51
|
Kang J, Lee CN, Li HY, Hsu KH, Lin SY. Genome-wide DNA methylation variation in maternal and cord blood of gestational diabetes population. Diabetes Res Clin Pract 2017; 132:127-136. [PMID: 28834773 DOI: 10.1016/j.diabres.2017.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/06/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) has always been a concerning issue for pregnant women. In recent studies, GDM was found to be related to epigenetic modifications, which would alter gene expressions, thus affecting the patients' and their offspring's health, leading to a higher probability of developing metabolic syndromes and diabetes later in life. METHODS In this study, we collected both maternal and cord blood samples from 16 pregnant women and their newborns, including eight exposed to GDM. GDM was diagnosed via a 75g oral glucose tolerance test (OGTT) at 24-28weeks of pregnancy. DNA methylation was measured at 841,573 CpG sites via the Infinium HumanMethylationEPIC BeadChip. An Ingenuity Pathway Analysis was conducted afterwards to identify genes and pathways epigenetically affected by GDM. RESULTS We identified the top 200 loci and their corresponding genes in the maternal blood group (n=151) and cord blood group (n=167), both of which were methylated differently in the GDM and unexposed group. Metabolic disease-related pathways and molecules, such as interleukin-6 and interleukin-10 were identified in both groups. These results suggested that GDM has epigenetic effects on both mother and their offspring, which might result in future metabolic syndromes or diabetes. CONCLUSIONS The high-throughput platform enabled us to analyze methylation sites throughout the genome and identify the most promising genes and pathways associated with GDM.
Collapse
Affiliation(s)
- Jessica Kang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8 Chung-Shan South Road, Taipei 100, Taiwan.
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8 Chung-Shan South Road, Taipei 100, Taiwan.
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei 100, Taiwan.
| | - Kai-Han Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 100, Taiwan.
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 8 Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
52
|
Bai C, Wang P, Fan Q, Fu WD, Wang L, Zhang ZN, Song Z, Zhang GL, Wu JH. Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool. FRONTIERS IN PLANT SCIENCE 2017; 8:1579. [PMID: 28955366 PMCID: PMC5601067 DOI: 10.3389/fpls.2017.01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Alternanthera philoxeroides is a notoriously invasive weed that can readily adapt to different environmental conditions. Control of this weed is difficult, and it spreads easily and causes damage to native habitats and agriculture. In this study, our goal was to investigate the molecular mechanisms that lead to the ability of A. philoxeroides to invade new habitats, to adapt to environmental stresses, and to cause damage. We developed a simple and highly effective potato virus X-based virus-induced gene silencing (VIGS) approach. The VIGS approach was first used to silence the phytoene desaturase gene, which resulted in the expected photo-bleaching phenotype. Next, the VIGS approach was used to silence two additional genes, drought-induced protein gene 15 (ApDRI15) and salinity-induced protein gene 1 (ApSI1). When ApDRI15 was knocked down, the plants were more sensitive to drought stress than the control plants, with smaller leaves, shorter internodes, and lower biomass. The ApDRI15-silenced plants had lower relative water content, lower free proline levels, and higher water loss rates than the control. Silencing of ApSI1 significantly decreased tolerance to salinity, and the ApSI1-silenced plants were withered and smaller. These results indicate that the pgR107 VIGS approach is a simple and highly effective tool for dissecting gene function in A. philoxeroides. Further experiments with the VIGS approach will enhance our understanding of the molecular mechanisms of the adaptability and plasticity of A. philoxeroides and improve our ability to combat the damage caused by this weed.
Collapse
Affiliation(s)
- Chao Bai
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Peng Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Qiang Fan
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Wei-Dong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Le Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Zhen-Nan Zhang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guo-Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jia-He Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
53
|
Slootweg E, Koropacka K, Roosien J, Dees R, Overmars H, Lankhorst RK, van Schaik C, Pomp R, Bouwman L, Helder J, Schots A, Bakker J, Smant G, Goverse A. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa. PLANT PHYSIOLOGY 2017; 175:498-510. [PMID: 28747428 PMCID: PMC5580749 DOI: 10.1104/pp.17.00485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 05/24/2023]
Abstract
Plants have evolved a limited repertoire of NB-LRR disease resistance (R) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1, which confer resistance in potato (Solanum tuberosum) to the cyst nematode Globodera pallida and Potato virus X, respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2CN/Rx1L) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1CN/Gpa2L) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Kamila Koropacka
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Jan Roosien
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Robert Dees
- Laboratory of Molecular Recognition and Antigen Technology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Rene Klein Lankhorst
- Plant Research International, Centre for Biosystems Genomics, 6708 PD Wageningen, The Netherlands
| | - Casper van Schaik
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Rikus Pomp
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Liesbeth Bouwman
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Arjen Schots
- Laboratory of Molecular Recognition and Antigen Technology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PD Wageningen, The Netherlands
| |
Collapse
|
54
|
Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum 2017; 46:724-731. [DOI: 10.1016/j.semarthrit.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
|
55
|
Groszyk J, Kowalczyk M, Yanushevska Y, Stochmal A, Rakoczy-Trojanowska M, Orczyk W. Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.). PLoS One 2017; 12:e0171506. [PMID: 28234909 PMCID: PMC5325281 DOI: 10.1371/journal.pone.0171506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/21/2017] [Indexed: 12/28/2022] Open
Abstract
The first step of the benzoxazinoid (BX) synthesis pathway is catalyzed by an enzyme with indole-3-glycerol phosphate lyase activity encoded by 3 genes, Bx1, TSA and Igl. A gene highly homologous to maize and wheat Bx1 has been identified in rye. The goal of the study was to analyze the gene and to experimentally verify its role in the rye BX biosynthesis pathway as a rye ortholog of the Bx1 gene. Expression of the gene showed peak values 3 days after imbibition (dai) and at 21 dai it was undetectable. Changes of the BX content in leaves were highly correlated with the expression pattern until 21 dai. In plants older than 21 dai despite the undetectable expression of the analyzed gene there was still low accumulation of BXs. Function of the gene was verified by correlating its native expression and virus-induced silencing with BX accumulation. Barley stripe mosaic virus (BSMV)-based vectors were used to induce transcriptional (TGS) and posttranscriptional (PTGS) silencing of the analyzed gene. Both strategies (PTGS and TGS) significantly reduced the transcript level of the analyzed gene, and this was highly correlated with lowered BX content. Inoculation with virus-based vectors specifically induced expression of the analyzed gene, indicating up-regulation by biotic stressors. This is the first report of using the BSMV-based system for functional analysis of rye gene. The findings prove that the analyzed gene is a rye ortholog of the Bx1 gene. Its expression is developmentally regulated and is strongly induced by biotic stress. Stable accumulation of BXs in plants older than 21 dai associated with undetectable expression of ScBx1 indicates that the function of the ScBx1 in the BX biosynthesis is redundant with another gene. We anticipate that the unknown gene is a putative ortholog of the Igl, which still remains to be identified in rye.
