51
|
Sueldo DJ, van der Hoorn RAL. Plant life needs cell death, but does plant cell death need Cys proteases? FEBS J 2017; 284:1577-1585. [PMID: 28165668 DOI: 10.1111/febs.14034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
Caspases are key regulators of apoptosis in animals. This correlation has driven plant researchers for decades to look for caspases regulating programmed cell death (PCD) in plants. These studies revealed caspase-like activities, caspase-related proteases, and cysteine (Cys) proteases regulating PCD in plants, but identified no caspases and no conserved, apoptosis-like death pathway. Here, we critically review the evidence for Cys proteases implicated in PCD in plants. We discuss the role of papain-like Cys proteases, vacuolar processing enzymes, and metacaspases in PCD during the development of tracheary elements, seed coat, suspensor, and tapetum, and during the hypersensitive response. There are several convincing cases where these Cys proteases are required for PCD, but this requirement is often not conserved across different plant species. There are also cases where Cys proteases contribute to the speed, but not the timing of PCD, while other Cys proteases are nonessential for PCD, but have other roles, e.g., in the clearance of cell remains after PCD. These data illustrate the need for caution when generalizing the role of Cys proteases in regulating PCD in plants, and call for studies that further investigate plant Cys proteases and other PCD regulators.
Collapse
Affiliation(s)
- Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, UK
| | | |
Collapse
|
52
|
Okuda A, Matsusaki M, Masuda T, Urade R. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein. FEBS J 2017; 284:414-428. [PMID: 27960051 DOI: 10.1111/febs.13984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 01/19/2023]
Abstract
Most proteins synthesized in the endoplasmic reticulum (ER) possess intramolecular and intermolecular disulfide bonds, which play an important role in the conformational stability and function of proteins. Hence, eukaryotic cells contain protein disulfide bond formation pathways such as the protein disulfide isomerase (PDI)-ER oxidoreductin 1 (Ero1) system in the ER lumen. In this study, we identified soybean PDIL7 (GmPDIL7), a novel soybean ER membrane-bound PDI family protein, and determined its enzymatic properties. GmPDIL7 has a putative N-terminal signal sequence, a thioredoxin domain with an active center motif (CGHC), and a putative C-terminal transmembrane region. Likewise, we demonstrated that GmPDIL7 is ubiquitously expressed in soybean tissues and is localized in the ER membrane. Furthermore, GmPDIL7 associated with other soybean PDI family proteins in vivo and GmPDIL7 mRNA was slightly upregulated under ER stress. The redox potential of recombinant GmPDIL7 expressed in Escherichia coli was -187 mV, indicating that GmPDIL7 could oxidize unfolded proteins. GmPDIL7 exhibited a dithiol oxidase activity level that was similar to other soybean PDI family proteins. However, the oxidative refolding activity of GmPDIL7 was lower than other soybean PDI family proteins. GmPDIL7 was well oxidized by GmERO1. Taken together, our results indicated that GmPDIL7 primarily plays a role as a supplier of disulfide bonds in nascent proteins for oxidative folding on the ER membrane. DATABASE The nucleotide sequence data for the GmPDIL7 cDNA are available in the DNA Data Bank of Japan (DDBJ) databases under the accession numbers LC158001. ENZYME Protein disulfide isomerase: EC 5.3.4.1.
Collapse
Affiliation(s)
- Aya Okuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Motonori Matsusaki
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Taro Masuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Reiko Urade
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| |
Collapse
|
53
|
Ingram GC. Dying to live: cell elimination as a developmental strategy in angiosperm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:785-796. [PMID: 27702990 DOI: 10.1093/jxb/erw364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The complete elimination of unwanted cells during development is a repeated theme in both multicellular animals and in plants. In plants, such events have been extensively studied and reviewed in terms of their molecular regulation, of marker genes and proteins expressed, and in terms of cellular changes associated with their progression. This review will take a slightly different view of developmental cell elimination and will concentrate specifically on the numerous elimination events that occur during ovule and seed development (here grouped together as seed development). It asks why this cell elimination occurs in specific seed tissues, in order to understand something about the commonalities underlying how seemingly disparate events are triggered and regulated. Finally, by placing the seed in its broader evolutionary context, the question of why cell elimination may have emerged as such a key component of the seed developmental toolbox will be considered.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS (UMR 5667), INRA (UMR 0879), UCB Lyon 1, Ecole Normale Supérieure de Lyon, F-69342 Lyon, France
| |
Collapse
|
54
|
Yuen CYL, Shek R, Kang BH, Matsumoto K, Cho EJ, Christopher DA. Arabidopsis protein disulfide isomerase-8 is a type I endoplasmic reticulum transmembrane protein with thiol-disulfide oxidase activity. BMC PLANT BIOLOGY 2016; 16:181. [PMID: 27549196 PMCID: PMC4994283 DOI: 10.1186/s12870-016-0869-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND In eukaryotes, classical protein disulfide isomerases (PDIs) facilitate the oxidative folding of nascent secretory proteins in the endoplasmic reticulum by catalyzing the formation, breakage, and rearrangement of disulfide bonds. Terrestrial plants encode six structurally distinct subfamilies of PDIs. The novel PDI-B subfamily is unique to terrestrial plants, and in Arabidopsis is represented by a single member, PDI8. Unlike classical PDIs, which lack transmembrane domains (TMDs), PDI8 is unique in that it has a C-terminal TMD and a single N-terminal thioredoxin domain (instead of two). No PDI8 isoforms have been experimentally characterized to date. Here we describe the characterization of the membrane orientation, expression, sub-cellular localization, and biochemical function of this novel member of the PDI family. RESULTS Histochemical staining of plants harboring a PDI8 promoter:β-glucuronidase (GUS) fusion revealed that the PDI8 promoter is highly active in young, expanding leaves, the guard cells of cotyledons, and in the vasculature of several organs, including roots, leaves, cotyledons, and flowers. Immunoelectron microscopy studies using a PDI8-specific antibody on root and shoot apical cells revealed that PDI8 localizes to the endoplasmic reticulum (ER). Transient expression of two PDI8 fusions to green fluorescent protein (spGFP-PDI8 and PDI8-GFP-KKED) in leaf mesophyll protoplasts also resulted in labeling of the ER. Protease-protection immunoblot analysis indicated that PDI8 is a type I membrane protein, with its catalytic domain facing the ER lumen. The lumenal portion of PDI8 was able to functionally complement the loss of the prokaryotic protein foldase, disulfide oxidase (DsbA), as demonstrated by the reconstitution of periplasmic alkaline phosphatase in Escherichia coli. CONCLUSION The results indicate that PDI8 is a type I transmembrane protein with its catalytic domain facing the lumen of the ER and functions in the oxidation of cysteines to produce disulfide bonds. It likely plays a role in folding newly-synthesized secretory proteins as they translocate across the ER membrane into the lumen. These foundational results open the door to identifying the substrates of PDI8 to enable a more thorough understanding of its function in plants.
Collapse
Affiliation(s)
- Christen Y. L. Yuen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI 96822 USA
| | - Roger Shek
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI 96822 USA
| | - Byung-Ho Kang
- The Chinese University of Hong Kong, School of Life Sciences, Shatin, Hong Kong, SAR China
| | - Kristie Matsumoto
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI 96822 USA
| | - Eun Ju Cho
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI 96822 USA
| | - David A. Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI 96822 USA
| |
Collapse
|
55
|
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J 2016; 283:2577-98. [PMID: 26648190 PMCID: PMC5606204 DOI: 10.1111/febs.13616] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap.
