51
|
Guillén-Chable F, Arenas-Sosa I, Islas-Flores I, Corzo G, Martinez-Liu C, Estrada G. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expr Purif 2017. [PMID: 28624494 DOI: 10.1016/j.pep.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Francisco Guillén-Chable
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Iván Arenas-Sosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Cynthia Martinez-Liu
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Georgina Estrada
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México.
| |
Collapse
|
52
|
Kage U, Yogendra KN, Kushalappa AC. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci Rep 2017; 7:42596. [PMID: 28198421 PMCID: PMC5309853 DOI: 10.1038/srep42596] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
A semi-comprehensive metabolomics was used to identify the candidate metabolites and genes to decipher mechanisms of resistance in wheat near-isogenic lines (NILs) containing QTL-2DL against Fusarium graminearum (Fg). Metabolites, with high fold-change in abundance, belonging to hydroxycinnamic acid amides (HCAAs): such as coumaroylagmatine, coumaroylputrescine and Fatty acids: phosphatidic acids (PAs) were identified as resistance related induced (RRI) metabolites in rachis of resistant NIL (NIL-R), inoculated with Fg. A WRKY like transcription factor (TF) was identified within the QTL-2DL region, along with three resistance genes that biosynthesized RRI metabolites. Sequencing and in-silico analysis of WRKY confirmed it to be wheat TaWRKY70. Quantitative real time-PCR studies showed a higher expression of TaWRKY70 in NIL-R as compared to NIL-S after Fg inoculation. Further, the functional validation of TaWRKY70 based on virus induced gene silencing (VIGS) in NIL-R, not only confirmed an increased fungal biomass but also decreased expressions of downstream resistance genes: TaACT, TaDGK and TaGLI1, along with decreased abundances of RRI metabolites biosynthesized by them. Among more than 200 FHB resistance QTL identified in wheat, this is the first QTL from which a TF was identified, and its downstream target genes as well as the FHB resistance functions were deciphered.
Collapse
Affiliation(s)
- Udaykumar Kage
- Plant Science Department, McGill University, 2111 Lakeshore road, Sainte Anne De Bellevue, Quebec, Canada H9X3V9
| | - Kalenahalli N. Yogendra
- Plant Science Department, McGill University, 2111 Lakeshore road, Sainte Anne De Bellevue, Quebec, Canada H9X3V9
| | - Ajjamada C. Kushalappa
- Plant Science Department, McGill University, 2111 Lakeshore road, Sainte Anne De Bellevue, Quebec, Canada H9X3V9
| |
Collapse
|
53
|
Li J, Cao L, Staiger CJ. Capping Protein Modulates Actin Remodeling in Response to Reactive Oxygen Species during Plant Innate Immunity. PLANT PHYSIOLOGY 2017; 173:1125-1136. [PMID: 27909046 PMCID: PMC5291016 DOI: 10.1104/pp.16.00992] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/30/2016] [Indexed: 05/06/2023]
Abstract
Plants perceive microbe-associated molecular patterns and damage-associated molecular patterns to activate innate immune signaling events, such as bursts of reactive oxygen species (ROS). The actin cytoskeleton remodels during the first 5 min of innate immune signaling in Arabidopsis (Arabidopsis thaliana) epidermal cells; however, the immune signals that impinge on actin cytoskeleton and its response regulators remain largely unknown. Here, we demonstrate that rapid actin remodeling upon elicitation with diverse microbe-associated molecular patterns and damage-associated molecular patterns represent a conserved plant immune response. Actin remodeling requires ROS generated by the defense-associated NADPH oxidase, RBOHD. Moreover, perception of flg22 by its cognate receptor complex triggers actin remodeling through the activation of RBOHD-dependent ROS production. Our genetic studies reveal that the ubiquitous heterodimeric capping protein transduces ROS signaling to the actin cytoskeleton during innate immunity. Additionally, we uncover a negative feedback loop between actin remodeling and flg22-induced ROS production.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (J.L., L.C., C.J.S.); and
- The Bindley Bioscience Center and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (C.J.S.)
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (J.L., L.C., C.J.S.); and
- The Bindley Bioscience Center and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (C.J.S.)
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (J.L., L.C., C.J.S.); and
- The Bindley Bioscience Center and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (C.J.S.)
| |
Collapse
|
54
|
Escobar-Sepúlveda HF, Trejo-Téllez LI, Pérez-Rodríguez P, Hidalgo-Contreras JV, Gómez-Merino FC. Diacylglycerol Kinases Are Widespread in Higher Plants and Display Inducible Gene Expression in Response to Beneficial Elements, Metal, and Metalloid Ions. FRONTIERS IN PLANT SCIENCE 2017; 8:129. [PMID: 28223993 PMCID: PMC5293798 DOI: 10.3389/fpls.2017.00129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/21/2017] [Indexed: 05/20/2023]
Abstract
Diacylglycerol kinases (DGKs) are pivotal signaling enzymes that phosphorylate diacylglycerol (DAG) to yield phosphatidic acid (PA). The biosynthesis of PA from phospholipase D (PLD) and the coupled phospholipase C (PLC)/DGK route is a crucial signaling process in eukaryotic cells. Next to PLD, the PLC/DGK pathway is the second most important generator of PA in response to biotic and abiotic stresses. In eukaryotic cells, DGK, DAG, and PA are implicated in vital processes such as growth, development, and responses to environmental cues. A plethora of DGK isoforms have been identified so far, making this a rather large family of enzymes in plants. Herein we performed a comprehensive phylogenetic analysis of DGK isoforms in model and crop plants in order to gain insight into the evolution of higher plant DGKs. Furthermore, we explored the expression profiling data available in public data bases concerning the regulation of plant DGK genes in response to beneficial elements and other metal and metalloid ions, including silver (Ag), aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and sodium (Na). In all plant genomes explored, we were able to find DGK representatives, though in different numbers. The phylogenetic analysis revealed that these enzymes fall into three major clusters, whose distribution depends on the composition of structural domains. The catalytic domain conserves the consensus sequence GXGXXG/A where ATP binds. The expression profiling data demonstrated that DGK genes are rapidly but transiently regulated in response to certain concentrations and time exposures of beneficial elements and other ions in different plant tissues analyzed, suggesting that DGKs may mediate signals triggered by these elements. Though this evidence is conclusive, further signaling cascades that such elements may stimulate during hormesis, involving the phosphoinositide signaling pathway and DGK genes and enzymes, remain to be elucidated.
Collapse
Affiliation(s)
| | | | | | | | - Fernando C. Gómez-Merino
- Colegio de Postgraduados Campus Córdoba, Amatlán de los ReyesVeracruz, Mexico
- *Correspondence: Fernando C. Gómez-Merino,
| |
Collapse
|
55
|
Rutter BD, Innes RW. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. PLANT PHYSIOLOGY 2017; 173:728-741. [PMID: 27837092 PMCID: PMC5210723 DOI: 10.1104/pp.16.01253] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/14/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that play a central role in intercellular signaling in mammals by transporting proteins and small RNAs. Plants are also known to produce EVs, particularly in response to pathogen infection. The contents of plant EVs have not been analyzed, however, and their function is unknown. Here, we describe a method for purifying EVs from the apoplastic fluids of Arabidopsis (Arabidopsis thaliana) leaves. Proteomic analyses of these EVs revealed that they are highly enriched in proteins involved in biotic and abiotic stress responses. Consistent with this finding, EV secretion was enhanced in plants infected with Pseudomonas syringae and in response to treatment with salicylic acid. These findings suggest that EVs may represent an important component of plant immune responses.
