51
|
Li B, Tang M, Caseys C, Nelson A, Zhou M, Zhou X, Brady SM, Kliebenstein DJ. Epistatic Transcription Factor Networks Differentially Modulate Arabidopsis Growth and Defense. Genetics 2020; 214:529-541. [PMID: 31852726 PMCID: PMC7017016 DOI: 10.1534/genetics.119.302996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Plants integrate internal and external signals to finely coordinate growth and defense for maximal fitness within a complex environment. A common model suggests that growth and defense show a trade-offs relationship driven by energy costs. However, recent studies suggest that the coordination of growth and defense likely involves more conditional and intricate connections than implied by the trade-off model. To explore how a transcription factor (TF) network may coordinate growth and defense, we used a high-throughput phenotyping approach to measure growth and flowering in a set of single and pairwise mutants previously linked to the aliphatic glucosinolate (GLS) defense pathway. Supporting a link between growth and defense, 17 of the 20 tested defense-associated TFs significantly influenced plant growth and/or flowering time. The TFs' effects were conditional upon the environment and age of the plant, and more critically varied across the growth and defense phenotypes for a given genotype. In support of the coordination model of growth and defense, the TF mutant's effects on short-chain aliphatic GLS and growth did not display a simple correlation. We propose that large TF networks integrate internal and external signals and separately modulate growth and the accumulation of the defensive aliphatic GLS.
Collapse
Affiliation(s)
- Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Céline Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Ayla Nelson
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Marium Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xue Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
52
|
Zhou S, Zheng WJ, Liu BH, Zheng JC, Dong FS, Liu ZF, Wen ZY, Yang F, Wang HB, Xu ZS, Zhao H, Liu YW. Characterizing the Role of TaWRKY13 in Salt Tolerance. Int J Mol Sci 2019; 20:ijms20225712. [PMID: 31739570 PMCID: PMC6888956 DOI: 10.3390/ijms20225712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
The WRKY transcription factor superfamily is known to participate in plant growth and stress response. However, the role of this family in wheat (Triticum aestivum L.) is largely unknown. Here, a salt-induced gene TaWRKY13 was identified in an RNA-Seq data set from salt-treated wheat. The results of RT-qPCR analysis showed that TaWRKY13 was significantly induced in NaCl-treated wheat and reached an expression level of about 22-fold of the untreated wheat. Then, a further functional identification was performed in both Arabidopsis thaliana and Oryza sativa L. Subcellular localization analysis indicated that TaWRKY13 is a nuclear-localized protein. Moreover, various stress-related regulatory elements were predicted in the promoter. Expression pattern analysis revealed that TaWRKY13 can also be induced by polyethylene glycol (PEG), exogenous abscisic acid (ABA), and cold stress. After NaCl treatment, overexpressed Arabidopsis lines of TaWRKY13 have a longer root and a larger root surface area than the control (Columbia-0). Furthermore, TaWRKY13 overexpression rice lines exhibited salt tolerance compared with the control, as evidenced by increased proline (Pro) and decreased malondialdehyde (MDA) contents under salt treatment. The roots of overexpression lines were also more developed. These results demonstrate that TaWRKY13 plays a positive role in salt stress.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Bao-Hua Liu
- Handan Academy of Agricultural Sciences, Handan 056001, China;
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, Chuzhou 239000, China;
| | - Fu-Shuang Dong
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | | | - Zhi-Yu Wen
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Hai-Bo Wang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China;
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| |
Collapse
|
53
|
Mair A, Xu SL, Branon TC, Ting AY, Bergmann DC. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 2019; 8:e47864. [PMID: 31535972 PMCID: PMC6791687 DOI: 10.7554/elife.47864] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022] Open
Abstract
Defining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurbo), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurbo in Arabidopsis and Nicotiana benthamiana and versatile vectors enable customization by plant researchers.
Collapse
Affiliation(s)
- Andrea Mair
- Department of BiologyStanford UniversityStanfordUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Shou-Ling Xu
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Tess C Branon
- Department of BiologyStanford UniversityStanfordUnited States
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
| | - Alice Y Ting
- Department of BiologyStanford UniversityStanfordUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Dominique C Bergmann
- Department of BiologyStanford UniversityStanfordUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
54
|
Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 2019. [PMID: 31492889 DOI: 10.1038/s41467-019-12002-12001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
A detailed understanding of abiotic stress tolerance in plants is essential to provide food security in the face of increasingly harsh climatic conditions. Glucosinolates (GLSs) are secondary metabolites found in the Brassicaceae that protect plants from herbivory and pathogen attack. Here we report that in Arabidopsis, aliphatic GLS levels are regulated by the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19. These proteins act in a transcriptional cascade that maintains expression of GLS levels when plants are exposed to drought conditions. Loss of IAA5/6/19 results in reduced GLS levels and decreased drought tolerance. Further, we show that this phenotype is associated with a defect in stomatal regulation. Application of GLS to the iaa5,6,19 mutants restores stomatal regulation and normal drought tolerance. GLS action is dependent on the receptor kinase GHR1, suggesting that GLS may signal via reactive oxygen species. These results provide a novel connection between auxin signaling, GLS levels and drought response.
Collapse
Affiliation(s)
- Mohammad Salehin
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ella Katz
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Liang Song
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA.
| |
Collapse
|
55
|
Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 2019; 10:4021. [PMID: 31492889 PMCID: PMC6731224 DOI: 10.1038/s41467-019-12002-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/16/2019] [Indexed: 11/11/2022] Open
Abstract
A detailed understanding of abiotic stress tolerance in plants is essential to provide food security in the face of increasingly harsh climatic conditions. Glucosinolates (GLSs) are secondary metabolites found in the Brassicaceae that protect plants from herbivory and pathogen attack. Here we report that in Arabidopsis, aliphatic GLS levels are regulated by the auxin-sensitive Aux/IAA repressors IAA5, IAA6, and IAA19. These proteins act in a transcriptional cascade that maintains expression of GLS levels when plants are exposed to drought conditions. Loss of IAA5/6/19 results in reduced GLS levels and decreased drought tolerance. Further, we show that this phenotype is associated with a defect in stomatal regulation. Application of GLS to the iaa5,6,19 mutants restores stomatal regulation and normal drought tolerance. GLS action is dependent on the receptor kinase GHR1, suggesting that GLS may signal via reactive oxygen species. These results provide a novel connection between auxin signaling, GLS levels and drought response. Brassicaceae produce glucosinolates to protect against herbivory and pathogens. Here the authors show that auxin-sensitive Aux/IAA repressor proteins regulate aliphatic glucosinolate levels in Arabidopsis and this promotes stomatal closure via reactive oxygen species during drought stress.
Collapse
Affiliation(s)
- Mohammad Salehin
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ella Katz
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Liang Song
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla CA., 92093, USA.
| |
Collapse
|
56
|
Chan KX, Phua SY, Van Breusegem F. Secondary sulfur metabolism in cellular signalling and oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4237-4250. [PMID: 30868163 DOI: 10.1093/jxb/erz119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/08/2019] [Indexed: 05/27/2023]
Abstract
The sulfur metabolism pathway in plants produces a variety of compounds that are central to the acclimation response to oxidative stresses such as drought and high light. Primary sulfur assimilation provides the amino acid cysteine, which is utilized in protein synthesis and as a precursor for the cellular redox buffer glutathione. In contrast, the secondary sulfur metabolism pathway produces sulfated compounds such as glucosinolates and sulfated peptides, as well as a corresponding by-product 3'-phosphoadenosine 5'-phosphate (PAP). Emerging evidence over the past decade has shown that secondary sulfur metabolism also has a crucial engagement during oxidative stress. This occurs across various cellular, tissue, and organismal levels including chloroplast-to-nucleus retrograde signalling events mediated by PAP, modulation of hormonal signalling by sulfated compounds and PAP, control of physiological responses such as stomatal closure, and potential regulation of plant growth. In this review, we examine the contribution of the different components of plant secondary metabolism to oxidative stress homeostasis, and how this pathway is metabolically regulated. We further outline the key outstanding questions in the field that are necessary to understand how and why this 'specialized' metabolic pathway plays significant roles in plant oxidative stress tolerance.