Collapse
Affiliation(s)
- Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nuria Sanchez Coll
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
56
|
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol 2016; 32:441-468. [PMID: 27298090 DOI: 10.1146/annurev-cellbio-111315-124915] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
Collapse
Affiliation(s)
- Anna Daneva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Gao
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
57
|
A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat. Sci Rep 2016; 6:24227. [PMID: 27071705 PMCID: PMC4829865 DOI: 10.1038/srep24227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
In this study, we report the contribution of a PDI-like gene from wheat wild relative Haynaldia villosa in combating powdery mildew. PDI-V protein contains two conserved thioredoxin (TRX) active domains (a and a′) and an inactive domain (b). PDI-V interacted with E3 ligase CMPG1-V protein, which is a positive regulator of powdery mildew response. PDI-V was mono-ubiquitinated by CMPG1-V without degradation being detected. PDI-V was located on H. villosa chromosome 5V and encoded for a protein located in the endoplasmic reticulum. Bgt infection in leaves of H. villosa induced PDI-V expression. Virus induced gene silencing of PDIs in a T. durum-H. villosa amphiploid compromised the resistance. Single cell transient over-expression of PDI-V or a truncated version containing the active TXR domain a decreased the haustorial index in moderately susceptible wheat cultivar Yangmai 158. Stable transgenic lines over-expressing PDI-V in Yangmai 158 displayed improved powdery mildew resistance at both the seedling and adult stages. By contrast over-expression of point-mutated PDI-VC57A did not increase the level of resistance in Yangmai 158. The above results indicate a pivotal role of PDI-V in powdery mildew resistance and showed that conserved TRX domain a is critical for its function.
Collapse
|
58
|
Ondzighi-Assoume CA, Chakraborty S, Harris JM. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores. THE PLANT CELL 2016; 28:729-45. [PMID: 26887919 PMCID: PMC4826012 DOI: 10.1105/tpc.15.00946] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme b-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth.
Collapse
Affiliation(s)
- Christine A Ondzighi-Assoume
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 Department of Plant Sciences, The University of Tennessee, Knoxville, Tennessee 37996
| | - Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
59
|
Mostafa I, Zhu N, Yoo MJ, Balmant KM, Misra BB, Dufresne C, Abou-Hashem M, Chen S, El-Domiaty M. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. J Proteomics 2016; 138:1-19. [PMID: 26915584 DOI: 10.1016/j.jprot.2016.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Glucosinolates present in Brassicales are important for human health and plant defense against insects and pathogens. Here we investigate the proteomes and metabolomes of Arabidopsis myb28/29 and cyp79B2/B3 mutants deficient in aliphatic glucosinolates and indolic glucosinolates, respectively. Quantitative proteomics of the myb28/29 and cyp79B2/B3 mutants led to the identification of 2785 proteins, of which 142 proteins showed significant changes in the two mutants compared to wild type (WT). By mapping the differential proteins using STRING, we detected 59 new edges in the glucosinolate metabolic network. These connections can be classified as primary with direct roles in glucosinolate metabolism, secondary related to plant stress responses, and tertiary involved in other biological processes. Gene Ontology analysis of the differential proteins showed high level of enrichment in the nodes belonging to metabolic process including glucosinolate biosynthesis and response to stimulus. Using metabolomics, we quantified 292 metabolites covering a broad spectrum of metabolic pathways, and 89 exhibited differential accumulation patterns between the mutants and WT. The changing metabolites (e.g., γ-glutamyl amino acids, auxins and glucosinolate hydrolysis products) complement our proteomics findings. This study contributes toward engineering and breeding of glucosinolate profiles in plants in efforts to improve human health, crop quality and productivity. BIOLOGICAL SIGNIFICANCE Glucosinolates in Brassicales constitute an important group of natural metabolites important for plant defense and human health. Its biosynthetic pathways and transcriptional regulation have been well-studied. Using Arabidopsis mutants of important genes in glucosinolate biosynthesis, quantitative proteomics and metabolomics led to identification of many proteins and metabolites that are potentially related to glucosinolate metabolism. This study provides a comprehensive insight into the molecular networks of glucosinolate metabolism, and will facilitate efforts toward engineering and breeding of glucosinolate profiles for enhanced crop defense, and nutritional value.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kelly M Balmant
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Biswapriya B Misra
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, West Palm Beach, FL 33407, USA
| | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
60
|
Matsusaki M, Okuda A, Masuda T, Koishihara K, Mita R, Iwasaki K, Hara K, Naruo Y, Hirose A, Tsuchi Y, Urade R. Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and 1 in Soybean. PLANT PHYSIOLOGY 2016; 170:774-89. [PMID: 26645455 PMCID: PMC4734590 DOI: 10.1104/pp.15.01781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 05/13/2023]
Abstract
Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the A': domain among the A: , A': , and B: domains of GmPDIM. A disulfide bond introduced into the active center of the A': domain of GmPDIM was shown to be transferred to the active center of the A: domain of GmPDIM and the A: domain of GmPDIM directly oxidized the active centers of both the A: or A': domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Aya Okuda
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taro Masuda
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Katsunori Koishihara
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryuta Mita
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kensuke Iwasaki
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kumiko Hara
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yurika Naruo
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Akiho Hirose
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuichiro Tsuchi
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Reiko Urade
- Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
61
|
Yuen CYL, Wong K, Christopher DA. Phylogenetic characterization and promoter expression analysis of a novel hybrid protein disulfide isomerase/cargo receptor subfamily unique to plants and chromalveolates. Mol Genet Genomics 2016; 291:455-69. [PMID: 26300531 PMCID: PMC4729789 DOI: 10.1007/s00438-015-1106-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/13/2015] [Indexed: 11/26/2022]
Abstract
Protein disulfide isomerases (PDIs) play critical roles in protein folding by catalyzing the formation and rearrangement of disulfide bonds in nascent secretory proteins. There are six distinct PDI subfamilies in terrestrial plants. A unique feature of PDI-C subfamily members is their homology to the yeast retrograde (Golgi-to-endoplasmic reticulum) cargo receptor proteins, Erv41p and Erv46p. Here, we demonstrate that plant Erv41p/Erv46p-like proteins are divided into three subfamilies: ERV-A, ERV-B and PDI-C, which all possess the N-proximal and C-proximal conserved domains of yeast Erv41p and Erv46p. However, in PDI-C isoforms, these domains are separated by a thioredoxin domain. The distribution of PDI-C isoforms among eukaryotes indicates that the PDI-C subfamily likely arose through an ancient exon-shuffling event that occurred before the divergence of plants from stramenopiles and rhizarians. Arabidopsis has three PDI-C genes: PDI7, PDI12, and PDI13. PDI12- and PDI13-promoter: β-glucuronidase (GUS) gene fusions are co-expressed in pollen and stipules, while PDI7 is distinctly expressed in the style, hydathodes, and leaf vasculature. The PDI-C thioredoxin domain active site motif CxxS is evolutionarily conserved among land plants. Whereas PDI12 and PDI13 retain the CxxS motif, PDI7 has a CxxC motif similar to classical PDIs. We hypothesize that PDI12 and PDI13 maintain the ancestral roles of PDI-C in Arabidopsis, while PDI7 has undergone neofunctionalization. The unusual PDI/cargo receptor hybrid arrangement in PDI-C isoforms has no counterpart in animals or yeast, and predicts the need for pairing redox functions with cargo receptor processes during protein trafficking in plants and other PDI-C containing organisms.
