51
|
Zhu RM, Chai S, Zhang ZZ, Ma CL, Zhang Y, Li S. Arabidopsis Chloroplast protein for Growth and Fertility1 (CGF1) and CGF2 are essential for chloroplast development and female gametogenesis. BMC PLANT BIOLOGY 2020; 20:172. [PMID: 32306898 PMCID: PMC7168881 DOI: 10.1186/s12870-020-02393-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chloroplasts are essential organelles of plant cells for not only being the energy factory but also making plant cells adaptable to different environmental stimuli. The nuclear genome encodes most of the chloroplast proteins, among which a large percentage of membrane proteins have yet to be functionally characterized. RESULTS We report here functional characterization of two nuclear-encoded chloroplast proteins, Chloroplast protein for Growth and Fertility (CGF1) and CGF2. CGF1 and CGF2 are expressed in diverse tissues and developmental stages. Proteins they encode are associated with chloroplasts through a N-terminal chloroplast-targeting signal in green tissues but also located at plastids in roots and seeds. Mutants of CGF1 and CGF2 generated by CRISPR/Cas9 exhibited vegetative defects, including reduced leaf size, dwarfism, and abnormal cell death. CGF1 and CGF2 redundantly mediate female gametogenesis, likely by securing local energy supply. Indeed, mutations of both genes impaired chloroplast integrity whereas exogenous sucrose rescued the growth defects of the CGF double mutant. CONCLUSION This study reports that two nuclear-encoded chloroplast proteins, Chloroplast protein for Growth and Fertility (CGF1) and CGF2, play important roles in vegetative growth, in female gametogenesis, and in embryogenesis likely by mediating chloroplast integrity and development.
Collapse
Affiliation(s)
- Rui-Min Zhu
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sen Chai
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhuang-Zhuang Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Chang-Le Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yan Zhang
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
52
|
S-acylation in plants: an expanding field. Biochem Soc Trans 2020; 48:529-536. [DOI: 10.1042/bst20190703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
S-acylation is a common yet poorly understood fatty acid-based post-translational modification of proteins in all eukaryotes, including plants. While exact roles for S-acylation in protein function are largely unknown the reversibility of S-acylation indicates that it is likely able to play a regulatory role. As more studies reveal the roles of S-acylation within the cell it is becoming apparent that how S-acylation affects proteins is conceptually different from other reversible modifications such as phosphorylation or ubiquitination; a new mind-set is therefore required to fully integrate these data into our knowledge of plant biology. This review aims to highlight recent advances made in the function and enzymology of S-acylation in plants, highlights current and emerging technologies for its study and suggests future avenues for investigation.
Collapse
|
53
|
Xiong F, Duan CY, Liu HH, Wu JH, Zhang ZH, Li S, Zhang Y. Arabidopsis KETCH1 Is Critical for the Nuclear Accumulation of Ribosomal Proteins and Gametogenesis. THE PLANT CELL 2020; 32:1270-1284. [PMID: 32086364 PMCID: PMC7145482 DOI: 10.1105/tpc.19.00791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/02/2020] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Male and female gametophytes are generated from micro- or megaspore mother cells through consecutive meiotic and mitotic cell divisions. Defects in these divisions often result in gametophytic lethality. Gametophytic lethality was also reported when genes encoding ribosome-related proteins were mutated. Although numerous ribosomal proteins (RPs) have been identified in plants based on homology with their yeast and metazoan counterparts, how RPs are regulated, e.g., through dynamic subcellular targeting, is unknown. We report here that an Arabidopsis (Arabidopsis thaliana) importin β, KETCH1 (karyopherin enabling the transport of the cytoplasmic HYL1), is critical for gametogenesis. Karyopherins are molecular chaperones mediating nucleocytoplasmic protein transport. However, the role of KETCH1 during gametogenesis is independent of HYPONASTIC LEAVES 1 (HYL1), a previously reported KETCH1 cargo. Instead, KETCH1 interacts with several RPs and is critical for the nuclear accumulation of RPL27a, whose mutations caused similar gametophytic defects. We further showed that knocking down KETCH1 caused reduced ribosome biogenesis and translational capacity, which may trigger the arrest of mitotic cell cycle progression and lead to gametophytic lethality.
