joan Manel López-Tubau
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalie Laibach
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Albert Ferrer
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
62
|
Autophagy in the Lifetime of Plants: From Seed to Seed. Int J Mol Sci 2022; 23:ijms231911410. [PMID: 36232711 PMCID: PMC9570326 DOI: 10.3390/ijms231911410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved self-degradation mechanism in eukaryotes. Excess or harmful intracellular content can be encapsulated by double-membrane autophagic vacuoles and transferred to vacuoles for degradation in plants. Current research shows three types of autophagy in plants, with macroautophagy being the most important autophagic degradation pathway. Until now, more than 40 autophagy-related (ATG) proteins have been identified in plants that are involved in macroautophagy, and these proteins play an important role in plant growth regulation and stress responses. In this review, we mainly introduce the research progress of autophagy in plant vegetative growth (roots and leaves), reproductive growth (pollen), and resistance to biotic (viruses, bacteria, and fungi) and abiotic stresses (nutrients, drought, salt, cold, and heat stress), and we discuss the application direction of plant autophagy in the future.
Collapse
|
63
|
Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:969844. [PMID: 36119569 PMCID: PMC9471015 DOI: 10.3389/fpls.2022.969844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.
Collapse
Affiliation(s)
- Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
64
|
Genome-Wide Identification and Characterization of Oil-Body-Membrane Proteins in Polyploid Crop Brassica napus. PLANTS 2022; 11:plants11172241. [PMID: 36079626 PMCID: PMC9460193 DOI: 10.3390/plants11172241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Oil-body-membrane proteins (OBMPs) are essential structural molecules of oil bodies and also versatile metabolic enzymes involved in multiple cellular processes such as lipid metabolism, hormone signaling and stress responses. However, the global landscape for OBMP genes in oil crops is still lacking. Here, we performed genome-wide identification and characterization of OBMP genes in polyploid crop Brassica napus. B. napus contains up to 88 BnaOBMP genes including 53 oleosins, 20 caleosins and 15 steroleosins. Both whole-genome and tandem duplications have contributed to the expansion of the BnaOBMP gene family. These BnaOBMP genes have extensive sequence polymorphisms, and some harbor strong selection signatures. Various cis-acting regulatory elements involved in plant growth, phytohormones and abiotic and biotic stress responses are detected in their promoters. BnaOBMPs exhibit differential expression at various developmental stages from diverse tissues. Importantly, some BnaOBMP genes display spatiotemporal patterns of seed-specific expression, which could be orchestrated by transcriptional factors such as EEL, GATA3, HAT2, SMZ, DOF5.6 and APL. Altogether, our data lay the foundations for studying the regulatory mechanism of the seed oil storage process and provide candidate genes and alleles for the genetic improvement and breeding of rapeseed with high seed oil content.
Collapse
|
65
|
Pranneshraj V, Sangha MK, Djalovic I, Miladinovic J, Djanaguiraman M. Lipidomics-Assisted GWAS (lGWAS) Approach for Improving High-Temperature Stress Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23169389. [PMID: 36012660 PMCID: PMC9409476 DOI: 10.3390/ijms23169389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
High-temperature stress (HT) over crop productivity is an important environmental factor demanding more attention as recent global warming trends are alarming and pose a potential threat to crop production. According to the Sixth IPCC report, future years will have longer warm seasons and frequent heat waves. Thus, the need arises to develop HT-tolerant genotypes that can be used to breed high-yielding crops. Several physiological, biochemical, and molecular alterations are orchestrated in providing HT tolerance to a genotype. One mechanism to counter HT is overcoming high-temperature-induced membrane superfluidity and structural disorganizations. Several HT lipidomic studies on different genotypes have indicated the potential involvement of membrane lipid remodelling in providing HT tolerance. Advances in high-throughput analytical techniques such as tandem mass spectrometry have paved the way for large-scale identification and quantification of the enormously diverse lipid molecules in a single run. Physiological trait-based breeding has been employed so far to identify and select HT tolerant genotypes but has several disadvantages, such as the genotype-phenotype gap affecting the efficiency of identifying the underlying genetic association. Tolerant genotypes maintain a high photosynthetic rate, stable membranes, and membrane-associated mechanisms. In this context, studying the HT-induced membrane lipid remodelling, resultant of several up-/down-regulations of genes and post-translational modifications, will aid in identifying potential lipid biomarkers for HT tolerance/susceptibility. The identified lipid biomarkers (LIPIDOTYPE) can thus be considered an intermediate phenotype, bridging the gap between genotype–phenotype (genotype–LIPIDOTYPE–phenotype). Recent works integrating metabolomics with quantitative genetic studies such as GWAS (mGWAS) have provided close associations between genotype, metabolites, and stress-tolerant phenotypes. This review has been sculpted to provide a potential workflow that combines MS-based lipidomics and the robust GWAS (lipidomics assisted GWAS-lGWAS) to identify membrane lipid remodelling related genes and associations which can be used to develop HS tolerant genotypes with enhanced membrane thermostability (MTS) and heat stable photosynthesis (HP).
Collapse
Affiliation(s)
- Velumani Pranneshraj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
- Correspondence: (I.D.); (M.D.)
| | - Jegor Miladinovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence: (I.D.); (M.D.)
| |
Collapse
|
66
|
Şen A, Acevedo-Fani A, Dave A, Ye A, Husny J, Singh H. Plant oil bodies and their membrane components: new natural materials for food applications. Crit Rev Food Sci Nutr 2022; 64:256-279. [PMID: 35917117 DOI: 10.1080/10408398.2022.2105808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants store triacylglycerols in the form of oil bodies (OBs) as an energy source for germination and subsequent seedling growth. The interfacial biomaterials from these OBs are called OB membrane materials (OBMMs) and have several applications in foods, e.g., as emulsifiers. OBMMs are preferred, compared with their synthetic counterparts, in food applications as emulsifiers because they are natural, i.e., suitable for clean label, and may stabilize bioactive components during storage. This review focuses mainly on the extraction technologies for plant OBMMs, the functionality of these materials, and the interaction of OB membranes with other food components. Different sources of OBs are evaluated and the challenges during the extraction and use of these OBMMs for food applications are addressed.