Collapse
Affiliation(s)
- Christen Y L Yuen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI, 96822, USA
| | - Katharine Wong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI, 96822, USA
| | - David A Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Rd., Ag. Science Rm 218, Honolulu, HI, 96822, USA.
| |
Collapse
|
62
|
Van Durme M, Nowack MK. Mechanisms of developmentally controlled cell death in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:29-37. [PMID: 26658336 DOI: 10.1016/j.pbi.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development.
Collapse
Affiliation(s)
- Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
63
|
Naconsie M, Lertpanyasampatha M, Viboonjun U, Netrphan S, Kuwano M, Ogasawara N, Narangajavana J. Cassava root membrane proteome reveals activities during storage root maturation. JOURNAL OF PLANT RESEARCH 2016; 129:51-65. [PMID: 26547558 DOI: 10.1007/s10265-015-0761-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Collapse
Affiliation(s)
- Maliwan Naconsie
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Manassawe Lertpanyasampatha
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Unchera Viboonjun
- Deparment of Plant Science, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Supatcharee Netrphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Rangsit, Pathumthani, 10210, Thailand
| | - Masayoshi Kuwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jarunya Narangajavana
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand.
| |
Collapse
|
64
|
Fourquin C, Beauzamy L, Chamot S, Creff A, Goodrich J, Boudaoud A, Ingram G. Mechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds. Development 2016; 143:3300-5. [DOI: 10.1242/dev.137224] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/24/2016] [Indexed: 02/03/2023]
Abstract
Seed development in angiosperms demands the tightly co-ordinated development of three genetically distinct structures. The embryo is surrounded by the endosperm, which is in turn enclosed within the maternally derived seed coat. In Arabidopsis final seed size is determined by early expansion of the coenocytic endosperm, which then cellularizes and subsequently undergoes developmental Programmed Cell Death, breaking down as the embryo grows. Endosperm breakdown requires the endosperm-specific basic Helix Loop Helix transcription factor ZHOUPI. However, to date the mechanism underlying the Arabidopsis endosperm breakdown process has not been elucidated. Here we provide evidence that ZHOUPI does not induce the developmental Programmed Cell Death of the endosperm directly. Instead ZHOUPI indirectly triggers cell death by regulating the expression of cell wall modifying enzymes, thus altering the physical properties of the endosperm to condition a mechanical environment permitting the compression of the cellularized endosperm by the developing embryo.
Collapse
Affiliation(s)
- Chloé Fourquin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Léna Beauzamy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Audrey Creff
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Justin Goodrich
- University of Edinburgh, Institute of Molecular Plant Sciences, Daniel Rutherford Building, Edinburgh, EH9 3BF, UK
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
65
|
Boex-Fontvieille E, Rustgi S, Reinbothe S, Reinbothe C. A Kunitz-type protease inhibitor regulates programmed cell death during flower development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6119-35. [PMID: 26160583 DOI: 10.1093/jxb/erv327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flower development and fertilization are tightly controlled in Arabidopsis thaliana. In order to permit the fertilization of a maximum amount of ovules as well as proper embryo and seed development, a subtle balance between pollen tube growth inside the transmitting tract and pollen tube exit from the septum is needed. Both processes depend on a type of programmed cell death that is still poorly understood. Here, it is shown that a Kunitz protease inhibitor related to water-soluble chlorophyll proteins of Brassicaceae (AtWSCP, encoded by At1g72290) is involved in controlling cell death during flower development in A. thaliana. Genetic, biochemical, and cell biology approaches revealed that WSCP physically interacts with RD21 (RESPONSIVE TO DESICCATION) and that this interaction in turn inhibits the activity of RD21 as a pro-death protein. The regulatory circuit identified depends on the restricted expression of WSCP in the transmitting tract and the septum epidermis. In a respective Atwscp knock-out mutant, flowers exhibited precocious cell death in the transmitting tract and unnatural death of septum epidermis cells. As a consequence, apical-basal pollen tube growth, fertilization of ovules, as well as embryo development and seed formation were perturbed. Together, the data identify a unique mechanism of cell death regulation that fine-tunes pollen tube growth.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Joseph Fourier, LBFA, BP53F, 38041 Grenoble cedex 9, France
| | - Sachin Rustgi
- Molecular Plant Sciences, Department of Crop and Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Joseph Fourier, LBFA, BP53F, 38041 Grenoble cedex 9, France
| | | |
Collapse
|
66
|
Yang W, Cai J, Zhou Z, Zhou G, Mei F, Wang L. Microautophagy involves programmed cell semi-death of sieve elements in developing caryopsis of Triticum aestivum L. Cell Biol Int 2015; 39:1364-75. [PMID: 26146941 DOI: 10.1002/cbin.10512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 07/02/2015] [Indexed: 11/10/2022]
Abstract
Differentiation of sieve elements (SEs) involves programmed cell semi-death, in which a small amount of organelles is retained. However, the mechanisms by which a large amount of SE cytoplasm is degraded and the specific proteases involved are not clear. In this study, we confirmed that the degradation of cytoplasm outside of the vacuole was mediated by microautophagy of the vacuole, and that the tonoplast selectively fused with the plasma membrane after most of the cytoplasm in the vacuoles was degraded. The integration of space enclosed a small amount of cytoplasm. Therefore, that fraction of the cytoplasm was preserved. At the same time, the cytosol was weakly acidic during membrane fusion because part of the tonoplast was ruptured. We also demonstrated that wheat aspartic protease (WAP1) and proteases including cathepsin B activity (PICA) were involved in programmed cell semi-death of SEs. PICA showed strongest activity before mass of the cytoplasm was degraded, which might contribute toward SE stability. We found that WAP1 mainly degraded the cytoplasm. Therefore, programmed cell semi-death of SEs might result from the joint action of vacuoles and multiple proteases.
Collapse
Affiliation(s)
- Wenli Yang
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jingtong Cai
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhuqing Zhou
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guangsheng Zhou
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fangzhu Mei
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Likai Wang
- Laboratory of Cell Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
67
|
At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:10545-50. [PMID: 26240315 DOI: 10.1073/pnas.1510140112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited knowledge of how plants regulate their growth and metabolism in response to drought and reduced soil water potential has impeded efforts to improve stress tolerance. Increased expression of the membrane-associated protein At14a-like1 (AFL1) led to increased growth and accumulation of the osmoprotective solute proline without negative effects on unstressed plants. Conversely, inducible RNA-interference suppression of AFL1 decreased growth and proline accumulation during low water potential while having no effect on unstressed plants. AFL1 overexpression lines had reduced expression of many stress-responsive genes, suggesting AFL1 may promote growth in part by suppression of negative regulatory genes. AFL1 interacted with the endomembrane proteins protein disulfide isomerase 5 (PDI5) and NAI2, with the PDI5 interaction being particularly increased by stress. PDI5 and NAI2 are negative regulatory factors, as pdi5, nai2, and pdi5-2nai2-3 mutants had increased growth and proline accumulation at low water potential. AFL1 also interacted with Adaptor protein2-2A (AP2-2A), which is part of a complex that recruits cargo proteins and promotes assembly of clathrin-coated vesicles. AFL1 colocalization with clathrin light chain along the plasma membrane, together with predictions of AFL1 structure, were consistent with a role in vesicle formation or trafficking. Fractionation experiments indicated that AFL1 is a peripheral membrane protein associated with both plasma membrane and endomembranes. These data identify classes of proteins (AFL1, PDI5, and NAI2) not previously known to be involved in drought signaling. AFL1-predicted structure, protein interactions, and localization all indicate its involvement in previously uncharacterized membrane-associated drought sensing or signaling mechanisms.
