51
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
52
|
Zhang P, Wang Y, Wang J, Li G, Li S, Ma J, Peng X, Yin J, Liu Y, Zhu Y. Transcriptomic and physiological analyses reveal changes in secondary metabolite and endogenous hormone in ginger (Zingiber officinale Rosc.) in response to postharvest chilling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107799. [PMID: 37271022 DOI: 10.1016/j.plaphy.2023.107799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.
Collapse
Affiliation(s)
- Pan Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yanhong Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jie Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Gang Li
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Siyun Li
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- Jingzhou Jiazhiyuan Biotechnology Co. Ltd., Jingzhou, 434025, Hubei, China
| | - Xiangyan Peng
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongxing Zhu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
53
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
54
|
Chen H, Song Y, Li H, Zaman S, Fan K, Ding Z, Wang Y. Enhancing the Adaptability of Tea Plants ( Camellia sinensis L.) to High-Temperature Stress with Small Peptides and Biosurfactants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2817. [PMID: 37570970 PMCID: PMC10421190 DOI: 10.3390/plants12152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Tea plants are highly susceptible to the adverse effects of a high-temperature climate, which can cause reduced yield and quality and even lead to plant death in severe cases. Therefore, reducing the damage caused by high-temperature stress and maintaining the photosynthetic capacity of tea plants is a critical technical challenge. In this study, we investigated the impact of small oligopeptides (small peptides) and surfactants on the high-temperature-stress tolerance of tea plants. Our findings demonstrated that the use of small peptides and surfactants enhances the antioxidant capacity of tea plants and protects their photosynthetic system. They also induce an increase in gibberellin (GA) content and a decrease in jasmonic acid (JA), strigolactone (SL), auxin (IAA), and cytokinin (CTK) content. At the same time, small peptides regulate the metabolic pathways of diterpenoid biosynthesis. Additionally, small peptides and surfactants induce an increase in L-Carnosine and N-Glycyl-L-Leucine content and a decrease in (5-L-Glutamyl)-L-Amino Acid content, and they also regulate the metabolic pathways of Beta-Alanine metabolism, Thiamine metabolism, and Glutathione metabolism. In summary, small peptides and surfactants enhance the ability of tea plants to resist high-temperature stress.
Collapse
Affiliation(s)
- Hao Chen
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266000, China; (H.C.); (Y.S.); (H.L.); (K.F.)
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266000, China; (H.C.); (Y.S.); (H.L.); (K.F.)
| | - He Li
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266000, China; (H.C.); (Y.S.); (H.L.); (K.F.)
| | - Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266000, China; (H.C.); (Y.S.); (H.L.); (K.F.)
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266000, China; (H.C.); (Y.S.); (H.L.); (K.F.)
| |
Collapse
|
55
|
Boutet G, Lavaud C, Lesné A, Miteul H, Pilet-Nayel ML, Andrivon D, Lejeune-Hénaut I, Baranger A. Five Regions of the Pea Genome Co-Control Partial Resistance to D. pinodes, Tolerance to Frost, and Some Architectural or Phenological Traits. Genes (Basel) 2023; 14:1399. [PMID: 37510304 PMCID: PMC10379203 DOI: 10.3390/genes14071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence for reciprocal links between plant responses to biotic or abiotic stresses and architectural and developmental traits has been raised using approaches based on epidemiology, physiology, or genetics. Winter pea has been selected for years for many agronomic traits contributing to yield, taking into account architectural or phenological traits such as height or flowering date. It remains nevertheless particularly susceptible to biotic and abiotic stresses, among which Didymella pinodes and frost are leading examples. The purpose of this study was to identify and resize QTL localizations that control partial resistance to D. pinodes, tolerance to frost, and architectural or phenological traits on pea dense genetic maps, considering how QTL colocalizations may impact future winter pea breeding. QTL analysis revealed five metaQTLs distributed over three linkage groups contributing to both D. pinodes disease severity and frost tolerance. At these loci, the haplotypes of alleles increasing both partial resistance to D. pinodes and frost tolerance also delayed the flowering date, increased the number of branches, and/or decreased the stipule length. These results question both the underlying mechanisms of the joint control of biotic stress resistance, abiotic stress tolerance, and plant architecture and phenology and the methods of marker-assisted selection optimizing stress control and productivity in winter pea breeding.
Collapse
Affiliation(s)
- Gilles Boutet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | | | - Didier Andrivon
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| | - Isabelle Lejeune-Hénaut
- BioEcoAgro Joint Research Unit, INRAE, Université de Lille, Université de Liège, Université de Picardie Jules Verne, 80200 Estrées-Mons, France
| | - Alain Baranger
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu, France
| |
Collapse
|
56
|
Huang J, Zhao X, Bürger M, Chory J, Wang X. The role of ethylene in plant temperature stress response. TRENDS IN PLANT SCIENCE 2023; 28:808-824. [PMID: 37055243 DOI: 10.1016/j.tplants.2023.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.
Collapse
Affiliation(s)
- Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
57
|
Shan X, Yang Y, Wei S, Wang C, Shen W, Chen HB, Shen JY. Involvement of CBF in the fine-tuning of litchi flowering time and cold and drought stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1167458. [PMID: 37377797 PMCID: PMC10291182 DOI: 10.3389/fpls.2023.1167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
Litchi (Litchi chinensis) is an economically important fruit tree in southern China and is widely cultivated in subtropical regions. However, irregular flowering attributed to inadequate floral induction leads to a seriously fluctuating bearing. Litchi floral initiation is largely determined by cold temperatures, whereas the underlying molecular mechanisms have yet to be identified. In this study, we identified four CRT/DRE BINDING FACTORS (CBF) homologs in litchi, of which LcCBF1, LcCBF2 and LcCBF3 showed a decrease in response to the floral inductive cold. A similar expression pattern was observed for the MOTHER OF FT AND TFL1 homolog (LcMFT) in litchi. Furthermore, both LcCBF2 and LcCBF3 were found to bind to the promoter of LcMFT to activate its expression, as indicated by the analysis of yeast-one-hybrid (Y1H), electrophoretic mobility shift assays (EMSA), and dual luciferase complementation assays. Ectopic overexpression of LcCBF2 and LcCBF3 in Arabidopsis caused delayed flowering and increased freezing and drought tolerance, whereas overexpression of LcMFT in Arabidopsis had no significant effect on flowering time. Taken together, we identified LcCBF2 and LcCBF3 as upstream activators of LcMFT and proposed the contribution of the cold-responsive CBF to the fine-tuning of flowering time.
Collapse
|
58
|
Conti V, Parrotta L, Romi M, Del Duca S, Cai G. Tomato Biodiversity and Drought Tolerance: A Multilevel Review. Int J Mol Sci 2023; 24:10044. [PMID: 37373193 DOI: 10.3390/ijms241210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
59
|
Li C, Dong S, Beckles DM, Liu X, Guan J, Gu X, Miao H, Zhang S. GWAS reveals novel loci and identifies a pentatricopeptide repeat-containing protein (CsPPR) that improves low temperature germination in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1116214. [PMID: 37235012 PMCID: PMC10208356 DOI: 10.3389/fpls.2023.1116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 05/28/2023]
Abstract
Low temperatures (LTs) negatively affect the percentage and rate of cucumber (Cucumis sativus L.) seed germination, which has deleterious effects on yield. Here, a genome-wide association study (GWAS) was used to identify the genetic loci underlying low temperature germination (LTG) in 151 cucumber accessions that represented seven diverse ecotypes. Over two years, phenotypic data for LTG i.e., relative germination rate (RGR), relative germination energy (RGE), relative germination index (RGI) and relative radical length (RRL), were collected in two environments, and 17 of the 151 accessions were found to be highly cold tolerant using cluster analysis. A total of 1,522,847 significantly associated single-nucleotide polymorphism (SNP) were identified, and seven loci associated with LTG, on four chromosomes, were detected: gLTG1.1, gLTG1.2, gLTG1.3, gLTG4.1, gLTG5.1, gLTG5.2, and gLTG6.1 after resequencing of the accessions. Of the seven loci, three, i.e., gLTG1.2, gLTG4.1, and gLTG5.2, showed strong signals that were consistent over two years using the four germination indices, and are thus strong and stable for LTG. Eight candidate genes associated with abiotic stress were identified, and three of them were potentially causal to LTG: CsaV3_1G044080 (a pentatricopeptide repeat-containing protein) for gLTG1.2, CsaV3_4G013480 (a RING-type E3 ubiquitin transferase) for gLTG4.1, and CsaV3_5G029350 (a serine/threonine-protein kinase) for gLTG5.2. The function for CsPPR (CsaV3_1G044080) in regulating LTG was confirmed, as Arabidopsis lines ectopically expressing CsPPR showed higher germination and survival rates at 4°C compared to the wild-type, which preliminarily illustrates that CsPPR positively regulates cucumber cold tolerance at the germination stage. This study will provide insights into cucumber LT-tolerance mechanisms and further promote cucumber breeding development.