Collapse
Affiliation(s)
- Aylin Şen
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
67
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
68
|
Perez-Matas E, Hanano A, Moyano E, Bonfill M, Cusido RM, Palazon J. Insights into the control of taxane metabolism: Molecular, cellular, and metabolic changes induced by elicitation in Taxus baccata cell suspensions. FRONTIERS IN PLANT SCIENCE 2022; 13:942433. [PMID: 35968149 PMCID: PMC9372332 DOI: 10.3389/fpls.2022.942433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
More knowledge is needed about the molecular/cellular control of paclitaxel (PTX) production in Taxus spp. cell cultures. In this study, the yield of this anticancer agent in Taxus baccata cell suspensions was improved 11-fold after elicitation with coronatine (COR) compared to the untreated cells, and 18-fold when co-supplemented with methyl-β-cyclodextrins (β-CDs). In the dual treatment, the release of taxanes from the producer cells was greatly enhanced, with 81.6% of the total taxane content being found in the medium at the end of the experiment. The experimental conditions that caused the highest PTX production also induced its maximum excretion, and increased the expression of taxane biosynthetic genes, especially the flux-limiting BAPT and DBTNBT. The application of COR, which activates PTX biosynthesis, together with β - CDs, which form inclusion complexes with PTX and related taxanes, is evidently an efficient strategy for enhancing PTX production and release to the culture medium. Due to the recently described role of lipid droplets (LDs) in the trafficking and accumulation of hydrophobic taxanes in Taxus spp. cell cultures, the structure, number and taxane storage capacity of these organelles was also studied. In elicited cultures, the number of LDs increased and they mainly accumulated taxanes with a side chain, especially PTX. Thus, PTX constituted up to 50-70% of the total taxanes found in LDs throughout the experiment in the COR + β - CD-treated cultures. These results confirm that LDs can store taxanes and distribute them inside and outside cells.
Collapse
Affiliation(s)
- Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
69
|
Li F, Han X, Guan H, Xu MC, Dong YX, Gao XQ. PALD encoding a lipid droplet-associated protein is critical for the accumulation of lipid droplets and pollen longevity in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:204-219. [PMID: 35348222 DOI: 10.1111/nph.18123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Pollen longevity is critical for plant pollination and hybrid seed production, but few studies have focused on pollen longevity. In this study, we identified an Arabidopsis thaliana gene, Protein associated with lipid droplets (PALD), which is strongly expressed in pollen and critical for the regulation of pollen longevity. PALD was expressed specifically in mature pollen grains and the pollen tube, and its expression was upregulated under dry conditions. PALD encoded a lipid droplet (LD)-associated protein and its N terminus was critical for the LD localization of PALD. The number of LDs and diameter were reduced in pollen grains of the loss-of-function PALD mutants. The viability and germination of the mature pollen grains of the pald mutants were comparable with those of the wild-type, but after the pollen grains were stored under dry conditions, pollen germination and male transmission of the mutant were compromised compared with those of the wild-type. Our study suggests that PALD was required for the maintenance of LD quality in mature pollen grains and regulation of pollen longevity.
Collapse
Affiliation(s)
- Fei Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiao Han
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huan Guan
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Mei Chen Xu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
70
|
Liu X, Yang Z, Wang Y, Shen Y, Jia Q, Zhao C, Zhang M. Multiple caleosins have overlapping functions in oil accumulation and embryo development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3946-3962. [PMID: 35419601 DOI: 10.1093/jxb/erac153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Caleosins are lipid droplet- and endoplasmic reticulum-associated proteins. To investigate their functions in oil accumulation, expression levels of caleosins in developing seeds of Arabidopsis thaliana were examined and four seed-expressed caleosins (CLO1, CLO2, CLO4, and CLO6) were identified. The four single mutants showed similar minor changes of fatty acid composition in seeds. Two double mutants (clo1 clo2 and clo1×clo2) demonstrated distinct changes of fatty acid composition, a 16-23% decrease of oil content, and a 10-13% decrease of seed weight. Moreover, a 40% decrease of oil content, further fatty acid changes, and misshapen membranes of smaller lipid droplets were found in seeds of quadruple CLO RNAi lines. Notably, ~40% of quadruple CLO RNAi T1 seeds failed to germinate, and deformed embryos and seedlings were also observed. Complementation experiments showed that CLO1 rescued the phenotype of clo1 clo2. Overexpression of CLO1 in seedlings and BY2 cells increased triacylglycerol content up to 73.6%. Transcriptome analysis of clo1 clo2 developing seeds showed that expression levels of some genes related to lipid, embryo development, calcium signaling, and stress responses were affected. Together, these results suggest that the major seed-expressed caleosins have overlapping functions in oil accumulation and show pleiotropic effects on embryo development.