Collapse
|
68
|
Liu J, Hai G, Wang C, Cao S, Xu W, Jia Z, Yang C, Wang JP, Dai S, Cheng Y. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. J Proteomics 2015; 126:94-108. [DOI: 10.1016/j.jprot.2015.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023]
|
69
|
Porter BW, Yuen CYL, Christopher DA. Dual protein trafficking to secretory and non-secretory cell compartments: clear or double vision? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:174-9. [PMID: 25804820 DOI: 10.1016/j.plantsci.2015.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/08/2023]
Abstract
Approximately 18% of Arabidopsis thaliana proteins encode a signal peptide for translocation to the endoplasmic reticulum (ER), the gateway of the eukaryotic secretory pathway. However, it was recently discovered that some ER proteins can undergo both co-translational import into the ER/secretory pathway and trafficking to compartments outside of the secretory pathway. This phenomenon is observed among members of the protein disulfide isomerase (PDI) family, which are traditionally regarded as ER enzymes involved in protein folding. Although classical PDIs possess an N-terminal signal peptide and a C-terminal ER retention signal, some also dual localize to secretory and non-secretory compartments, including mammalian PDI ERp57, Chlamydomonas reinhardtii PDI RB60, and A. thaliana AtPDI2. ERp57 is present in both the ER and nucleus where it influences gene transcription. RB60 localizes to the ER and chloroplast where it modulates the redox state of polyadenylate-binding protein RB47. AtPDI2, which interacts with transcription factor MEE8, localizes to the ER-secretory pathway and the nucleus. A model proposing secretory trafficking of AtPDI2 and nuclear co-translocation of an AtPDI2-MEE8 complex illustrates the diversity of dual targeting mechanisms, the multifunctional roles of some PDIs, and the potential co-translocation of other proteins to multiple subcellular compartments.
Collapse
Affiliation(s)
- Brad W Porter
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Agricultural Science Building Room 218, Honolulu, HI 96822, USA.
| | - Christen Y L Yuen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Agricultural Science Building Room 218, Honolulu, HI 96822, USA.
| | - David A Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Agricultural Science Building Room 218, Honolulu, HI 96822, USA.
| |
Collapse
|
70
|
Wang H, Zou Z, Gong M. Molecular Cloning, Expression Analysis, and Preliminarily Functional Characterization of the Gene Encoding Protein Disulfide Isomerase from Jatropha curcas. Appl Biochem Biotechnol 2015; 176:428-39. [PMID: 25825250 DOI: 10.1007/s12010-015-1585-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/12/2015] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) in plants, arising from various environmental stresses, impair the thiol-contained proteins that are susceptible to irregular oxidative formation of disulfide bonds, which might be alleviated by a relatively specific modifier called protein disulfide isomerase (PDI). From our previous data of the transcriptome and digital gene expression of cold-hardened Jatropha curcas, a PDI gene was proposed to be cold-relevant. In this study, its full-length cDNA (JcPDI) was cloned, with the size of 1649 bp containing the entire open reading frame (ORF) of 1515 bp. This ORF encodes a polypeptide of 504 amino acids with theoretical molecular weight of 56.6 kDa and pI value of 4.85. One N-terminal signal peptide (-MASKGSIWSCMFLFSLI VAISAGEG-) and the C-terminal anchoring sequence motif (-KDEL-) specific to the endoplasmic reticulum, as well as two thioredoxin domains (-CGHC-), are also found by predictions. Through semi-quantitative RT-PCR, the expression of JcPDI was characterized to be tissue-differential strongly in leaves and roots, but weakly in stems, and of cold-induced alternations. Furthermore, JcPDI overexpression in yeast could notably enhance the cold resistance of host cells. Conclusively, these results explicitly suggested a considerable association of JcPDI to cold response and a putative application potential for its correlated genetic engineering.
Collapse
Affiliation(s)
- Haibo Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | | | | |
Collapse
|
71
|
Kimura S, Higashino Y, Kitao Y, Masuda T, Urade R. Expression and characterization of protein disulfide isomerase family proteins in bread wheat. BMC PLANT BIOLOGY 2015; 15:73. [PMID: 25849633 PMCID: PMC4355359 DOI: 10.1186/s12870-015-0460-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/13/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The major wheat seed proteins are storage proteins that are synthesized in the rough endoplasmic reticulum (ER) of starchy endosperm cells. Many of these proteins have intra- and intermolecular disulfide bonds. In eukaryotes, the formation of most intramolecular disulfide bonds in the ER is thought to be catalyzed by protein disulfide isomerase (PDI) family proteins. The cDNAs that encode eight groups of bread wheat (Triticum aestivum L.) PDI family proteins have been cloned, and their expression levels in developing wheat grains have been determined. The purpose of the present study was to characterize the enzymatic properties of the wheat PDI family proteins and clarify their expression patterns in wheat caryopses. RESULTS PDI family cDNAs, which are categorized into group I (TaPDIL1Aα, TaPDIL1Aβ, TaPDIL1Aγ, TaPDIL1Aδ, and TaPDIL1B), group II (TaPDIL2), group III (TaPDIL3A), group IV (TaPDIL4D), and group V (TaPDIL5A), were cloned. The expression levels of recombinant TaPDIL1Aα, TaPDIL1B, TaPDIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A in Escherichia coli were established from the cloned cDNAs. All recombinant proteins were expressed in soluble forms and purified. Aside from TaPDIL3A, the recombinant proteins exhibited oxidative refolding activity on reduced and denatured ribonuclease A. Five groups of PDI family proteins were distributed throughout wheat caryopses, and expression levels of these proteins were higher during grain filling than in the late stage of maturing. Localization of these proteins in the ER was confirmed by fluorescent immunostaining of the immature caryopses. In mature grains, the five groups of PDI family proteins remained in the aleurone cells and the protein matrix of the starchy endosperm. CONCLUSIONS High expression of PDI family proteins during grain filling in the starchy endosperm suggest that these proteins play an important role in forming intramolecular disulfide bonds in seed storage proteins. In addition, these PDI family proteins that remain in the aleurone layers of mature grains likely assist in folding newly synthesized hydrolytic enzymes during germination.