Collapse
Affiliation(s)
- Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diane M. Beckles
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
60
|
Wu W, Zhu L, Wang P, Liao Y, Duan L, Lin K, Chen X, Li L, Xu J, Hu H, Xu ZF, Ni J. Transcriptome-Based Construction of the Gibberellin Metabolism and Signaling Pathways in Eucalyptus grandis × E. urophylla, and Functional Characterization of GA20ox and GA2ox in Regulating Plant Development and Abiotic Stress Adaptations. Int J Mol Sci 2023; 24:ijms24087051. [PMID: 37108215 PMCID: PMC10138970 DOI: 10.3390/ijms24087051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Gibberellins (GAs) are the key regulators controlling plant growth, wood production and the stress responses in perennial woody plants. The role of GA in regulating the above-mentioned processes in Eucalyptus remain largely unclear. There is still a lack of systematic identification and functional characterization of GA-related genes in Eucalyptus. In this study, a total of 59,948 expressed genes were identified from the major vegetative tissues of the E. grandis × E. urophylla using transcriptome sequencing. Then, the key gene families in each step of GA biosynthesis, degradation and signaling were investigated and compared with those of Arabidopsis, rice, and Populus. The expression profile generated using Real-time quantitative PCR showed that most of these genes exhibited diverse expression patterns in different vegetative organs and in response to abiotic stresses. Furthermore, we selectively overexpressed EguGA20ox1, EguGA20ox2 and EguGA2ox1 in both Arabidopsis and Eucalyptus via Agrobacterium tumefaciens or A. rhizogenes-mediated transformation. Though both Arabidopsis EguGA20ox1- and EguGA20ox2-overexpressing (OE) lines exhibited better vegetative growth performance, they were more sensitive to abiotic stress, unlike EguGA2ox1-OE plants, which exhibited enhanced stress resistance. Moreover, overexpression of EguGA20ox in Eucalyptus roots caused significantly accelerated hairy root initiation and elongation and improved root xylem differentiation. Our study provided a comprehensive and systematic study of the genes of the GA metabolism and signaling and identified the role of GA20ox and GA2ox in regulating plant growth, stress tolerance, and xylem development in Eucalyptus; this could benefit molecular breeding for obtaining high-yield and stress-resistant Eucalyptus cultivars.
Collapse
Affiliation(s)
- Wenfei Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Linhui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Pan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yuwu Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lanjuan Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Lijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jiajing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Hao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
61
|
Huang P, Ding Z, Duan M, Xiong Y, Li X, Yuan X, Huang J. OsLUX Confers Rice Cold Tolerance as a Positive Regulatory Factor. Int J Mol Sci 2023; 24:ijms24076727. [PMID: 37047700 PMCID: PMC10094877 DOI: 10.3390/ijms24076727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
During the early seedling stage, rice (Oryza sativa L.) must overcome low-temperature stress. While a few cold-tolerance genes have been characterized, further excavation of cold-resistance genes is still needed. In this study, we identified a cold-induced transcription factor—LUX ARRHYTHMO (LUX)—in rice. OsLUX was found to be specifically expressed in leaf blades and upregulated by both cold stress and circadian rhythm. The full-length OsLUX showed autoactivation activity, and the OsLUX protein localized throughout the entire onion cell. Overexpressing OsLUX resulted in increased cold tolerance and reduced ion leakage under cold-stress conditions during the seedling stage. In contrast, the knockout of OsLUX decreased seedling cold tolerance and showed higher ion leakage compared to the wild type. Furthermore, overexpressing OsLUX upregulated the expression levels of oxidative stress-responsive genes, which improved reactive oxygen species (ROS) scavenging ability and enhanced tolerance to chilling stress. Promoter analysis showed that the OsLUX promoter contains two dehydration-responsive element binding (DREB) motifs at positions −510/−505 (GTCGGa) and −162/−170 (cCACCGccc), which indicated that OsDREB1s and OsDREB2s probably regulate OsLUX expression by binding to the motif to respond to cold stress. Thus, OsLUX may act as a downstream gene of the DREB pathway. These results demonstrate that OsLUX serves as a positive regulatory factor of cold stress and that overexpressing OsLUX could be used in rice breeding programs to enhance abiotic stress tolerance.
Collapse
Affiliation(s)
- Peng Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhengquan Ding
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Min Duan
- Taizhou Academy Agricultural of Sciences, Taizhou 317000, China
| | - Yi Xiong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xi Yuan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
62
|
Li XL, Meng D, Li MJ, Zhou J, Yang YZ, Zhou BB, Wei QP, Zhang JK. Transcription factors MhDREB2A/MhZAT10 Play a Role in Drought and Cold Stress Response Crosstalk in Apple. PLANT PHYSIOLOGY 2023:kiad147. [PMID: 36880407 DOI: 10.1093/plphys/kiad147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Drought and cold stresses seriously affect tree growth and fruit yield during apple (Malus domestica) production, with combined stress causing injury such as shoot shriveling. However, the molecular mechanism underlying crosstalk between responses to drought and cold stress remains to be clarified. In this study, we characterized the zinc finger transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10) through comparative analysis of shoot-shriveling tolerance between tolerant and sensitive apple rootstocks. MhZAT10 responded to both drought and cold stress. Heterologous expression of MhZAT10 in the sensitive rootstock 'G935' from domesticated apple (Malus domestica) promoted shoot-shriveling tolerance, while silencing of MhZAT10 expression in the tolerant rootstock 'SH6' of Malus honanensis reduced stress tolerance. We determined that the apple transcription factor DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 2A (DREB2A) is a direct regulator activating the expression of MhZAT10 in response to drought stress. Apple plants overexpressing both MhDREB2A and MhZAT10 genes exhibited enhanced tolerance to drought and cold stress, while plants overexpressing MhDREB2A but with silenced expression of MhZAT10 showed reduced tolerance, suggesting a critical role of MhDREB2A-MhZAT10 in the crosstalk between drought and cold stress responses. We further identified drought-tolerant MhWRKY31 and cold-tolerant MhMYB88 and MhMYB124 as downstream regulatory target genes of MhZAT10. Our findings reveal a MhDREB2A-MhZAT10 module involved in crosstalk between drought and cold stress responses, which may have applications in apple rootstock breeding programs aimed at developing shoot-shriveling tolerance.