Collapse
Affiliation(s)
- Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Yun Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
71
|
Suriyamoorthy P, Madhuri A, Tangirala S, Michael KR, Sivanandham V, Rawson A, Anandharaj A. Comprehensive Review on Banana Fruit Allergy: Pathogenesis, Diagnosis, Management, and Potential Modification of Allergens through Food Processing. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:159-171. [PMID: 35661960 DOI: 10.1007/s11130-022-00976-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The pulp of the banana fruit is rich in bioactive compounds like dietary fibers, low glycemic carbohydrates, natural sugars, vitamins, minerals and antioxidants. These beneficial compounds are responsible for the proper functioning of immune system and enhance prevention against various deadly diseases like cancer, diabetes and heart diseases. Despite having, positive effects, the fruit are recognized as an important source for causing allergy to 0.6% of people in general population and up to 67 and 46% for people with asthma or atopic dermatitis. Fruit allergy is one of the most common food allergies witnessed worldwide. Banana fruit allergy results from the abnormal immune response to the banana proteins soon after its consumption. Symptoms range from oral allergy syndrome (OAS) to the life-threatening anaphylaxis. IgE reactivity of banana is associated with different proteins of which six proteins have been identified as major allergens, viz., Mus a1 (Profilin-actin binding protein), Mus a 2 (Class 1 chitinase), Mus a 3 (Nonspecific lipid transfer protein), Mus a 4 (Thaumatin like protein), Mus a 5 (Beta 1,3 glucanase) and Mus a 6 (Ascorbate peroxidase). This review focuses on pathogenesis, clinical features, diagnosis, and different food processing methods to mitigate the allergenicity of banana fruit.
Collapse
Affiliation(s)
- Priyanga Suriyamoorthy
- Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India
| | - Alluru Madhuri
- Academics and Human Resources Department, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India
| | - Srikanth Tangirala
- Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India
| | - Karunai Raj Michael
- Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India
| | - Vignesh Sivanandham
- Academics and Human Resources Department, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India.
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India.
| | - Arunkumar Anandharaj
- Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur, Tamil Nadu, 613005, India.
| |
Collapse
|
72
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
73
|
Choi YJ, Zaikova K, Yeom SJ, Kim YS, Lee DW. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1243. [PMID: 35567244 PMCID: PMC9105935 DOI: 10.3390/plants11091243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Cytosolic lipid droplets (LDs) derived from the endoplasmic reticulum (ER) mainly contain neutral lipids, such as triacylglycerols (TAGs) and sterol esters, which are considered energy reserves. The metabolic pathways associated with LDs in eukaryotic species are involved in diverse cellular functions. TAG synthesis in plants is mediated by the sequential involvement of two subcellular organelles, i.e., plastids - plant-specific organelles, which serve as the site of lipid synthesis, and the ER. TAGs and sterol esters synthesized in the ER are sequestered to form LDs through the cooperative action of several proteins, such as SEIPINs, LD-associated proteins, LDAP-interacting proteins, and plant-specific proteins such as oleosins. The integrity and stability of LDs are highly dependent on oleosins, especially in the seeds, and oleosin degradation is critical for efficient mobilization of the TAGs of plant LDs. As the TAGs mobilize in LDs during germination and post-germinative growth, a plant-specific lipase-sugar-dependent 1 (SDP1)-plays a major role, through the inter-organellar communication between the ER and peroxisomes. In this review, we briefly recapitulate the different processes involved in the biogenesis and degradation of plant LDs, followed by a discussion of future perspectives in this field.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Kseniia Zaikova
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa 36209, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (Y.J.C.); (K.Z.)
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
74
|
Yang Z, Liu X, Wang K, Li Z, Jia Q, Zhao C, Zhang M. ABA-INSENSITIVE 3 with or without FUSCA3 highly up-regulates lipid droplet proteins and activates oil accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2077-2092. [PMID: 34849730 DOI: 10.1093/jxb/erab524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 05/25/2023]
Abstract
ABA-INSENSITIVE 3 (ABI3) has long been known for activation of storage protein accumulation. A role of ABI3 on oil accumulation was previously suggested based on a decrease of oil content in seeds of abi3 mutant. However, this conclusion could not exclude possibilities of indirect or pleiotropic effects, such as through mutual regulatory interactions with FUSCA3 (FUS3), an activator of oil accumulation. To identify that ABI3 functions independent of the effects of related seed transcription factors, we expressed ABI3 under the control of an inducible promoter in tobacco BY2 cells and Arabidopsis rosette leaves. Inducible expression of ABI3 activated oil accumulation in these non-seed cells, demonstrating a general role of ABI3 in regulation of oil biosynthesis. Further expressing ABI3 in rosette leaves of fus3 knockout mutant still caused up to 3-fold greater triacylglycerol accumulation, indicating ABI3 can activate lipid accumulation independently of FUS3. Transcriptome analysis revealed that LIPID DROPLET PROTEIN (LDP) genes, including OLEOSINs and CALEOSINs, were up-regulated up to 1000-fold by ABI3 in the absence of FUS3, while the expression of WRINKLED1 was doubled. Taken together, our results provide genetic evidence that ABI3 activates oil accumulation with or without FUS3, most likely through up-regulating LDPs and WRINKLED1.
Collapse
Affiliation(s)
- Zheng Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuowei Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
75
|
Hanano A, Perez-Matas E, Shaban M, Cusido RM, Murphy DJ. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. PLANT CELL REPORTS 2022; 41:853-871. [PMID: 34984531 DOI: 10.1007/s00299-021-02823-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Pontypridd, Wales, UK
| |
Collapse
|
76
|
Vigor C, Züllig T, Eichmann TO, Oger C, Zhou B, Rechberger GN, Hilsberg L, Trötzmüller M, Pellegrino RM, Alabed HBR, Hartler J, Wolinski H, Galano JM, Durand T, Spener F. α-Linolenic acid and product octadecanoids in Styrian pumpkin seeds and oils: How processing impacts lipidomes of fatty acid, triacylglycerol and oxylipin molecular structures. Food Chem 2022; 371:131194. [PMID: 34600364 DOI: 10.1016/j.foodchem.2021.131194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.