Collapse
Affiliation(s)
- Kai Xun Chan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Su Yin Phua
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| |
Collapse
|
57
|
Lin D, Zhang L, Mei J, Chen J, Piao Z, Lee G, Dong Y. Mutation of the rice TCM12 gene encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase affects chlorophyll synthesis, photosynthesis and chloroplast development at seedling stage at low temperatures. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:585-594. [PMID: 30803106 DOI: 10.1111/plb.12978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Glycolysis is a central metabolic pathway that provides energy and products of primary metabolites. 2,3-Biphosphoglycerate-independent phosphoglycerate mutase (iPGAM) is a key enzyme that catalyses the reversible interconversion of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate (2-PGA) in glycolysis. Low temperature is a common abiotic stress in rice production. However, the mechanism for rice iPGAM genes is not fully understood at low temperature. In this study, the rice mutant tcm12, with chlorosis, malformed chloroplasts and impaired photosynthesis, was grown at a low temperature (<20 °C) to the three-leaf stage, while the normal phenotype at 32 °C was used. Chlorophyll fluorescence analysis and transmission electron microscopy were used to examine features of the tcm12 mutant. The inheritance behaviour and function of TCM12 were then analysed thorough map-based cloning, transgenic complementation and subcellular localisation. The thermo-sensitive chlorosis phenotype was caused by a single nucleotide mutation (T→C) on the fifth exon of TCM12 (LOC_Os12g35040) encoding iPGAM, localised to both nucleus and membranes. In addition, TCM12 was constitutively expressed, and its disruption resulted in down-regulation of some genes associated with chlorophyll biosynthesis and photosynthesis at low temperatures (20 °C). This is the first report of the involvement of rice iPGAM gene in chlorophyll synthesis, photosynthesis and chloroplast development, providing new insights into the mechanisms underlying early growth of rice at low temperatures.
Collapse
Affiliation(s)
- D Lin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - L Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - J Mei
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - J Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Piao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Fengxian District, Shanghai 3, China
| | - G Lee
- National Institute of Agricultural Science, Jeon Ju, Korea
| | - Y Dong
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
58
|
Ouassou M, Mukhaimar M, El Amrani A, Kroymann J, Chauveau O. [Biosynthesis of indole glucosinolates and ecological role of secondary modification pathways]. C R Biol 2019; 342:58-80. [PMID: 31088733 DOI: 10.1016/j.crvi.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/26/2022]
Abstract
Indole glucosinolates are plant secondary metabolites derived from the amino acid tryptophan. They are part of a large group of sulfur-containing molecules almost exclusively found among Brassicales, which include the mustard family (Brassicaceae) with many edible plant species of major nutritional importance. These compounds mediate numerous interactions between these plants and their natural enemies and are therefore of major biological and economical interest. This literature review aims at taking stock of recent advances of our knowledge about the biosynthetic pathways of indole glucosinolates, but also about the defense strategies and ecological processes involving these metabolites.
Collapse
Affiliation(s)
- Malika Ouassou
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France; Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Maisara Mukhaimar
- National Agricultural Research Center (NARC)-Jenin/Gaza, Ministry of Agriculture, Jenin, Palestine
| | - Amal El Amrani
- Laboratory of Biochemistry and Molecular Genetics, Department of Biology, Faculty of Science and Technics, Abdelmalek Essaadi University, Tangier, Maroc
| | - Juergen Kroymann
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France
| | - Olivier Chauveau
- Unité « Écologie, systématique et évolution », UMR 8079, université Paris-Sud, CNRS, AgroParisTech, université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
59
|
Bhat R, Vyas D. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Crit Rev Biotechnol 2019; 39:508-523. [PMID: 30939944 DOI: 10.1080/07388551.2019.1576024] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucosinolate-myrosinase is a substrate-enzyme defense mechanism present in Brassica crops. This binary system provides the plant with an efficient system against herbivores and pathogens. For humans, it is well known for its anti-carcinogenic, anti-inflammatory, immunomodulatory, anti-bacterial, cardio-protective, and central nervous system protective activities. Glucosinolate and myrosinase are spatially present in different cells that upon tissue disruption come together and result in the formation of a variety of hydrolysis products with diverse physicochemical and biological properties. The myrosinase-catalyzed reaction starts with cleavage of the thioglucosidic linkage resulting in release of a D-glucose and an unstable thiohydroximate-O-sulfate. The outcome of this thiohydroximate-O-sulfate has been shown to depend on the structure of the glucosinolate side chain, the presence of supplementary proteins known as specifier proteins and/or on the physiochemical condition. Myrosinase was first reported in mustard seed during 1939 as a protein responsible for release of essential oil. Until this date, myrosinases have been characterized from more than 20 species of Brassica, cabbage aphid, and many bacteria residing in the human intestine. All the plant myrosinases are reported to be activated by ascorbic acid while aphid and bacterial myrosinases are found to be either neutral or inhibited. Myrosinase catalyzes hydrolysis of the S-glycosyl bond, O-β glycosyl bond, and O-glycosyl bond. This review summarizes information on myrosinase, an essential component of this binary system, including its structural and molecular properties, mechanism of action, and its regulation and will be beneficial for the research going on the understanding and betterment of the glucosinolate-myrosinase system from an ecological and nutraceutical perspective.
Collapse
Affiliation(s)
- Rohini Bhat
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| | - Dhiraj Vyas
- a Biodiversity and Applied Botany Division , Indian Institute of Integrative Medicine (CSIR) , Jammu , India.,b Academy of Scientific and Innovative Research , Indian Institute of Integrative Medicine (CSIR) , Jammu , India
| |
Collapse
|
60
|
Jeschke V, Weber K, Moore SS, Burow M. Coordination of Glucosinolate Biosynthesis and Turnover Under Different Nutrient Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:1560. [PMID: 31867028 PMCID: PMC6909823 DOI: 10.3389/fpls.2019.01560] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/07/2019] [Indexed: 05/19/2023]
Abstract
Dynamically changing environmental conditions promote a complex regulation of plant metabolism and balanced resource investments to development and defense. Plants of the Brassicales order constitutively allocate carbon, nitrogen, and sulfur to synthesize glucosinolates as their primary defense metabolites. Previous findings support a model in which steady-state levels of glucosinolates in intact tissues are determined by biosynthesis and turnover through a yet uncharacterized turnover pathway. To investigate glucosinolate turnover in the absence of tissue damage, we quantified exogenously applied allyl glucosinolate and endogenous glucosinolates under different nutrient conditions. Our data shows that, in seedlings of Arabidopsis thaliana accession Columbia-0, glucosinolate biosynthesis and turnover are coordinated according to nutrient availability. Whereas exogenous carbon sources had general quantitative effects on glucosinolate accumulation, sulfur or nitrogen limitation resulted in distinct changes in glucosinolate profiles, indicating that these macronutrients provide different regulatory inputs. Raphanusamic acid, a breakdown product that can potentially be formed from all glucosinolate structures appears not to reflect in planta turnover rates, but instead correlates with increased accumulation of endogenous glucosinolates. Thus, raphanusamic acid could represent a metabolic checkpoint that allows glucosinolate-producing plants to measure the flux through the biosynthetic and/or turnover pathways and thereby to dynamically adjust glucosinolate accumulation in response to internal and external signals.
