51
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
52
|
Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4529-4537. [PMID: 29873762 DOI: 10.1093/jxb/ery216] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 05/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has been shown to play vital roles in diverse plant developmental and stress responses. The UPS post-translationally modifies cellular proteins with the small molecule ubiquitin, resulting in their regulated degradation by the proteasome. Of particular importance is the role of the UPS in regulating hormone-responsive gene expression profiles, including those triggered by the immune hormone salicylic acid (SA). SA utilizes components of the UPS pathway to reprogram the transcriptome for establishment of local and systemic immunity. Emerging evidence has shown that SA induces the activity of Cullin-RING ligases (CRLs) that fuse chains of ubiquitin to downstream transcriptional regulators and consequently target them for degradation by the proteasome. Here we review how CRL-mediated degradation of transcriptional regulators may control SA-responsive immune gene expression programmes and discuss how the UPS can be modulated by both endogenous and foreign exogenous signals. The highlighted research findings paint a clear picture of the UPS as a central hub for immune activation as well as a battle ground for hijacking by pathogens.
Collapse
Affiliation(s)
- Eleanor H G Adams
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
53
|
Toffolatti SL, De Lorenzis G, Costa A, Maddalena G, Passera A, Bonza MC, Pindo M, Stefani E, Cestaro A, Casati P, Failla O, Bianco PA, Maghradze D, Quaglino F. Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci Rep 2018; 8:12523. [PMID: 30131589 PMCID: PMC6104083 DOI: 10.1038/s41598-018-30413-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. The cultivation of resistant V. vinifera varieties would be a sustainable way to reduce the damage caused by the pathogen and the impact of disease management, which involves the economic, health and environmental costs of frequent fungicide application. We report the finding of unique downy mildew resistance traits in a winemaking cultivar from the domestication center of V. vinifera, and characterize the expression of a range of genes associated with the resistance mechanism. Based on comparative experimental inoculations, confocal microscopy and transcriptomics analyses, our study shows that V. vinifera cv. Mgaloblishvili, native to Georgia (South Caucasus), exhibits unique resistance traits against P. viticola. Its defense response, leading to a limitation of P. viticola growth and sporulation, is determined by the overexpression of genes related to pathogen recognition, the ethylene signaling pathway, synthesis of antimicrobial compounds and enzymes, and the development of structural barriers. The unique resistant traits found in Mgaloblishvili highlight the presence of a rare defense system in V. vinifera against P. viticola which promises fresh opportunities for grapevine genetic improvement.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy.
| | - Gabriella De Lorenzis
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy.
| | - Alex Costa
- Università degli Studi di Milano, Dipartimento di Bioscienze (DBS), via Celoria 26, 20133, Milano, Italy
| | - Giuliana Maddalena
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Alessandro Passera
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Maria Cristina Bonza
- Università degli Studi di Milano, Dipartimento di Bioscienze (DBS), via Celoria 26, 20133, Milano, Italy
| | - Massimo Pindo
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Erika Stefani
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Alessandro Cestaro
- Fondazione E. Mach, Centro Ricerca e Innovazione, Via E. Mach 1, 38010, San Michele all'Adige, (TN), Italy
| | - Paola Casati
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Osvaldo Failla
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - Piero Attilio Bianco
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| | - David Maghradze
- Scientific - Research Center of Agriculture, Marshal Gelovani Avenue 6, 0159, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, David Guramishvili Avenue 17, 0175, Tbilisi, Georgia
| | - Fabio Quaglino
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio e Agroenergia (DiSAA), via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
54
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
55
|
Misra A, McKnight TD, Mandadi KK. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2018; 96:393-402. [PMID: 29363002 DOI: 10.1007/s11103-018-0704-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.
Collapse
Affiliation(s)
- Anjali Misra
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843-3258, USA
| | - Thomas D McKnight
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843-3258, USA
| | - Kranthi K Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research & Extension Center, The Texas A&M University System, 2415 East Highway 83, Weslaco, TX, 78596-8344, USA.
| |
Collapse
|
56
|
Hussain RMF, Sheikh AH, Haider I, Quareshy M, Linthorst HJM. Arabidopsis WRKY50 and TGA Transcription Factors Synergistically Activate Expression of PR1. FRONTIERS IN PLANT SCIENCE 2018; 9:930. [PMID: 30057584 PMCID: PMC6053526 DOI: 10.3389/fpls.2018.00930] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Arabidopsis PR1 is a salicylic acid (SA) inducible marker gene for systemic acquired resistance (SAR). However, the regulation of PR1 in plants is poorly understood. In this study, we showed that AtWRKY50 transcription factor binds to two promoter elements of PR1 via its DNA binding domain. Interestingly, the DNA-binding sites for AtWRKY50 deviate significantly from the consensus WRKY binding W-box. The binding sites are located in close proximity to the binding sites for TGA transcription factors. Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1 and tga256 mutant plants indicated that AtWRKY50 alone was able to induce expression of a PR1::β-glucuronidase (GUS) reporter gene, independent of TGAs or NPR1. However, co-expression of TGA2 or TGA5 with AtWRKY50 synergistically enhanced expression to high levels. Yeast-2-hybrid assays and bimolecular fluorescence complementation (BiFC) experiments revealed that AtWRKY50 could interact with TGA2 and TGA5. Using electrophoretic mobility shift assays (EMSA) it was established that AtWRKY50 and TGA2 or TGA5 simultaneously bind to the PR1 promoter. Taken together, these results support a role of AtWRKY50 in SA-induced expression of PR1. Highlights: AtWRKY50 specifically binds to LS10 region of PR1 promoter and interacts with TGAs to synergistically activate PR1 expression.