Collapse
Affiliation(s)
- Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Cun-Ying Duan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hai-Hong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ju-Hua Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhong-Hui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
54
|
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, Li S. HUA ENHANCER1 Mediates Ovule Development. FRONTIERS IN PLANT SCIENCE 2020; 11:397. [PMID: 32351522 PMCID: PMC7174553 DOI: 10.3389/fpls.2020.00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Ovules are female reproductive organs of angiosperms, containing sporophytic integuments and gametophytic embryo sacs. After fertilization, embryo sacs develop into embryos and endosperm whereas integuments into seed coat. Ovule development is regulated by transcription factors (TF) whose expression is often controlled by microRNAs. Mutations of Arabidopsis DICER-LIKE 1 (DCL1), a microRNA processing protein, caused defective ovule development and reduced female fertility. However, it was not clear whether other microRNA processing proteins participate in this process and how defective ovule development influenced female fertility. We report that mutations of HUA ENHANCER1 (HEN1) and HYPONASTIC LEAVES 1 (HYL1) interfered with integument growth. The sporophytic defect caused abnormal embryo sac development and inability of mutant ovules to attract pollen tubes, leading to reduced female fertility. We show that the role of HEN1 in integument growth is cell-autonomous. Although AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 were ectopically expressed in mutant ovules, consistent with the reduction of microRNA167 in hen1, introducing arf6;arf8 did not suppress ovule defects of hen1, suggesting the involvement of more microRNAs in this process. Results presented indicate that the microRNA processing machinery is critical for ovule development and seed production through multiple microRNAs and their targets.
Collapse
|
55
|
Chai S, Li E, Zhang Y, Li S. NRT1.1-Mediated Nitrate Suppression of Root Coiling Relies on PIN2- and AUX1-Mediated Auxin Transport. FRONTIERS IN PLANT SCIENCE 2020; 11:671. [PMID: 32582237 PMCID: PMC7288464 DOI: 10.3389/fpls.2020.00671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 05/03/2023]
Abstract
Asymmetric root growth (ARG) on tilted plates, or root coiling on horizontally placed plates, is proposed to be a combination of gravitropism, mechanical sensing, and "circumnutation," a word designated by Charles Darwin to describe the helical movement that all plant organs make around the growth direction. ARG is developmentally controlled in which microtubule-regulating proteins and the phytohormone auxin participates. Nutrient deficiency influences ARG. However, it is unclear which nutrients play key roles in regulating ARG, what endogenous components are involved in responding to nutrient deficiency for ARG, and how nutrient deficiency is translated into endogenous responses. We report here that nitrate deficiency resulted in a strong ARG in Arabidopsis. Nitrate deficiency caused root coiling on horizontal plates, which is inhibited by an auxin transport inhibitor, and by mutations in PIN-FORMED2 (PIN2) and AUXIN RESISTANT 1 (AUX1). We further show that suppression of ARG by nitrate is mediated by the nitrate transporter/sensor NRT1.1. In addition, PIN2- and AUX1-mediated auxin transports are epistatic to NRT1.1 in nitrate deficiency-induced ARG. This study reveals a signaling pathway in root growth by responding to exogenous nitrate and relaying it into altered auxin transport.