Collapse
Affiliation(s)
- Claire Vigor
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Thomas O Eichmann
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Camille Oger
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Bingqing Zhou
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Gerald N Rechberger
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | | | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Roberto M Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Field of Excellence BioHealth - University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Jean-Marie Galano
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria; Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/6, 8010 Graz, Austria.
| |
Collapse
|
77
|
Limited fatty-acid supply from the plastid and active catabolism of triacylglycerol prevent the accumulation of triacylglycerol in Coccomyxa sp. strain Obi grown under nitrogen-replete conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
79
|
Lin P, Wang K, Wang Y, Hu Z, Yan C, Huang H, Ma X, Cao Y, Long W, Liu W, Li X, Fan Z, Li J, Ye N, Ren H, Yao X, Yin H. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biol 2022; 23:14. [PMID: 35012630 PMCID: PMC8744323 DOI: 10.1186/s13059-021-02599-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND As a perennial crop, oil-Camellia possesses a long domestication history and produces high-quality seed oil that is beneficial to human health. Camellia oleifera Abel. is a sister species to the tea plant, which is extensively cultivated for edible oil production. However, the molecular mechanism of the domestication of oil-Camellia is still limited due to the lack of sufficient genomic information. RESULTS To elucidate the genetic and genomic basis of evolution and domestication, here we report a chromosome-scale reference genome of wild oil-Camellia (2.95 Gb), together with transcriptome sequencing data of 221 cultivars. The oil-Camellia genome, assembled by an integrative approach of multiple sequencing technologies, consists of a large proportion of repetitive elements (76.1%) and high heterozygosity (2.52%). We construct a genetic map of high-density corrected markers by sequencing the controlled-pollination hybrids. Genome-wide association studies reveal a subset of artificially selected genes that are involved in the oil biosynthesis and phytohormone pathways. Particularly, we identify the elite alleles of genes encoding sugar-dependent triacylglycerol lipase 1, β-ketoacyl-acyl carrier protein synthase III, and stearoyl-acyl carrier protein desaturases; these alleles play important roles in enhancing the yield and quality of seed oil during oil-Camellia domestication. CONCLUSIONS We generate a chromosome-scale reference genome for oil-Camellia plants and demonstrate that the artificial selection of elite alleles of genes involved in oil biosynthesis contributes to oil-Camellia domestication.
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Kailiang Wang
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Chao Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Yongqing Cao
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Wei Long
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Weixin Liu
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Xinlei Li
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Zhengqi Fan
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Jiyuan Li
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Huadong Ren
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China
| | - Xiaohua Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China.
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China.
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China.
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, 311400, Hangzhou, China.
| |
Collapse
|
80
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Lipid droplet - mitochondria coupling: A novel lipid metabolism regulatory hub in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1017387. [PMID: 36387849 PMCID: PMC9640443 DOI: 10.3389/fendo.2022.1017387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) involves serious lipid metabolism disorder, and renal ectopic lipid deposition aggravates DN progression. However, the molecular mechanism of renal lipid deposition in DN remains unclear. Lipid droplets (LDs) are lipid pools in cells that change dynamically in response to the cellular energy needs. The LDs and mitochondria are connected through a part of the mitochondria known as the peridroplet mitochondria (PDM). In this review, we summarize the definition, detection methods, and function of the PDM. Finally, we discuss the research status of PDM in DN and the possibility of its use as a therapeutic target.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
81
|
Yonamine Y, Asai T, Suzuki Y, Ito T, Ozeki Y, Hoshino Y. Probing the Biogenesis of Polysaccharide Granules in Algal Cells at Sub-Organellar Resolution via Raman Microscopy with Stable Isotope Labeling. Anal Chem 2021; 93:16796-16803. [PMID: 34870976 DOI: 10.1021/acs.analchem.1c03216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phototrophs assimilate CO2 into organic compounds that accumulate in storage organelles. Elucidation of the carbon dynamics of storage organelles could enhance the production efficiency of valuable compounds and facilitate the screening of strains with high photosynthetic activity. To comprehensively elucidate the carbon dynamics of these organelles, the intraorganellar distribution of the carbon atoms that accumulate at specific time periods should be probed. In this study, the biosynthesis of polysaccharides in storage organelles was spatiotemporally probed via stimulated Raman scattering (SRS) microscopy using a stable isotope (13C) as the tracking probe. Paramylon granules (a storage organelle of β-1,3-glucan) accumulated in a unicellular photosynthetic alga, Euglena gracilis, were investigated as a model organelle. The carbon source of the culture medium was switched from NaH12CO3 to NaH13CO3 during the production of the paramylon granules; this resulted in the distribution of the 12C and 13C constituents in the granules, so that the biosynthetic process could be tracked. Taking advantage of high-resolution SRS imaging and label switching, the localization of the 12C and 13C constituents inside a single paramylon granule could be visualized in three dimensions, thus revealing the growth process of paramylon granules. We propose that this method can be used for comprehensive elucidation of the dynamic activities of storage organelles.
Collapse
Affiliation(s)
- Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo 001-0021, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuta Suzuki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuro Ito
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.,Department of Creative Engineering, National Institute of Technology (KOSEN), Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
82
|
Yuan Y, Cao X, Zhang H, Liu C, Zhang Y, Song XL, Gai S. Genome-wide identification and analysis of Oleosin gene family in four cotton species and its involvement in oil accumulation and germination. BMC PLANT BIOLOGY 2021; 21:569. [PMID: 34863105 PMCID: PMC8642851 DOI: 10.1186/s12870-021-03358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. RESULTS An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. CONCLUSION We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.