Collapse
Affiliation(s)
| | - Arsheed H. Sheikh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Arsheed H. Sheikh,
| | - Imran Haider
- Institute of Biology, Leiden University, Leiden, Netherlands
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
57
|
Li M, Chen H, Chen J, Chang M, Palmer IA, Gassmann W, Liu F, Fu ZQ. TCP Transcription Factors Interact With NPR1 and Contribute Redundantly to Systemic Acquired Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:1153. [PMID: 30154809 PMCID: PMC6102491 DOI: 10.3389/fpls.2018.01153] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/19/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factors (TF) play critical functions in developmental processes. Recent studies suggest they also function in plant immunity, but whether they play an important role in systemic acquired resistance (SAR) is still unknown. NON-EXPRESSER OF PR GENES 1 (NPR1), as an essential transcriptional regulatory node in SAR, exerts its regulatory role in downstream genes expression through interaction with TFs. In this work, we provide biochemical and genetic evidence that TCP8, TCP14, and TCP15 are involved in the SAR signaling pathway. TCP8, TCP14, and TCP15 physically interacted with NPR1 in yeast two-hybrid assays, and these interactions were further confirmed in vivo. SAR against the infection of virulent strain Pseudomonas syringae pv. maculicola (Psm) ES4326 in the triple T-DNA insertion mutant tcp8-1 tcp14-5 tcp15-3 was partially compromised compared with Columbia 0 (Col-0) wild type plants. The induction of SAR marker genes PR1, PR2, and PR5 in local and systemic leaves was dramatically decreased in the tcp8-1 tcp14-5 tcp15-3 mutant compared with that in Col-0 after local treatment with Psm ES4326 carrying avrRpt2. Results from yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays demonstrated that TCP15 can bind to a conserved TCP binding motif, GCGGGAC, within the promoter of PR5, and this binding was enhanced by NPR1. Results from RT-qPCR assays showed that TCP15 promotes the expression of PR5 in response to salicylic acid induction. Taken together, these data reveal that TCP8, TCP14, and TCP15 physically interact with NPR1 and function redundantly to establish SAR, that TCP15 promotes the expression of PR5 through directly binding a TCP binding site within the promoter of PR5, and that this binding is enhanced by NPR1.
Collapse
Affiliation(s)
- Min Li
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ming Chang
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ian A. Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- *Correspondence: Fengquan Liu
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu
| |
Collapse
|
58
|
Tan CT, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Xue Q, Ibrahim AMH, Garza L, Wang S, Sorrells ME, Liu S. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1867-1884. [PMID: 28624908 DOI: 10.1007/s00122-017-2930-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/30/2017] [Indexed: 05/19/2023]
Abstract
Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.
Collapse
Affiliation(s)
- Chor-Tee Tan
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Hangjin Yu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Yan Yang
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangyang Xu
- USDA-ARS Wheat, Peanut and Other Field Crop Research Unit, Stillwater, OK, 74075, USA
| | - Mingshun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jackie C Rudd
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Amir M H Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, 77843, USA
| | - Lisa Garza
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA
| | - Shichen Wang
- Genomic and Bioinformatics Services, Texas A&M AgriLife Research, College Station, TX, 77845, USA
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, 79106, USA.
| |
Collapse
|
59
|
Li J, Su X, Wang Y, Yang W, Pan Y, Su C, Zhang X. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes Genomics 2017; 40:1-15. [PMID: 29892895 DOI: 10.1007/s13258-017-0604-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023]
Abstract
BTB (broad-complex, tramtrack, and bric-a-brac) family proteins are characterized by the presence of a protein-protein interaction BTB domain. BTB proteins have diverse functions, including transcriptional regulation, protein degradation, chromatin remodeling, and cytoskeletal regulation. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species. In this study, 38 BTB genes were identified based on tomato whole-genome sequence. Phylogenetic analysis of BTB proteins in tomato revealed that SlBTB proteins could be divided into at least 4 subfamilies. The SlBTB proteins contains 1-3 BTB domains, and several other types of functional domains, including KCTD (Potassium channel tetramerization domain-containing), the MATH (meprin and TRAF homology), ANK (Ankyrin repeats), NPR1 (nonexpressor of pathogenesis-related proteins1), NPH3 (Nonphototropic Hypocotyl 3), TAZ zinc finger, C-terminal Kelch, Skp1 and Arm (Armadillo/beta-catenin-like repeat) domains are also found in some tomato BTB proteins. Moreover, their expression patterns in tissues/stages, in response to different abiotic stress treatments and hormones were also investigated. This study provides the first comprehensive analysis of BTB gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of BTB genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiaoxing Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Chenggang Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
60
|
Xu C, Park SJ, Van Eck J, Lippman ZB. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes Dev 2017; 30:2048-2061. [PMID: 27798848 PMCID: PMC5066612 DOI: 10.1101/gad.288415.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022]
Abstract
In tomatoes, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF). Xu et al. show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB/POZ domain. Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF), but the underlying mechanism is unknown. We show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB (Broad complex, Tramtrack, and Bric-a-brac)/POZ (POX virus and zinc finger) domain. TMF and three tomato BOPs (SlBOPs) interact with themselves and each other, and TMF recruits SlBOPs to the nucleus, suggesting formation of a transcriptional complex. Like TMF, SlBOP gene expression is highest during vegetative and transitional stages of meristem maturation, and CRISPR/Cas9 elimination of SlBOP function causes pleiotropic defects, most notably simplification of inflorescences into single flowers, resembling tmf mutants. Flowering defects are enhanced in higher-order slbop tmf mutants, suggesting that SlBOPs function with additional factors. In support of this, SlBOPs interact with TMF homologs, mutations in which cause phenotypes like slbop mutants. Our findings reveal a new flowering module defined by SlBOP–TMF family interactions that ensures a progressive meristem maturation to promote inflorescence complexity.
Collapse
Affiliation(s)
- Cao Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
61
|
Nic-Matos G, Narváez M, Peraza-Echeverría S, Sáenz L, Oropeza C. Molecular cloning of two novel NPR1 homologue genes in coconut palm and analysis of their expression in response to the plant defense hormone salicylic acid. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
He Z, Huang T, Ao K, Yan X, Huang Y. Sumoylation, Phosphorylation, and Acetylation Fine-Tune the Turnover of Plant Immunity Components Mediated by Ubiquitination. FRONTIERS IN PLANT SCIENCE 2017; 8:1682. [PMID: 29067028 PMCID: PMC5641357 DOI: 10.3389/fpls.2017.01682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Ubiquitination-mediated protein degradation plays a crucial role in the turnover of immune proteins through rapid alteration of protein levels. Specifically, the over-accumulation of immune proteins and consequent activation of immune responses in uninfected cells is prevented through degradation. Protein post-translational modifications can influence and affect ubiquitination. There is accumulating evidence that suggests sumoylation, phosphorylation, and acetylation differentially affect the stability of immune-related proteins, so that control over the accumulation or degradation of proteins is fine-tuned. In this paper, we review the function and mechanism of sumoylation, phosphorylation, acetylation, and ubiquitination in plant disease resistance responses, focusing on how ubiquitination reacts with sumoylation, phosphorylation, and acetylation to regulate plant disease resistance signaling pathways. Future research directions are suggested in order to provide ideas for signaling pathway studies, and to advance the implementation of disease resistance proteins in economically important crops.