Collapse
Affiliation(s)
- Shizuka Kimura
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Yuki Higashino
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Yuki Kitao
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Taro Masuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Reiko Urade
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 Japan
| |
Collapse
|
72
|
Xie F, Wang Q, Sun R, Zhang B. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:789-804. [PMID: 25371507 PMCID: PMC4321542 DOI: 10.1093/jxb/eru437] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drought and salinity are two major environmental factors adversely affecting plant growth and productivity. However, the regulatory mechanism is unknown. In this study, the potential roles of small regulatory microRNAs (miRNAs) in cotton response to those stresses were investigated. Using next-generation deep sequencing, a total of 337 miRNAs with precursors were identified, comprising 289 known miRNAs and 48 novel miRNAs. Of these miRNAs, 155 miRNAs were expressed differentially. Target prediction, Gene Ontology (GO)-based functional classification, and Kyoto Encyclopedia of Genes and Genomes (KEGG)-based functional enrichment show that these miRNAs might play roles in response to salinity and drought stresses through targeting a series of stress-related genes. Degradome sequencing analysis showed that at least 55 predicted target genes were further validated to be regulated by 60 miRNAs. CitationRank-based literature mining was employed to determinhe the importance of genes related to drought and salinity stress. The NAC, MYB, and MAPK families were ranked top under the context of drought and salinity, indicating their important roles for the plant to combat drought and salinity stress. According to target prediction, a series of cotton miRNAs are associated with these top-ranked genes, including miR164, miR172, miR396, miR1520, miR6158, ghr-n24, ghr-n56, and ghr-n59. Interestingly, 163 cotton miRNAs were also identified to target 210 genes that are important in fibre development. These results will contribute to cotton stress-resistant breeding as well as understanding fibre development.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Qinglian Wang
- Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, PR China
| | - Runrun Sun
- Department of Biology, East Carolina University, Greenville, NC 27858, USA Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
73
|
Van Hautegem T, Waters AJ, Goodrich J, Nowack MK. Only in dying, life: programmed cell death during plant development. TRENDS IN PLANT SCIENCE 2015; 20:102-13. [PMID: 25457111 DOI: 10.1016/j.tplants.2014.10.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 05/21/2023]
Abstract
Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants.
Collapse
Affiliation(s)
- Tom Van Hautegem
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Andrew J Waters
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
74
|
Abstract
N-linked glycosylation is one of the most prevalent cotranslational protein modifications in plants. It is initiated by a conserved process in the endoplasmic reticulum and subsequently involves a series of different N-glycan maturation steps that take place in the ER and Golgi apparatus. Despite our vast knowledge on the different processing steps we still understand very little about the role of characteristic glycoforms present on individual plant glycoproteins. Here, we describe convenient tools that allow the fast and reliable characterization of N-glycosylation on plant glycoproteins. The presented protocols can be adopted to other plant species and to the characterization of N-glycans from different glycoproteins.
Collapse
|
75
|
Davies LJ, Zhang L, Elling AA. The Arabidopsis thaliana papain-like cysteine protease RD21 interacts with a root-knot nematode effector protein. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The root-knot nematode Meloidogyne chitwoodi secretes effector proteins into the cells of host plants to manipulate plant-derived processes in order to achieve successful parasitism. Mc1194 is a M. chitwoodi effector that is highly expressed in pre-parasitic second-stage juvenile nematodes. Yeast two-hybrid assays revealed Mc1194 specifically interacts with a papain-like cysteine protease (PLCP), RD21A in Arabidopsis thaliana. Mc1194 interacts with both the protease and granulin domains of RD21A. PLCPs are targeted by effectors secreted by bacterial, fungal and oomycete pathogens and the hypersusceptibility of rd21-1 mutants to M. chitwoodi indicates RD21A plays a role in plant-parasitic nematode infection.
Collapse
Affiliation(s)
- Laura J. Davies
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
76
|
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 2014; 15:949. [PMID: 25363865 PMCID: PMC4237293 DOI: 10.1186/1471-2164-15-949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance. RESULTS The differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p<0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes. CONCLUSIONS The differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening related protein and albumins are expected to serve as important molecular components for biotechnological application and development of sustainable resistance against Foc1.
Collapse
Affiliation(s)
- Moniya Chatterjee
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sumanti Gupta
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Anirban Bhar
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Dipankar Chakraborti
- />Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), 30 Park Street, Kolkata, 700016 India
| | - Debabrata Basu
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sampa Das
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| |
Collapse
|
77
|
Zhang B, Tremousaygue D, Denancé N, van Esse HP, Hörger AC, Dabos P, Goffner D, Thomma BPHJ, van der Hoorn RAL, Tuominen H. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1009-19. [PMID: 24947605 PMCID: PMC4321228 DOI: 10.1111/tpj.12602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 05/18/2023]
Abstract
PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R. solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.
Collapse
Affiliation(s)
- Bo Zhang
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| | - Dominique Tremousaygue
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Nicolas Denancé
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - H Peter van Esse
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anja C Hörger
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Patrick Dabos
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 44131326 Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 259431326 Castanet-Tolosan, France
| | - Deborah Goffner
- Laboratoire de Recherche en Sciences Végétales, Unité Mixte de Recherche 5546, Université de Toulouse, UPS31326 Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 554631326 Castanet-Tolosan, France
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research50829, Cologne, Germany
| | - Hannele Tuominen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University901 87, Umeå, Sweden
| |
Collapse
|
78
|
Morel A, Teyssier C, Trontin JF, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. PHYSIOLOGIA PLANTARUM 2014; 152:184-201. [PMID: 24460664 DOI: 10.1111/ppl.12158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 05/22/2023]
Abstract
Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets.
Collapse
Affiliation(s)
- Alexandre Morel
- INRA, UR 0588 Unité Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, CS 4001, Ardon, F-45075 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Wittenberg G, Levitan A, Klein T, Dangoor I, Keren N, Danon A. Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1003-13. [PMID: 24684167 DOI: 10.1111/tpj.12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 05/09/2023]
Abstract
A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild-type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non-photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild-type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light-regulated manner.
Collapse
Affiliation(s)
- Gal Wittenberg
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
80
|
Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS One 2014; 9:e94704. [PMID: 24747843 PMCID: PMC3991636 DOI: 10.1371/journal.pone.0094704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene family.
Collapse
|
81
|
Hierl G, Höwing T, Isono E, Lottspeich F, Gietl C. Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. PLANT MOLECULAR BIOLOGY 2014; 84:605-20. [PMID: 24287716 PMCID: PMC3950626 DOI: 10.1007/s11103-013-0157-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 05/24/2023]
Abstract
Ricinosomes are specialized ER-derived organelles that store the inactive pro-forms of KDEL-tailed cysteine endopeptidases (KDEL-CysEP) associated with programmed cell death (PCD). The Arabidopsis genome encodes three KDEL-CysEP (AtCEP1, AtCEP2, and AtCEP3) that are differentially expressed in vegetative and generative tissues undergoing PCD. These Arabidopsis proteases have not been characterized at a biochemical level, nor have they been localized intracellularly. In this study, we characterized AtCEP2. A 3xHA-mCherry-AtCEP2 gene fusion including pro-peptide and KDEL targeting sequences expressed under control of the endogenous promoter enabled us to isolate AtCEP2 "ex vivo". The purified protein was shown to be activated in a pH-dependent manner. After activation, however, protease activity was pH-independent. Analysis of substrate specificity showed that AtCEP2 accepts proline near the cleavage site, which is a rare feature specific for KDEL-CysEPs. mCherry-AtCEP2 was detected in the epidermal layers of leaves, hypocotyls and roots; in the root, it was predominantly found in the elongation zone and root cap. Co-localization with an ER membrane marker showed that mCherry-AtCEP2 was stored in two different types of ER-derived organelles: 10 μm long spindle shaped organelles as well as round vesicles with a diameter of approximately 1 μm. The long organelles appear to be ER bodies, which are found specifically in Brassicacae. The round vesicles strongly resemble the ricinosomes first described in castor bean. This study provides a first evidence for the existence of ricinosomes in Arabidopsis, and may open up new avenues of research in the field of PCD and developmental tissue remodeling.