Collapse
Affiliation(s)
- Xing-Liang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Dong Meng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Min-Ji Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Jia Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Yu-Zhang Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Bei-Bei Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Qin-Ping Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| | - Jun-Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, P.R.China
| |
Collapse
|
63
|
Gao J, Zhuang S, Gui R. Subsurface aeration mitigates organic material mulching-induced anaerobic stress via regulating hormone signaling in Phyllostachys praecox roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1121604. [PMID: 36938059 PMCID: PMC10014838 DOI: 10.3389/fpls.2023.1121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Organic material mulching has been used extensively to allow Phyllostachys praecox to promote growth and development of shoots. However, the bamboo forest always showed a significant degradation, probably due to anaerobic damage caused by the mulching after several years. Therefore, we have innovatively proposed an improvement measure to aerate the underground pipes for the first time. We investigated the role of subsurface pipe aeration in regulating root hypoxia to reduce the stress and to identify the degradation mechanism. Results showed that aeration increased oxygen concentration, shoot yield and root growth compared with mulching, and the aeration enhanced the concentration of indole-3-acetic acid (IAA) and the expression of Aux/IAAs (Aux1, Aux2, Aux3, and Aux4). Aeration reduced gibberellin (GA), ethylene (ETH), and abscisic acid (ABA) contents as well as anaerobic enzyme activities (alanine transaminase, AlaAT; alcohol dehydrogenase, ADH; pyruvate decarboxylase, PDC; and lactate dehydrogenase, LDH), which alleviated root damage in anoxic conditions. Furthermore, correlation showed that the activities of ADH, LDH, PDC, and AlaAT showed significant linear correlations with soil oxygen levels. RDA analyses showed that ABA, IAA, and ETH were found as the key driving hormones of Aux/IAAs in the root of the forest mulched with organic material. Here we show that subsurface aeration increases soil oxygen concentration, shoot yield, root growth and regulates phytohormone concentrations and Aux/IAAs expression, which reduces anaerobic enzyme activities. Consequently, subsurface pipe aeration is an effective measure to mitigate the degradation of bamboo forests caused by soil hypoxia that results from organic material mulching.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Renyi Gui
- State Key Lab of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
64
|
Wu J, Sun W, Sun C, Xu C, Li S, Li P, Xu H, Zhu D, Li M, Yang L, Wei J, Hanzawa A, Tapati SJ, Uenoyama R, Miyazaki M, Rahman A, Wu S. Cold stress induces malformed tomato fruits by breaking the feedback loops of stem cell regulation in floral meristem. THE NEW PHYTOLOGIST 2023; 237:2268-2283. [PMID: 36564973 DOI: 10.1111/nph.18699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Fruit malformation is a major constrain in fruit production worldwide resulting in substantial economic losses. The farmers for decades noticed that the chilling temperature before blooming often caused malformed fruits. However, the molecular mechanism underlying this phenomenon is unclear. Here we examined the fruit development in response to cold stress in tomato, and demonstrated that short-term cold stress increased the callose accumulation in both shoot apical and floral meristems, resulting in the symplastic isolation and altered intercellular movement of WUS. In contrast to the rapidly restored SlWUS transcription during the recovery from cold stress, the callose removal was delayed due to obstructed plasmodesmata. The delayed reinstatement of cell-to-cell transport of SlWUS prevented the activation of SlCLV3 and TAG1, causing the interrupted feedback inhibition of SlWUS expression, leading to the expanded stem cell population and malformed fruits. We further showed that the callose dynamics in response to short-term cold stress presumably exploits the mechanism of bud dormancy during the seasonal growth, involving two antagonistic hormones, abscisic acid and gibberellin. Our results provide a novel insight into the cold stress regulated malformation of fruit.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenru Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunmiao Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengxue Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huimin Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danyang Zhu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liling Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinbo Wei
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aya Hanzawa
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Sumaiya Jannat Tapati
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Reiko Uenoyama
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
65
|
Luo W, Zhao Z, Chen H, Ao W, Lu L, Liu J, Li X, Sun Y. Genome-wide characterization and expression of DELLA genes in Cucurbita moschata reveal their potential roles under development and abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137126. [PMID: 36909418 PMCID: PMC9995975 DOI: 10.3389/fpls.2023.1137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
DELLA gene family plays a key role in regulating plant development and responding to stress. Currently, many DELLA family members have been identified in plants, however, information on DELLA genes in pumpkin (Cucurbita moschata) is scarce. In this study, physical and chemical properties, gene structure cis-regulatory elements and expression of CmoDELLA genes were examined in pumpkin. We found that seven CmoDELLA genes were identified in pumpkin, and they were unevenly classified into five chromosomes. CmoDELLA proteins were relatively unstable and their secondary structures were mainly made up α-helix and random coil. All seven CmoDELLA proteins contained typical DELLA domain and GRAS domain, however, motif numbers between CmoDELLA proteins were unevenly distributed, implying the complex evolution and functional diversification of CmoDELLA proteins. Cis-regulatory elements analysis revealed that CmoDELLA genes might play an essential role in regulating plant growth and development, and response to stress in pumpkin. Transcriptome data in the roots, stems, leaves and fruits demonstrated that CmoDELLA2, CmoDELLA3 and CmoDELLA7 were related to the stems development, CmoDELLA1, CmoDELLA4, CmoDELLA5 and CmoDELLA6 were associated with the fruits development. Furthermore, we found that CmoDELLA1 and CmoDELLA5 were up-regulated under NaCl stress. CmoDELLA1, CmoDELLA2, CmoDELLA3, CmoDELLA5, CmoDELLA6 and CmoDELLA7 were remarkably induced under waterlogging stress. While, all of the 7 CmoDELLA genes showed significantly induced expression under cold stress. The expression patterns under abiotic stress suggested that CmoDELLA genes might mediate the stress response of pumpkin to NaCl, waterlogging and cold, however, the functions of different CmoDELLA genes varied under different stress. Overall, our study provides valuable information for further research about the potential functions and regulatory networks of CmoDELLA genes in pumpkin.
Collapse
Affiliation(s)
- Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Hongzhi Chen
- College of Bioengineering, Xinxiang Institute of Engineering, Xinxiang, China
| | - Wenhong Ao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Junjun Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
66
|
Vera Hernández PF, Mendoza Onofre LE, Rosas Cárdenas FDF. Responses of sorghum to cold stress: A review focused on molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1124335. [PMID: 36909409 PMCID: PMC9996117 DOI: 10.3389/fpls.2023.1124335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change has led to the search for strategies to acclimatize plants to various abiotic stressors to ensure the production and quality of crops of commercial interest. Sorghum is the fifth most important cereal crop, providing several uses including human food, animal feed, bioenergy, or industrial applications. The crop has an excellent adaptation potential to different types of abiotic stresses, such as drought, high salinity, and high temperatures. However, it is susceptible to low temperatures compared with other monocotyledonous species. Here, we have reviewed and discussed some of the research results and advances that focused on the physiological, metabolic, and molecular mechanisms that determine sorghum cold tolerance to improve our understanding of the nature of such trait. Questions and opportunities for a comprehensive approach to clarify sorghum cold tolerance or susceptibility are also discussed.
Collapse
Affiliation(s)
- Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| | | | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| |
Collapse
|
67
|
Wang Y, Samarina L, Mallano AI, Tong W, Xia E. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145609. [PMID: 36866358 PMCID: PMC9971632 DOI: 10.3389/fpls.2023.1145609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Tea is one of the most consumed and widely planted beverage plant worldwide, which contains many important economic, healthy, and cultural values. Low temperature inflicts serious damage to tea yields and quality. To cope with cold stress, tea plants have evolved a cascade of physiological and molecular mechanisms to rescue the metabolic disorders in plant cells caused by the cold stress; this includes physiological, biochemical changes and molecular regulation of genes and associated pathways. Understanding the physiological and molecular mechanisms underlying how tea plants perceive and respond to cold stress is of great significance to breed new varieties with improved quality and stress resistance. In this review, we summarized the putative cold signal sensors and molecular regulation of the CBF cascade pathway in cold acclimation. We also broadly reviewed the functions and potential regulation networks of 128 cold-responsive gene families of tea plants reported in the literature, including those particularly regulated by light, phytohormone, and glycometabolism. We discussed exogenous treatments, including ABA, MeJA, melatonin, GABA, spermidine and airborne nerolidol that have been reported as effective ways to improve cold resistance in tea plants. We also present perspectives and possible challenges for functional genomic studies on cold tolerance of tea plants in the future.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Lidia Samarina
- Federal Research Centre the Subtropical Scientific Centre, The Russian Academy of Sciences, Sochi, Russia
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
68
|
Zeng D, Si C, Teixeira da Silva JA, Shi H, Chen J, Huang L, Duan J, He C. Uncovering the involvement of DoDELLA1-interacting proteins in development by characterizing the DoDELLA gene family in Dendrobium officinale. BMC PLANT BIOLOGY 2023; 23:93. [PMID: 36782128 PMCID: PMC9926750 DOI: 10.1186/s12870-023-04099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | | | - Hongyu Shi
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
69
|
Zacharaki V, Meena SK, Kindgren P. The non-coding RNA SVALKA locus produces a cis-natural antisense transcript that negatively regulates the expression of CBF1 and biomass production at normal temperatures. PLANT COMMUNICATIONS 2023:100551. [PMID: 36681861 PMCID: PMC10363475 DOI: 10.1016/j.xplc.2023.100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Non-coding transcription is present in all eukaryotic genomes, but we lack fundamental knowledge about its importance for an organism's ability to develop properly. In plants, emerging evidence highlights the essential biological role of non-coding transcription in the regulation of coding transcription. However, we have few molecular insights into this regulation. Here, we show that a long isoform of the long non-coding RNA SVALKA-L (SVK-L) forms a natural antisense transcript to the host gene CBF1 and negatively regulates CBF1 mRNA levels at normal temperatures in the model plant Arabidopsis thaliana. Furthermore, we show detailed evidence for the specific mode of action of SVK-L. This pathway includes the formation of double-stranded RNA that is recognized by the DICER proteins and subsequent downregulation of CBF1 mRNA levels. Thus, the CBF1-SVK regulatory circuit is not only important for its previously known role in cold temperature acclimation but also for biomass production at normal temperatures. Our study characterizes the developmental role of SVK-L and offers mechanistic insight into how biologically important overlapping natural antisense transcripts can act on and fine-tune the steady-state levels of their host gene's mRNA.