Collapse
Affiliation(s)
- Zhouqing He
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tingting Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofang Yan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Yan Huang,
| |
Collapse
|
63
|
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS, Schuster SC, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci U S A 2016; 113:E7010-E7019. [PMID: 27791104 PMCID: PMC5111717 DOI: 10.1073/pnas.1608765113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yeting Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Sam Jones
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Chun Su
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Stephan C Schuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802;
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
64
|
Zhao Q, Ren YR, Wang QJ, Wang XF, You CX, Hao YJ. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis. PLANT PHYSIOLOGY 2016; 172:1973-1988. [PMID: 27660166 PMCID: PMC5100752 DOI: 10.1104/pp.16.01323] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 05/20/2023]
Abstract
Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants.
Collapse
Affiliation(s)
- Qiang Zhao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, and College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yi-Ran Ren
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, and College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qing-Jie Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, and College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, and College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, and College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, and College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
65
|
Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun BW. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:975. [PMID: 27446194 PMCID: PMC4926318 DOI: 10.3389/fpls.2016.00975] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 05/18/2023]
Abstract
Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Agriculture, Abdul Wali Khan University MardanMardan, Pakistan
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Qari M. Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Teferi A. Adamu
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
66
|
Chern M, Xu Q, Bart RS, Bai W, Ruan D, Sze-To WH, Canlas PE, Jain R, Chen X, Ronald PC. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1)-Mediated Immunity. PLoS Genet 2016; 12:e1006049. [PMID: 27176732 PMCID: PMC4866720 DOI: 10.1371/journal.pgen.1006049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/21/2016] [Indexed: 12/03/2022] Open
Abstract
Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression. To survive, plants and animals must resist microbial infection. Plants employ an immune response called systemic acquired resistance that confers long-lasting resistance to a broad-spectrum of pathogens. Researchers have previously identified two key proteins (NPR1/NH1 and TGA) that control this immune response. Despite these advances, there remain many gaps in our knowledge and understanding of this important immune response. We have identified a new gene (CRK10) required for this immune response; without it, plants are more susceptible to infection. These findings advance basic knowledge of systemic acquired resistance and open the door to a new avenue of research on this exciting and important resistance mechanism.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Qiufang Xu
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rebecca S. Bart
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Wei Bai
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- College of Life Sciences, Inner Mongolia Agricultural University, Huhhot, China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Wing Hoi Sze-To
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Patrick E. Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Xuewei Chen
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- Rice Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Chengdu, Sichuan, China
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
67
|
Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM. Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. THE PLANT CELL 2015; 27:3425-38. [PMID: 26672073 PMCID: PMC4707448 DOI: 10.1105/tpc.15.00371] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 05/20/2023]
Abstract
In plants, necrotic lesions occur at the site of pathogen infection through the hypersensitive response, which is followed by induction of systemic acquired resistance (SAR) in distal tissues. Salicylic acid (SA) induces SAR by activating NONEXPRESSER OF PATHOGENESIS-RELATED GENES1 (NPR1) through an oligomer-to-monomer reaction. However, SA biosynthesis is elevated only slightly in distal tissues during SAR, implying that SA-mediated induction of SAR requires additional factors. Here, we demonstrated that SA-independent systemic signals induce a gene encoding SNF1-RELATED PROTEIN KINASE 2.8 (SnRK2.8), which phosphorylates NPR1 during SAR. The SnRK2.8-mediated phosphorylation of NPR1 is necessary for its nuclear import. Notably, although SnRK2.8 transcription and SnRK2.8 activation are independent of SA signaling, the SnRK2.8-mediated induction of SAR requires SA. Together with the SA-mediated monomerization of NPR1, these observations indicate that SA signals and SnRK2.8-mediated phosphorylation coordinately function to activate NPR1 via a dual-step process in developing systemic immunity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Pil Joon Seo
- Department of Chemistry, Chonbuk National University, Jeonju 561-756, Korea
| | - Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
68
|
Khan M, Ragni L, Tabb P, Salasini BC, Chatfield S, Datla R, Lock J, Kuai X, Després C, Proveniers M, Yongguo C, Xiang D, Morin H, Rullière JP, Citerne S, Hepworth SR, Pautot V. Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2166-86. [PMID: 26417006 PMCID: PMC4634066 DOI: 10.1104/pp.15.00915] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/25/2015] [Indexed: 05/20/2023]
Abstract
In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Laura Ragni
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Paul Tabb
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Brenda C Salasini
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Steven Chatfield
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Raju Datla
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - John Lock
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Xiahezi Kuai
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Charles Després
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Marcel Proveniers
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Cao Yongguo
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Daoquan Xiang
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Halima Morin
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Jean-Pierre Rullière
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Sylvie Citerne
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Shelley R Hepworth
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| | - Véronique Pautot
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6 (M.K., P.T., B.C.S., S.Ch., J.L., S.R.H.);Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique-AgroParisTech, Bâtiment 2, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles cedex, France (L.R., H.M., J.-P.R., S.Ci., V.P.); Plant Biotechnology Institute,National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9 (R.D., C.Y., D.X.);Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1 (X.K, C.D.); andMolecular Plant Physiology, Department of Biology, Faculty of Sciences, Utrecht University, CH-3584 Utrecht, The Netherlands (M.P.)
| |
Collapse
|
69
|
Lv F, Zhou J, Zeng L, Xing D. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4719-32. [PMID: 25998906 DOI: 10.1093/jxb/erv231] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
β-cyclocitral (β-CC), a volatile oxidized derivative of β-carotene, can upregulate the expression of defence genes to enhance excess light (EL) acclimation. However, the signalling cascades underlying this process remain unclear. In this study, salicylic acid (SA) is involved in alleviating damage to promote β-CC-enhanced EL acclimation. In early stages of EL illumination, β-CC pretreatment induced SA accumulation and impeded reactive oxygen species (ROS) production in the chloroplast. A comparative analysis of two SA synthesis pathways in Arabidopsis revealed that SA concentration mainly increased via the isochorismate synthase 1 (ICS1)-mediated isochorismate pathway, which depended on essential regulative function of enhanced disease susceptibility 1 (EDS1). Further results showed that, in the process of β-CC-enhanced EL acclimation, nuclear localization of nonexpressor of pathogenesis-related genes 1 (NPR1) was regulated by SA accumulation and NPR1 induced subsequent transcriptional reprogramming of gluthathione-S-transferase 5 (GST5) and GST13 implicated in detoxification. In summary, β-CC-induced SA synthesis contributes to EL acclimation response by decreasing ROS production in the chloroplast, promoting nuclear localization of NPR1, and upregulating GST transcriptional expression. This process is a possible molecular regulative mechanism of β-CC-enhanced EL acclimation.