Collapse
|
61
|
Chhajed S, Misra BB, Tello N, Chen S. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution. FRONTIERS IN PLANT SCIENCE 2019; 10:618. [PMID: 31164896 PMCID: PMC6536577 DOI: 10.3389/fpls.2019.00618] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 05/08/2023]
Abstract
Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other plant specialized metabolites, their presence does not directly affect the plant survival in terms of growth and development. However, specialized metabolites are essential to combat environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many pungent plants in the order of Brassicales. To date, more than 200 different GLS structures have been characterized and their distribution differs from species to species. GLSs co-exist with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone thiohydroximate-O-sulfonate, which rearranges to produce different degradation products. GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products constitute the GLS-myrosinase (GM) system ("mustard oil bomb"). This review discusses the cellular and subcellular organization of the GM system, its chemodiversity, and functions in different cell types. Although there are many studies on the functions of GLSs and/or myrosinases at the tissue and whole plant levels, very few studies have focused on different single cell types. Single cell type studies will help to reveal specific functions that are missed at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins; (2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase interaction with its interacting proteins, and how it regulates the degradation of GLSs and thus the biological functions (e.g., plant defense against pathogens). Future prospects may include targeted approaches for engineering/breeding of plants and crops in the cell type-specific manner toward enhanced plant defense and nutrition.
Collapse
Affiliation(s)
- Shweta Chhajed
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Biswapriya B. Misra
- Department of Biology, University of Florida, Gainesville, FL, United States
- Section on Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nathalia Tello
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
- *Correspondence: Sixue Chen,
| |
Collapse
|
62
|
Zhang K, Su H, Zhou J, Liang W, Liu D, Li J. Overexpressing the Myrosinase Gene TGG1 Enhances Stomatal Defense Against Pseudomonas syringae and Delays Flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1230. [PMID: 31636648 PMCID: PMC6787276 DOI: 10.3389/fpls.2019.01230] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/04/2019] [Indexed: 05/11/2023]
Abstract
Myrosinase enzymes and their substrate glucosinolates provide a specific defensive mechanism against biotic invaders in the Brassicaceae family. In these plants, myrosinase hydrolyzes glucosinolates into diverse products, which can have direct antibiotic activity or function as signaling molecules that initiate a variety of defense reactions. A myrosinase, β-thioglucoside glucohydrolase 1 (TGG1) was previously found to be strikingly abundant in guard cells, and it is required for the abscisic acid (ABA) response of stomata. However, it remains unknown which particular physiological processes actually involve stomatal activity as modulated by TGG1. In this experimental study, a homologous TGG1 gene from broccoli (Brassica oleracea var. italica), BoTGG1, was overexpressed in Arabidopsis. The transgenic plants showed enhanced resistance against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 via improved stomatal defense. Upon Pst DC3000 infection, overexpressing BoTGG1 accelerated stomatal closure and inhibited the reopening of stomata. Compared with the wild type, 35S::BoTGG1 was more sensitive to ABA- and salicylic acid (SA)-induced stomatal closure but was less sensitive to indole-3-acetic acid (IAA)-inhibited stomatal closure, thus indicating these hormone signaling pathways were possibly involved in stomatal defense regulated by TGG1. Furthermore, overexpression of BoTGG1 delayed flowering by promoting the expression of FLOWERING LOCUS C (FLC), which encodes a MADS-box transcription factor known as floral repressor. Taken together, our study's results suggest glucosinolate metabolism mediated by TGG1 plays a role in plant stomatal defense against P. syringae and also modulates flowering time by affecting the FLC pathway.
Collapse
|
63
|
Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1008. [PMID: 31447873 PMCID: PMC6691170 DOI: 10.3389/fpls.2019.01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.
Collapse
|
64
|
Geilfus CM, Lan J, Carpentier S. Dawn regulates guard cell proteins in Arabidopsis thaliana that function in ATP production from fatty acid beta-oxidation. PLANT MOLECULAR BIOLOGY 2018; 98:525-543. [PMID: 30392160 DOI: 10.1007/s11103-018-0794-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Based on the nature of the proteins that are altered in abundance, we conclude that guard cells switch their energy source from fatty acid metabolism to chloroplast activity, at the onset of dawn. During stomatal opening at dawn, evidence was recently presented for a breakdown and liquidation of stored triacylglycerols in guard cells to supply ATP for use in stomatal opening. However, proteome changes that happen in the guard cells during dawn were until now poorly understood. Bad accessibility to pure and intact guard cell samples can be considered as the primary reason behind this lack of knowledge. To overcome these technical constraints, epidermal guard cell samples with ruptured pavement cells were isolated at 1 h pre-dawn, 15 min post-dawn and 1 h post-dawn from Arabidopsis thaliana. Proteomic changes were analysed by ultra-performance-liquid-chromatography-mass-spectrometry. With 994 confidently identified proteins, we present the first analysis of the A. thaliana guard cell proteome that is not influenced by side effects of guard cell protoplasting. Data are available via ProteomeXchange with identifier PXD009918. By elucidating the identities of enzymes that change in abundance by the transition from dark to light, we corroborate the hypothesis that respiratory ATP production for stomatal opening results from fatty acid beta-oxidation. Moreover, we identified many proteins that were never reported in the context of guard cell biology. Among them are proteins that might play a role in signalling or circadian rhythm.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany.
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium.
| | - Jue Lan
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sebastien Carpentier
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42 - Box 2455, 3001, Leuven, Belgium
| |
Collapse
|
65
|
Misra BB, Reichman SM, Chen S. The guard cell ionome: Understanding the role of ions in guard cell functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:50-62. [PMID: 30458181 DOI: 10.1016/j.pbiomolbio.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The ionome is critical for plant growth, productivity, defense, and it eventually affects human food quantity and quality. Located on the leaf surface, stomatal guard cells are critical gatekeepers for water, gas, and pathogens. Insights form ionomics (metallomics) is imperative as we enter an omics-driven systems biology era where an understanding of guard cell function and physiology is advanced through efforts in genomics, transcriptomics, proteomics, and metabolomics. While the roles of major cations (K, Ca) and anions (Cl) are well known in guard cell function, the related physiology, movement and regulation of trace elements, metal ions, and heavy metals are poorly understood. The majority of the information on the role of trace elements in guard cells emanates from classical feeding experiments, field or in vitro fortification, micropropagation, and microscopy studies, while novel insights are available from limited metal ion transporter and ion channel studies. Given the rejuvenated and recent interest in the constantly changing ionome in plant mineral balance and eventually in human nutrition and health, we looked into the far from established guard cell ionome in lieu of the modern omics era of high throughput research endeavors. Newer technologies and tools i.e., high resolution mass spectrometry, advanced imaging, and phenomics are now available to delve into the guard cell ionomes. In this review, research efforts on guard cell ionomes were collated and categorized, and we highlight the underlying role of the largely unknown ionome in guard cell function towards a systems physiology understanding of plant health and productivity.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, 27157, NC, USA; Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
| | - Suzie M Reichman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
66
|
Liang Y, Zhu Y, Dou M, Xu K, Chu RK, Chrisler WB, Zhao R, Hixson KK, Kelly RT. Spatially Resolved Proteome Profiling of <200 Cells from Tomato Fruit Pericarp by Integrating Laser-Capture Microdissection with Nanodroplet Sample Preparation. Anal Chem 2018; 90:11106-11114. [PMID: 30118597 DOI: 10.1021/acs.analchem.8b03005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to sensitivity limitations, global proteome measurements generally require large amounts of biological starting material, which masks heterogeneity within the samples and differential protein expression among constituent cell types. Methods for spatially resolved proteomics are being developed to resolve protein expression for distinct cell types among highly heterogeneous tissues, but have primarily been applied to mammalian systems. Here we evaluate the performance of cell-type-specific proteome analysis of tomato fruit pericarp tissues by a platform integrating laser-capture microdissection (LCM) and a recently developed automated sample preparation system (nanoPOTS, nanodroplet processing in one pot for trace samples). Tomato fruits were cryosectioned prior to LCM and tissues were dissected and captured directly into nanoPOTS chips for processing. Following processing, samples were analyzed by nanoLC-MS/MS. Approximately 1900 unique peptides and 422 proteins were identified on average from ∼0.04 mm2 tissues comprising ∼8-15 parenchyma cells. Spatially resolved proteome analyses were performed using cells of outer epidermis, collenchyma, and parenchyma. Using ≤200 cells, a total of 1,870 protein groups were identified and the various tissues were easily resolved. The results provide spatial and tissue-specific insights into key enzymes and pathways involved in carbohydrate transport and source-sink relationships in tomato fruit. Of note, at the time of fruit ripening studied here, we identified differentially abundant proteins throughout the pericarp related to chlorophyll biogenesis, photosynthesis, and especially transport.