Collapse
Affiliation(s)
- Jolanta Groszyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Pulawy, Poland
| | - Yuliya Yanushevska
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation State Research Institute, Pulawy, Poland
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute – National Research Institute, Blonie, Poland
- * E-mail:
| |
Collapse
|
56
|
Cheng Y, Wu K, Yao J, Li S, Wang X, Huang L, Kang Z. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environ Microbiol 2017; 19:1717-1729. [PMID: 27871149 DOI: 10.1111/1462-2920.13610] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022]
Abstract
During the infection of host plants, pathogens can deliver virulence-associated 'effector' proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP-INF1 and two resistance-related mitogen-activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern-triggered immunity (PTI)-associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| |
Collapse
|
57
|
Chen C, Chen Y, Jian H, Yang D, Dai Y, Pan L, Shi F, Yang S, Liu Q. Large-Scale Identification and Characterization of Heterodera avenae Putative Effectors Suppressing or Inducing Cell Death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2017; 8:2062. [PMID: 29379510 PMCID: PMC5775296 DOI: 10.3389/fpls.2017.02062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/17/2017] [Indexed: 05/06/2023]
Abstract
Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana.
Collapse
Affiliation(s)
- Changlong Chen
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongpan Chen
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Heng Jian
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Dan Yang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yiran Dai
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lingling Pan
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
- Qinzhou Entry-Exit Inspection and Quarantine Bureau, Guangxi, China
| | - Fengwei Shi
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
- Central Political and Legal Affairs Commission of CPC Chengwu County Committee, Shandong, China
| | - Shanshan Yang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Qian Liu
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University, Beijing, China
- *Correspondence: Qian Liu,
| |
Collapse
|
58
|
Silverman BR, Shi J. Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:2138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Brittany R Silverman
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jiaqi Shi
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
59
|
Yang L, Xu Y, Liu Y, Meng D, Jin T, Zhou X. HC-Pro viral suppressor from tobacco vein banding mosaic virus interferes with DNA methylation and activates the salicylic acid pathway. Virology 2016; 497:244-250. [DOI: 10.1016/j.virol.2016.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/08/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022]
|
60
|
Ju Z, Wang L, Cao D, Zuo J, Zhu H, Fu D, Luo Y, Zhu B. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana. Virus Res 2016; 223:99-107. [PMID: 27422476 DOI: 10.1016/j.virusres.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
Abstract
Virus-induced gene silencing (VIGS) has been widely used for plant functional genomics study at the post-transcriptional level using various DNA or RNA viral vectors. However, while virus-induced transcriptional gene silencing (VITGS) via DNA methylation of gene promoter was achieved using several plant RNA viral vectors, it has not yet been done using a satellite DNA viral vector. In this study, a viral satellite DNA associated with tomato yellow leaf curl China virus (TYLCCNV), which has been modified as a VIGS vector in previous research, was developed as a VITGS vector. Firstly, the viral satellite DNA VIGS vector was further optimized to a more convenient p1.7A+2mβ vector with high silencing efficiency of the phytoene desaturase (PDS) gene in Nicotiana benthamiana plants. Secondly, the constructed VITGS vector (TYLCCNV:35S), which carried a portion of the cauliflower mosaic virus 35S promoter, could successfully induce heritable transcriptional gene silencing (TGS) of the green fluorescent protein (GFP) gene in the 35S-GFP transgenic N. benthamiana line 16c plants. Moreover, bisulfite sequencing results revealed higher methylated cytosine residues at CG, CHG and CHH sites of the 35S promoter sequence in TYLCCNV:35S-inoculated plants than in TYLCCNV-inoculated line 16c plants (control). Overall, these results demonstrated that the viral satellite DNA vector could be used as an effective VITGS vector to study DNA methylation in plant genomes.
Collapse
Affiliation(s)
- Zheng Ju
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Lei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Dongyan Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinhua Zuo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
61
|
Borah B, Zarreen F, Baruah G, Dasgupta I. Insights into the control of geminiviral promoters. Virology 2016; 495:101-11. [DOI: 10.1016/j.virol.2016.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
62
|
Cheng Y, Wang W, Yao J, Huang L, Voegele RT, Wang X, Kang Z. Two distinct Ras genes from Puccinia striiformis
exhibit differential roles in rust pathogenicity and cell death. Environ Microbiol 2016; 18:3910-3922. [DOI: 10.1111/1462-2920.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Wumei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Ralf T. Voegele
- Fachgebiet Phytopathologie, Fakultät Agrarwissenschaften, Institut für Phytomedizin, Universität Hohenheim; Stuttgart Germany
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| |
Collapse
|
63
|
Wieczorek P, Obrępalska-Stęplowska A. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana. Arch Virol 2016; 161:1849-58. [PMID: 27072852 PMCID: PMC4908173 DOI: 10.1007/s00705-016-2841-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
Abstract
The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318, Poznan, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318, Poznan, Poland.
| |
Collapse
|
64
|
Portieles R, Canales E, Chacon O, Silva Y, Hernández I, López Y, Rodríguez M, Terauchi R, Matsumura H, Borroto C, Walton JD, Santos R, Borrás-Hidalgo O. Expression of a Nicotiana tabacum pathogen-induced gene is involved in the susceptibility to black shank. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:534-541. [PMID: 32480483 DOI: 10.1071/fp15350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/22/2016] [Indexed: 06/11/2023]
Abstract
Many host genes induced during compatible plant-pathogen interactions constitute targets of pathogen virulence factors that act to suppress host defenses. In order to identify Nicotiana tabacum L. genes for pathogen-induced proteins involved in susceptibility to the oomycete Phytophthora parasitica var. nicotianae, we used SuperSAGE technology combined with next-generation sequencing to identify transcripts that were differentially upregulated during a compatible interaction. We identified a pathogen-induced gene (NtPIP) that was rapidly induced only during the compatible interaction. Virus-induced gene silencing of NtPIP reduced the susceptibility of N. tabacum to P. parasitica var. nicotianae. Additionally, transient expression of NtPIP in the resistant species Nicotiana megalosiphon Van Heurck & Mull. Arg. compromised the resistance to P. parasitica var. nicotianae. This pathogen-induced protein is therefore a positive regulator of the susceptibility response against an oomycete pathogen in tobacco.