Collapse
Affiliation(s)
- Feifei Lv
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
70
|
Zhong X, Xi L, Lian Q, Luo X, Wu Z, Seng S, Yuan X, Yi M. The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. PLANT CELL REPORTS 2015; 34:1063-74. [PMID: 25708873 DOI: 10.1007/s00299-015-1765-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 05/08/2023]
Abstract
GhNPR1 shares similar functions as Arabidopsis NPR1 . Silencing of GhNPR1 in Gladiolus results in an enhanced susceptibility to Curvularia gladioli. We propose that GhNPR1 plays important roles in plant immunity. Gladiolus plants and corms are susceptible to various types of pathogens including fungi, bacteria and viruses. Understanding the innate defense mechanism in Gladiolus is a prerequisite for the development of new protection strategies. The non-expressor of pathogenesis-related gene 1 (NPR1) and bzip transcription factor TGA2 play a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). In this study, the homologous genes, GhNPR1 and GhTGA2, were isolated from Gladiolus and functionally characterized. Expression of GhNPR1 exhibited a 3.8-fold increase in Gladiolus leaves following salicylic acid treatment. A 1332 bp fragment of the GhNPR1 promoter from Gladiolus hybridus was identified. Inducibility of the GhNPR1 promoter by SA was demonstrated using transient expression assays in the leaves of Nicotiana benthamiana. The GhNPR1 protein is located in the nucleus and cytomembrane. GhNPR1 interacts with GhTGA2, as observed using the bimolecular fluorescence complementation system. Overexpression of GhNPR1 in an Arabidopsis npr1 mutant can restore its basal resistance to Pseudomonas syringae pv. tomato DC3000. Silencing of GhNPR1, using a tobacco rattle virus-based silencing vector, resulted in an enhanced susceptibility to Curvularia gladioli. In conclusion, these results suggest that GhNPR1 plays a pivotal role in the SA-dependent systemic acquired resistance in Gladiolus.
Collapse
Affiliation(s)
- Xionghui Zhong
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuan Mingyuan Western Road 2#, Beijing, 100193, China,
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Kuai X, MacLeod BJ, Després C. Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument. FRONTIERS IN PLANT SCIENCE 2015; 6:235. [PMID: 25914712 PMCID: PMC4392584 DOI: 10.3389/fpls.2015.00235] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 05/08/2023]
Abstract
Salicylic acid (SA) is a mandatory plant metabolite in the deployment of systemic acquired resistance (SAR), a broad-spectrum systemic immune response induced by local inoculation with avirulent pathogens. The NPR1 transcription co-activator is the central node positively regulating SAR. SA was the last of the major hormones to be without a known receptor. Recently, NPR1 was shown to be the direct link between SA and gene activation. This discovery seems to be controversial. NPR1 being an SA-receptor is reminiscent of the mammalian steroid receptors, which are transcription factors whose binding to DNA is dependent on the interaction with a ligand. Unlike steroid receptors, NPR1 does not bind directly to DNA, but is recruited to promoters by the TGA family of transcription factors to form an enhanceosome. In Arabidopsis, NPR1 is part of a multigene family in which two other members, NPR3 and NPR4, have also been shown to interact with SA. NPR3/NPR4 are negative regulators of immunity and act as substrate adaptors for the recruitment of NPR1 to an E3-ubiquitin ligase, leading to its subsequent degradation by the proteasome. In this perspective, we will stress-test in a friendly way the current NPR1/NPR3/NPR4 model.
Collapse
Affiliation(s)
| | | | - Charles Després
- *Correspondence: Charles Després, Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
72
|
Furniss JJ, Spoel SH. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:154. [PMID: 25821454 PMCID: PMC4358073 DOI: 10.3389/fpls.2015.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 05/19/2023]
Abstract
Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.
Collapse
Affiliation(s)
| | - Steven H. Spoel
- *Correspondence: Steven H. Spoel, Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
73
|
Spoel SH, van Ooijen G. Circadian redox signaling in plant immunity and abiotic stress. Antioxid Redox Signal 2014; 20:3024-39. [PMID: 23941583 PMCID: PMC4038994 DOI: 10.1089/ars.2013.5530] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/13/2013] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. RECENT ADVANCES Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. CRITICAL ISSUES Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. FUTURE DIRECTIONS Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Collapse
Affiliation(s)
- Steven H. Spoel
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerben van Ooijen
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- SythSys, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
74
|
Chern M, Bai W, Ruan D, Oh T, Chen X, Ronald PC. Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and Negative Regulator of Resistance (NRR) proteins. BMC Genomics 2014; 15:461. [PMID: 24919709 PMCID: PMC4094623 DOI: 10.1186/1471-2164-15-461] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/03/2014] [Indexed: 11/22/2022] Open
Abstract
Background The nonexpressor of pathogenesis-related genes 1, NPR1 (also known as NIM1 and SAI1), is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis. In rice, the NPR1 homolog 1 (NH1) interacts with TGA transcriptional regulators and the Negative Regulator of Resistance (NRR) protein to modulate the SAR response. Though five NPR1 homologs (NHs) have been identified in rice, only NH1 and NH3 enhance immunity when overexpressed. To understand why NH1 and NH3, but not NH2, NH4, or NH5, contribute to the rice immune response, we screened TGA transcription factors and NRR-like proteins for interactions specific to NH1 and NH3. We also examined their co-expression patterns using publicly available microarray data. Results We tested five NHs, four NRR homologs (RHs), and 13 rice TGA proteins for pair-wise protein interactions using yeast two-hybrid (Y2H) and split YFP assays. A survey of 331 inter-family interactions revealed a broad, complex protein interaction network. To investigate preferred interaction partners when all three families of proteins were present, we performed a bridged split YFP assay employing YFPN-fused TGA, YFPC-fused RH, and NH proteins without YFP fusions. We found 64 tertiary interactions mediated by NH family members among the 120 sets we examined. In the yeast two-hybrid assay, each NH protein was capable of interacting with most TGA and RH proteins. In the split YFP assay, NH1 was the most prevalent interactor of TGA and RH proteins, NH3 ranked the second, and NH4 ranked the third. Based on their interaction with TGA proteins, NH proteins can be divided into two subfamilies: NH1, NH2, and NH3 in one family and NH4 and NH5 in the other. In addition to evidence of overlap in interaction partners, co-expression analyses of microarray data suggest a correlation between NH1 and NH3 expression patterns, supporting their common role in rice immunity. However, NH3 is very tightly co-expressed with RH1 and RH2, while NH1 is strongly, inversely co-expressed with RH proteins, representing a difference between NH1 and NH3 expression patterns. Conclusions Our genome-wide surveys reveal that each rice NH protein can partner with many rice TGA and RH proteins and that each NH protein prefers specific interaction partners. NH1 and NH3 are capable of interacting strongly with most rice TGA and RH proteins, whereas NH2, NH4, and NH5 have weaker, limited interaction with TGA and RH proteins in rice cells. We have identified rTGA2.1, rTGA2.2, rTGA2.3, rLG2, TGAL2 and TGAL4 proteins as the preferred partners of NH1 and NH3, but not NH2, NH4, or NH5. These TGA proteins may play an important role in NH1- and NH3-mediated immune responses. In contrast, NH4 and NH5 preferentially interact with TGAL5, TGAL7, TGAL8 and TGAL9, which are predicted to be involved in plant development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-461) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