Collapse
Affiliation(s)
- Brian D Rutter
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
56
|
Bourtsala A, Farmaki T, Galanopoulou D. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton ( G. hirsutum). Biochem Biophys Rep 2016; 9:133-139. [PMID: 28955998 PMCID: PMC5614590 DOI: 10.1016/j.bbrep.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
Phospholipases D (PLDs) catabolize structural phospholipids to produce phosphatidic acid (PtdOH), a lipid playing central role in signalling pathways in animal, yeast and plant cells. In animal cells two PLD genes have been studied while in model plant Arabidopsis twelve genes exist, classified in six classes (α-ζ). This underlines the role of these enzymes in plant responses to environmental stresses. However, information concerning the PLD involvement in the widely cultivated and economically important cotton plant responses is very limited. The aim of this report was to study the activity of conventional cotton PLD and its participation in plant responses to mechanical wounding, which resembles both biotic and abiotic stresses. PLDα activity was identified and further characterized by transphosphatidylation reaction. Upon wounding, cotton leaf responses consist of an acute in vitro increase of PLDα activity in both wounded and systemic tissue. However, determination of the in vivo PtdOH levels under the same wounding conditions revealed a rapid PtdOH formation only in wounded leaves and a late response of a PtdOH increase in both tissues. Εxpression analysis of PLDα and PLDδ isoforms showed mRNA accumulation of both isoforms in the wounded tissue, but only PLDδ exerts a high and sustainable expression in systemic leaves, indicating that this isoform is mainly responsible for the systemic wound-induced PtdOH production. Therefore, our data suggest that PLDα and PLDδ isoforms are involved in different steps in cotton wound signalling. PLDα activity and PtdOH levels rapidly increase in wounded cotton leaves. PLDα is also activated rapidly in systemic tissue. Doubling of PtdOH levels occurs as a late response in both wounded and systemic tissue. PLDδ (but not PLDα) exerts a high and sustainable expression in systemic leaves. PLDα and PLDδ are involved in different steps in cotton wound signalling.
Collapse
Affiliation(s)
- Angeliki Bourtsala
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimiopolis, 15771 Athens, Greece
| | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology, 57001 Thessaloniki, Greece
| | - Dia Galanopoulou
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
57
|
Zhang J, Luo W, Zhao Y, Xu Y, Song S, Chong K. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. THE NEW PHYTOLOGIST 2016; 211:1295-310. [PMID: 27198693 DOI: 10.1111/nph.14011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Cold, a major environmental stress for plants, has been studied intensively for decades. Its response system has been revealed, especially at the transcriptional level. The mechanisms underlying recovery growth and environmental adaptation, however, remain unknown. Taking advantage of a naturally existing system, two subspecies of Asian cultivated rice (Oryza sativa) with significant divergence in chilling tolerance, we analyzed representative japonica and indica varieties, Nipponbare and 93-11, using comparative metabolomic analysis at six time points covering chilling treatment and recovery. In total, 223 known metabolites were detected. During chilling treatment, significant biochemical changes were centered on antioxidation. During recovery, a wide-ranging chilling response was observed. Large-scale amino acid accumulation occurred, consistent with the appearance of chilling injury. At the mid-treatment stage, the accumulation of antioxidation-related compounds appeared earlier in Nipponbare than in 93-11, consistent with the higher reactive oxygen species (ROS) levels in japonica vs indica varieties. A significant contribution of ROS-mediated gene regulation, rather than the C-repeat binding factor/dehydration-responsive-element binding factor (CBF/DREB) regulon, to the more vigorous transcriptional stress response in Nipponbare was revealed by RNA-seq. Accordingly, during recovery, the induction of stress-tolerant-related metabolites was more active in the chilling-tolerant variety Nipponbare. Senescence-related compounds accumulated only in the chilling-sensitive variety 93-11. Our study uncovers the dynamic metabolic models underlying chilling response and recovery, and reveals a ROS-dominated rice adaptation mechanism to low-temperature environments.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuhui Song
- Big Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
58
|
Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F. Hormone-controlled UV-B responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4469-82. [PMID: 27401912 DOI: 10.1093/jxb/erw261] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | - Filip Vandenbussche
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
59
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
60
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
61
|
Lu S, Yao S, Wang G, Guo L, Zhou Y, Hong Y, Wang X. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:926-37. [PMID: 26260942 PMCID: PMC11388816 DOI: 10.1111/pbi.12446] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 05/28/2015] [Accepted: 07/01/2015] [Indexed: 05/05/2023]
Abstract
Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuaibing Yao
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biology, University of Missouri, St. Louis, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
62
|
Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Luo Y, Hu X. The Dynamic Changes of the Plasma Membrane Proteins and the Protective Roles of Nitric Oxide in Rice Subjected to Heavy Metal Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:190. [PMID: 26955374 PMCID: PMC4767926 DOI: 10.3389/fpls.2016.00190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/04/2016] [Indexed: 05/20/2023]
Abstract
The heavy metal cadmium is a common environmental contaminant in soils and has adverse effects on crop growth and development. The signaling processes in plants that initiate cellular responses to environmental stress have been shown to be located in the plasma membrane (PM). A better understanding of the PM proteome in response to environmental stress might provide new insights for improving stress-tolerant crops. Nitric oxide (NO) is reported to be involved in the plant response to cadmium (Cd) stress. To further investigate how NO modulates protein changes in the plasma membrane during Cd stress, a quantitative proteomics approach based on isobaric tags for relative and absolute quantification (iTRAQ) was used to identify differentially regulated proteins from the rice plasma membrane after Cd or Cd and NO treatment. Sixty-six differentially expressed proteins were identified, of which, many function as transporters, ATPases, kinases, metabolic enzymes, phosphatases, and phospholipases. Among these, the abundance of phospholipase D (PLD) was altered substantially after the treatment of Cd or Cd and NO. Transient expression of the PLD fused with green fluorescent peptide (GFP) in rice protoplasts showed that the Cd and NO treatment promoted the accumulation of PLD in the plasma membrane. Addition of NO also enhanced Cd-induced PLD activity and the accumulation of phosphatidic acid (PA) produced through PLD activity. Meanwhile, NO elevated the activities of antioxidant enzymes and caused the accumulation of glutathione, both which function to reduce Cd-induced H2O2 accumulation. Taken together, we suggest that NO signaling is associated with the accumulation of antioxidant enzymes, glutathione and PA which increases cadmium tolerance in rice via the antioxidant defense system.