Collapse
Affiliation(s)
- Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xian-Liang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
83
|
In Planta Labeling Using a Clickable ER-Disrupting Probe Suggests a Role for Oleosins in Arabidopsis Seedling ER Integrity. ACS Chem Biol 2021; 16:2151-2157. [PMID: 34505514 DOI: 10.1021/acschembio.1c00607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several small-molecule perturbagens of the plant endomembrane system are known, but few selectively disrupt endoplasmic reticulum (ER) structure and function. We conducted a microscopy-based screen for small-molecule disruptors of ER structure and discovered eroonazole, a 1,2-4-triazole that induces extensive ER vesiculation in Arabidopsis seedlings. To identify eroonazole targets, we synthesized a clickable photoaffinity derivative and used it for whole-seedling labeling experiments. These reveal that the probe labels multiple oleosins, plant membrane proteins that stabilize ER-derived lipid droplets. Oleosin labeling is absent in an oleosin1234 quadruple mutant and reduced using an inactive analog. Cellular analyses of the ER in the quadruple mutant demonstrate that oleosins are required for normal ER structure during seed germination and suggest that perturbation of oleosin function by eroonazole underlies its effects on seedling ER structure.
Collapse
|
84
|
Nebbia S, Lamberti C, Cirrincione S, Acquadro A, Abbà S, Ciuffo M, Torello Marinoni D, Manfredi M, Marengo E, Calzedda R, Monti G, Cavallarin L, Giuffrida MG. Oleosin Cor a 15 is a novel allergen for Italian hazelnut allergic children. Pediatr Allergy Immunol 2021; 32:1743-1755. [PMID: 34146442 PMCID: PMC8596585 DOI: 10.1111/pai.13579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND Hazelnut allergy, which is characterized by symptoms that range from mild to severe, is one of the most common allergies in children throughout Europe, and an accurate diagnosis of this allergy is therefore essential. However, lipophilic allergens, such as oleosins, are generally underrepresented in diagnostic tests. We therefore sought to characterize the IgE reactivity of raw and roasted hazelnut oleosins, using the sera of hazelnut-allergic pediatric patients. METHODS Raw and roasted hazelnut oil body-associated proteins were analyzed by means of 1D and 2D electrophoresis and MS. Oleosin IgE reactivity was assessed by immunoblotting with the sera of 27 children who have confirmed hazelnut allergies and from 10 tolerant subjects. A molecular characterization of the oleosins was performed by interrogating the C. avellana cv. Jefferson and cv. TGL genomes, and through expression and purification of the recombinant new allergen. RESULTS A proteomic and genomic investigation allowed two new oleosins to be identified, in addition to Cor a 12 and Cor a 13, in hazelnut oil bodies. One of the new oleosins was registered as a new allergen, according to the WHO/IUIS Allergen Nomenclature Subcommittee criteria, and termed Cor a 15. Cor a 15 was the most frequently immunorecognized oleosin in our cohort. Oleosins resulted to be the only immunorecognized allergens in a subgroup of allergic patients who showed low ImmunoCAP assay IgE values and positive OFC and PbP. Hazelnut roasting resulted in an increase in oleosin immunoreactivity. CONCLUSION A novel hazelnut oleosin, named Cor a 15, has been discovered. Cor a 15 could play a role in eliciting an allergic reaction in a subgroup of pediatric patients that exclusively immunorecognize oleosins. The high prevalence of hazelnut oleosin sensitization here reported further confirms the need to include oleosins in routine diagnostic procedures.
Collapse
Affiliation(s)
- Stefano Nebbia
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Cristina Lamberti
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Simona Cirrincione
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | | | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Roberta Calzedda
- SC Pediatria, Ospedale Infantile Regina Margherita, Città della Scienza e della Salute, Torino, Italy
| | - Giovanna Monti
- SC Pediatria, Ospedale Infantile Regina Margherita, Città della Scienza e della Salute, Torino, Italy
| | - Laura Cavallarin
- Institute of Science of Food Production, National Research Council, Grugliasco, Italy
| | | |
Collapse
|
85
|
Effects of pH on the Composition and Physical Stability of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J CHEM-NY 2021. [DOI: 10.1155/2021/2441385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peanut oil body (POB), which is rich in unsaturated fatty acids and bioactive substances, is widely used in cosmetics, food, and medicine. Compared with synthetic emulsifiers, peanut oil bodies have health advantages as natural emulsions. The physicochemical properties of oil bodies affect their food processing applications. To improve peanut oil body yield, cell-wall-breaking enzymes were screened for aqueous enzymatic extraction. The optimum conditions were as follows: enzymatic hydrolysis time, 2 h; material-to-liquid ratio, 1 : 5 (
); enzyme concentration, 2% (
); and temperature, 50°C. Oil body stability was closely related to pH. With increasing pH, the average particle size and zeta-potential of the oil bodies increased, indicating aggregation, as confirmed by microstructure analysis. At pH 11, exogenous proteins at the oil body interface were eluted, leaving endogenous proteins, which led to a decreased interfacial protein content and oil body aggregation. Therefore, oil body stability decreased under alkaline pH conditions, but no demulsification occurred.