Collapse
Affiliation(s)
- Roxana Portieles
- Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, 10600, Cuba
| | - Eduardo Canales
- Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, 10600, Cuba
| | - Osmani Chacon
- Tobacco Research Institute, Carretera de Tumbadero 8, PO Box 6063, Havana, Cuba
| | - Yussuan Silva
- Tobacco Research Institute, Carretera de Tumbadero 8, PO Box 6063, Havana, Cuba
| | - Ingrid Hernández
- Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, 10600, Cuba
| | - Yunior López
- Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, 10600, Cuba
| | - Mayra Rodríguez
- Centre for Genetic Engineering and Biotechnology, PO Box 6162, Havana, 10600, Cuba
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami, Iwate, 024-0003, Japan
| | - Hideo Matsumura
- Gene Research Center, Shinshu University, Ueda 386-8567, Japan
| | - Carlos Borroto
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, 97200 Mérida, Yucatán, México
| | - Jonathan D Walton
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, USA 48824
| | - Ramon Santos
- Centro de Bioplantas, Carretera de Morón Km 9, Ciego de Avila, C. P. 69450, Cuba
| | | |
Collapse
|
65
|
Chen XR, Li YP, Li QY, Xing YP, Liu BB, Tong YH, Xu JY. SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance. MOLECULAR PLANT PATHOLOGY 2016; 17:577-87. [PMID: 26307454 PMCID: PMC6638419 DOI: 10.1111/mpp.12303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Peptides and small molecules produced by both the plant pathogen Phytophthora and host plants in the apoplastic space mediate the relationship between the interplaying organisms. Various Phytophthora apoplastic effectors, including small cysteine-rich (SCR) secretory proteins, have been identified, but their roles during interaction remain to be determined. Here, we identified an SCR effector encoded by scr96, one of three novel genes encoding SCR proteins in P. cactorum with similarity to the P. cactorum phytotoxic protein PcF. Together with the other two genes, scr96 was transcriptionally induced throughout the developmental and infection stages of the pathogen. These genes triggered plant cell death (PCD) in the Solanaceae, including Nicotiana benthamiana and tomato. The scr96 gene did not show single nucleotide polymorphisms in a collection of P. cactorum isolates from different countries and host plants, suggesting that its role is essential and non-redundant during infection. Homologues of SCR96 were identified only in oomycetes, but not in fungi and other organisms. A stable protoplast transformation protocol was adapted for P. cactorum using green fluorescent protein as a marker. The silencing of scr96 in P. cactorum caused gene-silenced transformants to lose their pathogenicity on host plants and these transformants were significantly more sensitive to oxidative stress. Transient expression of scr96 partially recovered the virulence of gene-silenced transformants on plants. Overall, our results indicate that the P. cactorum scr96 gene encodes an important virulence factor that not only causes PCD in host plants, but is also important for pathogenicity and oxidative stress tolerance.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | - Yan-Peng Li
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | - Qi-Yuan Li
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | - Yu-Ping Xing
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | - Bei-Bei Liu
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | - Yun-Hui Tong
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | - Jing-You Xu
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| |
Collapse
|
66
|
Woo YM, Shin Y, Hwang JA, Hwang YH, Lee S, Park EY, Kong HK, Park HC, Lee YS, Park JH. Epigenetic silencing of the MUPCDH gene as a possible prognostic biomarker for cyst growth in ADPKD. Sci Rep 2015; 5:15238. [PMID: 26463459 PMCID: PMC4604459 DOI: 10.1038/srep15238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022] Open
Abstract
Although autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease, and is characterized by the formation of multiple fluid-filled cysts, which results in renal failure, early diagnosis and treatment of ADPKD have yet to be defined. Herein, we observed that the promoter region of the gene encoding mucin-like protocadherin (MUPCDH) was hypermethylated in the renal tissue of patients with ADPKD compared to non-ADPKD controls. Inversely, MUPCDH was significantly repressed in ADPKD, especially in cyst-lining cells. Our results indicate that aberrant methylation of MUPCDH promoter CpG islands may be negatively correlated with reduced expression level of MUPCDH and that this contributes to abnormal cell proliferation in ADPKD. It suggests that methylation status of MUPCDH promoter can be used as a novel epigenetic biomarker and a therapeutic target in ADPKD.
Collapse
Affiliation(s)
- Yu Mi Woo
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Yubin Shin
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Jung-Ah Hwang
- Branch of Cancer Genomics, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Seoul, 139-892, Korea
| | - Sunyoung Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Hyun Kyung Kong
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Hayne Cho Park
- Division of Nephrology, Armed Forces Capital Hospital, Seongnam, Korea
| | - Yeon-Su Lee
- Branch of Cancer Genomics, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| |
Collapse
|
67
|
Deng S, Chua NH. Inverted-Repeat RNAs Targeting FT Intronic Regions Promote FT Expression in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1667-78. [PMID: 26076969 DOI: 10.1093/pcp/pcv091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/11/2015] [Indexed: 05/04/2023]
Abstract
Transcriptional gene silencing (TGS) is often associated with promoter methylation in both animals and plants. However, the function of DNA methylation in the intragenic region remains unclear. Here, we confirmed that promoter methylation of FLOWERING LOCUS T (FT) led to gene silencing; in contrast, we found that intragenic methylation triggered by RNA-directed DNA methylation (RdDM) promoted FT expression. DNA methylation of the FT gene body blocked FLC repressor binding to the CArG boxes. However, when the boxes were not directly targeted by inverted-repeat RNAs (IRs), FLC binding blocked spreading of DNA methylation to theses sequences. Notwithstanding the FLC binding, FT was still activated under this condition. The DNA methylation was accompanied by elevated H3K9 methylation levels on the FT gene body. More importantly, the FT diurnal and organ-specific expression pattern was preserved in the activated plants. Our data demonstrate that the same type of epigenetic modification can lead to an opposite genetic outcome depending on the location of the modification on the gene locus. Moreover, we highlight a novel strategy to activate gene expression without changing its spatio-temporal regulatory patterns.
Collapse
Affiliation(s)
- Shulin Deng
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230, York Avenue, New York, NY 10065, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230, York Avenue, New York, NY 10065, USA
| |
Collapse
|
68
|
Ma Z, Song T, Zhu L, Ye W, Wang Y, Shao Y, Dong S, Zhang Z, Dou D, Zheng X, Tyler BM, Wang Y. A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. THE PLANT CELL 2015; 27:2057-72. [PMID: 26163574 PMCID: PMC4531360 DOI: 10.1105/tpc.15.00390] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/08/2015] [Accepted: 06/21/2015] [Indexed: 05/18/2023]
Abstract
We identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and β-glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant's PAMP recognition machinery.