Collapse
Affiliation(s)
- Liming Yang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal UniversityHuaian, China
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
- Crop Protection and Management Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
| | - Jianhui Ji
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal UniversityHuaian, China
| | - Karen R. Harris-Shultz
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
| | - Hui Wang
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | - Hongliang Wang
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture, Agricultural Research ServiceTifton, GA, USA
| | - Elsayed F. Abd-Allah
- Department of Plant Production, Faculty of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal UniversityHuaian, China
- *Correspondence: Yuming Luo
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
- Xiangyang Hu
| |
Collapse
|
63
|
Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum. SCIENCE CHINA-LIFE SCIENCES 2015; 59:130-41. [PMID: 26718354 DOI: 10.1007/s11427-015-4916-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 01/02/2023]
Abstract
The plant phospholipase D (PLD) plays versatile functions in multiple aspects of plant growth, development, and stress responses. However, until now, our knowledge concerning the PLD gene family members and their expression patterns in cotton has been limited. In this study, we performed for the first time the genome-wide analysis and expression profiling of PLD gene family in Gossypium arboretum, and finally, a total of 19 non-redundant PLD genes (GaPLDs) were identified. Based on the phylogenetic analysis, they were divided into six well-supported clades (α, β/γ, δ, ε, ζ and φ). Most of the GaPLD genes within the same clade showed the similar exon-intron organization and highly conserved motif structures. Additionally, the chromosomal distribution pattern revealed that GaPLD genes were unevenly distributed across 10 of the 13 cotton chromosomes. Segmental duplication is the major contributor to the expansion of GaPLD gene family and estimated to have occurred from 19.61 to 20.44 million years ago when a recent large-scale genome duplication occurred in cotton. Moreover, the expression profiling provides the functional divergence of GaPLD genes in cotton and provides some new light on the molecular mechanisms of GaPLDα1 and GaPLDδ2 in fiber development.
Collapse
|
64
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|
65
|
Yang F, Abdelnabby H, Xiao Y. The role of a phospholipase (PLD) in virulence of Purpureocillium lilacinum (Paecilomyces lilacinum). Microb Pathog 2015; 85:11-20. [PMID: 26026833 DOI: 10.1016/j.micpath.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023]
Abstract
Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, understanding the role of phospholipases on the virulence of the filamentous fungus Purpureocillium lilacinum has been still rather limited. In this study, pld gene was characterized. It encodes the protein phospholipase D (PLD) in P. lilacinum. This gene, 3303 bp open reading frame fragment (ORF), encodes a protein of 1100 amino acids with high similarity to the same gene from Penicillium oxalicum and Aspergillus fumigatus. Secondary structure prediction showed two PLD phosphodiesterase domains (437-464 bp and 885-912 bp). The pld gene was significantly regulated during infection of Meloidogyne incognita eggs by P. lilacinum. The expression of pld gene using RT-PCR was the highest at 36 and 48 h, which introduce evidence that the presence of M. incognita may induce the expression of the pld gene in P. lilacinum. In addition, maltose and l-alanine were found to increase the expression of pld gene. An acidic environment (pH 3.0-4.0) and moderate temperatures (27-29 °C) are favorable for pld expression in P. lilacinum.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hazem Abdelnabby
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Plant Protection, Faculty of Agriculture, Benha University, Qaliubia 13736, Egypt
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
66
|
Zhao J. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1721-36. [PMID: 25680793 PMCID: PMC4669553 DOI: 10.1093/jxb/eru540] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
67
|
Jia Y, Li W. Characterisation of Lipid Changes in Ethylene-Promoted Senescence and Its Retardation by Suppression of Phospholipase Dδ in Arabidopsis Leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:1045. [PMID: 26648950 PMCID: PMC4663248 DOI: 10.3389/fpls.2015.01045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/09/2015] [Indexed: 05/07/2023]
Abstract
Ethylene and abscisic acid (ABA) both accelerate senescence of detached Arabidopsis leaves. We previously showed that suppression of Phospholipase Dδ (PLDδ) retarded ABA-promoted senescence. Here, we report that ethylene-promoted senescence is retarded in detached leaves lacking PLDδ. We further used lipidomics to comparatively profile the molecular species of membrane lipids between wild-type and PLDδ-knockout (PLDδ-KO) Arabidopsis during ethylene-promoted senescence. Lipid profiling revealed that ethylene caused a decrease in all lipids levels, except phosphatidic acid (PA), caused increases in the ratios of digalactosyl diglyceride/monogalactosyl diglyceride (MGDG) and phosphatidylcholine (PC)/phosphatidylethanolamine (PE), and caused degradation of plastidic lipids before that of extraplastidic lipids in wild-type plants. The accelerated degradation of plastidic lipids during ethylene-promoted senescence in wild-type plants was attenuated in PLDδ-KO plants. No obvious differences in substrate and product of PLDδ-catalyzed phospholipid hydrolysis were detected between wild-type and PLDδ-KO plants, which indicated that the retardation of ethylene-promoted senescence by suppressing PLDδ might not be related to the role of PLDδ in catalyzing phospholipid degradation. In contrast, higher plastidic lipid content, especially of MGDG, in PLDδ-KO plants was crucial for maintaining photosynthetic activity. The lower relative content of PA and higher PC/PE ratio in PLDδ-KO plants might contribute to maintaining cell membrane integrity. The integrity of the cell membrane in PLDδ-KO plants facilitated maintenance of the membrane function and of the proteins associated with the membrane. Taking these findings together, higher plastidic lipid content and the integrity of the cell membrane in PLDδ-KO plants might contribute to the retardation of ethylene-promoted senescence by the suppression of PLDδ.
Collapse
Affiliation(s)
- Yanxia Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Weiqi Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Weiqi Li,
| |
Collapse
|
68
|
Distéfano AM, Valiñas MA, Scuffi D, Lamattina L, ten Have A, García-Mata C, Laxalt AM. Phospholipase D δ knock-out mutants are tolerant to severe drought stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1089371. [PMID: 26340512 PMCID: PMC4883880 DOI: 10.1080/15592324.2015.1089371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phospholipase D (PLD) is involved in different plant processes, ranging from responses to abiotic and biotic stress to plant development. Phospholipase Dδ (PLDδ) is activated in dehydration and salt stress, producing the lipid second messenger phosphatidic acid. In this work we show that pldδ Arabidopsis mutants were more tolerant to severe drought than wild-type plants. PLDδ has been shown to be required for ABA regulation of stomatal closure of isolated epidermal peels. However, there was no significant difference in stomatal conductance at the whole plant level between wild-type and pldδ mutants. Since PLD hydrolyses structural phospholipids, then we looked at membrane integrity. Ion leakage measurements showed that during dehydration of leaf discs pldδ mutant has less membrane degradation compared to the wild-type. We further analyzed the mutants and showed that pldδ have higher mRNA levels of RAB18 and RD29A compared to wild-type plants under normal growth conditions. Transient expression of AtPLDδ in Nicotiana benthamiana plants induced a wilting phenotype. These findings suggest that, in wt plants PLDδ disrupt membranes in severe drought stress and, in the absence of the protein (PLDδ knock-out) might drought-prime the plants, making them more tolerant to severe drought stress. The results are discussed in relation to PLDδ role in guard cell signaling and drought tolerance.