Collapse
|
86
|
Ojha R, Kaur S, Sinha K, Chawla K, Kaur S, Jadhav H, Kaur M, Bhunia RK. Characterization of oleosin genes from forage sorghum in Arabidopsis and yeast reveals their role in storage lipid stability. PLANTA 2021; 254:97. [PMID: 34655341 DOI: 10.1007/s00425-021-03744-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of forage sorghum oleosin genes in Arabidopsis oleosin-deficient mutant and yeast showed increased germination rate, triacylglycerol content, and protection against lipase-mediated TAG degradation. Plant lipids are an important source of ration for cattle or other livestock animals to fulfil their energy needs. Poor energy containing green forages are still one of the major sources of food for livestock animals, leaving the animals undernourished. This lowers the milk and meat production efficiency, thereby affecting human consumption. Oleosin, an essential oil body surface protein, is capable of enhancing and stabilizing the lipid content in plants. We identified and functionally characterized three forage sorghum oleosin genes (SbOle1, SbOle2, and SbOle3) in Arabidopsis and yeast. Phylogenetic analysis of SbOle proteins showed a close relationship with rice and maize oleosins. Expression analysis of SbOle genes determined a higher expression pattern in embryo followed by endosperm, while its expression in the non-seed tissues remained negligible. Overexpression of SbOle genes in Arabidopsis ole1-deficient mutants showed restoration of normal germination whereas control mutant seeds showed lower germination rates. Heterologous overexpression of SbOle in yeast cells resulted in increased TAG accumulation. Additionally, the TAG turnover assay showed the effectiveness of SbOle genes in reducing the yeast endogenous and rumen bacterial lipase-mediated TAG degradation. Taken together, our findings not only provide insights into forage sorghum oleosin for increasing the energy content in non-seed organs but also opened up the direction towards implication of oleosin in rumen protection of fodders.
Collapse
Affiliation(s)
- Rabishankar Ojha
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
| | - Simranjit Kaur
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
| | - Kshitija Sinha
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kirti Chawla
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
| | - Sumandeep Kaur
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Harish Jadhav
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
| | - Manmehar Kaur
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), Mohali, Punjab, 140306, India.
| |
Collapse
|
87
|
Julien JA, Mutchek SG, Wittenberg NJ, Glover KJ. Biophysical characterization of full-length oleosin in dodecylphosphocholine micelles. Proteins 2021; 90:560-565. [PMID: 34596903 DOI: 10.1002/prot.26252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Oleosin is a hydrophobic protein that punctuates the surface of plant seed lipid droplets, which are 20 nm-100 μm entities that serve as reservoirs for high-energy metabolites. Oleosin is purported to stabilize lipid droplets, but its exact mechanism of stabilization has not been established. Probing the structure of oleosin directly in lipid droplets is challenging due to the size of lipid droplets and their high degree of light scattering. Therefore, a medium in which the native structure of oleosin is retained, but is also amenable to spectroscopic studies is needed. Here, we show, using a suite of biophysical techniques, that dodecylphosphocholine micelles appear to support the tertiary structure of the oleosin protein (i.e., hairpin conformation) and render the protein in an oligomeric state that is amenable to more sophisticated biophysical techniques such as NMR.
Collapse
Affiliation(s)
- Jeffrey A Julien
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Sarah G Mutchek
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | |
Collapse
|
88
|
Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ, Coulon D, Bréhélin C, Yurchenko O, de Vries J, Valerius O, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. THE PLANT CELL 2021; 33:3076-3103. [PMID: 34244767 PMCID: PMC8462815 DOI: 10.1093/plcell/koab179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 05/19/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.
Collapse
Affiliation(s)
| | | | - Damien Seay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Nicolas Esnay
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Franziska K. Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | | | - Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - J. Joe Hull
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Denis Coulon
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | - Claire Bréhélin
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | | | - Jan de Vries
- Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences and Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
89
|
Yee S, Rolland V, Reynolds KB, Shrestha P, Ma L, Singh SP, Vanhercke T, Petrie JR, El Tahchy A. Sesamum indicum Oleosin L improves oil packaging in Nicotiana benthamiana leaves. PLANT DIRECT 2021; 5:e343. [PMID: 34514289 PMCID: PMC8421512 DOI: 10.1002/pld3.343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/03/2020] [Accepted: 08/09/2021] [Indexed: 05/27/2023]
Abstract
Plant oil production has been increasing continuously in the past decade. There has been significant investment in the production of high biomass plants with elevated oil content. We recently showed that the expression of Arabidopsis thaliana WRI1 and DGAT1 genes increase oil content by up to 15% in leaf dry weight tissue. However, triacylglycerols in leaf tissue are subject to degradation during senescence. In order to better package the oil, we expressed a series of lipid droplet proteins isolated from bacterial and plant sources in Nicotiana benthamiana leaf tissue. We observed further increases in leaf oil content of up to 2.3-fold when we co-expressed Sesamum indicum Oleosin L with AtWRI1 and AtDGAT1. Biochemical assays and lipid droplet visualization with confocal microscopy confirmed the increase in oil content and revealed a significant change in the size and abundance of lipid droplets.
Collapse
Affiliation(s)
- Suyan Yee
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
- Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| | - Vivien Rolland
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Kyle B. Reynolds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Pushkar Shrestha
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Lina Ma
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Surinder P. Singh
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - James R. Petrie
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and FoodActonACTAustralia
| |
Collapse
|
90
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
91
|
Li C, Hu Y, Zhang B. Plant cellular architecture and chemical composition as important regulator of starch functionality in whole foods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
92
|
Structure, assembly and application of novel peanut oil body protein extracts nanoparticles. Food Chem 2021; 367:130678. [PMID: 34388634 DOI: 10.1016/j.foodchem.2021.130678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Oil bodies (OBs), which are found mainly in the seeds or nuts of oleaginous plants, are spherical droplets with a triacylglycerol core covered by phospholipid-protein layer. Oil body protein extracts (OBPEs), mainly oleosins, contribute to the unique physicochemical stability of OBs. The application of OBPEs in aqueous environment has been greatly limited by their highly hydrophobic structures. In this study, OBPEs were successfully extracted from peanut seeds and their profiles were characterized by LC-MS/MS. OBPEs nanoparticles were successfully assembled in aqueous environment for the first time using the antisolvent precipitation method. The mean diameter of OBPEs nanoparticles was 215.6 ± 1.8 nm with a polydispersity index of 0.238 ± 0.005. The morphology of these colloidal particles was found to be roughly spherical shape as confirmed by transmission electron microscopy (TEM). Oil-in-water (O/W) Pickering emulsions with good stability against coalescence could be formed at protein concentration as low as 0.1 mg/mL. Cryo-scanning electron microscopy (cryo-SEM) confirmed that spherical nanoparticles were packed at the oil-water interface. This research will greatly expand the applications of OBPEs in structuring the interfaces and developing novel formulations in the food and pharmaceutical fields.