Collapse
Affiliation(s)
- Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianqiao Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Shao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| |
Collapse
|
69
|
Brosseau C, Moffett P. Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. THE PLANT CELL 2015; 27:1742-54. [PMID: 26023161 PMCID: PMC4498209 DOI: 10.1105/tpc.15.00264] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 05/05/2023]
Abstract
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at least two of the four Arabidopsis DCL proteins. PVX can also infect Arabidopsis ago2 mutants, albeit less effectively than double DCL mutants, suggesting that additional AGO proteins may mediate anti-viral defenses. Here we show, using functional assays, that all Arabidopsis AGO proteins have the potential to target PVX lacking its viral suppressor of RNA silencing (VSR), P25, but that only AGO2 and AGO5 are able to target wild-type PVX. However, P25 directly affects only a small subset of AGO proteins, and we present evidence indicating that its protective effect is mediated by precluding AGO proteins from accessing viral RNA, as well as by directly inhibiting the RNA silencing machinery. In agreement with functional assays, we show that Potexvirus infection induces AGO5 expression and that both AGO2 and AGO5 are required for full restriction of PVX infection in systemic tissues of Arabidopsis.
Collapse
Affiliation(s)
- Chantal Brosseau
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
70
|
Knabl J, Hiden U, Hüttenbrenner R, Riedel C, Hutter S, Kirn V, Günthner-Biller M, Desoye G, Kainer F, Jeschke U. GDM Alters Expression of Placental Estrogen Receptor α in a Cell Type and Gender-Specific Manner. Reprod Sci 2015; 22:1488-95. [PMID: 25947892 DOI: 10.1177/1933719115585147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The nuclear receptor estrogen receptor α (ERα) is one of the key players in energy balance, insulin resistance, and trophoblast differentiation. We tested the hypothesis that gestational diabetes mellitus (GDM) alters expression of placental ERα in a cell type-specific manner and that this regulation may involve epigenetic changes. STUDY DESIGN Expression of ERα was analyzed by immunohistochemistry using the semiquantitative immunoreactive score in 80 placentas (40 GDM/40 controls). Quantitative real-time polymerase chain reaction (PCR) measured ERα messenger RNA (mRNA) in decidual tissue. Methylation-specific PCR was performed to analyze cytosine-phosphatidyl-guanine-island methylation of the ERα promoter. RESULTS Expression of ERα protein is upregulated (P = .011) in GDM in extravillous trophoblasts but not in syncytiotrophoblast. Gestational diabetes mellitus downregulated ERα in decidual vessels only in pregnancies with male but not female fetuses. Furthermore, mRNA of the ERα encoding gene estrogen receptor gene 1 (ESR1) was increased (+1.77 fold) in GDM decidua when compared to controls (P = .024). In parallel, the promoter of ESR1 was methylated only in decidua of healthy control individuals but not in GDM. CONCLUSION Gestational diabetes mellitus affects expression of placental ERα in a cell type-dependent way, on epigenetic level. These data link GDM with epigenetic deregulations of ERα expression and open new insights into the intrauterine programming hypothesis of GDM.
Collapse
Affiliation(s)
- Julia Knabl
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany Klinik Hallerwiese, Department of Obstetrics, Nuremberg, Germany
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Rebecca Hüttenbrenner
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany
| | - Christina Riedel
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany Institut für Soziale Pädiatrie und Jugendmedizin, Ludwig-Maximilians-Universität München, Munich, Gemany
| | - Stefan Hutter
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany
| | - Verena Kirn
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany Department of Obstetrics and Gynecology, University Hospital of Cologne, Cologne, Germany
| | - Margit Günthner-Biller
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Franz Kainer
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany Klinik Hallerwiese, Department of Obstetrics, Nuremberg, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig Maximilians Universität München, Campus Innenstadt, Munich, Germany
| |
Collapse
|
71
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
72
|
Kanazawa A, Kasai M. Induction of stable epigenetic gene silencing in plants using a virus vector. Methods Mol Biol 2015; 1287:129-37. [PMID: 25740361 DOI: 10.1007/978-1-4939-2453-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gene silencing through transcriptional repression can be induced by double-stranded RNA targeted to a gene promoter, a process known as RNA-mediated transcriptional gene silencing (TGS). This phenomenon is associated with epigenetic changes involving cytosine methylation of the promoter. Plant virus vectors have been used to induce RNA-mediated TGS. Here, we describe methods relevant to the induction of epigenetic changes and RNA-mediated TGS in plants using a virus vector, which include inoculation of recombinant virus, detection of short interfering RNAs, bisulfite sequencing analysis, and nuclear run-on transcription assay.
Collapse
Affiliation(s)
- Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan,
| | | |
Collapse
|
73
|
Dalakouras A, Dadami E, Bassler A, Zwiebel M, Krczal G, Wassenegger M. Replicating Potato spindle tuber viroid mediates de novo methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biol 2015; 12:268-75. [PMID: 25826660 PMCID: PMC4615544 DOI: 10.1080/15476286.2015.1017216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 10/23/2022] Open
Abstract
In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.
Collapse
Affiliation(s)
| | - Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Alexandra Bassler
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
74
|
Yang H, Chang F, You C, Cui J, Zhu G, Wang L, Zheng Y, Qi J, Ma H. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:268-81. [PMID: 25404462 DOI: 10.1111/tpj.12726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 05/06/2023]
Abstract
Flower development is a complex process requiring proper spatiotemporal expression of numerous genes. Accumulating evidence indicates that epigenetic mechanisms, including DNA methylation, play essential roles in modulating gene expression. However, few studies have examined the relationship between DNA methylation and floral gene expression on a genomic scale. Here we present detailed analyses of DNA methylomes at single-base resolution for three Arabidopsis floral periods: meristems, early flowers and late flowers. We detected 1.5 million methylcytosines, and estimated the methylation levels for 24 035 genes. We found that many cytosine sites were methylated de novo from the meristem to the early flower stage, and many sites were demethylated from early to late flowers. A comparison of the transcriptome data of the same three periods revealed that the methylation and demethylation processes were correlated with expression changes of >3000 genes, many of which are important for normal flower development. We also found different methylation patterns for three sequence contexts ((m) CG, (m) CHG and (m) CHH) and in different genic regions, potentially with different roles in gene expression.
Collapse
Affiliation(s)
- Hongxing Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China; Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, 201602, China
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Chen XR, Zhang BY, Xing YP, Li QY, Li YP, Tong YH, Xu JY. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors. BMC Genomics 2014; 15:980. [PMID: 25406848 PMCID: PMC4289400 DOI: 10.1186/1471-2164-15-980] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq. Results We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts. Conclusions This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome sequence, transcriptome data is important for infection-related gene discovery in P. cactorum, as demonstrated here for the effector genes. The first look at the transcriptome and effector arsenal of P. cactorum provides valuable data to elucidate the pathogenicity basis of this broad-host-range pathogen. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-980) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | | | |
Collapse
|
76
|
Kon T, Yoshikawa N. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Front Microbiol 2014; 5:595. [PMID: 25426109 PMCID: PMC4226233 DOI: 10.3389/fmicb.2014.00595] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022] Open
Abstract
Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.