Collapse
|
56
|
Knockout of the S-acyltransferase Gene, PbPAT14, Confers the Dwarf Yellowing Phenotype in First Generation Pear by ABA Accumulation. Int J Mol Sci 2019; 20:ijms20246347. [PMID: 31888281 PMCID: PMC6941133 DOI: 10.3390/ijms20246347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
The development of dwarf fruit trees with smaller and compact characteristics leads to significantly increased fruit production, which is a major objective of pear (Pyrus bretschneideri) breeding. We identified the S-acylation activity of PbPAT14, an S-acyltransferase gene related to plant development, using a yeast (Saccharomyces cerevisiae) complementation assay, and also PbPAT14 could rescue the growth defect of the Arabidopsis mutant atpat14. We further studied the function of PbPAT14 by designing three guide RNAs for PbPAT14 to use in the CRISPR/Cas9 system. We obtained 22 positive transgenic pear lines via Agrobacterium-mediated transformation using cotyledons from seeds of Pyrus betulifolia (‘Duli’). Six of these lines exhibited the dwarf yellowing phenotype and were homozygous mutations according to sequencing analysis. Ultrastructure analysis suggested that this dwarfism was manifested by shorter, thinner stems due to a reduction in cell number. A higher level of endogenous abscisic acid (ABA) and a higher transcript level of the ABA pathway genes in the mutant lines revealed that the PbPAT14 function was related to the ABA pathway. Overall, our experimental results increase the understanding of how PATs function in plants and help elucidate the mechanism of plant dwarfism.
Collapse
|
57
|
Li Y, Li HJ, Morgan C, Bomblies K, Yang W, Qi B. Both male and female gametogenesis require a fully functional protein S-acyl transferase 21 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:754-767. [PMID: 31369173 DOI: 10.1111/tpj.14475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
S-Acylation is a reversible post-translational lipid modification in which a long chain fatty acid covalently attaches to specific cysteine(s) of proteins via a thioester bond. It enhances the hydrophobicity of proteins, contributes to their membrane association and plays roles in protein trafficking, stability and signalling. A family of Protein S-Acyl Transferases (PATs) is responsible for this reaction. PATs are multi-pass transmembrane proteins that possess a catalytic Asp-His-His-Cys cysteine-rich domain (DHHC-CRD). In Arabidopsis, there are currently 24 such PATs, five having been characterized, revealing their important roles in growth, development, senescence and stress responses. Here, we report the functional characterization of another PAT, AtPAT21, demonstrating the roles it plays in Arabidopsis sexual reproduction. Loss-of-function mutation by T-DNA insertion in AtPAT21 results in the complete failure of seed production. Detailed studies revealed that the sterility of the mutant is caused by defects in both male and female sporogenesis and gametogenesis. To determine if the sterility observed in atpat21-1 was caused by upstream defects in meiosis, we assessed meiotic progression in pollen mother cells and found massive chromosome fragmentation and the absence of synapsis in the initial stages of meiosis. Interestingly, the fragmentation phenotype was substantially reduced in atpat21-1 spo11-1 double mutants, indicating that AtPAT21 is required for repair, but not for the formation, of SPO11-induced meiotic DNA double-stranded breaks (DSBs) in Arabidopsis. Our data highlight the importance of protein S-acylation in the early meiotic stages that lead to the development of male and female sporophytic reproductive structures and associated gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hong-Ju Li
- Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, China Academy of Science, Lincui East Road, Chaoyang District, Beijing, 100101, China
| | - Chris Morgan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Weicai Yang
- Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, China Academy of Science, Lincui East Road, Chaoyang District, Beijing, 100101, China
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
58
|
OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc Natl Acad Sci U S A 2019; 116:7549-7558. [PMID: 30902896 PMCID: PMC6462063 DOI: 10.1073/pnas.1817675116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Understanding the development of anthers, the male reproductive organs of plants, has key implications for crop yield. Epigenetic mechanisms modulate gene expression by altering modifications of DNA or histones and via noncoding RNAs. Many studies have examined anther development, but the involvement of epigenetic mechanisms remains to be explored. Here, we investigated the role of an ARGONAUTE (AGO) family protein, OsAGO2. We find that OsAGO2 epigenetically regulates anther development by modulating DNA methylation modifications in the Hexokinase (OsHXK) promoter region. OsHXK1, in turn, affects anther development by regulating the production of reactive oxygen and the initiation of cell death in key anther structures. Identification of this epigenetic regulatory mechanism has implications for the production of hybrid crop varieties. Proteins of the ARGONAUTE (AGO) family function in the epigenetic regulation of gene expression. Although the rice (Oryza sativa) genome encodes 19 predicted AGO proteins, few of their functions have thus far been characterized. Here, we show that the AGO protein OsAGO2 regulates anther development in rice. OsAGO2 was highly expressed in anthers. Knockdown of OsAGO2 led to the overaccumulation of reactive oxygen species (ROS) and abnormal anther development, causing premature initiation of tapetal programmed cell death (PCD) and pollen abortion. The expression level of Hexokinase 1 (OsHXK1) increased significantly, and the methylation levels of its promoter decreased, in plants with knocked-down OsAGO2 expression. Overexpression of OsHXK1 also resulted in the overaccumulation of ROS, premature initiation of PCD, and pollen abortion. Moreover, knockdown of OsHXK1 restored pollen fertility in OsAGO2 knockdown plants. Chromatin immunoprecipitation assays demonstrated that OsAGO2 binds directly to the OsHXK1 promoter region, suggesting that OsHXK1 is a target gene of OsAGO2. These results indicate that OsHXK1 controls the appropriate production of ROS and the proper timing of tapetal PCD and is directly regulated by OsAGO2 through epigenetic regulation.