Collapse
Affiliation(s)
- Yiran Liang
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Maowei Dou
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Kerui Xu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - William B Chrisler
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Kim K Hixson
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.,Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
67
|
Liu S, Lv Z, Liu Y, Li L, Zhang L. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol 2018. [PMID: 30044467 DOI: 10.1590/1678-4685-gmb-2017-2229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of interplay between the two pathways is still limited. Here, we integrated transcriptome sequencing and network analyses to explore interplays between ABA-dependent and ABA-independent pathways responding to drought stress in Arabidopsis thaliana. We identified 211 ABA-dependent differentially expressed genes (DEGs) and 1,118 ABA-independent DEGs under drought stress. Functional analysis showed that ABA-dependent DEGs were significantly enriched in expected biological processes in response to water deprivation and ABA stimulus, while ABA-independent DEGs were preferentially enriched in response to jasmonic acid (JA), salicylic acid (SA) and gibberellin (GA) stimuli. We found significantly enriched interactions between ABA-dependent and ABA-independent pathways with 94 genes acting as core interacting components by combining network analyses. A link between ABA and JA signaling mediated through a direct interaction of the ABA responsive elements-binding factor ABF3 with the basic helix-loop-helix transcription factor MYC2 was validated by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Our study provides a systematic view of the interplay between ABA-dependent and ABA-independent pathways in response to drought stress.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zongyou Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihui Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
68
|
Liu S, Lv Z, Liu Y, Li L, Zhang L. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol 2018; 41:624-637. [PMID: 30044467 PMCID: PMC6136374 DOI: 10.1590/1678-4685-gmb-2017-0229] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/31/2017] [Indexed: 12/02/2022] Open
Abstract
Drought is one of the most severe abiotic factors restricting plant growth and yield. Numerous genes functioning in drought response are regulated by abscisic acid (ABA) dependent and independent pathways, but knowledge of interplay between the two pathways is still limited. Here, we integrated transcriptome sequencing and network analyses to explore interplays between ABA-dependent and ABA-independent pathways responding to drought stress in Arabidopsis thaliana. We identified 211 ABA-dependent differentially expressed genes (DEGs) and 1,118 ABA-independent DEGs under drought stress. Functional analysis showed that ABA-dependent DEGs were significantly enriched in expected biological processes in response to water deprivation and ABA stimulus, while ABA-independent DEGs were preferentially enriched in response to jasmonic acid (JA), salicylic acid (SA) and gibberellin (GA) stimuli. We found significantly enriched interactions between ABA-dependent and ABA-independent pathways with 94 genes acting as core interacting components by combining network analyses. A link between ABA and JA signaling mediated through a direct interaction of the ABA responsive elements-binding factor ABF3 with the basic helix-loop-helix transcription factor MYC2 was validated by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Our study provides a systematic view of the interplay between ABA-dependent and ABA-independent pathways in response to drought stress.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zongyou Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihui Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
69
|
Shirakawa M, Hara-Nishimura I. Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. PLANT & CELL PHYSIOLOGY 2018; 59:1309-1316. [PMID: 29897512 DOI: 10.1093/pcp/pcy082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Plant vacuoles display many versatile functions. Vacuoles in vegetative tissues are generally involved in protein degradation, and are called lytic vacuoles. However, vegetative vacuoles in specialized cells can accumulate large concentrations of proteins, such as those in idioblast myrosin cells along veins in the order Brassicales, which store large amounts of myrosinases (thioglucoside glucohydrolase and thioglucoside glucohydrolase). Myrosinases cleave the bond between sulfur and glucose in sulfur-rich compounds (glucosinolates) to produce toxic compounds (isothiocyanates) when plants are damaged by pests. This defense strategy is called the myrosinase-glucosinolate system. Recent studies identified atypical myrosinases, PENETRATION 2 (PEN2) and PYK10, along with key components for development of myrosin cells. In this review, we discuss three topics in the myrosinase-glucosinolate system. First, we summarize the complexity and importance of the myrosinase-glucosinolate system, including classical myrosinases, atypical myrosinases and the system that counteracts the myrosinase-glucosinolate system. Secondly, we describe molecular machineries underlying myrosin cell development, including specific reporters, cell lineage, cell differentiation and cell fate determination. The master regulators for myrosin cell differentiation, FAMA and SCREAM, are key transcription factors involved in guard cell differentiation. This indicates that myrosin cells and guard cells share similar transcriptional networks. Finally, we hypothesize that the myrosinase-glucosinolate system may have originated in stomata of ancestral Brassicales plants and, after that, plants co-opted this defense strategy into idioblasts near veins at inner tissue layers.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
70
|
Nucleolar GTP-Binding Protein 1-2 (NOG1-2) Interacts with Jasmonate-ZIMDomain Protein 9 (JAZ9) to Regulate Stomatal Aperture during Plant Immunity. Int J Mol Sci 2018; 19:ijms19071922. [PMID: 29966336 PMCID: PMC6073727 DOI: 10.3390/ijms19071922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023] Open
Abstract
Plant defense responses at stomata and apoplast are the most important early events during plant–bacteria interactions. The key components of stomatal defense responses have not been fully characterized. A GTPase encoding gene, NOG1-2, which is required for stomatal innate immunity against bacterial pathogens, was recently identified. Functional studies in Arabidopsis revealed that NOG1-2 regulates guard cell signaling in response to biotic and abiotic stimulus through jasmonic acid (JA)- and abscisic acid (ABA)-mediated pathways. Interestingly, in this study, Jasmonate-ZIM-domain protein 9 (JAZ9) was identified to interact with NOG1-2 for the regulation of stomatal closure. Upon interaction, JAZ9 reduces GTPase activity of NOG1-2. We explored the role of NOG1-2 binding with JAZ9 for COI1-mediated JA signaling and hypothesized that its function may be closely linked to MYC2 transcription factor in the regulation of the JA-signaling cascade in stomatal defense against bacterial pathogens. Our study provides valuable information on the function of a small GTPase, NOG1-2, in guard cell signaling and early plant defense in response to bacterial pathogens.