Collapse
Affiliation(s)
- Tatsuya Kon
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University Morioka, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University Morioka, Japan
| |
Collapse
|
77
|
Lee HA, Kim SY, Oh SK, Yeom SI, Kim SB, Kim MS, Kamoun S, Choi D. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. THE NEW PHYTOLOGIST 2014; 203:926-38. [PMID: 24889686 PMCID: PMC4143959 DOI: 10.1111/nph.12861] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is a plant immune response to resist most pathogens. The molecular basis of NHR is poorly understood, but recognition of pathogen effectors by immune receptors, a response known as effector-triggered immunity, has been proposed as a component of NHR. We performed transient expression of 54 Phytophthora infestansRXLR effectors in pepper (Capsicum annuum) accessions. We used optimized heterologous expression methods and analyzed the inheritance of effector-induced cell death in an F2 population derived from a cross between two pepper accessions. Pepper showed a localized cell death response upon inoculation with P. infestans, suggesting that recognition of effectors may contribute to NHR in this system. Pepper accessions recognized as many as 36 effectors. Among the effectors, PexRD8 and Avrblb2 induced cell death in a broad range of pepper accessions. Segregation of effector-induced cell death in an F2 population derived from a cross between two pepper accessions fit 15:1, 9:7 or 3:1 ratios, depending on the effector. Our genetic data suggest that a single or two independent/complementary dominant genes are involved in the recognition of RXLR effectors. Multiple loci recognizing a series of effectors may underpin NHR of pepper to P. infestans and confer resistance durability.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, 151-921, Korea
| | - Shin-Young Kim
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, 151-921, Korea
| | - Sang-Keun Oh
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
| | - Seon-In Yeom
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, 151-921, Korea
| | - Saet-Byul Kim
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, 151-921, Korea
| | - Myung-Shin Kim
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, 151-921, Korea
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, 151-921, Korea
| |
Collapse
|
78
|
Sohn SH, Frost J, Kim YH, Choi SK, Lee Y, Seo MS, Lim SH, Choi Y, Kim KH, Lomonossoff G. Cell-autonomous-like silencing of GFP-partitioned transgenic Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4271-83. [PMID: 24868037 DOI: 10.1093/jxb/eru200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We previously reported the novel partitioning of regional GFP-silencing on leaves of 35S-GFP transgenic plants, coining the term "partitioned silencing". We set out to delineate the mechanism of partitioned silencing. Here, we report that the partitioned plants were hemizygous for the transgene, possessing two direct-repeat copies of 35S-GFP. The detection of both siRNA expression (21 and 24 nt) and DNA methylation enrichment specifically at silenced regions indicated that both post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) were involved in the silencing mechanism. Using in vivo agroinfiltration of 35S-GFP/GUS and inoculation of TMV-GFP RNA, we demonstrate that PTGS, not TGS, plays a dominant role in the partitioned silencing, concluding that the underlying mechanism of partitioned silencing is analogous to RNA-directed DNA methylation (RdDM). The initial pattern of partitioned silencing was tightly maintained in a cell-autonomous manner, although partitioned-silenced regions possess a potential for systemic spread. Surprisingly, transcriptome profiling through next-generation sequencing demonstrated that expression levels of most genes involved in the silencing pathway were similar in both GFP-expressing and silenced regions although a diverse set of region-specific transcripts were detected.This suggests that partitioned silencing can be triggered and regulated by genes other than the genes involved in the silencing pathway.
Collapse
Affiliation(s)
- Seong-Han Sohn
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Jennifer Frost
- College of Natural Resources, University of California, Berkeley CA94720, USA
| | - Yoon-Hee Kim
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Seung-Kook Choi
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Yi Lee
- College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Mi-Suk Seo
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Kook-Hyung Kim
- College of Agriculture and Life Sciences (CALS), Seoul National University, Seoul 151-747, Korea
| | - George Lomonossoff
- Department of Biological Chemistry, John Innes Centre (JIC), Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
79
|
Dadami E, Dalakouras A, Zwiebel M, Krczal G, Wassenegger M. An endogene-resembling transgene is resistant to DNA methylation and systemic silencing. RNA Biol 2014; 11:934-41. [PMID: 25180820 PMCID: PMC4179966 DOI: 10.4161/rna.29623] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
In plants, endogenes are less prone to RNA silencing than transgenes. While both can be efficiently targeted by small RNAs for post-transcriptional gene silencing (PTGS), generally only transgene PTGS is accompanied by transitivity, RNA-directed DNA methylation (RdDM) and systemic silencing. In order to investigate whether a transgene could mimick an endogene and thus be less susceptible to RNA silencing, we generated an intron-containing, endogene-resembling GREEN FLUORESCENT PROTEIN (GFP) transgene (GFP(endo)). Upon agroinfiltration of a hairpin GFP (hpF) construct, transgenic Nicotiana benthamiana plants harboring GFP(endo) (Nb-GFP(endo)) were susceptible to local PTGS. Yet, in the local area, PTGS was not accompanied by RdDM of the GFP(endo) coding region. Importantly, hpF-agroinfiltrated Nb-GFP(endo) plants were resistant to systemic silencing. For reasons of comparison, transgenic N. benthamiana plants (Nb-GFP(cDNA)) carrying a GFP cDNA transgene (GFP(cDNA)) were included in the analysis. HpF-agroinfiltrated Nb-GFP(cDNA) plants exhibited local PTGS and RdDM. In addition, systemic silencing was established in Nb-GFP(cDNA) plants. In agreement with previous reports using grafted scions, in systemically silenced tissue, siRNAs mapping to the 3' of GFP were predominantly detectable by Northern blot analysis. Yet, in contrast to other reports, in systemically silenced leaves, PTGS was also accompanied by dense RdDM comprising the entire GFP(cDNA) coding region. Overall, our analysis indicated that cDNA transgenes are prone to systemic PTGS and RdDM, while endogene-resembling ones are resistant to RNA silencing.