75
|
Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC PLANT BIOLOGY 2014; 14:96. [PMID: 24739302 PMCID: PMC4021311 DOI: 10.1186/1471-2229-14-96] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. RESULTS Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). CONCLUSIONS Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
Collapse
Affiliation(s)
- Benjamin F Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Sara Kabir
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham M Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Fayoum University, Fayoum, Egypt
| |
Collapse
|
76
|
Aulakh SS, Veilleux RE, Dickerman AW, Tang G, Flinn BS. Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant. PLANT MOLECULAR BIOLOGY 2014; 84:635-658. [PMID: 24306493 DOI: 10.1007/s11103-013-0159-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
The potato cv. Bintje and a Bintje activation-tagged mutant, underperformer (up) were compared. Mutant up plants grown in vitro were dwarf, with abundant axillary shoot growth, greater tuber yield, altered tuber traits and early senescence compared to wild type. Under in vivo conditions, the dwarf and early senescence phenotypes of the mutant remained, but the up plants exhibited a lower tuber yield and fewer axillary shoots compared to wild type. Southern blot analyses indicated a single T-DNA insertion in the mutant, located on chromosome 10. Initial PCR-based gene expression studies indicated transcriptional activation/repression of several genes in the mutant flanking the insertion. The gene immediately flanking the right border of the T-DNA insertion, which encoded an uncharacterized Broad complex, Tramtrac, Bric-a-brac; also known as Pox virus and Zinc finger (BTB/POZ) domain-containing protein (StBTB/POZ1) containing an Armadillo repeat region, was up-regulated in the mutant. Global gene expression comparisons between Bintje and up using RNA-seq on leaves from 60 day-old plants revealed a dataset of over 1,600 differentially expressed genes. Gene expression analyses suggested a variety of biological processes and pathways were modified in the mutant, including carbohydrate and lipid metabolism, cell division and cell cycle activity, biotic and abiotic stress responses, and proteolysis.
Collapse
|
77
|
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:157-71. [PMID: 24388527 DOI: 10.1016/j.plantsci.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes encode an ancient and conserved subclade of BTB-ankryin transcriptional co-activators, divergent in the NPR1 family of plant defense regulators. Arabidopsis BOP1/2 were originally characterized as regulators of leaf and floral patterning. Recent investigation of BOP activity in a variety of land plants provides a more complete picture of their conserved functions at lateral organ boundaries in the determination of leaf, flower, inflorescence, and root nodule architecture. BOPs exert their function in part through promotion of lateral organ boundary genes including ASYMMETRIC LEAVES2, KNOTTED1-LIKE FROM ARABIDOPSIS6, and ARABIDOPSIS THALIANA HOMEOBOX GENE1 whose products restrict growth, promote differentiation, and antagonize meristem activity in various developmental contexts. Mutually antagonistic interactions between BOP and meristem factors are important in maintaining a border between meristem-organ compartments and in controlling irreversible transitions in cell fate associated with differentiation. We also examine intriguing new evidence for BOP function in plant defense. Comparisons to NPR1 highlight previously unexplored mechanisms for co-ordination of development and defense in land plants.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Huasong Xu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
78
|
Liu D, Sui S, Ma J, Li Z, Guo Y, Luo D, Yang J, Li M. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox). PLoS One 2014; 9:e86976. [PMID: 24489818 PMCID: PMC3906103 DOI: 10.1371/journal.pone.0086976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.
Collapse
Affiliation(s)
- Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jing Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Zhineng Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Dengpan Luo
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jianfeng Yang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
79
|
Seyfferth C, Tsuda K. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. FRONTIERS IN PLANT SCIENCE 2014; 5:697. [PMID: 25538725 PMCID: PMC4260477 DOI: 10.3389/fpls.2014.00697] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
The phytohormone salicylic acid (SA) is a small phenolic compound that regulates diverse physiological processes, in particular plant resistance against pathogens. Understanding SA-mediated signaling has been a major focus of plant research. Pathogen-induced SA is mainly synthesized via the isochorismate pathway in chloroplasts, with ICS1 (ISOCHORISMATE SYNTHASE 1) being a critical enzyme. Calcium signaling regulates activities of a subset of transcription factors thereby activating nuclear ICS1 expression. The produced SA triggers extensive transcriptional reprogramming in which NPR1 (NON-EXPRESSOR of PATHOGENESIS-RELATED GENES 1) functions as the central coactivator of TGA transcription factors. Recently, two alternative but not exclusive models for SA perception mechanisms were proposed. The first model is that NPR1 homologs, NPR3 and NPR4, perceive SA thereby regulating NPR1 protein accumulation. The second model describes that NPR1 itself perceives SA, triggering an NPR1 conformational change thereby activating SA-mediated transcription. Besides the direct SA binding, NPR1 is also regulated by SA-mediated redox changes and phosphorylation. Emerging evidence show that pathogen virulence effectors target SA signaling, further strengthening the importance of SA-mediated immunity.
Collapse
Affiliation(s)
| | - Kenichi Tsuda
- *Correspondence: Kenichi Tsuda, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany e-mail:
| |
Collapse
|
80
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|
81
|
Boatwright JL, Pajerowska-Mukhtar K. Salicylic acid: an old hormone up to new tricks. MOLECULAR PLANT PATHOLOGY 2013; 14:623-34. [PMID: 23621321 PMCID: PMC6638680 DOI: 10.1111/mpp.12035] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Salicylic acid (SA) acts as a signalling molecule in plant defence against biotrophic and hemibiotrophic phytopathogens. The biosynthesis of SA on pathogen detection is essential for local and systemic acquired resistance, as well as the accumulation of pathogenesis-related (PR) proteins. SA biosynthesis can occur via several different substrates, but is predominantly accomplished by isochorismate synthase (ICS1) following pathogen recognition. The roles of BTB domain-containing proteins, NPR1, NPR3 and NPR4, in SA binding and signal transduction have been re-examined recently and are elaborated upon in this review. The pathogen-mediated manipulation of SA-dependent defences, as well as the crosstalk between the SA signalling pathway, other plant hormones and defence signals, is also discussed in consideration of recent research. Furthermore, the recent links established between SA, pathogen-triggered endoplasmic reticulum stress and the unfolded protein response are highlighted.