Collapse
|
71
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
72
|
Abraham PE, Garcia BJ, Gunter LE, Jawdy SS, Engle N, Yang X, Jacobson DA, Hettich RL, Tuskan GA, Tschaplinski TJ. Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves. PLoS One 2018; 13:e0190019. [PMID: 29447168 PMCID: PMC5813909 DOI: 10.1371/journal.pone.0190019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.
Collapse
Affiliation(s)
- Paul E. Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Benjamin J. Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Lee E. Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Nancy Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
73
|
Lima VF, Medeiros DB, Dos Anjos L, Gago J, Fernie AR, Daloso DM. Toward multifaceted roles of sucrose in the regulation of stomatal movement. PLANT SIGNALING & BEHAVIOR 2018; 13:e1494468. [PMID: 30067434 PMCID: PMC6149408 DOI: 10.1080/15592324.2018.1494468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant atmospheric CO2 fixation depends on the aperture of stomatal pores at the leaf epidermis. Stomatal aperture or closure is regulated by changes in the metabolism of the two surrounding guard cells, which respond directly to environmental and internal cues such as mesophyll-derived metabolites. Sucrose has been shown to play a dual role during stomatal movements. The sucrose produced in the mesophyll cells can be transported to the vicinity of the guard cells via the transpiration stream, inducing closure in periods of high photosynthetic rate. By contrast, sucrose breakdown within guard cells sustains glycolysis and glutamine biosynthesis during light-induced stomatal opening. Here, we provide an update regarding the role of sucrose in the regulation of stomatal movement highlighting recent findings from metabolic and systems biology studies. We further explore how sucrose-mediated mechanisms of stomatal movement regulation could be useful to understand evolution of stomatal physiology among different plant groups.
Collapse
Affiliation(s)
- V. F. Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
- CONTACT Danilo M. Daloso Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - D. B. Medeiros
- Central metabolism group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm Germany
| | - L. Dos Anjos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras-MG, Brasil
| | - J. Gago
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears)/Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Illes Balears, Spain
| | - A. R. Fernie
- Central metabolism group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm Germany
| | - D. M. Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| |
Collapse
|
74
|
Guo H, Peng X, Gu L, Wu J, Ge F, Sun Y. Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5923-5935. [PMID: 29140446 DOI: 10.1093/jxb/erx394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous research has shown that elevated CO2 reduces plant resistance against insects and enhances the water use efficiency of C3 plants, which improves the feeding efficiency of aphids. Although plant mitogen-activated protein kinases (MAPKs) are known to regulate water relations and phytohormone-mediated resistance, little is known about the effect of elevated CO2 on MAPKs and the cascading effects on aphids. By using stably transformed Nicotiana attenuata plants silenced in MPK4, wound-induced protein kinase (WIPK), or salicylic acid-induced protein kinase (SIPK), we determined the functions of MAPKs in plant-aphid interactions and their responses to elevated CO2. The results showed that among all plant genotypes, inverted repeat MPK4 plants had the largest stomatal apertures, the lowest water content, the strongest jasmonic acid (JA)-dependent resistance, and the lowest aphid numbers, suggesting that MPK4 affects plant responses to aphids by regulating stomatal aperture and JA-dependent resistance. Regardless of aphid infestation, elevated CO2 up-regulated MPK4, but not WIPK or SIPK, in wild-type plants. Elevated CO2 increased the number, mean relative growth rate, and feeding efficiency of aphids on all plant genotypes except inverted repeat MPK4. We conclude that MPK4 is a CO2-responsive plant determinant that regulates the molecular interaction between plants and aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhong Peng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyuan Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
75
|
Daloso DM, Medeiros DB, Dos Anjos L, Yoshida T, Araújo WL, Fernie AR. Metabolism within the specialized guard cells of plants. THE NEW PHYTOLOGIST 2017; 216:1018-1033. [PMID: 28984366 DOI: 10.1111/nph.14823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 05/21/2023]
Abstract
Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Letícia Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
76
|
Urbancsok J, Bones AM, Kissen R. Glucosinolate-Derived Isothiocyanates Inhibit Arabidopsis Growth and the Potency Depends on Their Side Chain Structure. Int J Mol Sci 2017; 18:ijms18112372. [PMID: 29117115 PMCID: PMC5713341 DOI: 10.3390/ijms18112372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023] Open
Abstract
Isothiocyanates (ITCs), the biologically important glucosinolate breakdown products, can present health-promoting effects, play an important role in plant defense and affect plant cellular mechanisms. Here, we evaluated the biological effects of ITCs on Arabidopsis thaliana by assessing growth parameters after long-term exposure to low concentrations of aliphatic and aromatic ITCs, ranging from 1 to 1000 µM. Treatment with the aliphatic allylisothiocyanate (allyl-ITC) led to a significant reduction of root length and fresh weight in a dose-dependent manner and affected the formation of lateral roots. To assess the importance of a hormonal crosstalk in the allyl-ITC-mediated growth reduction, the response of auxin and ethylene mutants was investigated, but our results did not allow us to confirm a role for these hormones. Aromatic ITCs generally led to a more severe growth inhibition than the aliphatic allyl-ITC. Interestingly, we observed a correlation between the length of their side chain and the effect these aromatic ITCs caused on Arabidopsis thaliana, with the greatest inhibitory effect seen for 2-phenylethyl-ITC. Root growth recovered when seedlings were removed from exposure to ITCs.
Collapse
Affiliation(s)
- János Urbancsok
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| |
Collapse
|
77
|
Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the Single-Cell Level. TRENDS IN PLANT SCIENCE 2017; 22:949-960. [PMID: 28970001 DOI: 10.1016/j.tplants.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system.
Collapse
Affiliation(s)
- Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
78
|
Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics. Sci Rep 2017; 7:12875. [PMID: 28993661 PMCID: PMC5634414 DOI: 10.1038/s41598-017-13166-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/19/2017] [Indexed: 11/08/2022] Open
Abstract
Drought can severely damage crops, resulting in major yield losses. During drought, vascular land plants conserve water via stomatal closure. Each stomate is bordered by a pair of guard cells that shrink in response to drought and the associated hormone abscisic acid (ABA). The activation of complex intracellular signaling networks underlies these responses. Therefore, analysis of guard cell metabolites is fundamental for elucidation of guard cell signaling pathways. Brassica napus is an important oilseed crop for human consumption and biodiesel production. Here, non-targeted metabolomics utilizing gas chromatography mass spectrometry (GC-MS/MS) and liquid chromatography mass spectrometry (LC-MS/MS) were employed for the first time to identify metabolic signatures in response to ABA in B. napus guard cell protoplasts. Metabolome profiling identified 390 distinct metabolites in B. napus guard cells, falling into diverse classes. Of these, 77 metabolites, comprising both primary and secondary metabolites were found to be significantly ABA responsive, including carbohydrates, fatty acids, glucosinolates, and flavonoids. Selected secondary metabolites, sinigrin, quercetin, campesterol, and sitosterol, were confirmed to regulate stomatal closure in Arabidopsis thaliana, B. napus or both species. Information derived from metabolite datasets can provide a blueprint for improvement of water use efficiency and drought tolerance in crops.