Collapse
Affiliation(s)
- Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | | | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
80
|
Abstract
Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521 ; Howard Hughes Medical Institute, University of California, Riverside, CA 92521
| |
Collapse
|
81
|
Kravchik M, Damodharan S, Stav R, Arazi T. Generation and characterization of a tomato DCL3-silencing mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:81-89. [PMID: 24656338 DOI: 10.1016/j.plantsci.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
DICER-like 3 (DCL3) is a major player in heterochromatic 24-nucleotide (nt) small RNA (sRNA) and long microRNA (lmiRNA) biogenesis, and higher plant DCL3 mutants have been characterized from Arabidopsis thaliana and rice. Here, a tomato DCL3 (SlDCL3) mutant was generated through the use of trans-activated artificial miRNA and characterized. Constitutive trans-activation knocked down SlDCL3 levels by ∼64%, resulting in dramatically decreased 24-nt sRNA levels and a significant increase in 21- and 22-nt sRNAs. The latter was correlated with specific upregulation of SlDCL4 and SlDCL2b, which function in the biogenesis of 21- and 22-nt sRNAs, respectively. Moreover, at the majority of sRNA-generating genomic loci, an almost complete overlap between small RNA signatures of control and silenced seedlings was observed, suggesting that the reductions in 24-nt sRNAs at these loci were compensated for by biogenesis of 21- and 22-nt sRNAs from the same double-stranded RNA substrates. In addition, bioinformatic analysis and reduced expression in SlDCL3-silenced seedlings identified four novel tomato lmiRNAs, two of which were found to be developmentally regulated. Taken together, these results establish the requirement of SlDCL3 for the biogenesis of 24-nt sRNAs and lmiRNAs in tomato and suggest SlDCL4 and SlDCL2b as surrogates for SlDCL3.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel
| | - Subha Damodharan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO BOX 6, Bet Dagan 50250, Israel.
| |
Collapse
|
82
|
Zhong X, Yuan X, Wu Z, Khan MA, Chen J, Li X, Gong B, Zhao Y, Wu J, Wu C, Yi M. Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus. PLANT CELL REPORTS 2014; 33:301-12. [PMID: 24170343 DOI: 10.1007/s00299-013-1530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 05/05/2023]
Abstract
Functional analysis of genes in gladiolus has previously been impractical due to the lack of an efficient stable genetic transformation method. However, virus-induced gene silencing (VIGS) is effective in some plants which are difficult to transform through other methods. Although the Tobacco rattle virus (TRV)-based VIGS system has been developed and used for verifying gene functions in diverse plants, an appropriate TRV-VIGS approach for gladiolus has not been established yet. In this report we describe the first use of the TRV-VIGS system for gene silencing in gladiolus. Vacuum infiltration of cormels and young plants with the GhPDS-VIGS vector effectively down-regulated the PHYTOENE DESATURASE ortholog GhPDS gene and also resulted in various degrees of photobleaching in Gladiolus hybridus. The reduction in GhPDS expression was tested after TRV-based vector infection using real-time RT-PCR. In addition, the progress of TRV infection was detected by fluorescence visualization using a pTRV2: CP-GFP vector. In conclusion, the TRV-mediated VIGS described here will be an effective gene function analysis mechanism in gladiolus.
Collapse
Affiliation(s)
- Xionghui Zhong
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuan Mingyuan Western Road 2#, Beijing, 100193, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Seifers DL, Haber S, Martin TJ, McCallum BD. Heritable, de novo resistance to leaf rust and other novel traits in selfed descendants of wheat responding to inoculation with wheat streak mosaic virus. PLoS One 2014; 9:e86307. [PMID: 24497941 PMCID: PMC3909057 DOI: 10.1371/journal.pone.0086307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Stable resistance to infection with Wheat streak mosaic virus (WSMV) can be evolved de novo in selfing bread wheat lines subjected to cycles of WSMV inoculation and selection of best-performing plants or tillers. To learn whether this phenomenon might be applied to evolve resistance de novo to pathogens unrelated to WSMV, we examined the responses to leaf rust of succeeding generations of the rust- and WSMV-susceptible cultivar 'Lakin' following WSMV inoculation and derived rust-resistant sublines. After three cycles of the iterative protocol five plants, in contrast to all others, expressed resistance to leaf and stripe rust. A subset of descendant sublines of one of these, 'R1', heritably and uniformly expressed the new trait of resistance to leaf rust. Such sublines, into which no genes from a known source of resistance had been introgressed, conferred resistance to progeny of crosses with susceptible parents. The F1 populations produced from crosses between, respectively, susceptible and resistant 'Lakin' sublines 4-3-3 and 4-12-3 were not all uniform in their response to seedling inoculation with race TDBG. In seedling tests against TDBG and MKPS races the F2s from F1 populations that were uniformly resistant had 3∶1 ratios of resistant to susceptible individuals but the F2s from susceptible F1 progenitors were uniformly susceptible. True-breeding lines derived from resistant individuals in F2 populations were resistant to natural stripe and leaf rust inoculum in the field, while the 'Lakin' progenitor was susceptible. The next generation of six of the 'Lakin'-derived lines exhibited moderate to strong de novo resistance to stem rust races TPMK, QFCS and RKQQ in seedling tests while the 'Lakin' progenitor was susceptible. These apparently epigenetic effects in response to virus infection may help researchers fashion a new tool that expands the range of genetic resources already available in adapted germplasm.
Collapse
Affiliation(s)
- Dallas L. Seifers
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, United States of America
| | - Steve Haber
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Terry J. Martin
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, United States of America
| | - Brent D. McCallum
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
84
|
Chen XR, Xing YP, Li YP, Tong YH, Xu JY. RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici. PLoS One 2013; 8:e74588. [PMID: 24019970 PMCID: PMC3760852 DOI: 10.1371/journal.pone.0074588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Phytophthora capsici is a soilborne plant pathogen capable of infecting a wide range of plants, including many solanaceous crops. However, genetic resistance and fungicides often fail to manage P. capsici due to limited knowledge on the molecular biology and basis of P. capsici pathogenicity. To begin to rectify this situation, Illumina RNA-Seq was used to perform massively parallel sequencing of three cDNA samples derived from P. capsici mycelia (MY), zoospores (ZO) and germinating cysts with germ tubes (GC). Over 11 million reads were generated for each cDNA library analyzed. After read mapping to the gene models of P. capsici reference genome, 13,901, 14,633 and 14,695 putative genes were identified from the reads of the MY, ZO and GC libraries, respectively. Comparative analysis between two of samples showed major differences between the expressed gene content of MY, ZO and GC stages. A large number of genes associated with specific stages and pathogenicity were identified, including 98 predicted effector genes. The transcriptional levels of 19 effector genes during the developmental and host infection stages of P. capsici were validated by RT-PCR. Ectopic expression in Nicotiana benthamiana showed that P. capsici RXLR and Crinkler effectors can suppress host cell death triggered by diverse elicitors including P. capsici elicitin and NLP effectors. This study provides a first look at the transcriptome and effector arsenal of P. capsici during the important pre-infection stages.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yu-Ping Xing
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yan-Peng Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yun-Hui Tong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jing-You Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
85
|
Cañizares MC, Lozano-Durán R, Canto T, Bejarano ER, Bisaro DM, Navas-Castillo J, Moriones E. Effects of the crinivirus coat protein-interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1004-15. [PMID: 23697374 DOI: 10.1094/mpmi-02-13-0037-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, post-transcriptional gene silencing (PTGS) is a sequence-specific mechanism of RNA degradation induced by double-stranded RNA (dsRNA), which is processed into small interfering RNAs (siRNAs). siRNAs are methylated and, thereby, stabilized by the activity of the S-adenosylmethionine-dependent RNA methyltransferase HEN1. PTGS is amplified by host-encoded RNA-dependent RNA polymerases (RDR), which generate dsRNA that is processed into secondary siRNAs. To counteract this RNA silencing-mediated response of the host, plant viruses express proteins with silencing suppression activity. Here, we report that the coat protein (CP) of crinivirus (family Closteroviridae, genus Crinivirus) Tomato chlorosis virus, a known suppressor of silencing, interacts with S-adenosylhomocysteine hydrolase (SAHH), a plant protein essential for sustaining the methyl cycle and S-adenosylmethionine-dependent methyltransferase activity. Our results show that, by contributing to an increased accumulation of secondary siRNAs generated by the action of RDR6, SAHH enhances local RNA silencing. Although downregulation of SAHH prevents local silencing, it enhances the spread of systemic silencing. Our results also show that SAHH is important in the suppression of local RNA silencing not only by the crinivirus Tomato chlorosis virus CP but also by the multifunctional helper component-proteinase of the potyvirus Potato virus Y.