Collapse
Affiliation(s)
- Ayelen M Distéfano
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Matías A Valiñas
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Arjen ten Have
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
- Correspondence to: Ana M Laxalt;
| |
Collapse
|
69
|
Hao DC, Chen SL, Osbourn A, Kontogianni VG, Liu LW, Jordán MJ. Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea. Gene 2014; 558:41-53. [PMID: 25536164 DOI: 10.1016/j.gene.2014.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Salvia sclarea is a traditional medicinal and aromatic plant that grows in Europe and produces various economically important compounds, including phenylpropanoid derivatives and terpenoids. Methyl jasmonate (MeJA) is commonly used to elicit plant stress responses. However, how MeJA enhances production of secondary metabolites in S. sclarea is not well understood. We performed a genome-wide analysis of temporal gene expression in S. sclarea leaves and roots. The transcriptome profiles 0, 10 and 26 h after MeJA treatment were analyzed by Illumina RNA-Seq. A total of 16,142 isogenes (average length 866bp; N50 1035bp) were obtained by de novo assembly of 35,757,567 raw sequencing reads. When these sequencing reads were mapped onto the assembled Unigenes, 3236, 2792 and 798 Unigenes were found to be expressed differentially between 0 and 10h, 0 and 26 h, and 10 and 26h, respectively. These included many secondary metabolite biosynthesis, stress and defense-related genes. A qRT-PCR analysis confirmed the expression profiles of selected differentially expressed genes (DEGs) revealed by RNA-Seq data, and also extended our analysis of differential gene expression to 73 h. Our investigations revealed temporal differences in the responses of S. sclarea to MeJA treatment. MeJA treatment induced the expression of a large number of genes involved in phenylpropanoid biosynthesis, especially between 0 and 10h, and 0 and 26 h. Additionally, many genes encoding transcription factors, cytochrome P450s, glycosyltransferases, methyltransferases and transporters were shown to respond to MeJA elicitation. DEGs related to structural molecule activity and cell death showed a significant temporal variation. A chromatographic analysis of metabolites at 26h, 73h and six days after MeJA treatment indicated that these transcriptomic changes precede MeJA-induced changes in secondary metabolite content. This study sheds light on the molecular mechanisms of MeJA elicitation and is helpful in understanding how exogenous MeJA treatment mediates extensive plant transcriptome reprogramming/remodeling. Our results can be utilized to characterize genes related to secondary metabolism and their regulation, and in breeding S. sclarea for desirable chemotypes.
Collapse
Affiliation(s)
- Da Cheng Hao
- Biotechnology Institute, School of Environment, Dalian Jiaotong University, Dalian 116028, China.
| | - Shi Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | | | - Li Wei Liu
- Department of Mathematics, School of Science, Dalian Jiaotong University, Dalian 116028, China
| | - Maria J Jordán
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Departamento de Recursos Naturales y Desarrollo Rural, C./Mayor s/n, 30150 La Alberca, Murcia, Spain
| |
Collapse
|
70
|
Dong Y, Li M, Zhang P, Wang X, Fan C, Zhou Y. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. BMC PLANT BIOLOGY 2014; 14:332. [PMID: 25428555 PMCID: PMC4253999 DOI: 10.1186/s12870-014-0332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND The members of the patatin-related phospholipase subfamily III (pPLAIIIs) have been implicated in the auxin response. However, it is not clear whether and how these genes affect plant and cell morphogenesis. Here, we studied the roles of the patatin-related phospholipase pPLAIIIδ in auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. RESULTS We show that overexpression of pPLAIIIδ inhibited longitudinal growth but promoted transverse growth in most organs of Arabidopsis and Brassica napus. Compared to wild-type plants, pPLAIIIδ-KO plants exhibited enhanced cell elongation in hypocotyls, and pPLAIIIδ-OE plants displayed broadened radial cell growth of hypocotyl and reduced leaf pavement cell polarity. For the hypocotyl phenotype in pPLAIIIδ mutants, which resembles the "triple response" to ethylene, we examined the expression of the ACS and ACO genes involved in ethylene biosynthesis and found that ACS4 and ACS5 were up-regulated by 2.5-fold on average in two OE lines compared with WT plants. The endogenous auxin distribution was disturbed in plants with altered pPLAIIIδ expression. pPLAIIIδ-OE and KO plants exhibited different sensitivities to indole-3-acetic acid-promoted hypocotyl elongation in both light and dark conditions. Gene expression analysis of auxin-induced genes in the dark showed that OE plants maintained a higher auxin response compared with WT and KO plants after treatment with 1 μM IAA for 12 h. Following treatment with 10 μM IAA for 30 min in the light, early auxin-induced genes were significantly up-regulated in two OE plant lines. CONCLUSIONS These data suggest that the PLAIIIδ gene plays an important role in cell morphology and organ size through its involvement in the regulation of auxin distribution in plants.
Collapse
Affiliation(s)
- Yanni Dong
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Maoyin Li
- />Donald Danforth Plant Science Center, St Louis, Missouri USA
| | - Peng Zhang
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- />Donald Danforth Plant Science Center, St Louis, Missouri USA
| | - Chuchuan Fan
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
71
|
Wi SJ, Seo SY, Cho K, Nam MH, Park KY. Lysophosphatidylcholine enhances susceptibility in signaling pathway against pathogen infection through biphasic production of reactive oxygen species and ethylene in tobacco plants. PHYTOCHEMISTRY 2014; 104:48-59. [PMID: 24837357 DOI: 10.1016/j.phytochem.2014.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 03/22/2014] [Accepted: 04/10/2014] [Indexed: 05/28/2023]
Abstract
It was previously reported that the amounts of lysophosphatidylcholines (lysoPCs), which are naturally occurring bioactive lipid molecules, significantly increase following pathogen inoculation, as determined using ultraperformance liquid chromatography-quadrupole-time of flight/mass spectrometry analyses. Here, real-time quantitative RT-PCR was performed for the phospholipase A2 (PLA2) genes, Nt1PLA2 and Nt2PLA2, which are responsible for LysoPCs generation. The transcription level of Nt2PLA2 in pathogen-infected tobacco plants transiently peaked at 1h and 36 h, whereas induction of Nt1PLA2 transcription peaked at 36 h. A prominent biphasic ROS accumulation in lysoPC (C18:1(9Z))-treated tobacco leaves was also observed. Transcription of NtRbohD, a gene member of NADPH oxidase, showed biphasic kinetics upon lysoPC 18:1 treatment, as evidenced by an early transient peak in phase I at 1h and a massive peak in phase II at 12h. Each increase in NtACS2 and NtACS4 transcription, gene members of the ACC synthase family, was followed by biphasic peaks of ethylene production after lysoPC 18:1 treatment. This suggested that lysoPC (C18:1)-induced ethylene production was regulated at the transcriptional level of time-dependent gene members. LysoPC 18:1 treatment also rapidly induced cell damage. LysoPC 18:1-induced cell death was almost completely abrogated in ROS generation-impaired transgenic plants (rbohD-as and rbohF-as), ethylene production-impaired transgenic plants (CAS-AS and CAO-AS), and ethylene signaling-impaired transgenic plants (Ein3-AS), respectively. Taken together, pathogen-induced lysoPCs enhance pathogen susceptibility accompanied by ROS and ethylene biosynthesis, resulting in chlorophyll degradation and cell death. Expression of PR genes (PR1-a, PR-3, and PR-4b) and LOX3 was strongly induced in lysoPC 18:1-treated leaves, indicating the involvement of lysoPC 18:1 in the defense response. However, lysoPC 18:1 treatment eventually resulted in cell death, as evidenced by metacaspase gene expression. Therefore, a hypothesis is proposed that the antipathogenic potential of lysoPC 18:1 is dependent on how quickly it is removed from cells for avoidance of lysoPC toxicity.