Collapse
Affiliation(s)
- Georg Hierl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Timo Höwing
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Erika Isono
- Center of Life and Food Sciences Weihenstephan, Department of Plant Systems Biology, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Friedrich Lottspeich
- Max Planck Institute of Biochemistry, Protein Analysis, 82152 Martinsried, Germany
| | - Christine Gietl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| |
Collapse
|
82
|
McDonald KL. Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:152-163. [PMID: 24252586 DOI: 10.1017/s1431927613013846] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A variety of specimens including bacteria, ciliates, choanoflagellates (Salpingoeca rosetta), zebrafish (Danio rerio) embryos, nematode worms (Caenorhabditis elegans), and leaves of white clover (Trifolium repens) plants were high pressure frozen, freeze-substituted, infiltrated with either Epon, Epon-Araldite, or LR White resins, and polymerized. Total processing time from freezing to blocks ready to section was about 6 h. For epoxy embedding the specimens were freeze-substituted in 1% osmium tetroxide plus 0.1% uranyl acetate in acetone. For embedding in LR White the freeze-substitution medium was 0.2% uranyl acetate in acetone. Rapid infiltration was achieved by centrifugation through increasing concentrations of resin followed by polymerization at 100°C for 1.5-2 h. The preservation of ultrastructure was comparable to standard freeze substitution and resin embedding methods that take days to complete. On-section immunolabeling results for actin and tubulin molecules were positive with very low background labeling. The LR White methods offer a safer, quicker, and less-expensive alternative to Lowicryl embedding of specimens processed for on-section immunolabeling without traditional aldehyde fixatives.
Collapse
Affiliation(s)
- Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
83
|
Srivastava R, Deng Y, Howell SH. Stress sensing in plants by an ER stress sensor/transducer, bZIP28. FRONTIERS IN PLANT SCIENCE 2014; 5:59. [PMID: 24616727 PMCID: PMC3935173 DOI: 10.3389/fpls.2014.00059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/05/2014] [Indexed: 05/19/2023]
Abstract
Two classes of ER stress sensors are known in plants, membrane-associated basic leucine zipper (bZIP) transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II membrane protein with a single pass transmembrane domain, residing in the ER. bZIP28's N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, binding immunoglobulin protein (BIP). Under unstressed conditions, BIP binds to intrinsically disordered regions in bZIP28's lumen-facing tail and retains it in the ER. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BIP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BIP is that BIP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BIP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.
Collapse
Affiliation(s)
- Renu Srivastava
- Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
| | - Yan Deng
- Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
| | - Stephen H. Howell
- Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, USA
- *Correspondence: Stephen H. Howell, Plant Sciences Institute, 1035A Roy J. Carver Co-Laboratory, Iowa State University, Ames, IA 50011, USA e-mail:
| |
Collapse
|
84
|
Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 2014; 13:252-68. [PMID: 24198433 PMCID: PMC3879618 DOI: 10.1074/mcp.m113.032227] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/23/2013] [Indexed: 01/02/2023] Open
Abstract
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Collapse
Affiliation(s)
- Marc Galland
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Romain Huguet
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Erwann Arc
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Gwendal Cueff
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Dominique Job
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Loïc Rajjou
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| |
Collapse
|
85
|
Zhang Y, Liang W, Shi J, Xu J, Zhang D. MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1166-78. [PMID: 23911125 DOI: 10.1111/jipb.12094] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/30/2013] [Indexed: 05/23/2023]
Abstract
Plant seed size is tightly regulated by the development of seed coat, embryo, and endosperm; however, currently, its underlying mechanism remains unclear. In this study, we revealed a regulatory role of an R2R3 MYB transcription factor MYB56 in controlling seed size specifically in Arabidopsis thaliana L. Loss-of-function or knock-down of MYB56 yielded smaller seeds as compared with the wild type. Conversely, overexpression of MYB56 produced larger seeds. Further observation using semi-thin sections showed that myb56 developed smaller contracted endothelial cells and reduced cell number in the outer integument layer of the seed coat during the seed development; by contrast, MYB56 overexpressing lines had expanded endothelial cells and increased cell number in the outer integument layer of the seed coat, suggesting the essential role of MYB56 in regulating seed development. In addition, reciprocal cross-analysis showed that MYB56 affected the seed development maternally. MYB56 was shown to be dominantly expressed in developing seeds, consistently with its function in seed development. Moreover, quantitative reverse transcription polymerase chain reaction analysis revealed that MYB56 regulates the expression of genes involved in cell wall metabolism such as cell division and expansion. Altogether, our results demonstrated that MYB56 represents an unknown pathway for positively controlling the seed size.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
86
|
Yuen CYL, Matsumoto KO, Christopher DA. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase. Biomolecules 2013; 3:848-69. [PMID: 24970193 PMCID: PMC4030966 DOI: 10.3390/biom3040848] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/27/2013] [Accepted: 10/12/2013] [Indexed: 12/18/2022] Open
Abstract
Protein disulfide isomerases (PDIs) catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER). Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a') and two non-catalytic domains (b, b'), in the order a-b-b'-a'. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6). Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11) possess two thioredoxin domains, but without intervening b-b' domains. C-terminal green fluorescent protein (GFP) fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA-. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6) functionally complemented dsbA-. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA-. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.
Collapse
Affiliation(s)
- Christen Y L Yuen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Kristie O Matsumoto
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - David A Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
87
|
Wang J, Wang X, Yuan B, Qiang S. Differential gene expression for Curvularia eragrostidis pathogenic incidence in crabgrass (Digitaria sanguinalis) revealed by cDNA-AFLP analysis. PLoS One 2013; 8:e75430. [PMID: 24116044 PMCID: PMC3792964 DOI: 10.1371/journal.pone.0075430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/14/2013] [Indexed: 11/26/2022] Open
Abstract
Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C.eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D.sanguinalis.
Collapse
Affiliation(s)
- Jianshu Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Agricultural College, Hebei University of Engineering, Handan, People’s Republic of China
| | - Xuemin Wang
- Agricultural College, Hebei University of Engineering, Handan, People’s Republic of China
| | - Bohua Yuan
- Agricultural College, Hebei University of Engineering, Handan, People’s Republic of China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| |
Collapse
|
88
|
Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013; 2013:585431. [PMID: 24187554 PMCID: PMC3800646 DOI: 10.1155/2013/585431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022] Open
Abstract
Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants.