Collapse
Affiliation(s)
- M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas IHSM-UMA-CSIC, Estación Experimental La Mayora, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
86
|
Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 2013; 201:981-95. [PMID: 23798728 PMCID: PMC3691464 DOI: 10.1083/jcb.201304003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/16/2013] [Indexed: 02/04/2023] Open
Abstract
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum-derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5' end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
87
|
Feng BZ, Li PQ. Molecular characterization and functional analysis of the Nep1-like protein-encoding gene from Phytophthora capsici. GENETICS AND MOLECULAR RESEARCH 2013; 12:1468-78. [PMID: 23661469 DOI: 10.4238/2013.april.26.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phytophthora capsici is an aggressive plant pathogen that affects solanaceous and cucurbitaceous hosts. Nep1-like proteins (NLPs) are a group of effectors found particularly in oomycetes and considered important virulence factors. We identified an NLP gene (phcnlp1) from the highly virulent P. capsici strain Phyc12 that had an encoded polypeptide of 476-amino acid residues and a predicted molecular mass of 51.75 kDa. We performed quantitative reverse transcription-polymerase chain reaction to detect the expression pattern of phcnlp1 during various phases of interaction with the host plant, and the results showed that phcnlp1 was increasingly expressed during symptom development after P. capsici infection of pepper leaves. We also confirmed that phcnlp1 caused significant necrosis on tobacco plants when expressed based on potato virus agroinfection. All results indicated that phcnlp1 belongs to the NLP gene family and is important for the pathogenesis of P. capsici in its hosts.
Collapse
Affiliation(s)
- B Z Feng
- Department of Life Sciences, Yuncheng University, Yuncheng, China.
| | | |
Collapse
|
88
|
Popova OV, Dinh HQ, Aufsatz W, Jonak C. The RdDM pathway is required for basal heat tolerance in Arabidopsis. MOLECULAR PLANT 2013; 6:396-410. [PMID: 23376771 PMCID: PMC3603006 DOI: 10.1093/mp/sst023] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/20/2013] [Indexed: 05/19/2023]
Abstract
Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epigenetic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, histone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway.
Collapse
Affiliation(s)
| | | | | | - Claudia Jonak
- To whom correspondence should be addressed. E-mail , tel. +43 1 790449850, fax +43 1 790449001
| |
Collapse
|
89
|
Wang X, Zhu X, Tooley P, Zhang X. Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. PLANT MOLECULAR BIOLOGY 2013; 81:379-400. [PMID: 23334855 DOI: 10.1007/s11103-013-0007-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/01/2013] [Indexed: 05/10/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant's resistance to disease.
Collapse
Affiliation(s)
- Xiuju Wang
- Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong street, Tai'an, 271018, Shandong, China
| | | | | | | |
Collapse
|
90
|
Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson HS, Chen X, Ma W. Oomycete pathogens encode RNA silencing suppressors. Nat Genet 2013; 45:330-3. [PMID: 23377181 DOI: 10.1038/ng.2525] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022]
Abstract
Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.
Collapse
Affiliation(s)
- Yongli Qiao
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Szittya G, Burgyán J. RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Curr Top Microbiol Immunol 2013; 371:153-81. [DOI: 10.1007/978-3-642-37765-5_6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
TMV-Gate vectors: gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins. Sci Rep 2012; 2:874. [PMID: 23166857 PMCID: PMC3500846 DOI: 10.1038/srep00874] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/29/2012] [Indexed: 02/08/2023] Open
Abstract
Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts.
Collapse
|
93
|
Luna AP, Morilla G, Voinnet O, Bejarano ER. Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1294-306. [PMID: 22712505 DOI: 10.1094/mpmi-04-12-0094-r] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) is caused by a complex of phylogenetically related Begomovirus spp. that produce similar symptoms when they infect tomato plants but have different host ranges. In this work, we have evaluated the gene-silencing-suppression activity of C2, C4, and V2 viral proteins isolated from the four main TYLCD-causing strains in Spain in Nicotiana benthamiana. We observed varying degrees of local silencing suppression for each viral protein tested, with V2 proteins from all four viruses exhibiting the strongest suppression activity. None of the suppressors were able to avoid the spread of the systemic silencing, although most produced a delay. In order to test the silencing-suppression activity of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) proteins in a shared (tomato) and nonshared (bean) host, we established novel patch assays. Using these tools, we found that viral proteins from TYLCV were able to suppress silencing in both hosts, whereas TYLCSV proteins were only effective in tomato. This is the first time that viral suppressors from a complex of disease-causing geminiviruses have been subject to a comprehensive analysis using two economically important crop hosts, as well as the established N. benthamiana plant model.