Collapse
Affiliation(s)
- Jon Lucas Boatwright
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 5294, USA
| | | |
Collapse
|
82
|
Wu Y, Yi G, Peng X, Huang B, Liu E, Zhang J. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1039-46. [PMID: 23702248 DOI: 10.1016/j.jplph.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/30/2012] [Accepted: 02/21/2013] [Indexed: 05/20/2023]
Abstract
Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.
Collapse
Affiliation(s)
- Yuanli Wu
- Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
83
|
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. TRENDS IN PLANT SCIENCE 2013; 18:402-11. [PMID: 23683896 DOI: 10.1016/j.tplants.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.
Collapse
|
84
|
Shi Z, Maximova S, Liu Y, Verica J, Guiltinan MJ. The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. MOLECULAR PLANT 2013; 6:802-16. [PMID: 22986789 DOI: 10.1093/mp/sss091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis non-expressor of PR1 (NPR1) is a transcription co-activator that plays a central role in regulating the transcriptional response to plant pathogens. The NPR family consists of NPR1 and five NPR1-like genes. The NPR1 paralog NPR3 has recently been shown to function as a receptor of the plant hormone salicylic acid and to mediate proteosomal degradation of NPR1. The function of NPR3 protein during early flower development was revealed through a detailed molecular-genetic analysis including promoter transcriptional fusion analysis, phenotype characterization of npr3-3 mutants/overexpressors, and whole-plant fitness analysis. The physical interaction between NPR3 and NPR1/TGA2 was explored using bimolecular fluorescence complementation analysis in onion epidermal cells. Here, we show that NPR3 expression was strongest in the petals and sepals of developing flowers and declined after flower opening. Consistently with this observation, an npr3 knockout mutant displayed enhanced resistance to Pseudomonas syringae infection of immature flowers, but not leaves. Developing npr3 flowers exhibited increased levels of basal and induced PR1 transcript accumulation. However, the npr3 mutant showed lower fitness compared to Col-0 in the absence of pathogen. Moreover, NPR3 was shown to interact with NPR1 and TGA2 in vivo. Our data suggest that NPR3 is a negative regulator of defense responses during early flower development and it may function through the association with both NPR1 and TGA2.
Collapse
Affiliation(s)
- Zi Shi
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
85
|
Gatz C. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:151-9. [PMID: 23013435 DOI: 10.1094/mpmi-04-12-0078-ia] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant immune system encompasses an arsenal of defense genes that is activated upon recognition of a pathogen. Appropriate adjustment of gene expression is mediated by multiple interconnected signal transduction cascades that finally control the activity of transcription factors. These sequence-specific DNA-binding proteins act at the interface between the DNA and the regulatory protein network. In 1989, tobacco TGA1a was cloned as the first plant transcription factor. Since then, multiple studies have shown that members of the TGA family play important roles in defense responses against biotrophic and necrotrophic pathogens and against chemical stress. Here, we review 22 years of research on TGA factors which have yielded both consistent and conflicting results.
Collapse
Affiliation(s)
- Christiane Gatz
- Georg-August-University of Göttingen (GAU), Albrecht-von-Haller-Institute for Plant Sciences, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.
| |
Collapse
|
86
|
Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2013; 4:30. [PMID: 23440336 PMCID: PMC3579191 DOI: 10.3389/fpls.2013.00030] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/06/2013] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted.
Collapse
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences, University of North TexasDenton, TX, USA
- *Correspondence: Jyoti Shah, Department of Biological Sciences, University of North Texas, Life Sciences Building-B, Room # 418, 1155 Union Circle #305220, Denton, TX 76203, USA. e-mail:
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-UniversityDüsseldorf, Germany
- Jürgen Zeier, Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
87
|
Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SMB, Oh HT, Lee SY. Redox-dependent functional switching of plant proteins accompanying with their structural changes. FRONTIERS IN PLANT SCIENCE 2013; 4:277. [PMID: 23898340 PMCID: PMC3724125 DOI: 10.3389/fpls.2013.00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang Yeol Lee
- *Correspondence: Sang Yeol Lee, Division of Applied Life Sciences, Gyeongsang National University, Jinjudaero 501, Jinju 660-701, Korea e-mail:
| |
Collapse
|
88
|
Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23440336 DOI: 10.3390/fpls.2013.00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted.
Collapse
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences, University of North Texas Denton, TX, USA
| | | |
Collapse
|
89
|
Kragelund BB, Jensen MK, Skriver K. Order by disorder in plant signaling. TRENDS IN PLANT SCIENCE 2012; 17:625-32. [PMID: 22819467 DOI: 10.1016/j.tplants.2012.06.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 05/10/2023]
Abstract
Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is an emerging topic in plant science. Proteins with ID challenge our perception of protein interactions because of their malleable behavior. They are abundant in highly regulated processes such as cellular signaling and transcription, where they exploit the flexibility of ID. In this opinion article we highlight trends in the field of protein ID and discuss its implications for interactions between plant transcription factors (TFs) and the cellular signaling hub protein RADICAL-INDUCED CELL DEATH 1 (RCD1). We envision RCD1-TF interactions as models for translating knowledge of ID-based interactions in vitro to the organismal level in vivo, and urge increased focus on ID in basic plant research and agricultural sciences.
Collapse
Affiliation(s)
- Birthe B Kragelund
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
90
|
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S. The ubiquitin-proteasome system: central modifier of plant signalling. THE NEW PHYTOLOGIST 2012; 196:13-28. [PMID: 22897362 DOI: 10.1111/j.1469-8137.2012.04266.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/05/2012] [Indexed: 05/19/2023]
Abstract
Ubiquitin is well established as a major modifier of signalling in eukaryotes. However, the extent to which plants rely on ubiquitin for regulating their lifecycle is only recently becoming apparent. This is underlined by the over-representation of genes encoding ubiquitin-metabolizing enzymes in Arabidopsis when compared with other model eukaryotes. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The ubiquitin-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This review maps out the roles of the components of the ubiquitin-proteasome system with emphasis on areas where future research is urgently needed. We provide a flavour of the diverse aspects of plant lifecycle where the ubiquitin-proteasome system is implicated. We aim to highlight common themes using key examples that reiterate the importance of the ubiquitin-proteasome system to plants. The future challenge in plant biology is to define the targets for ubiquitination, their interactors and their molecular function within the regulatory context.