Collapse
Affiliation(s)
- Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea
| | - So yeon Seo
- Department of Biology, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea
| | - Kyoungwon Cho
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 136-713, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 136-713, Republic of Korea
| | - Ky Young Park
- Department of Biology, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea.
| |
Collapse
|
72
|
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:584-96. [PMID: 24844563 DOI: 10.1111/tpj.12556] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
Lipids are the major constituents of biological membranes that can sense extracellular conditions. Lipid-mediated signaling occurs in response to various environmental stresses, such as temperature change, salinity, drought and pathogen attack. Lysophospholipid, fatty acid, phosphatidic acid, diacylglycerol, inositol phosphate, oxylipins, sphingolipid, and N-acylethanolamine have all been proposed to function as signaling lipids. Studies on these stress-inducible lipid species have demonstrated that each lipid class has specific biological relevance, biosynthetic mechanisms and signaling cascades, which activate defense reactions at the transcriptional level. In addition to their roles in signaling, lipids also function as stress mitigators to reduce the intensity of stressors. To mitigate particular stresses, enhanced syntheses of unique lipids that accumulate in trace quantities under normal growth conditions are often observed under stressed conditions. The accumulation of oligogalactolipids and glucuronosyldiacylglycerol has recently been found to mitigate freezing and nutrition-depletion stresses, respectively, during lipid remodeling. In addition, wax, cutin and suberin, which are not constituents of the lipid bilayer, but are components derived from lipids, contribute to the reduction of drought stress and tissue injury. These features indicate that lipid-mediated defenses against environmental stress contributes to plant survival.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
73
|
Qu Y, An Z, Zhuang B, Jing W, Zhang Q, Zhang W. Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. JOURNAL OF PLANT RESEARCH 2014; 127:533-544. [PMID: 24817219 DOI: 10.1007/s10265-014-0633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Recent evidence has demonstrated that both copper amine oxidase (CuAO; EC 1.4.3.6) and phospholipase D (PLD; EC 3.1.4.4) are involved in abscisic acid (ABA)-induced stomatal closure. In this study, we investigated the interaction between CuAO and PLD in the ABA response. Pretreatment with either CuAO or PLD inhibitors alone or that with both additively led to impairment of ABA-induced H2O2 production and stomatal closure in Vicia faba. ABA-stimulated PLD activation could not be inhibited by the CuAO inhibitor, and CuAO activity was not affected by the PLD inhibitor. These data suggest that CuAO and PLD act independently in the ABA response. To further examine PLD and CuAO activities in ABA responses, we used the Arabidopsis mutants cuaoζ and pldα1. Ablation of guard cell-expressed CuAOζ or PLDα1 gene retarded ABA-induced H2O2 generation and stomatal closure. As a product of PLD, phosphatidic acid (PA) substantially enhanced H2O2 production and stomatal closure in wide type, pldα1, and cuaoζ. Moreover, putrescine (Put), a substrate of CuAO as well as an activator of PLD, induced H2O2 production and stomatal closure in WT but not in both mutants. These results suggest that CuAO and PLD act independently in ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
74
|
Romero P, Lafuente MT, Alférez F. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:23-32. [PMID: 24713122 DOI: 10.1016/j.plaphy.2014.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/15/2014] [Indexed: 05/11/2023]
Abstract
The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus.
Collapse
Affiliation(s)
- Paco Romero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - M Teresa Lafuente
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Fernando Alférez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
75
|
Wang J, Ding B, Guo Y, Li M, Chen S, Huang G, Xie X. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. PLANTA 2014; 240:103-15. [PMID: 24705986 DOI: 10.1007/s00425-014-2066-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/12/2014] [Indexed: 05/04/2023]
Abstract
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.
Collapse
Affiliation(s)
- Junbin Wang
- Tianjin-Bristol Research Center for the Effects of the Environment Change on Crops, Tianjin Agricultural University, Tianjin, 300384, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Tonoplast Lipid Composition and Proton Pump of Pineapple Fruit During Low-Temperature Storage and Blackheart Development. J Membr Biol 2014; 247:429-39. [DOI: 10.1007/s00232-014-9650-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
77
|
Cloning and molecular characterization of phospholipase D (PLD) delta gene from longan (Dimocarpus longan Lour.). Mol Biol Rep 2014; 41:4351-60. [PMID: 24590739 DOI: 10.1007/s11033-014-3306-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/14/2014] [Indexed: 01/08/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a non-climacteric fruit with a short postharvest life. The regulation of phospholipase D (PLD) activity closely relates to postharvest browning and senescence of longan fruit. In this study, a novel cDNA clone of longan PLDδ (LgPLDδ) was obtained and registered in GenBank (accession No. JF791814). The deduced amino acid sequence possessed all of the three typical domains of plant PLDs, a C2 domain and two catalytic HxKxxxxD motifs. The tertiary structure of LgPLDδ was further predicted. The western blot result showed that the LgPLDδ protein was specifically recognized by PLDδ antibody. The Q-RT-PCR (real-time quantitative PCR) result showed that the level of LgPLDδ mRNA expression was higher in senescent tissues than in developing tissues, which was also high in postharvest fruit. The western-blotting result further certified the different expression of LgPLDδ. These results provided a scientific basis for further investigating the mechanism of postharvest longan fruit adapting to environmental stress.
Collapse
|
78
|
Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. J Bioenerg Biomembr 2014; 46:59-69. [PMID: 24390546 DOI: 10.1007/s10863-013-9538-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.
Collapse
|
79
|
|
80
|
|
81
|
McLoughlin F, Testerink C. Phosphatidic acid, a versatile water-stress signal in roots. FRONTIERS IN PLANT SCIENCE 2013; 4:525. [PMID: 24391659 PMCID: PMC3870300 DOI: 10.3389/fpls.2013.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases, and phosphatases, Ca(2) (+), reactive oxygen species, and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA) is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 and mitogen activated protein kinases were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting toward additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.
Collapse
Affiliation(s)
| | - Christa Testerink
- *Correspondence: Christa Testerink, Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090GE Amsterdam, Netherlands e-mail:
| |
Collapse
|
82
|
Wang L, Li H, Wei H, Wu X, Ke L. Identification of cadmium-induced Agaricus blazei genes through suppression subtractive hybridization. Food Chem Toxicol 2013; 63:84-90. [PMID: 24184195 DOI: 10.1016/j.fct.2013.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/28/2022]
Abstract
Cadmium (Cd) is one of the most serious environmental pollutants. Filamentous fungi are very promising organisms for controlling and reducing the amount of heavy metals released by human and industrial activities. However, the molecular mechanisms involved in Cd accumulation and tolerance of filamentous fungi are not fully understood. Agaricus blazei Murrill, an edible mushroom with medicinal properties, demonstrates high tolerance for heavy metals, especially Cd. To investigate the molecular mechanisms underlying the response of A. blazei after Cd exposure, we constructed a forward subtractive library that represents cadmium-induced genes in A. blazei under 4 ppm Cd stress for 14 days using suppression subtractive hybridization combined with mirror orientation selection. Differential screening allowed us to identify 39 upregulated genes, 26 of which are involved in metabolism, protein fate, cellular transport, transport facilitation and transport routes, cell rescue, defense and virulence, transcription, and the action of proteins with a binding function, and 13 are encoding hypothetical proteins with unknown functions. Induction of six A. blazei genes after Cd exposure was further confirmed by RT-qPCR. The cDNAs isolated in this study contribute to our understanding of genes involved in the biochemical pathways that participate in the response of filamentous fungi to Cd exposure.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou 310023, China
| | - Haibo Li
- Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou 310023, China.