Collapse
Affiliation(s)
- Vasiliki Zacharaki
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Shiv Kumar Meena
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Peter Kindgren
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| |
Collapse
|
70
|
Nazari M, Yaghoubian I, Smith DL. The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola ( Brassica, napus L.) germination and vegetative growth under stressful temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:1079180. [PMID: 36618613 PMCID: PMC9816380 DOI: 10.3389/fpls.2022.1079180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exposure to unfavorable conditions is becoming more frequent for plants due to climate change, posing a threat to global food security. Stressful temperature, as a major environmental factor, adversely affects plant growth and development, and consequently agricultural production. Hence, development of sustainable approaches to assist plants in dealing with environmental challenges is of great importance. Compatible plant-microbe interactions and signal molecules produced within these interactions, such as bacteriocins, could be promising approaches to managing the impacts of abiotic stresses on crops. Although the use of bacteriocins in food preservation is widespread, only a small number of studies have examined their potential in agriculture. Therefore, we studied the effect of three concentrations of Thuricin17 (Th17), a plant growth-promoting rhizobacterial signal molecule produced by Bacillus thuringiensis, on germination and vegetative growth of canola (Brassica napus L.) under stressful temperatures. Canola responded positively to treatment with the bacterial signal molecule under stressful temperatures. Treatment with 10 -9 M Th17 (Thu2) was found to significantly enhance germination rate, seed vigor index, radical and shoot length and seedling fresh weight under low temperature, and this treatment reduced germination time which would be an asset for higher latitude, short growing season climates. Likewise, Thu2 was able to alleviate the adverse effects of high temperature on germination and seed vigor. Regarding vegetative growth, interestingly, moderate high temperature with the assistance of the compound caused more growth and development than the control conditions. Conversely, low temperature negatively affected plant growth, and Th17 did not help overcome this effect. Specifically, the application of 10 -9 (Thu2) and 10 -11 M (Thu3) Th17 had a stimulatory effect on height, leaf area and biomass accumulation under above-optimal conditions, which could be attributed to modifications of below-ground structures, including root length, root surface, root volume and root diameter, as well as photosynthetic rate. However, no significant effects were observed under optimal conditions for almost all measured variables. Therefore, the signal compound tends to have a stimulatory impact at stressful temperatures but not under optimal conditions. Hence, supplementation with Th17 would have the potential as a plant growth promoter under stressed circumstances.
Collapse
|
71
|
Huang B, Fan Y, Cui L, Li C, Guo C. Cold Stress Response Mechanisms in Anther Development. Int J Mol Sci 2022; 24:ijms24010030. [PMID: 36613473 PMCID: PMC9820542 DOI: 10.3390/ijms24010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Unlike animals that can escape threats, plants must endure and adapt to biotic and abiotic stresses in their surroundings. One such condition, cold stress, impairs the normal growth and development of plants, in which most phases of reproductive development are particularly susceptible to external low temperature. Exposed to uncomfortably low temperature at the reproductive stage, meiosis, tapetal programmed cell death (PCD), pollen viability, and fertilization are disrupted, resulting in plant sterility. Of them, cold-induced tapetal dysfunction is the main cause of pollen sterility by blocking nutrition supplements for microspore development and altering their timely PCD. Further evidence has indicated that the homeostatic imbalances of hormones, including abscisic acid (ABA) and gibberellic acid (GA), and sugars have occurred in the cold-treated anthers. Among them, cold stress gives rise to the accumulation of ABA and the decrease of active GA in anthers to affect tapetal development and represses the transport of sugar to microspores. Therefore, plants have evolved lots of mechanisms to alleviate the damage of external cold stress to reproductive development by mainly regulating phytohormone levels and sugar metabolism. Herein, we discuss the physiological and metabolic effects of low temperature on male reproductive development and the underlying mechanisms from the perspective of molecular biology. A deep understanding of cold stress response mechanisms in anther development will provide noteworthy references for cold-tolerant crop breeding and crop production under cold stress.
Collapse
|
72
|
Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, Pradhan S, Kumar A, Chinnusamy V, Kumar P, Sharma RM, Sharma S, Bisht DS, Kumar C. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1022167. [PMID: 36578327 PMCID: PMC9790972 DOI: 10.3389/fpls.2022.1022167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.
Collapse
Affiliation(s)
- Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naveen Kumar Maurya
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jai Prakash
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Satyabrata Pradhan
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amarjeet Kumar
- Multi Testing Technology Centre and Vocational Training Centre, Selesih, Central Agricultural University, Imphal, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prabhat Kumar
- Department of Agriculture and Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Govt. of India, Krishi Bhavan, New Delhi, India
| | - Radha Mohan Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Stuti Sharma
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India
| | | | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
73
|
Dong R, Luo B, Tang L, Wang QX, Lu ZJ, Chen C, Yang F, Wang S, He J. A comparative transcriptomic analysis reveals a coordinated mechanism activated in response to cold acclimation in common vetch (Vicia sativa L.). BMC Genomics 2022; 23:814. [PMID: 36482290 PMCID: PMC9733113 DOI: 10.1186/s12864-022-09039-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to its strong abiotic stress tolerance, common vetch is widely cultivated as a green manure and forage crop in grass and crop rotation systems. The comprehensive molecular mechanisms activated in common vetch during cold adaptation remain unknown. RESULTS We investigated physiological responses and transcriptome profiles of cold-sensitive (Lanjian No. 1) and cold-tolerant (Lanjian No. 3) cultivars during cold acclimation to explore the molecular mechanisms of cold acclimation. In total, 2681 and 2352 differentially expressed genes (DEGs) were identified in Lanjian No. 1 and Lanjian No. 3, respectively; 7532 DEGs were identified in both lines. DEGs involved in "plant hormone signal transduction" were significantly enriched during cold treatment, and 115 DEGs involved in cold-processed hormone signal transduction were identified. Common vetch increased the level of indoleacetic acid (IAA) by upregulating the transcriptional regulator Aux/IAA and downregulating GH3, endowing it with stronger cold tolerance. An auxin-related DEG was overexpressed in yeast and shown to possess a biological function conferring cold tolerance. CONCLUSION This study identifies specific genes involved in Ca2+ signaling, redox regulation, circadian clock, plant hormones, and transcription factors whose transcriptional differentiation during cold acclimation may improve cold tolerance and contributes to the understanding of common and unique molecular mechanisms of cold acclimation in common vetch. The candidate genes identified here also provide valuable resources for further functional genomic and breeding studies.