Collapse
|
89
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants. Mol Cell Proteomics 2013; 12:3666-76. [PMID: 24019145 DOI: 10.1074/mcp.m113.030692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41092, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Aller I, Meyer AJ. The oxidative protein folding machinery in plant cells. PROTOPLASMA 2013; 250:799-816. [PMID: 23090240 DOI: 10.1007/s00709-012-0463-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | | |
Collapse
|
91
|
Kim JH, Kim WT. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. PLANT PHYSIOLOGY 2013; 162:1733-49. [PMID: 23696092 PMCID: PMC3707541 DOI: 10.1104/pp.113.220103] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Really Interesting New Gene (RING) E3 ubiquitin ligases have been implicated in cellular responses to the stress hormone abscisic acid (ABA) as well as to environmental stresses in higher plants. Here, an ABA-insensitive RING protein3 (atairp3) loss-of-function mutant line in Arabidopsis (Arabidopsis thaliana) was isolated due to its hyposensitivity to ABA during its germination stage as compared with wild-type plants. AtAIRP3 contains a single C3HC4-type RING motif, a putative myristoylation site, and a domain associated with RING2 (DAR2) domain. Unexpectedly, AtAIRP3 was identified as LOSS OF GDU2 (LOG2), which was recently shown to participate in an amino acid export system via interaction with GLUTAMINE DUMPER1. Thus, AtAIRP3 was renamed as AtAIRP3/LOG2. Transcript levels of AtAIRP3/LOG2 were up-regulated by drought, high salinity, and ABA, suggesting a role for this factor in abiotic stress responses. The atairp3/log2-2 knockout mutant and 35S:AtAIRP3-RNAi knockdown transgenic plants displayed impaired ABA-mediated seed germination and stomata closure. Cosuppression and complementation studies further supported a positive role for AtAIRP3/LOG2 in ABA responses. Suppression of AtAIRP3/LOG2 resulted in marked hypersensitive phenotypes toward high salinity and water deficit relative to wild-type plants. These results suggest that Arabidopsis RING E3 AtAIRP3/LOG2 is a positive regulator of the ABA-mediated drought and salt stress tolerance mechanism. Using yeast (Saccharomyces cerevisiae) two-hybrid, in vitro, and in vivo immunoprecipitation, cell-free protein degradation, and in vitro ubiquitination assays, RESPONSIVE TO DEHYDRATION21 was identified as a substrate protein of AtAIRP3/LOG2. Collectively, our data suggest that AtAIRP3/LOG2 plays dual functions in ABA-mediated drought stress responses and in an amino acid export pathway in Arabidopsis.
Collapse
|
92
|
Robbins ML, Roy A, Wang PH, Gaffoor I, Sekhon RS, de O Buanafina MM, Rohila JS, Chopra S. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize. J Proteomics 2013; 93:254-75. [PMID: 23811284 DOI: 10.1016/j.jprot.2013.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED The maize pericarp color1 (p1) gene encodes a Myb transcription factor that regulates the accumulation of 3-deoxyflavonoid pigments called phlobaphenes. The Unstable factor for orange1 (Ufo1) is a dominant epigenetic modifier of the p1 that results in ectopic pigmentation in pericarp. Presence of Ufo1-1 correlates with pleiotropic growth and developmental defects. To investigate the Ufo1-1-induced changes in the proteome, we conducted comparative proteomics analysis of P1-wr; Ufo1-1 pericarps using the 2-D DIGE and iTRAQ techniques. Most of the identified proteins were found to be involved in glycolysis, protein synthesis and modification, flavonoid and lignin biosynthesis and defense responses. Further, immunoblot analysis of internode protein extracts demonstrated that caffeoyl CoA O-methyltransferase (COMT) is post-transcriptionally down regulated in P1-wr; Ufo1-1 plants. Consistent with the down regulation of COMT, the concentrations of p-coumaric acid, syringaldehydes, and lignin are reduced in P1-wr; Ufo1-1 internodes. The reductions in these phenylpropanoids correlate with the bent stalk and stunted growth of P1-wr; Ufo1-1 plants. Finally, over-expression of the p1 in transgenic plants is also correlated with a lodging phenotype and reduced COMT expression. We conclude that ectopic expression of p1 can result in developmental defects that are correlated with altered regulation and synthesis of phenylpropanoid compounds including lignin. BIOLOGICAL SIGNIFICANCE Transcription factors have specific expression patterns that ensure that the biochemical pathways under their control are active in relevant tissues. Plant breeders can select for alleles of transcription factors that produce desirable expression patterns to improve a plant's growth, development, and defense against insects and pathogens. The resulting de novo accumulation of metabolites in plant tissues in significant quantities could have beneficial and/or detrimental consequences. To understand this problem we investigated how the aberrant expression of a classically-studied transcription factor pericarp color1 (p1) which regulates phenylpropanoid metabolism, affects the maize proteome in pericarp tissue. We utilized a dominant mutant Unstable factor for orange 1-1 (Ufo1-1) which reduces the epigenetic suppression of p1 in various tissues throughout the maize plant. Our proteomic analysis shows how, in the presence of Ufo1-1, key enzymes of the glycolytic and shikimic acid pathways were modulated to produce substrates required for flavonoid synthesis. The finding that the presence of Ufo1-1 affected the expression levels of various enzymes in the lignin pathway was of particular interest. We show that lignin was reduced in Ufo1-1 plants expressing p1 and was associated with the post-transcriptional down regulation of CoA O-methyltransferase (COMT) enzyme. We further correlated the down-regulation of COMT with plant bending phenotype in Ufo1-1 plants expressing p1 and to a stalk lodging phenotype of transgenic p1 plants. This study demonstrates that although there can be adverse consequences to aberrantly overexpressing transcription factors, there might also be benefits such as being able to reduce lignin content for biofuel crops. However, more research will be required to understand the genetic and epigenetic regulation of transcription factors and how their expression can be optimized to obtain desired traits in preferred tissue types. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Michael L Robbins
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Doehlemann G, Hemetsberger C. Apoplastic immunity and its suppression by filamentous plant pathogens. THE NEW PHYTOLOGIST 2013; 198:1001-1016. [PMID: 23594392 DOI: 10.1111/nph.12277] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens have evolved a variety of strategies to enter plant hosts and cause disease. In particular, biotrophic pathogens, which parasitize living plant tissue, establish sophisticated interactions in which they modulate the plant's metabolism to their own good. The prime decision, whether or not a pathogen can accommodate itself in its host tissue, is made during the initial phase of infection. At this stage, the plant immune system recognizes conserved molecular patterns of the invading microbe, which initiate a set of basal immune responses. Induced plant defense proteins, toxic compounds and antimicrobial proteins encounter a broad arsenal of pathogen-derived virulence factors that aim to disarm host immunity. Crucial regulatory processes and protein-protein interactions take place in the apoplast, that is, intercellular spaces, plant cell walls and defined host-pathogen interfaces which are formed between the plant cytoplasm and the specialized infection structures of many biotrophic pathogens. This article aims to provide an insight into the most important principles and components of apoplastic plant immunity and its modulation by filamentous microbial pathogens.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Christoph Hemetsberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
94
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
95
|
Yuen CCY, Christopher DA. The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AOB PLANTS 2013; 5:plt012. [PMCID: PMC4455320 DOI: 10.1093/aobpla/plt012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cyclic nucleotide-gated channels, CNGC19 and CNGC20, are the sole members of the highly isolated evolutionary group IV-A in Arabidopsis plants. Prior studies have shown that the expression of both CNGC19 and CNGC20 genes are induced by salinity and biotic stress. In this report, CNGC19 and CNGC20 were determined to localize to the vacuolar membrane. Co-expression of CNGC19 and CNGC20 increased the efficiency of vacuolar localization. CNGC19 and CNGC20 are, therefore, vacuolar membrane channels that are hypothesized to mediate plant response to salinity and biotic stress. Plant cyclic nucleotide-gated channels (CNGCs) are implicated in the uptake of both essential and toxic cations, Ca2+ signalling, and responses to biotic and abiotic stress. The 20 CNGC paralogues of Arabidopsis are divided into five evolutionary groups. Group IV-A is highly isolated and consists only of two closely spaced genes, CNGC19 and CNGC20. Prior studies have shown that both genes are induced by salinity and biotic stress. A unique feature of CNGC19 and CNGC20 is their long hydrophilic N-termini. To determine the subcellular locations of CNGC19 and CNGC20, partial and full-length fusions to GFP(S65T) were generated. Translational fusions of the N-termini of CNGC19 (residues 1–171) and CNGC20 (residues 1–200) to GFP(S65T) were targeted to punctate structures when transiently expressed in leaf protoplasts. In the case of CNGC20, but not CNGC19, the punctate structures were co-labelled with a marker for the Golgi. The full-length CNGC19-GFP fusion co-localized with markers for the vacuole membrane (αTIP- and γTIP-mCherry). Vacuole membrane labelling by the full-length CNGC20-GFP fusion was also observed, but the signal was weak and accompanied by numerous punctate signals that did not co-localize with αTIP- or γTIP-mCherry. These punctate structures diminished, and localization of full-length CNGC20-GFP to the vacuole increased, when it was co-expressed with the full-length CNGC19-mCherry. Vacuole membrane labelling was also detected in planta via immunoelectron microscopy using a CNGC20-antiserum on cryopreserved ultrathin sections of roots. We hypothesize that the role of group IV-A CNGCs is to mediate the movement of cations between the central vacuole and the cytosol in response to certain types of abiotic and biotic stress.