Collapse
|
79
|
Kaundal A, Ramu VS, Oh S, Lee S, Pant B, Lee HK, Rojas CM, Senthil-Kumar M, Mysore KS. GENERAL CONTROL NONREPRESSIBLE4 Degrades 14-3-3 and the RIN4 Complex to Regulate Stomatal Aperture with Implications on Nonhost Disease Resistance and Drought Tolerance. THE PLANT CELL 2017; 29:2233-2248. [PMID: 28855332 PMCID: PMC5635975 DOI: 10.1105/tpc.17.00070] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
Plants have complex and adaptive innate immune responses against pathogen infections. Stomata are key entry points for many plant pathogens. Both pathogens and plants regulate stomatal aperture for pathogen entry and defense, respectively. Not all plant proteins involved in stomatal aperture regulation have been identified. Here, we report GENERAL CONTROL NONREPRESSIBLE4 (GCN4), an AAA+-ATPase family protein, as one of the key proteins regulating stomatal aperture during biotic and abiotic stress. Silencing of GCN4 in Nicotiana benthamiana and Arabidopsis thaliana compromises host and nonhost disease resistance due to open stomata during pathogen infection. AtGCN4 overexpression plants have reduced H+-ATPase activity, stomata that are less responsive to pathogen virulence factors such as coronatine (phytotoxin produced by the bacterium Pseudomonas syringae) or fusicoccin (a fungal toxin produced by the fungus Fusicoccum amygdali), reduced pathogen entry, and enhanced drought tolerance. This study also demonstrates that AtGCN4 interacts with RIN4 and 14-3-3 proteins and suggests that GCN4 degrades RIN4 and 14-3-3 proteins via a proteasome-mediated pathway and thereby reduces the activity of the plasma membrane H+-ATPase complex, thus reducing proton pump activity to close stomata.
Collapse
Affiliation(s)
| | | | - Sunhee Oh
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Seonghee Lee
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Bikram Pant
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | | | | | | |
Collapse
|
80
|
Zhang TY, Li FC, Fan CM, Li X, Zhang FF, He JM. Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:190-199. [PMID: 28716416 DOI: 10.1016/j.plantsci.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/13/2017] [Accepted: 06/23/2017] [Indexed: 05/20/2023]
Abstract
Pharmacological data have suggested the involvement of mitogen-activated protein kinase (MPK) cascades in dark-induced stomatal closure, but which specific MPK cascade participates in the darkness guard cell signaling and its relationship with hydrogen peroxide (H2O2) and nitric oxide (NO) remain unclear. In this paper, we observed that darkness induced activation of MPK6 in leaves of wild-type Arabidopsis (Arabidopsis thaliana) and mutants for nitrate reductase 1 (NIA1), but this effect was inhibited in mutants for MPK Kinase 1 (MEK1) and ATRBOHD/F. Mutants for MEK1, MPK6 and NIA1 showed defect of dark-induced NO production in guard cells and stomatal closure, but were normal in the dark-induced H2O2 generation, while stomata of mutant AtrbohD/F showed defect of dark-induced H2O2 and NO production and subsequent closure. Moreover, exogenous NO rescued the defect of dark-induced stomatal closure in mutants of AtrbohD/F, mek1 and mpk6, while exogenous H2O2 could not rescue the defect of dark-induced stomatal closure in mutants of mek1, mpk6 and nia1. These genetic and biochemical evidences not only show that MEK1-MPK6 cascade, AtRBOHD/F-dependent H2O2 and NIA1-dependent NO are all involved in dark-induced stomatal closure in Arabidopsis, also indicate that MEK1-MPK6 cascade functions via working downstream of H2O2 and upstream of NO.
Collapse
Affiliation(s)
- Teng-Yue Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Feng-Chen Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Cai-Ming Fan
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xuan Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Fang-Fang Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
81
|
Corratgé-Faillie C, Ronzier E, Sanchez F, Prado K, Kim JH, Lanciano S, Leonhardt N, Lacombe B, Xiong TC. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33. FEBS Lett 2017; 591:1982-1992. [PMID: 28543075 DOI: 10.1002/1873-3468.12687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022]
Abstract
A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca2+ -dependent regulation of Shaker channels by Ca2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca2+ -induced stomatal closure is impaired in two cpk33 mutant plants.
Collapse
Affiliation(s)
- Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Elsa Ronzier
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Frédéric Sanchez
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Karine Prado
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Jeong-Hyeon Kim
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Sophie Lanciano
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Benoît Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Tou Cheu Xiong
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| |
Collapse
|
82
|
Zhang X, Ivanova A, Vandepoele K, Radomiljac J, Van de Velde J, Berkowitz O, Willems P, Xu Y, Ng S, Van Aken O, Duncan O, Zhang B, Storme V, Chan KX, Vaneechoutte D, Pogson BJ, Van Breusegem F, Whelan J, De Clercq I. The Transcription Factor MYB29 Is a Regulator of ALTERNATIVE OXIDASE1a. PLANT PHYSIOLOGY 2017; 173:1824-1843. [PMID: 28167700 PMCID: PMC5338668 DOI: 10.1104/pp.16.01494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Plants sense and integrate a variety of signals from the environment through different interacting signal transduction pathways that involve hormones and signaling molecules. Using ALTERNATIVE OXIDASE1a (AOX1a) gene expression as a model system of retrograde or stress signaling between mitochondria and the nucleus, MYB DOMAIN PROTEIN29 (MYB29) was identified as a negative regulator (regulator of alternative oxidase1a 7 [rao7] mutant) in a genetic screen of Arabidopsis (Arabidopsis thaliana). rao7/myb29 mutants have increased levels of AOX1a transcript and protein compared to wild type after induction with antimycin A. A variety of genes previously associated with the mitochondrial stress response also display enhanced transcript abundance, indicating that RAO7/MYB29 negatively regulates mitochondrial stress responses in general. Meta-analysis of hormone-responsive marker genes and identification of downstream transcription factor networks revealed that MYB29 functions in the complex interplay of ethylene, jasmonic acid, salicylic acid, and reactive oxygen species signaling by regulating the expression of various ETHYLENE RESPONSE FACTOR and WRKY transcription factors. Despite an enhanced induction of mitochondrial stress response genes, rao7/myb29 mutants displayed an increased sensitivity to combined moderate light and drought stress. These results uncover interactions between mitochondrial retrograde signaling and the regulation of glucosinolate biosynthesis, both regulated by RAO7/MYB29. This common regulator can explain why perturbation of the mitochondrial function leads to transcriptomic responses overlapping with responses to biotic stress.
Collapse
|
83
|
|
84
|
Li FC, Wang J, Wu MM, Fan CM, Li X, He JM. Mitogen-Activated Protein Kinase Phosphatases Affect UV-B-Induced Stomatal Closure via Controlling NO in Guard Cells. PLANT PHYSIOLOGY 2017; 173:760-770. [PMID: 27837091 PMCID: PMC5210765 DOI: 10.1104/pp.16.01656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 05/04/2023]
Abstract
Ultraviolet B (UV-B) radiation induces the activation of MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE1 (MKP1) and its targets MPK3 and MPK6, but whether they participate in UV-B guard cell signaling is not clear. Here, evidence shows that UV-B-induced stomatal closure in Arabidopsis (Arabidopsis thaliana) is antagonistically regulated by MKP1 and MPK6 via modulating hydrogen peroxide (H2O2)-induced nitric oxide (NO) production in guard cells. The mkp1 mutant was hypersensitive to UV-B-induced stomatal closure and NO production in guard cells but not to UV-B-induced H2O2 production, suggesting that MKP1 negatively regulates UV-B-induced stomatal closure via inhibiting NO generation in guard cells. Moreover, MPK3 and MPK6 were activated by UV-B in leaves of the wild type and hyperactivated in the mkp1 mutant, but the UV-B-induced activation of MPK3 and MPK6 was largely inhibited in mutants for ATRBOHD and ATRBOHF but not in mutants for NIA1 and NIA2 mpk6 mutants showed defects of UV-B-induced NO production and stomatal closure but were normal in UV-B-induced H2O2 production, while stomata of mpk3 mutants responded to UV-B just like those of the wild type. The defect of UV-B-induced stomatal closure in mpk6 mutants was rescued by exogenous NO but not by exogenous H2O2 Furthermore, double mutant mkp1/mpk6 and the single mutant mpk6 showed the same responses to UV-B in terms of either stomatal movement or H2O2 and NO production. These data indicate that MPK6, but not MPK3, positively regulates UV-B-induced stomatal closure via acting downstream of H2O2 and upstream of NO, while MKP1 functions negatively in UV-B guard cell signaling via down-regulation of MPK6.