Collapse
Affiliation(s)
- Rui Dong
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Ben Luo
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Li Tang
- grid.428986.90000 0001 0373 6302School of Tropical Crops, Hainan University, Haikou, China
| | - Qiu-xia Wang
- grid.32566.340000 0000 8571 0482State Key Laboratory of Grassland Agro-ecosystems, China, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhong-Jie Lu
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Chao Chen
- grid.443382.a0000 0004 1804 268XDepartment of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XKey Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Feng Yang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Song Wang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Jin He
- grid.443382.a0000 0004 1804 268XCollege of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
74
|
Li C, Wang K, Chen S, Zhang X, Zhang X, Fan L, Dong J, Xu L, Wang Y, Li Y, Liu L. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:285-297. [PMID: 36283201 DOI: 10.1016/j.plaphy.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Sen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
75
|
Zhao X, Liu DK, Wang QQ, Ke S, Li Y, Zhang D, Zheng Q, Zhang C, Liu ZJ, Lan S. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. FRONTIERS IN PLANT SCIENCE 2022; 13:1058287. [PMID: 36518517 PMCID: PMC9742484 DOI: 10.3389/fpls.2022.1058287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The GRAS gene family encodes transcription factors that participate in plant growth and development phases. They are crucial in regulating light signal transduction, plant hormone (e.g. gibberellin) signaling, meristem growth, root radial development, response to abiotic stress, etc. However, little is known about the features and functions of GRAS genes in Orchidaceae, the largest and most diverse angiosperm lineage. In this study, genome-wide analysis of the GRAS gene family was conducted in Dendrobium chrysotoxum (Epidendroideae, Orchidaceae) to investigate its physicochemical properties, phylogenetic relationships, gene structure, and expression patterns under abiotic stress in orchids. Forty-six DchGRAS genes were identified from the D. chrysotoxum genome and divided into ten subfamilies according to their phylogenetic relationships. Sequence analysis showed that most DchGRAS proteins contained conserved VHIID and SAW domains. Gene structure analysis showed that intronless genes accounted for approximately 70% of the DchGRAS genes, the gene structures of the same subfamily were the same, and the conserved motifs were also similar. The Ka/Ks ratios of 12 pairs of DchGRAS genes were all less than 1, indicating that DchGRAS genes underwent negative selection. The results of cis-acting element analysis showed that the 46 DchGRAS genes contained a large number of hormone-regulated and light-responsive elements as well as environmental stress-related elements. In addition, the real-time reverse transcription quantitative PCR (RT-qPCR) experimental results showed significant differences in the expression levels of 12 genes under high temperature, drought and salt treatment, among which two members of the LISCL subfamily (DchGRAS13 and DchGRAS15) were most sensitive to stress. Taken together, this paper provides insights into the regulatory roles of the GRAS gene family in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian-Qian Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
76
|
Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA, Kumar A, Singh J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. ENVIRONMENTAL RESEARCH 2022; 214:113821. [PMID: 35810815 DOI: 10.1016/j.envres.2022.113821] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Plants can achieve their proper growth and development with the help of microorganisms associated with them. Plant-associated microbes convert the unavailable nutrients to available form and make them useful for plants. Besides nutrient acquisition, soil microbes also inhibit the pathogens that cause harm to plant growth and induces defense response. Due to the beneficial activities of soil nutrient-microbe-plant interactions, it is necessary to study more on this topic and develop microbial inoculant technology in the agricultural field for better crop improvement. The soil microbes can be engineered, and plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting bacteria (PGPB) technology can be developed as well, as its application can be improved for utilization as biofertilizer, biopesticides, etc., instead of using harmful chemical biofertilizers. Moreover, plant growth-promoting microbe inoculants can enhance crop productivity. Although, scientists have discussed several tools and techniques by omics and gene editing approaches for crop improvement to avoid biotic and abiotic stress and make the plant healthier and more nutritive. However, beneficial soil microbes that help plants with the nutrient acquisition, development, and stress resistance were ignored, and farmers started utilizing chemical fertilizers. Thus, this review attempts to summarize the interaction system of plant microbes, the role of beneficiary soil microbes in the rhizosphere zone, and their role in plant health promotion, particularly in the nutrition acquisition of the plant. The review will also provide a better understanding of soil microbes that can be exploited as biofertilizers and plant growth promoters in the field to create environmentally friendly, sustainable agriculture systems.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Kshitij Rb Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 211005, India
| | - Gunjan Nagpure
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Aadil Mansoori
- Department of Botany, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Anirudh Kumar
- Department of Botany, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 211005, India.
| |
Collapse
|
77
|
Nie Y, Guo L, Cui F, Shen Y, Ye X, Deng D, Wang S, Zhu J, Wu W. Innovations and stepwise evolution of CBFs/DREB1s and their regulatory networks in angiosperms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2111-2125. [PMID: 36070250 DOI: 10.1111/jipb.13357] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) have been identified as major regulators of cold acclimation in many angiosperm plants. However, their origin and evolutionary process associated to cold responsiveness are still lacking. By integrating multi-omics data of genomes, transcriptomes, and CBFs/DREB1s genome-wide binding profiles, we unveil the origin and evolution of CBFs/DREB1s and their regulatory network. Gene collinearity and phylogeny analyses show that CBF/DREB1 is an innovation evolved from tandem duplication-derived DREB III gene. A subsequent event of ε-whole genome duplication led to two CBF/DREB1 archetypes (Clades I and II) in ancient angiosperms. In contrast to cold-insensitivity of Clade I and their parent DREB III genes, Clade II evolved a further innovation in cold-sensitive response and was stepwise expanded in eudicots and monocots by independent duplications. In geological time, the duplication events were mainly enriched around the Cretaceous-Paleogene (K-Pg) boundary and/or in the Late Cenozoic Ice Age, when the global average temperature significantly decreased. Consequently, the duplicated CBF/DREB1 genes contributed to the rewiring of CBFs/DREB1s-regulatory network for cold tolerance. Altogether, our results highlight an origin and convergent evolution of CBFs/DREB1s and their regulatory network probably for angiosperms adaptation to global cooling.
Collapse
Affiliation(s)
- Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, 20742, USA
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
78
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
79
|
Zheng T, Lv J, Sadeghnezhad E, Cheng J, Jia H. Transcriptomic and metabolomic profiling of strawberry during postharvest cooling and heat storage. FRONTIERS IN PLANT SCIENCE 2022; 13:1009747. [PMID: 36311118 PMCID: PMC9597325 DOI: 10.3389/fpls.2022.1009747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Temperature is one of the most important factors regarding fruit postharvest, however its effects in the strawberry fruits quality in postharvest remains to be evaluated. In this study, the effects of cold and heat storage temperature on fruit quality of 'Benihoppe' strawberry were performed. The results showed that different temperatures could affect the metabolism of hormone, anthocyanin, reactive oxygen species (ROS), and transcription level of responsive factors. The synthesis of terpenoids, amino acids, and phenylpropanoids in strawberries were also changed under different temperatures, which finally changed the quality characteristics of the fruit. We found HSF20 (YZ1)-overexpressed fruits were sensitive to cold and heat conditions but CBF/NF-Y (YZ9)-overexpressed fruits promoted coloring under cold treatment. This study clarified the effect of postharvest cooling and heat treatments on quality and transcriptional mechanism of strawberries fruits. Moreover, these results provided an experimental basis for further research on improving the quality of strawberry berries during postharvest periods.
Collapse
Affiliation(s)
- Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinhua Lv
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
80
|
Xing X, Liu M, Jiang F, Zhou R, Bai Y, Wei H, Zhang D, Wei J, Wu Z. Abscisic acid induces the expression of AsKIN during the recovery period of garlic cryopreservation. PLANT CELL REPORTS 2022; 41:1955-1973. [PMID: 36066602 DOI: 10.1007/s00299-022-02894-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid induced the expression of AsKIN during the recovery period of garlic cryopreservation. AsKIN was identified as a gene involved in cold and osmotic stress resistance. Cryopreservation has been proven to be effective in removing viruses from garlic. However, oxidative damage in cryopreservation has a significant impact on the survival after preservation. Abscisic acid (ABA) has been shown to reduce oxidative stress and promote the survival after cryopreservation. However, it is not clear which genes play important roles in this process. In this study, we added ABA to the dehydration step and analyzed the transcriptomic divergences between the ABA-treated group and the control group in three cryogenic steps (dehydration, unloading and recovery). By short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), the recovery step was identified as the period of significant changes in gene expression levels in cryopreservation. The addition of ABA promoted the upregulated expression of microtubule-related genes in the recovery step. We further identified AsKIN as a hub gene in the recovery step and verified its function. The results showed that overexpression of AsKIN enhanced the tolerance of Arabidopsis to oxidative stress in cryopreservation, influenced the expression of genes in response to cold and osmotic stress and promoted plant growth after stress. The AsKIN gene is likely to be involved in the plant response to cold stress and osmotic stress. These results reveal the molecular mechanisms of ABA in cryopreservation and elucidate the potential biological functions of the kinesin-14 subfamily.