Collapse
|
96
|
Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, Tokarski C. Identification of cell wall proteins in the flax (Linum usitatissimum
) stem. Proteomics 2013; 13:812-25. [DOI: 10.1002/pmic.201200257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/08/2012] [Accepted: 11/14/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Arnaud Day
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Stéphane Fénart
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Godfrey Neutelings
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Simon Hawkins
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Stress Abiotiques et Différenciation des Végétaux Cultivés (SADV); INRA UMR 1281, Villeneuve d'Ascq France
| | - Christian Rolando
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP); USR CNRS 3290; Villeneuve d'Ascq; France
| | - Caroline Tokarski
- Université de Lille 1 Sciences et Technologies and Protéomique; Modifications Post-traductionnelles et Glycobiologie IFR 147, Villeneuve d'Ascq France
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP); USR CNRS 3290; Villeneuve d'Ascq; France
| |
Collapse
|
97
|
Onda Y, Kawagoe Y. P5-type sulfhydryl oxidoreductase promotes the sorting of proteins to protein body I in rice endosperm cells. PLANT SIGNALING & BEHAVIOR 2013; 8:e23075. [PMID: 23299424 PMCID: PMC3657003 DOI: 10.4161/psb.23075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 05/30/2023]
Abstract
In rice (Oryza sativa) endosperm cells, oxidative protein folding is necessary for the sorting of storage proteins to protein bodies, PB-I and PB-II. Here we examined the role of sulfhydryl oxidoreductase PDIL2;3 (a human P5 ortholog) in the endoplasmic reticulum (ER), using GFP-AB, a PB-I marker in which the N-terminal region (AB) of α-globulin is fused to green fluorescent protein (GFP). RNAi knockdown of PDIL2;3 inhibited the accumulation of GFP-AB in PB-I and promoted its exit from the ER. We discuss the role of PDIL2;3 in retaining proteins within the ER and specifying their localization to PB-I through disulfide bond formation.
Collapse
Affiliation(s)
- Yayoi Onda
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki, Japan
- Department of Food and Applied Life Sciences; Yamagata University; Tsuruoka, Yamagata, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki, Japan
| |
Collapse
|
98
|
Withana-Gamage TS, Hegedus DD, Qiu X, Yu P, May T, Lydiate D, Wanasundara JPD. Characterization of Arabidopsis thaliana lines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:901-12. [PMID: 23298281 DOI: 10.1021/jf304328n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana lines expressing only one cruciferin subunit type (double-knockout; CRUAbc, CRUaBc, or CRUabC) or devoid of cruciferin (triple-knockout; CRU-) or napin (napin-RNAi) were generated using combined T-DNA insertions or RNA interference approaches. Seeds of double-knockout lines accumulated homohexameric cruciferin and contained similar protein levels as the wild type (WT). Chemical imaging of WT and double-knockout seeds using synchrotron FT-IR spectromicroscopy (amide I band, 1650 cm(-1), νC═O) showed that proteins were concentrated in the cell center and protein storage vacuoles. Protein secondary structure features of the homohexameric cruciferin lines showed predominant β-sheet content. The napin-RNAi line had lower α-helix content than the WT. Lines entirely devoid of cruciferin had high α-helix and low β-sheet levels, indicating that structurally different proteins compensate for the loss of cruciferin. Lines producing homohexameric CRUC showed minimal changes in protein secondary structure after pepsin treatment, indicating low enzyme accessibility. The Synchrotron FT-IR technique provides information on protein secondary structure and changes to the structure within the cell.
Collapse
|
99
|
Parsons HT, Drakakaki G, Heazlewood JL. Proteomic dissection of the Arabidopsis Golgi and trans-Golgi network. FRONTIERS IN PLANT SCIENCE 2013; 3:298. [PMID: 23316206 PMCID: PMC3539648 DOI: 10.3389/fpls.2012.00298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/12/2012] [Indexed: 05/19/2023]
Abstract
The plant Golgi apparatus and trans-Golgi network are major endomembrane trafficking hubs within the plant cell and are involved in a diverse and vital series of functions to maintain plant growth and development. Recently, a series of disparate technical approaches have been used to isolate and characterize components of these complex organelles by mass spectrometry in the model plant Arabidopsis thaliana. Collectively, these studies have increased the number of Golgi and vesicular localized proteins identified by mass spectrometry to nearly 500 proteins. We have sought to provide a brief overview of these technical approaches and bring the datasets together to examine how they can reveal insights into the secretory pathway.
Collapse
Affiliation(s)
- Harriet T. Parsons
- Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
| | - Joshua L. Heazlewood
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| |
Collapse
|
100
|
Domínguez F, Cejudo FJ. A comparison between nuclear dismantling during plant and animal programmed cell death. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:114-121. [PMID: 23116678 DOI: 10.1016/j.plantsci.2012.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Programmed cell death (PCD) is a process of organized destruction of cells, essential for the development and maintenance of cellular homeostasis of multicellular organisms. Cells undergoing PCD begin a degenerative process in response to internal or external signals, whereby the nucleus becomes one of the targets. The process of nuclear dismantling includes events affecting the nuclear envelope, such as formation of lobes at the nuclear surface, selective proteolysis of nucleoporins and nuclear pore complex clustering. In addition, chromatin condensation increases in coordination with DNA fragmentation. These processes have been largely studied in animals, but remain poorly understood in plants. The overall process of cell death has different morphological and biochemical features in plants and animals. However, recent advances suggest that nuclear dismantling in plant cells progresses with morphological and biochemical characteristics similar to those in apoptotic animal cells. In this review, we summarize nuclear dismantling in plant PCD, focusing on the similarities and differences with their animal counterparts.
Collapse
Affiliation(s)
- Fernando Domínguez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | | |
Collapse
|