Collapse
Affiliation(s)
- Feng-Chen Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Mi-Mi Wu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Cai-Ming Fan
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xuan Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
85
|
Ahuja I, de Vos RCH, Rohloff J, Stoopen GM, Halle KK, Ahmad SJN, Hoang L, Hall RD, Bones AM. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Sci Rep 2016; 6:38990. [PMID: 27976683 PMCID: PMC5157024 DOI: 10.1038/srep38990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022] Open
Abstract
Both physical barriers and reactive phytochemicals represent two important components of a plant's defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ric C. H. de Vos
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway
| | - Geert M. Stoopen
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- RIKILT, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Kari K. Halle
- Department of Mathematical Sciences, NTNU, Trondheim, Norway
| | | | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Laboratory for Electron Microscopy, NTNU, Trondheim, Norway
| | - Robert D. Hall
- Plant Research International, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway
| |
Collapse
|
86
|
Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA, Gudesblat GE. Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production. FRONTIERS IN PLANT SCIENCE 2016; 7:1851. [PMID: 28018388 PMCID: PMC5155495 DOI: 10.3389/fpls.2016.01851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 05/19/2023]
Abstract
Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Pablo S. Torres
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Susana M. Gallego
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María P. Benavídes
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Gustavo E. Gudesblat
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Departamento de Biodiversidad y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
87
|
Santelia D, Lawson T. Rethinking Guard Cell Metabolism. PLANT PHYSIOLOGY 2016; 172:1371-1392. [PMID: 27609861 PMCID: PMC5100799 DOI: 10.1104/pp.16.00767] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/27/2016] [Indexed: 05/18/2023]
Abstract
Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere and, therefore, play a pivotal role in regulating CO2 uptake for photosynthesis as well as water loss through transpiration. Guard cells, which flank the stomata, undergo adjustments in volume, resulting in changes in pore aperture. Stomatal opening is mediated by the complex regulation of ion transport and solute biosynthesis. Ion transport is exceptionally well understood, whereas our knowledge of guard cell metabolism remains limited, despite several decades of research. In this review, we evaluate the current literature on metabolism in guard cells, particularly the roles of starch, sucrose, and malate. We explore the possible origins of sucrose, including guard cell photosynthesis, and discuss new evidence that points to multiple processes and plasticity in guard cell metabolism that enable these cells to function effectively to maintain optimal stomatal aperture. We also discuss the new tools, techniques, and approaches available for further exploring and potentially manipulating guard cell metabolism to improve plant water use and productivity.
Collapse
Affiliation(s)
- Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland (D.S.); and
- School of Biological Science, University of Essex, Colchester CO4 3SQ, United Kingdom (T.L.)
| | - Tracy Lawson
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland (D.S.); and
- School of Biological Science, University of Essex, Colchester CO4 3SQ, United Kingdom (T.L.)
| |
Collapse
|
88
|
Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx KS, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D, De Jaeger G. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5825-5840. [PMID: 27660483 PMCID: PMC5066499 DOI: 10.1093/jxb/erw347] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bernard Cannoot
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nancy De Winne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Leen Vercruysse
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Gent, Belgium Department of Biochemistry, Ghent University, B-9000 Gent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
89
|
Hõrak H, Sierla M, Tõldsepp K, Wang C, Wang YS, Nuhkat M, Valk E, Pechter P, Merilo E, Salojärvi J, Overmyer K, Loog M, Brosché M, Schroeder JI, Kangasjärvi J, Kollist H. A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure. THE PLANT CELL 2016; 28:2493-2509. [PMID: 27694184 PMCID: PMC5134974 DOI: 10.1105/tpc.16.00131] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/22/2016] [Accepted: 09/29/2016] [Indexed: 05/18/2023]
Abstract
Activation of the guard cell S-type anion channel SLAC1 is important for stomatal closure in response to diverse stimuli, including elevated CO2 The majority of known SLAC1 activation mechanisms depend on abscisic acid (ABA) signaling. Several lines of evidence point to a parallel ABA-independent mechanism of CO2-induced stomatal regulation; however, molecular details of this pathway remain scarce. Here, we isolated a dominant mutation in the protein kinase HIGH LEAF TEMPERATURE1 (HT1), an essential regulator of stomatal CO2 responses, in an ozone sensitivity screen of Arabidopsis thaliana The mutation caused constitutively open stomata and impaired stomatal CO2 responses. We show that the mitogen-activated protein kinases (MPKs) MPK4 and MPK12 can inhibit HT1 activity in vitro and this inhibition is decreased for the dominant allele of HT1. We also show that HT1 inhibits the activation of the SLAC1 anion channel by the protein kinases OPEN STOMATA1 and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) in Xenopus laevis oocytes. Notably, MPK12 can restore SLAC1 activation in the presence of HT1, but not in the presence of the dominant allele of HT1. Based on these data, we propose a model for sequential roles of MPK12, HT1, and GHR1 in the ABA-independent regulation of SLAC1 during CO2-induced stomatal closure.
Collapse
Affiliation(s)
- Hanna Hõrak
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Maija Sierla
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Cun Wang
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Maris Nuhkat
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Priit Pechter
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Jarkko Salojärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kirk Overmyer
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
- Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
90
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
91
|
Kask K, Kännaste A, Talts E, Copolovici L, Niinemets Ü. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. PLANT, CELL & ENVIRONMENT 2016; 39:2027-42. [PMID: 27287526 PMCID: PMC5798583 DOI: 10.1111/pce.12775] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 05/04/2023]
Abstract
Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses.