Collapse
Affiliation(s)
- Xiaodong Xing
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Deng Zhang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Jingjing Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
81
|
Kao PH, Baiya S, Lai ZY, Huang CM, Jhan LH, Lin CJ, Lai YS, Kao CF. An advanced systems biology framework of feature engineering for cold tolerance genes discovery from integrated omics and non-omics data in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1019709. [PMID: 36247545 PMCID: PMC9562094 DOI: 10.3389/fpls.2022.1019709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Soybean is sensitive to low temperatures during the crop growing season. An urgent demand for breeding cold-tolerant cultivars to alleviate the production loss is apparent to cope with this scenario. Cold-tolerant trait is a complex and quantitative trait controlled by multiple genes, environmental factors, and their interaction. In this study, we proposed an advanced systems biology framework of feature engineering for the discovery of cold tolerance genes (CTgenes) from integrated omics and non-omics (OnO) data in soybean. An integrative pipeline was introduced for feature selection and feature extraction from different layers in the integrated OnO data using data ensemble methods and the non-parameter random forest prioritization to minimize uncertainties and false positives for accuracy improvement of results. In total, 44, 143, and 45 CTgenes were identified in short-, mid-, and long-term cold treatment, respectively, from the corresponding gene-pool. These CTgenes outperformed the remaining genes, the random genes, and the other candidate genes identified by other approaches in an independent RNA-seq database. Furthermore, we applied pathway enrichment and crosstalk network analyses to uncover relevant physiological pathways with the discovery of underlying cold tolerance in hormone- and defense-related modules. Our CTgenes were validated by using 55 SNP genotype data of 56 soybean samples in cold tolerance experiments. This suggests that the CTgenes identified from our proposed systematic framework can effectively distinguish cold-resistant and cold-sensitive lines. It is an important advancement in the soybean cold-stress response. The proposed pipelines provide an alternative solution to biomarker discovery, module discovery, and sample classification underlying a particular trait in plants in a robust and efficient way.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Supaporn Baiya
- Department of Resource and Environment, Faculty of Science at Sriracha, Kasetsart University, Sriracha, Thailand
| | - Zheng-Yuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Min Huang
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Li-Hsin Jhan
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chian-Jiun Lin
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Syuan Lai
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
82
|
Song Q, Wang X, Wu F, Zhao J, Liu Y, Yang X. StATL2-like could affect growth and cold tolerance of plant by interacting with StCBFs. PLANT CELL REPORTS 2022; 41:1827-1841. [PMID: 35732839 DOI: 10.1007/s00299-022-02890-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Our results confirmed that StATL2-like could interact with StCBFs and regulate plant growth. Meanwhile, StATL2-like acted as a negative regulator on low-temperature tolerance in plants. As important transcription factors for resisting many kinds of stresses, C-repeat-binding factors (CBF) play a key role in plant low-temperature tolerance by increasing COR genes expressions. Here, we report that StATL2-like, a RING-H2 E3 ubiquitin in Solanum tuberosum L., interacted with StCBF1 and StCBF4, respectively. AtATL2 is a highly homologous gene of StATL2-like in Arabidopsis thaliana. Under normal conditions, atl2 Arabidopsis mutant showed a growth inhibition phenotype while overexpressed StATL2-like in wild type Arabidopsis and atl2 mutant promoted plant growth. Besides, atl2 mutant had better low-temperature tolerance compared with wild type and StATL2-like transgenic lines which demonstrated that StATL2-like acted as a negatively regulator on low-temperature tolerance in plant. Moreover, atl2 mutant improved the scavenging capacity of reactive oxygen species (ROS) and alleviate the damage of photosynthetic system II (PSII) compared with StATL2-like transgenic lines under cold conditions. These results suggested a new component in CBF-dependent pathway to regulate plant growth and response to low-temperature stress in potato plants.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Fuchao Wu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Jintao Zhao
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
83
|
Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. TRENDS IN PLANT SCIENCE 2022; 27:922-935. [PMID: 35210165 DOI: 10.1016/j.tplants.2022.01.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have revealed the complex and flexible transcriptional regulatory network involved in cold-stress responses. Focusing on two major signaling pathways that respond to cold stress, we outline current knowledge of the transcriptional regulatory network and the post-translational regulation of transcription factors in the network. Cold-stress signaling pathways are closely associated with other signaling pathways such as those related to the circadian clock, and large amounts of data on their crosstalk and tradeoffs are available. However, it remains unknown how plants sense and transmit cold-stress signals to regulate gene expression. We discuss recent reports on cold-stress sensing and associated signaling pathways that regulate the network. We also emphasize future directions for developing abiotic stress-tolerant crop plants.
Collapse
Affiliation(s)
- Satoshi Kidokoro
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
84
|
Cho NH, Woo OG, Kim EY, Park K, Seo DH, Yu SG, Choi YA, Lee JH, Lee JH, Kim WT. E3 ligase AtAIRP5/GARU regulates drought stress response by stimulating SERINE CARBOXYPEPTIDASE-LIKE1 turnover. PLANT PHYSIOLOGY 2022; 190:898-919. [PMID: 35699505 PMCID: PMC9434184 DOI: 10.1093/plphys/kiac289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is a major mechanism of eukaryotic posttranslational protein turnover that has been implicated in abscisic acid (ABA)-mediated drought stress response. Here, we isolated T-DNA insertion mutant lines in which ABA-insensitive RING protein 5 (AtAIRP5) was suppressed, resulting in hyposensitive ABA-mediated germination compared to wild-type Arabidopsis (Arabidopsis thaliana) plants. A homology search revealed that AtAIRP5 is identical to gibberellin (GA) receptor RING E3 ubiquitin (Ub) ligase (GARU), which downregulates GA signaling by degrading the GA receptor GID1, and thus AtAIRP5 was renamed AtAIRP5/GARU. The atairp5/garu knockout progeny were impaired in ABA-dependent stomatal closure and were markedly more susceptible to drought stress than wild-type plants, indicating a positive role for AtAIRP5/GARU in the ABA-mediated drought stress response. Yeast two-hybrid, pull-down, target ubiquitination, and in vitro and in planta degradation assays identified serine carboxypeptidase-like1 (AtSCPL1), which belongs to the clade 1A AtSCPL family, as a ubiquitinated target protein of AtAIRP5/GARU. atscpl1 single and atairp5/garu-1 atscpl1-2 double mutant plants were more tolerant to drought stress than wild-type plants in an ABA-dependent manner, suggesting that AtSCPL1 is genetically downstream of AtAIRP5/GARU. After drought treatment, the endogenous ABA levels in atscpl1 and atairp5/garu-1 atscpl1-2 mutant leaves were higher than those in wild-type and atairp5/garu leaves. Overall, our results suggest that AtAIRP5/GARU RING E3 Ub ligase functions as a positive regulator of the ABA-mediated drought response by promoting the degradation of AtSCPL1.
Collapse
Affiliation(s)
| | | | | | | | - Dong Hye Seo
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seong Gwan Yu
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | | | - Ji Hee Lee
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | | | | |
Collapse
|
85
|
Vaitkevičiūtė G, Aleliūnas A, Gibon Y, Armonienė R. The effect of cold acclimation, deacclimation and reacclimation on metabolite profiles and freezing tolerance in winter wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:959118. [PMID: 36046584 PMCID: PMC9421140 DOI: 10.3389/fpls.2022.959118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 06/03/2023]
Abstract
Global climate change will cause longer and warmer autumns, thus negatively affecting the quality of cold acclimation (CA) and reducing the freezing tolerance (FT) of winter wheat. Insufficient FT and fluctuating temperatures during winter can accelerate the deacclimation (DEA) process, whereas reacclimation (REA) is possible only while the vernalization requirement is unfulfilled. Six winter wheat genotypes with different winter hardiness profiles were used to evaluate the impact of constant low-temperature (2°C) and prolonged higher low-temperature (28 days at 10°C followed by 2°C until day 49) on shoot biomass and metabolite accumulation patterns in leaf and crown tissues throughout 49 days of CA, 7 days of DEA, and 14 days of REA. The FT of winter wheat was determined as LT30 values by conducting freezing tests after CA, DEA, and REA. Shoot biomass accumulation, projected as the green leaf area (GLA), was investigated by non-destructive RGB imaging-based phenotyping. Dynamics of carbohydrates, hexose phosphates, organic acids, proteins, and amino acids were assessed in leaf and crown tissues. Results revealed that exposure to higher low-temperature induced higher accumulation of shoot biomass and had a negative impact on FT of winter wheat. Prolonged higher low-temperature negatively affected the accumulation of soluble carbohydrates, protein content and amino acids, and had a positive effect on starch accumulation in leaf and crown tissues after CA, in comparison with the constant low-temperature treatment. DEA resulted in significantly reduced FT. Lower concentrations of glucose-6-phosphate, sucrose and proline, as well as higher concentrations of starch in leaves and crowns were found after DEA. The majority of the genotypes regained FT after REA; higher concentrations of glucose and malate in leaves, and sucrose in crown tissue were observed, whereas starch accumulation was decreased in both tissues. Negative correlations were determined between FT and starch concentration in leaves and crowns, while proline and proteins, accumulated in crowns, showed positive correlations with FT. This study broadens the knowledge regarding the effect of different low-temperature regimes on the dynamics of metabolite accumulation in winter wheat throughout CA, DEA, and REA, and its relationship to biomass accumulation and FT.