Collapse
|
93
|
Takizawa R, Hatada M, Moriwaki Y, Abe S, Yamashita Y, Arimitsu R, Yamato KT, Nishihama R, Kohchi T, Koeduka T, Chen F, Matsui K. Fungal-Type Terpene Synthases in Marchantia polymorpha Are Involved in Sesquiterpene Biosynthesis in Oil Body Cells. PLANT & CELL PHYSIOLOGY 2021; 62:528-537. [PMID: 33439267 DOI: 10.1093/pcp/pcaa175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The liverwort Marchantia polymorpha possesses oil bodies in idioblastic oil body cells scattered in its thallus. Oil bodies are subcellular organelles in which specific sesquiterpenes and bisbibenzyls are accumulated. Therefore, a specialized system for the biosynthesis and accumulation of these defense compounds specifically in oil bodies has been implied. A recent study on M. polymorpha genome sequencing revealed 10 genes that shared high similarities with fungal-type terpene synthases (TPSs). Eight of these fungal-type TPS-like genes in M. polymorpha (MpFTPSL1-6, -9 and -10) are located within a 376-kb stretch on chromosome 6 and share similarities of over 94% at the nucleotide level. Therefore, these genes have likely originated from recent gene duplication events. The expression of a subset of MpFTPSLs was induced under non-axenic growth on vermiculite, which increased the amounts of sesquiterpenes and number of oil bodies. The tdTomato fluorescent protein-based in-fusion reporter assay with MpFTPSL2 promoter revealed fluorescent signals specifically in oil body cells of the thallus, indicating that MpFTPSL2 functions in oil body cells. Recombinant MpFTPSL2 expression in Escherichia coli led to sesquiterpene synthesis from farnesyl pyrophosphate. Moreover, suppression of a subset of MpFTPSLs through RNA interference reduced sesquiterpene accumulation in thalli grown on vermiculite. Taken together, these results suggest that at least a subset of MpFTPSLs is involved in sesquiterpene synthesis in oil body cells.
Collapse
Affiliation(s)
- Ryosuke Takizawa
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Miki Hatada
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Yuta Moriwaki
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Sachika Abe
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Yuko Yamashita
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Ryoma Arimitsu
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Katsuyuki T Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| | - Feng Chen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture and Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515 Japan
| |
Collapse
|
94
|
Hanano A, Shaban M, Murphy DJ. Functional involvement of caleosin/peroxygenase PdPXG4 in the accumulation of date palm leaf lipid droplets after exposure to dioxins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116966. [PMID: 33799204 DOI: 10.1016/j.envpol.2021.116966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Dioxins are highly injurious environmental pollutants with proven toxicological effects on both animals and humans, but to date their effects on plants still need to be studied in detail. We identified a dioxin-inducible caleosin/peroxygenase isoform, PdPXG4, that is mostly expressed in leaves of date palm seedlings and exhibits a specific reductase activity towards the 13-hydroperoxide of C18:2 and C18:3 (HpODE and HpOTrE, respectively). After exposure to TCDD, lipid droplets (LDs) isolated from TCDD-exposed leaves were about 6.5-15.7-fold more active in metabolizing 13-HpOTrE compared with those isolated from non-exposed leaves. A characteristic spectrum of leaf dioxin-responsive oxylipins (LDROXYL) was detected in dioxin-exposed seedlings. Of particular importance, a group of these oxylipins, referred to as Class I, comprising six congeners of hydroxides fatty acids derived from C18:2 and C18:3, was exclusively found in leaves after exposure to TCDD. The TCDD-induced oxylipin pattern was confirmed in vitro using terbufos, a typical inhibitor towards the PdPXG4 peroxygenase activity. Of particular interest, the response of terbufos-pretreated protoplasts to TCDD was drastically reduced. Together, these findings suggest that PdPXG4 is implicated in the establishment of a dioxin-specific oxylipin signature in date palm leaves soon after their exposure to these pollutants.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, NP7 7ET, United Kingdom.
| |
Collapse
|
95
|
Maruyama N. Components of plant-derived food allergens: Structure, diagnostics, and immunotherapy. Allergol Int 2021; 70:291-302. [PMID: 34092500 DOI: 10.1016/j.alit.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of plant-derived food allergen components have been identified to date. Although these allergens are diverse, they often share common structural features such as numerous disulfide bonds or oligomeric structures. Furthermore, some plant-derived food allergen components cross-react with pollen allergens. Since the relationship between allergen components and clinical symptoms has been well characterized, measurements of specific IgE to these components have become useful for the accurate clinical diagnosis and selection of optimal treatment methods for various allergy-related conditions including allergy caused by plant-derived foods. Herein, I have described the types and structures of different plant allergen components and outlined the diagnosis as well as treatment strategies, including those reported recently, for such substances. Furthermore, I have also highlighted the contribution of allergen components to this field.