Collapse
Affiliation(s)
- Kaia Kask
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Author for correspondence.
| | - Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” University, 2 Elena Dragoi St., 310330, Arad, Romania
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Elena Dragoi St., 310330, Arad, Romania
| |
Collapse
|
92
|
Figueroa CM, Lunn JE. A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose. PLANT PHYSIOLOGY 2016; 172:7-27. [PMID: 27482078 PMCID: PMC5074632 DOI: 10.1104/pp.16.00417] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signal metabolite in plants, linking growth and development to carbon status. The Suc-Tre6P nexus model postulates that Tre6P is both a signal and negative feedback regulator of Suc levels, forming part of a mechanism to maintain Suc levels within an optimal range and functionally comparable to the insulin-glucagon system for regulating blood Glc levels in animals. The target range and sensitivity of the Tre6P-Suc feedback control circuit can be adjusted according to the cell type, developmental stage, and environmental conditions. In source leaves, Tre6P modulates Suc levels by affecting Suc synthesis, whereas in sink organs it regulates Suc consumption. In illuminated leaves, Tre6P influences the partitioning of photoassimilates between Suc, organic acids, and amino acids via posttranslational regulation of phosphoenolpyruvate carboxylase and nitrate reductase. At night, Tre6P regulates the remobilization of leaf starch reserves to Suc, potentially linking starch turnover in source leaves to carbon demand from developing sink organs. Use of Suc for growth in developing tissues is strongly influenced by the antagonistic activities of two protein kinases: SUC-NON-FERMENTING-1-RELATED KINASE1 (SnRK1) and TARGET OF RAPAMYCIN (TOR). The relationship between Tre6P and SnRK1 in developing tissues is complex and not yet fully resolved, involving both direct and indirect mechanisms, and positive and negative effects. No direct connection between Tre6P and TOR has yet been described. The roles of Tre6P in abiotic stress tolerance and stomatal regulation are also discussed.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina (C.M.F.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| | - John E Lunn
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000 Santa Fe, Argentina (C.M.F.); andMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (J.E.L.)
| |
Collapse
|
93
|
Yamauchi S, Takemiya A, Sakamoto T, Kurata T, Tsutsumi T, Kinoshita T, Shimazaki KI. The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light. PLANT PHYSIOLOGY 2016; 171:2731-43. [PMID: 27261063 PMCID: PMC4972258 DOI: 10.1104/pp.16.01581] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Stomata open in response to a beam of weak blue light under strong red light illumination. A blue light signal is perceived by phototropins and transmitted to the plasma membrane H(+)-ATPase that drives stomatal opening. To identify the components in this pathway, we screened for mutants impaired in blue light-dependent stomatal opening. We analyzed one such mutant, provisionally named blus2 (blue light signaling2), and found that stomatal opening in leaves was impaired by 65%, although the magnitude of red light-induced opening was not affected. Blue light-dependent stomatal opening in the epidermis and H(+) pumping in guard cell protoplasts were inhibited by 70% in blus2 Whole-genome resequencing identified a mutation in the AHA1 gene of the mutant at Gly-602. T-DNA insertion mutants of AHA1 exhibited a similar phenotype to blus2; this phenotype was complemented by the AHA1 gene. We renamed blus2 as aha1-10 T-DNA insertion mutants of AHA2 and AHA5 did not show any impairment in stomatal response, although the transcript levels of AHA2 and AHA5 were higher than those of AHA1 in wild-type guard cells. Stomata in ost2, a constitutively active AHA1 mutant, did not respond to blue light. A decreased amount of H(+)-ATPase in aha1-10 accounted for the reduced stomatal blue light responses and the decrease was likely caused by proteolysis of misfolded AHA1. From these results, we conclude that AHA1 plays a major role in blue light-dependent stomatal opening in Arabidopsis and that the mutation made the AHA1 protein unstable in guard cells.
Collapse
Affiliation(s)
- Shota Yamauchi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Tomoaki Sakamoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Tetsuya Kurata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Toshifumi Tsutsumi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Toshinori Kinoshita
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan (S.Y., A.T., T.T., K.S.); Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.S., Te.K.); and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan (To.K.)
| |
Collapse
|
94
|
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. PLANT REPRODUCTION 2016; 29:119-32. [PMID: 27271282 PMCID: PMC4909805 DOI: 10.1007/s00497-016-0283-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
Pollen development and stress. In angiosperms, pollen or pollen grain (male gametophyte) is a highly reduced two- or three-cell structure which plays a decisive role in plant reproduction. Male gametophyte development takes place in anther locules where diploid sporophytic cells undergo meiotic division followed by two consecutive mitotic processes. A desiccated and metabolically quiescent form of mature pollen is released from the anther which lands on the stigma. Pollen tube growth takes place followed by double fertilization. Apart from its importance in sexual reproduction, pollen is also an interesting model system which integrates fundamental cellular processes like cell division, differentiation, fate determination, polar establishment, cell to cell recognition and communication. Recently, pollen functionality has been studied by multidisciplinary approaches which also include OMICS analyses like transcriptomics, proteomics and metabolomics. Here, we review recent advances in proteomics of pollen development and propose the process of developmental priming playing a key role to guard highly sensitive developmental processes.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector No-15, CBD, Belapur, Navi Mumbai, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
95
|
Marino D, Ariz I, Lasa B, Santamaría E, Fernández-Irigoyen J, González-Murua C, Aparicio Tejo PM. Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3313-23. [PMID: 27085186 PMCID: PMC4892723 DOI: 10.1093/jxb/erw147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants' nutritional value.
Collapse
Affiliation(s)
- Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Idoia Ariz
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain Faculdade de Ciências, Centro Ecologia Evolução e Alterações Ambientais, Universidade de Lisboa, Lisboa, Portugal
| | - Berta Lasa
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, Proteored-ISCIII, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Unit, Navarrabiomed, Fundación Miguel Servet, Proteored-ISCIII, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Pedro M Aparicio Tejo
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
96
|
Aziz M, Nadipalli RK, Xie X, Sun Y, Surowiec K, Zhang JL, Paré PW. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:458. [PMID: 27092166 PMCID: PMC4824779 DOI: 10.3389/fpls.2016.00458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/24/2016] [Indexed: 05/24/2023]
Abstract
Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant's growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03) transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm, BAW). In contrast, a previously characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against BAW feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.
Collapse
Affiliation(s)
- Mina Aziz
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
- Center for Plant Lipid Research, University of North Texas, DentonTX, USA
| | | | - Xitao Xie
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Yan Sun
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Kazimierz Surowiec
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Jin-Lin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| |
Collapse
|
97
|
Lu D, Ni W, Stanley BA, Ma H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC PLANT BIOLOGY 2016; 16:61. [PMID: 26940208 PMCID: PMC4778361 DOI: 10.1186/s12870-015-0571-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/04/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. RESULTS Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type, but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. CONCLUSIONS Our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.
Collapse
Affiliation(s)
- Dihong Lu
- Intercollege Graduate Degree Program in Plant Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, 16802, USA.
| | - Weimin Ni
- Department of Biology, the Pennsylvania State University, University Park, PA, 16802, USA.
- Current address: Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
98
|
Lee Y, Kim YJ, Kim MH, Kwak JM. MAPK Cascades in Guard Cell Signal Transduction. FRONTIERS IN PLANT SCIENCE 2016; 7:80. [PMID: 26904052 PMCID: PMC4749715 DOI: 10.3389/fpls.2016.00080] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/16/2016] [Indexed: 05/03/2023]
Abstract
Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.
Collapse
Affiliation(s)
- Yuree Lee
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
| | - June M. Kwak
- Center for Plant Aging Research, Institute for Basic ScienceDaegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and TechnologyDaegu, South Korea
| |
Collapse
|
99
|
Wang C, Hu H, Qin X, Zeise B, Xu D, Rappel WJ, Boron WF, Schroeder JI. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor. THE PLANT CELL 2016; 28:568-82. [PMID: 26764375 PMCID: PMC4790870 DOI: 10.1105/tpc.15.00637] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 (-) enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels.
Collapse
Affiliation(s)
- Cun Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| | - Honghong Hu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116 College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University, Ohio 44106
| | - Brian Zeise
- Department of Physiology and Biophysics, Case Western Reserve University, Ohio 44106
| | - Danyun Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Ohio 44106
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116
| |
Collapse
|
100
|
Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots. Proteomes 2016; 4:proteomes4010001. [PMID: 28248212 PMCID: PMC5217369 DOI: 10.3390/proteomes4010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex), respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.
Collapse
|