Collapse
Affiliation(s)
- Gabija Vaitkevičiūtė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| | - Andrius Aleliūnas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| | - Yves Gibon
- Univ. Bordeaux, INRAE, Bordeaux Metabolome, UMR 1332 BFP, Villenave d’Ornon, France
| | - Rita Armonienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Akademija, Lithuania
| |
Collapse
|
86
|
Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold. Proc Natl Acad Sci U S A 2022; 119:e2121288119. [PMID: 35878042 PMCID: PMC9351370 DOI: 10.1073/pnas.2121288119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of the GA distribution in the maize leaf growth zone to understand how drought and cold alter leaf growth. By developing and parameterizing a multiscale computational model that includes cell movement, growth-induced dilution, and metabolic activities, we revealed that the GA distribution is predominantly determined by variations in GA metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, the model predicted the peak in GA concentration, which has been shown to determine division-zone size. Drought and cold modified enzyme transcript levels, although the model revealed that this did not explain the observed GA distributions. Instead, the model predicted that GA distributions are also mediated by posttranscriptional modifications increasing the activity of GA 20-oxidase in drought and of GA 2-oxidase in cold, which we confirmed by enzyme activity measurements. This work provides a mechanistic understanding of the role of GA metabolism in plant growth regulation.
Collapse
|
87
|
Li C, Dong S, Beckles DM, Miao H, Sun J, Liu X, Wang W, Zhang S, Gu X. The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2593-2607. [PMID: 35764690 DOI: 10.1007/s00122-022-04097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.
Collapse
Affiliation(s)
- Caixia Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Dav is Davis, CA, 95616, USA
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
88
|
Zhao K, Chen R, Duan W, Meng L, Song H, Wang Q, Li J, Xu X. Chilling injury of tomato fruit was alleviated under low-temperature storage by silencing Sly-miR171e with short tandem target mimic technology. Front Nutr 2022; 9:906227. [PMID: 35938134 PMCID: PMC9355414 DOI: 10.3389/fnut.2022.906227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the role of Sly-miR171e on post-harvest cold tolerance of tomato fruit was researched. The results showed that overexpression of Sly-miR171e (miR171e-OE) promoted postharvest chilling injury (CI) of tomato fruit at the mature red (MR) and mature green (MG) stage. Contrasted with the wild type (WT) and miR171e-OE fruit, the knockdown of Sly-miR171e (miR171e-STTM) showed a lower CI index, lower hydrogen peroxide (H2O2) content, and higher fruit firmness after harvest. In the fruit of miR171e-STTM, the expression level of GRAS24, CBF1, GA2ox1, and COR, and the GA3 content were ascended, while the expression levels of GA20ox1 and GA3ox1 were descended. The research demonstrated that CI in tomato fruit was alleviated at low temperature storage by silencing Sly-miR171e with short tandem target mimic (STTM) technology. Furthermore, it also provided helpful information for genetic modification of miR171e and control of CI in the postharvest fruit.
Collapse
Affiliation(s)
- Keyan Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Rulong Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenhui Duan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hongmiao Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qing Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- *Correspondence: Xiangbin Xu
| |
Collapse
|
89
|
Mutations in Rht-B1 Locus May Negatively Affect Frost Tolerance in Bread Wheat. Int J Mol Sci 2022; 23:ijms23147969. [PMID: 35887316 PMCID: PMC9324540 DOI: 10.3390/ijms23147969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
The wheat semi-dwarfing genes Rht (Reduced height) are widely distributed among the contemporary wheat varieties. These genes also exert pleiotropic effects on plant tolerance towards various abiotic stressors. In this work, frost tolerance was studied in three near-isogenic lines of the facultative variety ‘April Bearded’ (AB), carrying the wild type allele Rht-B1a (tall phenotype), and the mutant alleles Rht-B1b (semi-dwarf) and Rht-B1c (dwarf), and was further compared with the tolerance of a typical winter type variety, ‘Mv Beres’. The level of freezing tolerance was decreasing in the order ‘Mv Beres’ > AB Rht-B1a > AB Rht-B1b > AB Rht-B1c. To explain the observed differences, cold acclimation-related processes were studied: the expression of six cold-related genes, the phenylpropanoid pathway, carbohydrates, amino acids, polyamines and compounds in the tricarboxylic acid cycle. To achieve this, a comprehensive approach was applied, involving targeted analyses and untargeted metabolomics screening with the help of gas chromatography/liquid chromatography—mass spectrometry setups. Several cold-related processes exhibited similar changes in these genotypes; indeed, the accumulation of eight putrescine and agmatine derivatives, 17 flavones and numerous oligosaccharides (max. degree of polymerization 18) was associated with the level of freezing tolerance in the ‘April Bearded’ lines. In summary, the mutant Rht alleles may further decrease the generally low frost tolerance of the Rht-B1a, and, based on the metabolomics study, the mechanisms of frost tolerance may differ for a typical winter variety and a facultative variety. Present results point to the complex nature of frost resistance.
Collapse
|
90
|
Shuai H, Chen T, Wlk T, Rozhon W, Pimenta Lange MJ, Sieberer T, Lange T, Poppenberger B. SlCESTA Is a Brassinosteroid-Regulated bHLH Transcription Factor of Tomato That Promotes Chilling Tolerance and Fruit Growth When Over-Expressed. FRONTIERS IN PLANT SCIENCE 2022; 13:930805. [PMID: 35909777 PMCID: PMC9337221 DOI: 10.3389/fpls.2022.930805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Brassinosteroids (BRs) are required for various aspects of plant growth and development, but also participate in stress responses. The hormones convey their activity through transcriptional regulation and posttranslational modification of transcription factors and one class are basic helix-loop-helix (bHLH) proteins of the BR Enhanced Expression (BEE) subfamily, which in Arabidopsis thaliana include BEE1-3 and CESTA (CES). CES and the BEEs promote the expression of different BR-responsive genes, including genes encoding gibberellin (GA) biosynthetic and catabolizing enzymes, as well as cold-responsive genes. Interestingly, in terms of an application, CES could promote both fruit growth and cold stress tolerance when over-expressed in A. thaliana and here it was investigated, if this function is conserved in the fruit crop Solanum lycopersicum (cultivated tomato). Based on amino acid sequence similarity and the presence of regulatory motifs, a CES orthologue of S. lycopersicum, SlCES, was identified and the effects of its over-expression were analysed in tomato. This showed that SlCES, like AtCES, was re-localized to nuclear bodies in response to BR signaling activation and that it effected GA homeostasis, with related phenotypes, when over-expressed. In addition, over-expression lines showed an increased chilling tolerance and had altered fruit characteristics. The possibilities and potential limitations of a gain of SlCES function as a breeding strategy for tomato are discussed.
Collapse
Affiliation(s)
- Haiwei Shuai
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tingting Chen
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tanja Wlk
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Tobias Sieberer
- Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Theo Lange
- Institute of Plant Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
91
|
Vergata C, Yousefi S, Buti M, Vestrucci F, Gholami M, Sarikhani H, Salami SA, Martinelli F. Meta-analysis of transcriptomic responses to cold stress in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:704-724. [PMID: 35379384 DOI: 10.1071/fp21230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomic analyses are needful tools to gain insight into the molecular mechanisms underlying plant responses to abiotic stresses. The aim of this study was to identify key genes differentially regulated in response to chilling stress in various plant species with different levels of tolerance to low temperatures. A meta-analysis was performed using the RNA-Seq data of published studies whose experimental conditions were comparable. The results confirmed the importance of ethylene in the hormonal cross-talk modulating the defensive responses against chilling stress, especially in sensitive species. The transcriptomic activity of five Ethylene Response Factors genes and a REDOX Responsive Transcription Factor 1 involved in hormone-related pathways belonging to ethylene metabolism and signal transduction were induced. Transcription activity of two genes encoding for heat shock factors was enhanced, together with various genes associated with developmental processes. Several transcription factor families showed to be commonly induced between different plant species. Protein-protein interaction networks highlighted the role of the photosystems I and II, as well as genes encoding for HSF and WRKY transcription factors. A model of gene regulatory network underlying plant responses to chilling stress was developed, allowing the delivery of new candidate genes for genetic improvement of crops towards low temperatures tolerance.