Collapse
Affiliation(s)
- Nobuyuki Maruyama
- Food Quality Design and Development Laboratory, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
96
|
Bourdon M, Gaynord J, Müller KH, Evans G, Wallis S, Aston P, Spring DR, Wightman R. Microscopy and chemical analyses reveal flavone-based woolly fibres extrude from micron-sized holes in glandular trichomes of Dionysia tapetodes. BMC PLANT BIOLOGY 2021; 21:258. [PMID: 34134628 PMCID: PMC8210372 DOI: 10.1186/s12870-021-03010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/05/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic "woolly" farina. This contrasts with some related Primula which instead form a fine powder. Farina is formed by specialized cellular factories, a type of glandular trichome, but the precise composition of the fibres and how it exits the cell is poorly understood. Here, using a combination of cell biology (electron and light microscopy) and analytical chemical techniques, we present the principal chemical components of the wool and its mechanism of exit from the glandular trichome. RESULTS We show the woolly farina consists of micron-diameter fibres formed from a mixture of flavone and substituted flavone derivatives. This contrasts with the powdery farina, consisting almost entirely of flavone. The woolly farina in D. tapetodes is extruded through specific sites at the surface of the trichome's glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle and forming a tight seal between the fibre and hole. The data is consistent with formation and thread elongation occurring from within the cell. CONCLUSIONS Our results suggest the composition of the D. tapetodes farina dictates its formation as wool rather than powder, consistent with a model of thread integrity relying on intermolecular H-bonding. Glandular trichomes produce multiple wool fibres by concentrating and maintaining their extrusion at specific sites at the cell cortex of the head cell. As the wool is extensive across the plant, there may be associated selection pressures attributed to living at high altitudes.
Collapse
Affiliation(s)
- Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK
| | - Gareth Evans
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Simon Wallis
- Cambridge University Botanic Garden, 1 Brookside, Cambridge, CB2 1JE, UK
| | - Paul Aston
- Cambridge University Botanic Garden, 1 Brookside, Cambridge, CB2 1JE, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| |
Collapse
|
97
|
Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH, An YQC, Li Z, Zhang D. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics 2021; 22:453. [PMID: 34134624 PMCID: PMC8207594 DOI: 10.1186/s12864-021-07783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.
Collapse
Affiliation(s)
- Hengyou Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiyan Lv
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zhimin Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
98
|
The electrochemical immunosensor of the "signal on" strategy that activates MMoO4 (M = Co, Ni) peroxidase with Cu2+ to achieve ultrasensitive detection of CEA. Anal Chim Acta 2021; 1176:338757. [PMID: 34399891 DOI: 10.1016/j.aca.2021.338757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
A new type of ultrasensitive electrochemical immunosensor with "signal on" strategy was designed for quantitative detection of CEA. The sensing strategy design is based on the following principles: We use HMSNs-Cu2+@HA as the signal probe, the structure of HA is destroyed under acidic conditions, and the released Cu2+ activates the substrate material MMoO4 (M = Co, Ni) Peroxidase activity initiates the reaction of catalytic H2O2 and realizes the "signal on" condition of electrical signals. This strategy has the following advantages: (1) HA coating of HMSNs-Cu2+ can prevent Cu2+ leakage, has good biocompatibility and can be connected with more antibodies. (2) The prepared sensor has the characteristics of high sensitivity and a low detection limit. When the electrode substrate was CoMoO4, the detection range of the immunosensor was 0.01 pg/mL-40 ng/mL, and the detection limit was 0.0035 pg/mL (S/N = 3). This work innovatively applies the catalytic activity of metal ion-activated nanozymes in the detection of CEA, providing a new perspective for the monitoring and analysis of cancer markers.
Collapse
|
99
|
Zhao Y, Cao P, Cui Y, Liu D, Li J, Zhao Y, Yang S, Zhang B, Zhou R, Sun M, Guo X, Yang M, Xin D, Zhang Z, Li X, Lv C, Liu C, Qi Z, Xu J, Wu X, Chen Q. Enhanced production of seed oil with improved fatty acid composition by overexpressing NAD + -dependent glycerol-3-phosphate dehydrogenase in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1036-1053. [PMID: 33768659 DOI: 10.1111/jipb.13094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
There is growing interest in expanding the production of soybean oils (mainly triacylglycerol, or TAG) to meet rising feed demand and address global energy concerns. We report that a plastid-localized glycerol-3-phosphate dehydrogenase (GPDH), encoded by GmGPDHp1 gene, catalyzes the formation of glycerol-3-phosphate (G3P), an obligate substrate required for TAG biosynthesis. Overexpression of GmGPDHp1 increases soybean seed oil content with high levels of unsaturated fatty acids (FAs), especially oleic acid (C18:1), without detectably affecting growth or seed protein content or seed weight. Based on the lipidomic analyses, we found that the increase in G3P content led to an elevated diacylglycerol (DAG) pool, in which the Kennedy pathway-derived DAG was mostly increased, followed by PC-derived DAG, thereby promoting the synthesis of TAG containing relatively high proportion of C18:1. The increased G3P levels induced several transcriptional alterations of genes involved in the glycerolipid pathways. In particular, genes encoding the enzymes responsible for de novo glycerolipid synthesis were largely upregulated in the transgenic lines, in-line with the identified biochemical phenotype. These results reveal a key role for GmGPDHp1-mediated G3P metabolism in enhancing TAG synthesis and demonstrate a strategy to modify the FA compositions of soybean oils for improved nutrition and biofuel.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Pan Cao
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Yifan Cui
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Dongxu Liu
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Jiapeng Li
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Yabin Zhao
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Siqi Yang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Bo Zhang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Runnan Zhou
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Minghao Sun
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Xuetian Guo
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Mingliang Yang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Dawei Xin
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Zhanguo Zhang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Xin Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, 150000, China
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chen Lv
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Chunyan Liu
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Zhaoming Qi
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Jingyu Xu
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxia Wu
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Qingshan Chen
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| |
Collapse
|
100
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|