Collapse
Affiliation(s)
- Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Mark Bailey
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Richard Ewan
- The Scottish Institute for Cell Signalling (SCILLS), Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Jack Lee
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| | - Stuart Nelis
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1 3HP, UK
| |
Collapse
|
91
|
Leba LJ, Cheval C, Ortiz-Martín I, Ranty B, Beuzón CR, Galaud JP, Aldon D. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:976-89. [PMID: 22563930 DOI: 10.1111/j.1365-313x.2012.05045.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many stimuli such as hormones and elicitors induce changes in intracellular calcium levels to integrate information and activate appropriate responses. The Ca(2+) signals are perceived by various Ca(2+) sensors, and calmodulin (CaM) is one of the best characterized in eukaryotes. Calmodulin-like (CML) proteins extend the Ca(2+) toolkit in plants; they share sequence similarity with the ubiquitous and highly conserved CaM but their roles at physiological and molecular levels are largely unknown. Knowledge of the contribution of Ca(2+) decoding proteins to plant immunity is emerging, and we report here data on Arabidopsis thaliana CML9, whose expression is rapidly induced by phytopathogenic bacteria, flagellin and salicylic acid. Using a reverse genetic approach, we present evidence that CML9 is involved in plant defence by modulating responses to bacterial strains of Pseudomonas syringae. Compared to wild-type plants, the later responses normally observed upon flagellin application are altered in knockout mutants and over-expressing transgenic lines. Collectively, using PAMP treatment and P. syringae strains, we have established that CML9 participates in plant innate immunity.
Collapse
Affiliation(s)
- Louis-Jérôme Leba
- Université de Toulouse, Université de Toulouse, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | |
Collapse
|
92
|
Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, Lee YH, Jeon JS, Noh YS, Noh B. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:135-46. [PMID: 22381007 DOI: 10.1111/j.1365-313x.2012.04977.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To cope with a lifetime of exposure to a variety of pathogens, plants have developed exquisite and refined defense mechanisms that vary depending on the type of attacking pathogen. Defense-associated transcriptional reprogramming is a central part of plant defense mechanisms. Chromatin modification has recently been shown to be another layer of regulation for plant defense mechanisms. Here, we show that the RPD3/HDA1-class histone deacetylase HDA19 is involved in the repression of salicylic acid (SA)-mediated defense responses in Arabidopsis. Loss of HDA19 activity increased SA content and increased the expression of a group of genes required for accumulation of SA as well as pathogenesis related (PR) genes, resulting in enhanced resistance to Pseudomonas syringae. We found that HDA19 directly associates with and deacetylates histones at the PR1 and PR2 promoters. Thus, our study shows that HDA19, by modifying chromatin to a repressive state, ensures low basal expression of defense genes, such as PR1, under unchallenged conditions, as well as their proper induction without overstimulation during defense responses to pathogen attacks. Thus, the role of HDA19 might be critical in preventing unnecessary activation and self-destructive overstimulation of defense responses, allowing successful growth and development.
Collapse
Affiliation(s)
- Sun-Mee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. Cell Rep 2012; 1:639-47. [DOI: 10.1016/j.celrep.2012.05.008] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/16/2012] [Accepted: 05/07/2012] [Indexed: 11/22/2022] Open
|
94
|
Wu XM, Yu Y, Han LB, Li CL, Wang HY, Zhong NQ, Yao Y, Xia GX. The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion. PLANT PHYSIOLOGY 2012; 159:835-50. [PMID: 22492844 PMCID: PMC3375945 DOI: 10.1104/pp.112.193482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/03/2012] [Indexed: 05/19/2023]
Abstract
The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.
Collapse
MESH Headings
- Amino Acid Sequence
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cell Differentiation
- Cell Enlargement
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Flowers/genetics
- Flowers/physiology
- Flowers/ultrastructure
- Gene Expression Regulation, Plant
- Genes, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/cytology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/physiology
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Xiao-Min Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Yi Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Chun-Li Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Nai-Qin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Yuan Yao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | | |
Collapse
|
95
|
Idrovo Espín FM, Peraza-Echeverria S, Fuentes G, Santamaría JM. In silico cloning and characterization of the TGA (TGACG MOTIF-BINDING FACTOR) transcription factors subfamily in Carica papaya. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:113-22. [PMID: 22410205 DOI: 10.1016/j.plaphy.2012.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 05/23/2023]
Abstract
The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya.
Collapse
Affiliation(s)
- Fabio Marcelo Idrovo Espín
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 N° 130, Colonia Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, Mexico
| | | | | | | |
Collapse
|
96
|
Su L, Sampaio AV, Jones KB, Pacheco M, Goytain A, Lin S, Poulin N, Yi L, Rossi FM, Kast J, Capecchi MR, Underhill TM, Nielsen TO. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 2012; 21:333-47. [PMID: 22439931 PMCID: PMC3734954 DOI: 10.1016/j.ccr.2012.01.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/23/2011] [Accepted: 01/24/2012] [Indexed: 01/27/2023]
Abstract
Synovial sarcoma is a translocation-associated sarcoma where the underlying chromosomal event generates SS18-SSX fusion transcripts. In vitro and in vivo studies have shown that the SS18-SSX fusion oncoprotein is both necessary and sufficient to support tumorigenesis; however, its mechanism of action remains poorly defined. We have purified a core SS18-SSX complex and discovered that SS18-SSX serves as a bridge between activating transcription factor 2 (ATF2) and transducin-like enhancer of split 1 (TLE1), resulting in repression of ATF2 target genes. Disruption of these components by siRNA knockdown or treatment with HDAC inhibitors rescues target gene expression, leading to growth suppression and apoptosis. Together, these studies define a fundamental role for aberrant ATF2 transcriptional dysregulation in the etiology of synovial sarcoma.