Collapse
Affiliation(s)
- Ana P Luna
- Departamento de Genetica, Universidad de Malaga, Malaga, Spain
| | | | | | | |
Collapse
|
94
|
Dalakouras A, Dadami E, Zwiebel M, Krczal G, Wassenegger M. Transgenerational maintenance of transgene body CG but not CHG and CHH methylation. Epigenetics 2012; 7:1071-8. [PMID: 22863736 PMCID: PMC3466191 DOI: 10.4161/epi.21644] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM) can target both transgene promoters and coding regions/gene bodies. RdDM leads to methylation of cytosines in all sequence contexts: CG, CHG and CHH. Upon segregation of the RdDM trigger, at least CG methylation can be maintained at promoter regions in the progeny. So far, it is not clear whether coding region methylation can be also maintained. We showed that the body of Potato spindle tuber viroid (PSTVd) transgene constructs became densely de novo methylated at CG, CHG and CHH sites upon PSTVd infection. In this study, we demonstrate that in viroid-free progeny plants, asymmetric CHH and CHG methylation was completely lost. However, symmetric CG methylation was stably maintained for at least two generations. Importantly, the presence of transgene body methylation did not lead to an increase of dimethylation of histone H3 lysine 9 or a decrease of acetylation of H3. Our data supports the view that CG methylation can be maintained not only in promoters but also in the body of transgenes. They further suggest that maintenance of methylation may occur independently of tested chromatin modifications.
Collapse
Affiliation(s)
| | - Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
95
|
Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 2012; 8:e1002885. [PMID: 22916030 PMCID: PMC3420925 DOI: 10.1371/journal.pgen.1002885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022] Open
Abstract
Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (∼50%), but at a much lower frequency during vegetative growth (∼0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ∼90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling. The development of gene transfer methods allows the production of transgenic lines in myriad eukaryotes. Frequently, transgenic DNA is integrated into the genome and transmitted as a heritable Mendelian trait. However, the introduced transgenes are in some cases not expressed (silenced). In addition, transgenes can also provoke silencing of endogenous genes with which they share sequence homology. This phenomenon was first observed in plants and named co-suppression. In fungi the best-documented co-suppression phenomenon occurs in vegetative tissue of the filamentous fungus Neurospora crassa and is termed quelling. Here we report a robust asexual co-suppression pathway that operates in the pathogenic fungus Cryptococcus neoformans and shares molecular components with quelling. Compared with the sex induced silencing (SIS) phenomenon previously discovered in C. neoformans, which efficiently silences genes during mating (∼50%) but not during vegetative growth (∼0.2%), asexual co-suppression operates efficiently during vegetative growth to suppress transgene expression and may also silence transposons and other repetitive sequences.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Wang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sabrina Darwiche
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
96
|
Fan D, Dai Y, Wang X, Wang Z, He H, Yang H, Cao Y, Deng XW, Ma L. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis. Nucleic Acids Res 2012; 40:8905-16. [PMID: 22772985 PMCID: PMC3467047 DOI: 10.1093/nar/gks647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression.
Collapse
Affiliation(s)
- Di Fan
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:896-909. [PMID: 22397404 DOI: 10.1094/mpmi-01-12-0023-r] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Necrosis- and ethylene-inducing-like proteins (NLP) are widely distributed in eukaryotic and prokaryotic plant pathogens and are considered to be important virulence factors. We identified, in total, 70 potential Phytophthora sojae NLP genes but 37 were designated as pseudogenes. Sequence alignment of the remaining 33 NLP delineated six groups. Three of these groups include proteins with an intact heptapeptide (Gly-His-Arg-His-Asp-Trp-Glu) motif, which is important for necrosis-inducing activity, whereas the motif is not conserved in the other groups. In total, 19 representative NLP genes were assessed for necrosis-inducing activity by heterologous expression in Nicotiana benthamiana. Surprisingly, only eight genes triggered cell death. The expression of the NLP genes in P. sojae was examined, distinguishing 20 expressed and 13 nonexpressed NLP genes. Real-time reverse-transcriptase polymerase chain reaction results indicate that most NLP are highly expressed during cyst germination and infection stages. Amino acid substitution ratios (Ka/Ks) of 33 NLP sequences from four different P. sojae strains resulted in identification of positive selection sites in a distinct NLP group. Overall, our study indicates that expansion and pseudogenization of the P. sojae NLP family results from an ongoing birth-and-death process, and that varying patterns of expression, necrosis-inducing activity, and positive selection suggest that NLP have diversified in function.
Collapse
Affiliation(s)
- Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers' blood glucose concentration. Diabetes 2012; 61:1272-80. [PMID: 22396200 PMCID: PMC3331769 DOI: 10.2337/db11-1160] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that epigenetic profile changes occurring during fetal development in response to in utero environment variations could be one of the mechanisms involved in the early determinants of adult chronic diseases. In this study, we tested whether maternal glycemic status is associated with the adiponectin gene (ADIPOQ) DNA methylation profile in placenta tissue, in maternal circulating blood cells, and in cord blood cells. We found that lower DNA methylation levels in the promoter of ADIPOQ on the fetal side of the placenta were correlated with higher maternal glucose levels during the second trimester of pregnancy (2-h glucose after the oral glucose tolerance test; r(s) ≤ -0.21, P < 0.05). Lower DNA methylation levels on the maternal side of the placenta were associated with higher insulin resistance index (homeostasis model assessment of insulin resistance) during the second and third trimesters of pregnancy (r(s) ≤ -0.27, P < 0.05). Finally, lower DNA methylation levels were associated with higher maternal circulating adiponectin levels throughout pregnancy (r(s) ≤ -0.26, P < 0.05). In conclusion, the ADIPOQ DNA methylation profile was associated with maternal glucose status and with maternal circulating adiponectin concentration. Because adiponectin is suspected to have insulin-sensitizing proprieties, these epigenetic adaptations have the potential to induce sustained glucose metabolism changes in the mother and offspring later in life.
Collapse
Affiliation(s)
- Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
99
|
Tilsner J, Linnik O, Wright KM, Bell K, Roberts AG, Lacomme C, Santa Cruz S, Oparka KJ. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. PLANT PHYSIOLOGY 2012; 158:1359-70. [PMID: 22253256 PMCID: PMC3291258 DOI: 10.1104/pp.111.189605] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karl J. Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (J.T., O.L., K.B., C.L., K.J.O.); and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (K.M.W., A.G.R., S.S.C.)
| |
Collapse
|
100
|
van Esse HP. Identification of HR-inducing cDNAs from plant pathogens via a Gateway(®)-compatible binary Potato virus X-expression vector. Methods Mol Biol 2012; 835:97-105. [PMID: 22183649 DOI: 10.1007/978-1-61779-501-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Identification of pathogen effectors that elicit a hypersensitive response (HR) in resistant plant hosts is essential to study disease resistance. In this method, it is described how to generate a cDNA library, how to transfer the library into a binary PVX-expression vector, and finally how to set up a high-throughput screen for HR-inducing cDNAs from plant pathogens.
Collapse
Affiliation(s)
- H Peter van Esse
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|