| | - Hailong Wei
- Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou 310023, China
| | - Xueqian Wu
- Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou 310023, China; Zhejiang Academy of Medical Science, Hangzhou 310013, China
| | - Leqin Ke
- Lishui University, Lishui 323000, China
| |
Collapse
|
83
|
Iakimova ET, Michaeli R, Woltering EJ. Involvement of phospholipase D-related signal transduction in chemical-induced programmed cell death in tomato cell cultures. PROTOPLASMA 2013; 250:1169-1183. [PMID: 23604388 DOI: 10.1007/s00709-013-0497-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge, the mechanisms through which PLD/PA operate during PCD are still poorly understood. In this work, the role of PLDα1 in PCD and the associated caspase-like proteolysis, ethylene and hydrogen peroxide (H(2)O(2)) synthesis in tomato suspension cells was studied. Wild-type (WT) and PLDα1-silenced cell lines were exposed to the cell death-inducing chemicals camptothecin (CPT), fumonisin B1 (FB1) and CdSO(4). A range of caspase inhibitors effectively suppressed CPT-induced PCD in WT cells, but failed to alleviate cell death in PLDα1-deficient cells. Compared to WT, in CPT-treated PLDα1 mutant cells, reduced cell death and decreased production of H(2)O(2) were observed. Application of ethylene significantly enhanced CPT-induced cell death both in WT and PLDα1 mutants. Treatments with the PA derivative lyso-phosphatidic acid and mastoparan (agonist of PLD/PLC signalling downstream of G proteins) caused severe cell death. Inhibitors, specific to PLD and PLC, remarkably decreased the chemical-induced cell death. Taken together with our previous findings, the results suggest that PLDα1 contributes to caspase-like-dependent cell death possibly communicated through PA, reactive oxygen species and ethylene. The dead cells expressed morphological features of PCD such as protoplast shrinkage and nucleus compaction. The presented findings reveal novel elements of PLD/PA-mediated cell death response and suggest that PLDα1 is an important factor in chemical-induced PCD signal transduction.
Collapse
Affiliation(s)
- Elena T Iakimova
- Plant Sciences Group, Horticultural Supply Chains, Wageningen University, P.O. Box 630, 6700 AP, Wageningen, The Netherlands
| | | | | |
Collapse
|
84
|
Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerström M, Andersson MX. Arabidopsis phospholipase dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. PLANT PHYSIOLOGY 2013; 163:896-906. [PMID: 23979971 PMCID: PMC3793066 DOI: 10.1104/pp.113.223503] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/25/2013] [Indexed: 05/11/2023]
Abstract
Plants have evolved a complex array of defensive responses against pathogenic microorganisms. Recognition of microbes initiates signaling cascades that activate plant defenses. The membrane lipid phosphatidic acid, produced by phospholipase D (PLD), has been shown to take part in both abiotic and biotic stress signaling. In this study, the involvement of PLD in the interaction between Arabidopsis (Arabidopsis thaliana) and the barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was investigated. This nonadapted pathogen is normally resisted by a cell wall-based defense, which stops the fungal hyphae from penetrating the epidermal cell wall. Chemical inhibition of phosphatidic acid production by PLD increased the penetration rate of Bgh spores on wild-type leaves. The analysis of transfer DNA knockout lines for all Arabidopsis PLD genes revealed that PLDδ is involved in penetration resistance against Bgh, and chemical inhibition of PLDs in plants mutated in PLDδ indicated that this isoform alone is involved in Bgh resistance. In addition, we confirmed the involvement of PLDδ in penetration resistance against another nonadapted pea powdery mildew fungus, Erysiphe pisi. A green fluorescent protein fusion of PLDδ localized to the plasma membrane at the Bgh attack site, where it surrounded the cell wall reinforcement. Furthermore, in the pldδ mutant, transcriptional up-regulation of early microbe-associated molecular pattern response genes was delayed after chitin stimulation. In conclusion, we propose that PLD is involved in defense signaling in nonhost resistance against powdery mildew fungi and put PLDδ forward as the main isoform participating in this process.
Collapse
Affiliation(s)
- Francesco Pinosa
- Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (F.P., N.B., P.F., M.E., M.X.A.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (M.K., H.T.-C.)
| | - Nathalie Buhot
- Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (F.P., N.B., P.F., M.E., M.X.A.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (M.K., H.T.-C.)
| | - Mark Kwaaitaal
- Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (F.P., N.B., P.F., M.E., M.X.A.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (M.K., H.T.-C.)
| | - Per Fahlberg
- Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (F.P., N.B., P.F., M.E., M.X.A.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (M.K., H.T.-C.)
| | - Hans Thordal-Christensen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (F.P., N.B., P.F., M.E., M.X.A.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (M.K., H.T.-C.)
| | - Mats Ellerström
- Department of Biological and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (F.P., N.B., P.F., M.E., M.X.A.); and
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK–1871 Frederiksberg C, Denmark (M.K., H.T.-C.)
| | | |
Collapse
|
85
|
Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K. Fatty acids and early detection of pathogens. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:520-6. [PMID: 23845737 DOI: 10.1016/j.pbi.2013.06.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 05/20/2023]
Abstract
Early in interactions between plants and pathogens, plants recognize molecular signatures in microbial cells, triggering a form of immunity that may help resist infection and colonization by pathogens. Diverse molecules provide these molecular signatures, called pathogen-associated molecular patterns (PAMPs), including proteins, polysaccharides, and lipids. Before and concurrent with the onset of PAMP-triggered immunity, there are alterations in plant membrane lipid composition, modification of membrane fluidity through desaturase-mediated changes in unsaturated fatty acid levels, and enzymatic and non-enzymatic genesis of bioactive lipid mediators such as oxylipins. These complex lipid changes produce a myriad of potential molecular signatures that are beginning to be found to have key roles in the regulation of transcriptional networks. Further, research on fatty acid action in various biological contexts, including plant-pathogen interactions and stress network signaling, is needed to fully understand fatty acids as regulatory signals that transcend their established role in membrane structure and function.
Collapse
Affiliation(s)
- Justin W Walley
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
86
|
Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. THE NEW PHYTOLOGIST 2013; 199:228-240. [PMID: 23577648 PMCID: PMC4066384 DOI: 10.1111/nph.12256] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/22/2013] [Indexed: 05/18/2023]
Abstract
Pathogen infection of higher plants often induces rapid production of phosphatidic acid (PA) and changes in lipid profiles, but the enzymatic basis and the function of the lipid change in pathogen-plant interactions are not well understood. Infection of phospholipase D β1 (PLDβ1)-deficient plants by Pseudomonas syringae tomato pv DC3000 (Pst DC30000) resulted in less bacterial growth than in wild-type plants, and the effect was more profound in virulent Pst DC3000 than avirulent Pst DC3000 (carrying the avirulence gene avrRpt2) infection. The expression levels of salicylic acid (SA)-inducible genes were higher, but those inducible by jasmonic acid (JA) showed lower expression in PLDβ1 mutants than in wild-type plants. However, PLDβ1-deficient plants were more susceptible than wild-type plants to the fungus Botrytis cinerea. The PLDβ1-deficient plants had lower levels of PA, JA and JA-related defense gene expression after B. cinerea inoculation. PLDβ1 plays a positive role in pathogen-induced JA production and plant resistance to the necrotrophic fungal pathogen B. cinerea, but a negative role in the SA-dependent signaling pathway and plant tolerance to infection with biotrophic Pst DC3000. PLDβ1 is responsible for most of the increase in PA production in response to necrotrophic B. cinerea and virulent Pst DC3000 infection, but contributes less to avirulent Pst DC3000 (avrRpt2)-induced PA production.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Cunxi Wang
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
| | - Maoyin Li
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- Department of Biology, University of Missouri, St. Louis, MO 63121 and Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS, 66506 USA
| | - Xuemin Wang
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- Department of Biology, University of Missouri, St. Louis, MO 63121 and Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
87
|
Jia Y, Tao F, Li W. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One 2013; 8:e65687. [PMID: 23762411 PMCID: PMC3676348 DOI: 10.1371/journal.pone.0065687] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD) activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1) retards abscisic acid (ABA)-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE) 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ) was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO) plants. Dramatic increases in phosphatidic acid (PA) and decreases in phosphatidylcholine (PC) during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.