Collapse
Affiliation(s)
- Le Su
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Arthur V. Sampaio
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Kevin B. Jones
- Department of Orthopaedics and Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Marina Pacheco
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Shujun Lin
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Neal Poulin
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Lin Yi
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Fabio M. Rossi
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Juergen Kast
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Mario R. Capecchi
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - T. Michael Underhill
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
97
|
Chern M, Bai W, Sze-To WH, Canlas PE, Bartley LE, Ronald PC. A rice transient assay system identifies a novel domain in NRR required for interaction with NH1/OsNPR1 and inhibition of NH1-mediated transcriptional activation. PLANT METHODS 2012; 8:6. [PMID: 22353606 PMCID: PMC3297495 DOI: 10.1186/1746-4811-8-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/21/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Arabidopsis NPR1 is a master regulator of systemic acquired resistance. NPR1 binds to TGA transcription factors and functions as a transcriptional co-activator. In rice, NH1/OsNPR1 functions to enhance innate immunity. NRR disrupts NH1 function, when over-expressed. RESULTS We have established a rice transient protoplast assay to demonstrate that NH1 is a transcriptional co-activator and that NRR represses NH1-mediated activation. We identified three NRR homologues (RH1, RH2, and RH3). RH1 and RH3, but not RH2, also effectively repress NH1-mediated transcriptional activation. NRR, RH1, RH2, and RH3 share sequence similarity in a region beyond the previously identified NPR1-interacting domain. This region is required for strong interaction with NH1. A double point mutation, W66A/F70A, in this novel NH1-interacting domain severely reduces interaction with NH1. Mutation W66A/F70A also greatly reduces the ability of NRR to repress NH1-mediated activation. RH2 carries a deviation (amino acids AV) in this region as compared to consensus sequences (amino acids ED) among NRR, RH1, and RH3. A substitution (AV to ED) in RH2 results in strong binding of mutant RH2ED to NH1 and effective repression of NH1-mediated activation. CONCLUSIONS The protoplast-based transient system can be used to dissect protein domains associated with their functions. Our results demonstrate that the ability of NRR and its homologues to repress NH1-mediated transcriptional activation is tightly correlated with their ability to bind to NH1. Furthermore, a sequence is identified as a novel NH1-interacting domain. Importantly, this novel sequence is widely present in plant species, from cereals to castor bean plants, to poplar trees, to Arabidopsis, indicating its significance in plants.
Collapse
Affiliation(s)
- Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Wei Bai
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
- College of Life Sciences, Inner Mongolia Agricultural University., Huhhot 010018, China
| | - Wing Hoi Sze-To
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Patrick E Canlas
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Laura E Bartley
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
98
|
Moore JW, Loake GJ, Spoel SH. Transcription dynamics in plant immunity. THE PLANT CELL 2011; 23:2809-20. [PMID: 21841124 PMCID: PMC3180793 DOI: 10.1105/tpc.111.087346] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/21/2011] [Accepted: 07/28/2011] [Indexed: 05/18/2023]
Abstract
Plant cells maintain sophisticated gene transcription programs to regulate their development, communication, and response to the environment. Environmental stress cues, such as pathogen encounter, lead to dramatic reprogramming of transcription to favor stress responses over normal cellular functions. Transcription reprogramming is conferred by the concerted action of myriad transcription (co)factors that function directly or indirectly to recruit or release RNA Polymerase II. To establish an effective defense response, cells require transcription (co)factors to deploy their activity rapidly, transiently, spatially, and hierarchically. Recent findings suggest that in plant immunity these requirements are met by posttranslational modifications that accurately regulate transcription (co)factor activity as well as by sequential pulse activation of specific gene transcription programs that provide feedback and feedforward properties to the defense gene network. Here, we integrate these recent findings from plant defense studies into the emerging field of transcription dynamics in eukaryotes.
Collapse
Affiliation(s)
| | | | - Steven H. Spoel
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
99
|
Spoel SH, Loake GJ. Redox-based protein modifications: the missing link in plant immune signalling. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:358-64. [PMID: 21454121 DOI: 10.1016/j.pbi.2011.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 05/18/2023]
Abstract
Activation of plant immunity is associated with dramatic changes in the cellular redox status. Both oxidative and reductive bursts have been described that trigger a set of down stream responses resulting in reprogramming of the transcriptome and establishment of disease resistance. Nonetheless, how these redox changes are sensed and signal to downstream regulators remained a missing link in studies of plant immunity. Emerging evidence now indicates that pathogen-induced changes in the cellular redox environment are sensed by reactive cysteine residues of key regulatory proteins. Varying degrees of reversible, oxidative cysteine modifications control the activity, localization, protein-interaction and stability of regulatory proteins. These diverse effects on protein function make post-translational redox-based modifications potent modulators of plant immunity.
Collapse
Affiliation(s)
- Steven H Spoel
- University of Edinburgh, Institute of Molecular Plant Sciences, King's Buildings, Daniel Rutherford Building, Mayfield Rd, Edinburgh, EH9 3JR, United Kingdom.
| | | |
Collapse
|
100
|
van Verk MC, Neeleman L, Bol JF, Linthorst HJM. Tobacco Transcription Factor NtWRKY12 Interacts with TGA2.2 in vitro and in vivo. FRONTIERS IN PLANT SCIENCE 2011; 2:32. [PMID: 22639590 PMCID: PMC3355607 DOI: 10.3389/fpls.2011.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/07/2011] [Indexed: 05/29/2023]
Abstract
The promoter of the salicylic acid-inducible PR-1a gene of Nicotiana tabacum contains binding sites for transcription factor NtWRKY12 (WK-box at position -564) and TGA factors (as-1-like element at position -592). Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1, tga256, and tga2356 mutant plants revealed that NtWRKY12 alone was able to induce a PR-1a::β-glucuronidase (GUS) reporter gene to high levels, independent of co-expressed tobacco NtNPR1, TGA2.1, TGA2.2, or endogenous Arabidopsis NPR1, TGA2/3/5/6. By in vitro pull-down assays with GST and Strep fusion proteins and by Fluorescence Resonance Energy Transfer assays with protein-CFP and protein-YFP fusions in transfected protoplasts, it was shown that NtWRKY12 and TGA2.2 could interact in vitro and in vivo. Interaction of NtWRKY12 with TGA1a or TGA2.1 was not detectable by these techniques. A possible mechanism for the role of NtWRKY12 and TGA2.2 in PR-1a gene expression is discussed.
Collapse
Affiliation(s)
- Marcel C. van Verk
- Sylvius Laboratory, Institute of Biology, Leiden UniversityLeiden, Netherlands
| | - Lyda Neeleman
- Sylvius Laboratory, Institute of Biology, Leiden UniversityLeiden, Netherlands
| | - John F. Bol
- Sylvius Laboratory, Institute of Biology, Leiden UniversityLeiden, Netherlands
| | | |
Collapse
|