Collapse
Affiliation(s)
- Chiara Vergata
- Department of Biology, University of Florence, Firenze, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Firenze, Italy
| | | | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | | |
Collapse
|
92
|
Kaur N, Prashanth KH, Bhatti MS, Pati PK. OsSalT gene cloned from rice provides evidence of its role in salinity and drought stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111306. [PMID: 35643601 DOI: 10.1016/j.plantsci.2022.111306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses impose a huge threat to agricultural productivity and global food security. To counter this challenge, the precise identification of the right candidate gene (s) for conferring abiotic stress tolerance without compromising the growth and yield is crucial. OsSalT is identified as a salt stress responsive gene located on SalTol QTL of chromosome 1 of rice, however, there is no genetic evidence of its function and probable pathway of its regulation. To get better insights into its functioning, earlier we elucidated the structure of SALT protein at atomic scale {PDB ID (5GVY)} and solution state that provided key clues on the probable mode of its action. Herein, we report the modulation of OsSalT gene in response to various factors and its functional characterization. Results indicate that OsSalT operates through both abscisic acid and gibberellic acid-dependent pathways and is linked to the adaptive stress mechanisms of plants. Its overexpression in a model plant resulted in improved salinity and drought stress tolerance. The OsSalT transformed plants also showed vigorous root growth, early flowering, and better seed germination. The triggering of multiple responses by OsSalT suggested that modulation of such mannose-binding lectin could be a potential game-changer for the improvement of many crops in future.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | | | - Manpreet Singh Bhatti
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
93
|
Li C, Duan C, Zhang H, Zhao Y, Meng Z, Zhao Y, Zhang Q. Adaptative Mechanisms of Halophytic Eutrema salsugineum Encountering Saline Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:909527. [PMID: 35837468 PMCID: PMC9274170 DOI: 10.3389/fpls.2022.909527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research Team of Plant Pathogen Microbiology and Immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
94
|
Ptošková K, Szecówka M, Jaworek P, Tarkowská D, Petřík I, Pavlović I, Novák O, Thomas SG, Phillips AL, Hedden P. Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC PLANT BIOLOGY 2022; 22:284. [PMID: 35676624 PMCID: PMC9178827 DOI: 10.1186/s12870-022-03667-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
Collapse
Affiliation(s)
- Klára Ptošková
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Marek Szecówka
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Jaworek
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Stephen G Thomas
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Andrew L Phillips
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
95
|
Cota-Ruiz K, Oh S, Montgomery BL. Phytochrome-Dependent Regulation of ZFP6 and ZFPH Impacts Photomorphogenesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:846262. [PMID: 35720591 PMCID: PMC9198550 DOI: 10.3389/fpls.2022.846262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytochromes (phy) are key regulators of photomorphogenesis in plants. Among the different phys characterized in higher plants (i.e., phyA to phyE), phyA and phyB primarily regulate phenotypic responses in plants under far-red (FR) and red (R) conditions, respectively. Recent findings suggest that some zinc finger proteins (ZFPs) are involved in plant light-modulated morphogenesis. However, the interaction(s) between phyA, phyB and ZFP homologs potentially involved in photomorphogenesis, as well as their phenotypic and molecular effects in Arabidopsis seedlings exposed to R and FR light remain to be elucidated fully. Prior analyses with phytochrome chromophore deficient lines indicated that ZFP6 expression is misregulated compared to levels in Col-0 wild type (WT). Here, we used plants with phytochrome chromophore or apoprotein (specifically phyA and phyB) deficiencies, lines with mutations in ZFP6 and ZFP6 HOMOLOG (ZFPH) genes, and plants overexpressing ZFP6 to examine regulatory interactions between phytochromes, ZFP6, and ZFPH. Our results indicate that phytochromes are required for downregulation of ZFP6 and ZFPH and suggest a role for light-regulated control of ZFP levels in phytochrome-dependent photomorphogenesis. Conversely, PHYB is downregulated in zfp6 mutants under R light. Analyses of a zfp6zfph double mutant confirmed disruption in photomorphogenic phenotypes, including the regulation of hypocotyl elongation in seedlings grown under FR light. In addition, PIF3 and PIF4 levels are transcriptionally regulated by ZFP6 and ZFPH in a gibberellic acid-dependent manner. ZFP6 overexpression resulted in opposite phenotypic responses to those observed in the zfp6 and zfph mutants grown in FR and R light, as well as a reduction in the rosette size of mature ZFP6 OX plants relative to WT under white light. Based on these observations, we provide insight into how phy and ZFPs interact to regulate specific aspects of light-dependent processes in Arabidopsis.
Collapse
Affiliation(s)
- Keni Cota-Ruiz
- MSU DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Sookyung Oh
- MSU DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Beronda L. Montgomery
- MSU DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
96
|
Phan KAT, Paeng SK, Chae HB, Park JH, Lee ES, Wi SD, Bae SB, Kim MG, Yun D, Kim W, Lee SY. Universal Stress Protein (
USP
) regulates the circadian rhythm of central oscillator genes in
Arabidopsis. FEBS Lett 2022; 596:1871-1880. [DOI: 10.1002/1873-3468.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kieu Anh Thi Phan
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Eun Seon Lee
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Su Bin Bae
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | | | - Dae‐Jin Yun
- Department of Biomedical Science & Engineering Konkuk University Seoul, 05029 Korea
| | - Woe‐Yeon Kim
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| |
Collapse
|
97
|
Integrative Comparative Assessment of Cold Acclimation in Evergreen and Deciduous Iris Species. Antioxidants (Basel) 2022; 11:antiox11050977. [PMID: 35624841 PMCID: PMC9137773 DOI: 10.3390/antiox11050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cold acclimation (CA) is a strategy which plants have evolved to increase freezing tolerance. Global climate change could obstruct CA and raise the probability of winter injury, especially for evergreens. Hence, understanding the regulatory mechanism of CA is crucial to improve freezing tolerance in evergreen plants. A comparative study on a pair of closely related evergreen and deciduous iris species in response to cold through CA was conducive to uncovering and complementing the knowledge of CA. We investigated morphological, physiological and biochemical changes, as well as the expression of associated genes in the functional leaves of both iris species from natural CA to deacclimation. Briefly, fast and strong CA in the evergreen iris might cause early expressions of BAM1, NCED3, GPX6, etc., which leads to strong enzyme activity of starch degradation, abscisic acid biosynthesis and reactive oxygen species scavenging. Additionally, genes belonging to the antioxidant system were mainly induced during deacclimation. These results suggest that interspecies differences in the leaf freezing tolerance of irises are associated with the rate and degree of CA, which activates multiple signaling networks with complex interactions and induces the transcription of cold-responsive genes. Moreover, the ICE–CBF–COR signaling cascade may integrate and initiate diverse cold-responsive pathways during CA of the evergreen iris. The findings of this study provide valuable insight to further research on CA mechanisms and implicate genes which could support breeding strategies in herbaceous perennials under climate changes.
Collapse
|
98
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
99
|
Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 2022; 12:5793. [PMID: 35388069 PMCID: PMC8986816 DOI: 10.1038/s41598-022-09582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e−04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.
Collapse
|
100
|
Ding Y, Yang S. Surviving and thriving: How plants perceive and respond to temperature stress. Dev Cell 2022; 57:947-958. [PMID: 35417676 DOI: 10.1016/j.devcel.2022.03.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
The dramatic temperature fluctuations spurred by climate change inhibit plant growth and threaten crop productivity. Unraveling how plants defend themselves against temperature-stress-induced cellular impairment is not only a crucial fundamental issue but is also of critical importance for agricultural sustainability and food security. Here, we review recent developments in elucidating the molecular mechanisms used by plants to sense and respond to cold and heat stress at multiple levels. We also describe the trade-off between plant growth and responses to high and low temperatures. Finally, we discuss possible strategies that could be used to engineer temperature-stress-tolerant, high-yielding crops.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|