Collapse
Affiliation(s)
- Yanxia Jia
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faqing Tao
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weiqi Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- * E-mail:
| |
Collapse
|
88
|
Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q, Zhou Y, Hong Y, Wang X. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:380-9. [PMID: 23279050 DOI: 10.1111/pbi.12028] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 05/21/2023]
Abstract
The activation of phospholipase Dα1 (PLDα1) produces lipid messenger phosphatidic acid and promotes stomatal closure in Arabidopsis. To explore the use of the PLDα1-mediated signalling towards decreasing water loss in crop plants, we introduced Arabidopsis PLDα1 under the control of a guard cell-specific promoter AtKatIpro into two canola (Brassica napus) cultivars. Multiple AtKatIpro ::PLDα1 lines in each cultivar displayed decreased water loss and improved biomass accumulation under hyperosmotic stress conditions, including drought and high salinity. Moreover, AtKatIpro ::PLDα1 plants produced more seeds than did WT plants in fields under drought. The results indicate that the guard cell-specific expression of PLDα1 has the potential to improve crop yield by enhancing drought tolerance.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Seung D, Webster MW, Wang R, Andreeva Z, Marc J. Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:224-236. [PMID: 32481102 DOI: 10.1071/fp12248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/13/2012] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) is involved in plant development and responses to environmental stress including the formation of longitudinal microtubule arrays in elongating cells, although the underlying mechanism for this is unknown. We explored ABA-induced microtubule reorientation in leek (Allium porrum L.) leaf epidermal cells transiently expressing a GFP-MBD microtubule reporter. After 14-18h incubation with ABA, the frequency of cells with longitudinal arrays of cortical microtubules along the outer epidermal wall increased with dose-dependency until saturation at 20μM. Time-course imaging of individual cells revealed a gradual increase in the occurrence of discordant, dynamic microtubules deviating from the normal transverse microtubule array within 2-4h of exposure to ABA, followed by reorientation into a completely longitudinal array within 5-8h. Approximately one-half of the ABA-induced reorientation occurred independently of cytoplasmic streaming following the application of cytochalasin D. Reorientation occurred also in the elongation zone of Arabidopsis root tips. Transient expression of AtEB1b-GFP reporter and analysis of 'comet' velocities in Allium revealed that the microtubule growth rate increased by 55% within 3h of exposure to ABA. ABA also increased the sensitivity of microtubules to depolymerisation by oryzalin and exacerbated oryzalin-induced radial swelling of Arabidopsis root tips. The swelling was further aggravated in AtPLDδ-null mutant, suggesting PLDδ plays a role in microtubule stability. We propose that ABA-induced reorientation of transverse microtubule array initially involves destabilisation of the array combined with the formation of dynamic, discordant microtubules.
Collapse
Affiliation(s)
- David Seung
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Michael W Webster
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Richard Wang
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Zornitza Andreeva
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Jan Marc
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
90
|
Kim SC, Guo L, Wang X. Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J Biol Chem 2013; 288:11834-44. [PMID: 23504314 DOI: 10.1074/jbc.m112.427229] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Biology, University of Missouri, St Louis, Missouri 63121, USA
| | | | | |
Collapse
|
91
|
Abstract
Over the past decade, tremendous progress has been made toward understanding the physiological functions of individual members of the diverse phospholipase D (PLD) family of enzymes in plants. For instance, the involvement of plant PLD members has been shown or suggested in a wide variety of the cellular and physiological processes such as regulating stomatal opening and closure; signaling plant responses to drought, salt, and other abiotic and biotic stresses; organizing microtubule and actin cytoskeletal structures; promoting pollen tube growth; cycling phosphorus; signaling nitrogen availability; regulating N-acylethanolamine stress signaling; and remodeling membrane phospholipids in plant responses to phosphate deprivation and during and after freezing. There are at least a dozen PLDs in Arabidopsis that can be separated into six classes, phospholipases Dα, Dβ, Dγ, Dδ, Dε, and Dζ, based on their molecular and enzymatic characteristics. Several of the classes have distinguishing enzymatic properties that can be used to discriminate among the various classes. Here we provide four variations of in vitro PLD activity assays using choline-labeled phosphatidylcholine to distinguish, to the extent possible, among the different PLD classes.
Collapse
|
92
|
Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM. Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. PLANTA 2012. [PMID: 22932846 DOI: 10.1007/s00425-012-1745-1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nitric oxide (NO) has recently emerged as a second messenger involved in the complex network of signaling events that regulate stomatal closure. Little is known about the signaling events occurring downstream of NO. Previously, we demonstrated the involvement of phospholipase D (PLD) in NO signaling during stomatal closure. PLDδ, one of the 12 Arabidopsis PLDs, is involved in dehydration stress responses. To investigate the role of PLDδ in NO signaling in guard cells, we analyzed guard cells responses using Arabidopsis wild type and two independent pldδ single mutants. In this work, we show that pldδ mutants failed to close the stomata in response to NO. Treatments with phosphatidic acid, the product of PLD activity, induced stomatal closure in pldδ mutants. Abscisic acid (ABA) signaling in guard cells involved H(2)O(2) and NO production, both required for ABA-induced stomatal closure. pldδ guard cells produced similar NO and H(2)O(2) levels as the wild type in response to ABA. However, ABA- or H(2)O(2)-induced stomatal closure was impaired in pldδ plants. These data indicate that PLDδ is downstream of NO and H(2)O(2) in ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Ayelen M Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
93
|
Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM. Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. PLANTA 2012; 236:1899-907. [PMID: 22932846 DOI: 10.1007/s00425-012-1745-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/21/2012] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) has recently emerged as a second messenger involved in the complex network of signaling events that regulate stomatal closure. Little is known about the signaling events occurring downstream of NO. Previously, we demonstrated the involvement of phospholipase D (PLD) in NO signaling during stomatal closure. PLDδ, one of the 12 Arabidopsis PLDs, is involved in dehydration stress responses. To investigate the role of PLDδ in NO signaling in guard cells, we analyzed guard cells responses using Arabidopsis wild type and two independent pldδ single mutants. In this work, we show that pldδ mutants failed to close the stomata in response to NO. Treatments with phosphatidic acid, the product of PLD activity, induced stomatal closure in pldδ mutants. Abscisic acid (ABA) signaling in guard cells involved H(2)O(2) and NO production, both required for ABA-induced stomatal closure. pldδ guard cells produced similar NO and H(2)O(2) levels as the wild type in response to ABA. However, ABA- or H(2)O(2)-induced stomatal closure was impaired in pldδ plants. These data indicate that PLDδ is downstream of NO and H(2)O(2) in ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Ayelen M Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
94
|
Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. THE PLANT CELL 2012; 24:4555-76. [PMID: 23150630 PMCID: PMC3531852 DOI: 10.1105/tpc.112.104182] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 09/29/2012] [Accepted: 10/18/2012] [Indexed: 05/04/2023]
Abstract
Membrane lipids play fundamental structural and regulatory roles in cell metabolism and signaling. Here, we report that phosphatidic acid (PA), a product of phospholipase D (PLD), regulates MAP65-1, a microtubule-associated protein, in response to salt stress. Knockout of the PLDα1 gene resulted in greater NaCl-induced disorganization of microtubules, which could not be recovered during or after removal of the stress. Salt affected the association of MAP65-1 with microtubules, leading to microtubule disorganization in pldα1cells, which was alleviated by exogenous PA. PA bound to MAP65-1, increasing its activity in enhancing microtubule polymerization and bundling. Overexpression of MAP65-1 improved salt tolerance of Arabidopsis thaliana cells. Mutations of eight amino acids in MAP65-1 led to the loss of its binding to PA, microtubule-bundling activity, and promotion of salt tolerance. The pldα1 map65-1 double mutant showed greater sensitivity to salt stress than did either single mutant. These results suggest that PLDα1-derived PA binds to MAP65-1, thus mediating microtubule stabilization and salt tolerance. The identification of MAP65-1 as a target of PA reveals a functional connection between membrane lipids and the cytoskeleton in environmental stress signaling.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Lin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianing Nie
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
95
|
Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A, Alché JDD, Kost B, Žárský V. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1654-63. [PMID: 22762791 DOI: 10.1016/j.jplph.2012.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase (NOX) are crucial for tip growth of pollen tubes. However, the regulation of NOX activity in pollen tubes remains unknown. Using purified plasma membrane fractions from tobacco and olive pollen and tobacco BY-2 cells, we demonstrate that pollen NOX is activated by calcium ions and low abundant signaling phospholipids, such as phosphatidic acid and phosphatidylinositol 4,5-bisphosphate in vitro and in vivo. Our data also suggest possible synergism between Ca(2+) and phospholipid-mediated NOX activation in pollen. Rac/Rop small GTPases are also necessary for normal pollen tube growth and have been proposed to regulate ROS production in root hairs. We show here elevated ROS formation in pollen tubes overexpressing wild-type NtRac5 and constitutively active NtRac5, while overexpression of dominant-negative NtRac5 led to a decrease of ROS in pollen tubes. We also show that PA formed by distinct phospholipases D (PLD) is involved in pathways both upstream and downstream of NOX-mediated ROS generation and identify NtPLDδ as a PLD isoform acting in the ROS response pathway.
Collapse
Affiliation(s)
- Martin Potocký
- Institute of Experimental Botany, vvi, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Im JH, Lee H, Kim J, Kim HB, An CS. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells 2012; 34:271-8. [PMID: 22886763 PMCID: PMC3887844 DOI: 10.1007/s10059-012-0092-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H(2)O(2) activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H(2)O(2) 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H(2)O(2) at a time dependant manner and translocated to the nucleus by the salt stress signal.
Collapse
Affiliation(s)
- Jong Hee Im
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Hyoungseok Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Division of Life Sciences, Korea Polar Research Institute (KOPRI), Songdo Techno Park, Incheon 406-840,
Korea
| | - Jitae Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Department of Plant Biology, Cornell University, Ithaca, New York, 14853,
USA
| | - Ho Bang Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Life Sciences Research Institute, Biomedic Co. Ltd., Bucheon 420-852,
Korea
| | - Chung Sun An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| |
Collapse
|
97
|
Zhao J, Zhou D, Zhang Q, Zhang W. Genomic analysis of phospholipase D family and characterization of GmPLDαs in soybean (Glycine max). JOURNAL OF PLANT RESEARCH 2012; 125:569-78. [PMID: 22161123 DOI: 10.1007/s10265-011-0468-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/14/2011] [Indexed: 05/28/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid play important roles in the regulation of plant growth, development, and stress responses. The genome database analysis has revealed PLD family in Arabidopsis, rice, poplar and grape. In this study, we report a genomic analysis of 18 putative soybean (Glycine max) PLD genes (GmPLDs), which exist in the 14 of 20 chromosomes. GmPLDs were grouped into six types, α(3), β(4), γ, δ(5), ε(2), and ζ(3), based on gene architectures, protein domains, evolutionary relationship, and sequence identity. These GmPLDs contained two HKD domains, PX/PH domains (for GmPLDζs), and C2 domain (for the other GmPLDs). The expression patterns analyzed by quantitative reverse transcription PCR demonstrated that GmPLDs were expressed differentially in various tissues. GmPLDα1, α2, and β2 were highly expressed in most tissues, whereas GmPLDδ5 was only expressed in flowers and GmPLDζ1 was predominantly expressed in flowers and early pods. The expression of GmPLDα1 and α2 was increased and that of GmPLDγ was decreased by salt stress. GmPLDα1 protein expressed in E. coli was active under the reaction conditions for both PLDα and PLDδ, hydrolyzing the common membrane phospholipids phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The genomic analysis for soybean PLD family provides valuable data for further identity and characterization of their functions.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | |
Collapse
|
98
|
Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. THE PLANT CELL 2012; 24:2200-12. [PMID: 22589465 PMCID: PMC3442596 DOI: 10.1105/tpc.111.094946] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) are produced in plants under various stress conditions and serve as important mediators in plant responses to stresses. Here, we show that the cytosolic glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenases (GAPCs) interact with the plasma membrane-associated phospholipase D (PLDδ) to transduce the ROS hydrogen peroxide (H(2)O(2)) signal in Arabidopsis thaliana. Genetic ablation of PLDδ impeded stomatal response to abscisic acid (ABA) and H(2)O(2), placing PLDδ downstream of H(2)O(2) in mediating ABA-induced stomatal closure. To determine the molecular link between H(2)O(2) and PLDδ, GAPC1 and GAPC2 were identified to bind to PLDδ, and the interaction was demonstrated by coprecipitation using proteins expressed in Escherichia coli and yeast, surface plasmon resonance, and bimolecular fluorescence complementation. H(2)O(2) promoted the GAPC-PLDδ interaction and PLDδ activity. Knockout of GAPCs decreased ABA- and H(2)O(2)-induced activation of PLD and stomatal sensitivity to ABA. The loss of GAPCs or PLDδ rendered plants less responsive to water deficits than the wild type. The results indicate that the H(2)O(2)-promoted interaction of GAPC and PLDδ may provide a direct connection between membrane lipid-based signaling, energy metabolism and growth control in the plant response to ROS and water stress.
Collapse
Affiliation(s)
- Liang Guo
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Shivakumar P. Devaiah
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rama Narasimhan
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Xiangqing Pan
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Yanyan Zhang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Address correspondence to
| |
Collapse
|
99
|
Lee J, Welti R, Roth M, Schapaugh WT, Li J, Trick HN. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:164-73. [PMID: 21895945 PMCID: PMC3728994 DOI: 10.1111/j.1467-7652.2011.00650.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
100
|
Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. BIOCHEMISTRY (MOSCOW) 2012; 77:1-14. [DOI: 10.1134/s0006297912010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|