Collapse
|
59
|
Liu HH, Xiong F, Duan CY, Wu YN, Zhang Y, Li S. Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. PLANT PHYSIOLOGY 2019; 179:1080-1092. [PMID: 30659067 PMCID: PMC6393798 DOI: 10.1104/pp.18.01135] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 05/06/2023]
Abstract
Ovule development is critical for seed development and plant reproduction. Multiple transcription factors (TFs) have been reported to mediate ovule development. However, it is not clear which intracellular components regulate these TFs during ovule development. After their synthesis, TFs are transported into the nucleus a process regulated by karyopherins commonly known as importin alpha and β. Around half of Arabidopsis (Arabidopsis thaliana) importin β-coding genes have been functionally characterized but only two with specific cargos have been identified. We report here that Arabidopsis IMPORTIN β4 (IMB4) regulates ovule development through nucleocytoplasmic transport of transcriptional coactivator growth regulating factors-interacting factors (GIFs). Mutations in IMB4 impaired ovule development by affecting integument growth. imb4 mutants were also defective in embryo sac development, leading to partial female sterility. IMB4 directly interacts with GIFs and is critical for the nucleocytoplasmic transport of GIF1. Finally, functional loss of GIFs resulted in ovule defects similar to those in imb4 mutants, whereas enhanced expression of GIF1 partially restored the fertility of imb4 The results presented here uncover a novel genetic pathway regulating ovule development and reveal the upstream regulator of GIFs.
Collapse
Affiliation(s)
- Hai-Hong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Cun-Ying Duan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ya-Nan Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
60
|
Zheng L, Liu P, Liu Q, Wang T, Dong J. Dynamic Protein S-Acylation in Plants. Int J Mol Sci 2019; 20:ijms20030560. [PMID: 30699892 PMCID: PMC6387154 DOI: 10.3390/ijms20030560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid modification is an important post-translational modification. S-acylation is unique among lipid modifications, as it is reversible and has thus attracted much attention. We summarize some proteins that have been shown experimentally to be S-acylated in plants. Two of these S-acylated proteins have been matched to the S-acyl transferase. More importantly, the first protein thioesterase with de-S-acylation activity has been identified in plants. This review shows that S-acylation is important for a variety of different functions in plants and that there are many unexplored aspects of S-acylation in plants.
Collapse
Affiliation(s)
- Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
61
|
Bang SW, Lee D, Jung H, Chung PJ, Kim YS, Choi YD, Suh J, Kim J. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:118-131. [PMID: 29781573 PMCID: PMC6330637 DOI: 10.1111/pbi.12951] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 05/19/2023]
Abstract
Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms. Overexpression of the OsTF1L in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both effective photosynthesis and a reduction in the water loss rate under drought conditions. Importantly, the OsTF1L overexpressing plants showed a higher drought tolerance at the reproductive stage of growth with a higher grain yield than nontransgenic controls under field-drought conditions. Genomewide analysis of OsTF1L overexpression plants revealed up-regulation of drought-inducible, stomatal movement and lignin biosynthetic genes. Overexpression of OsTF1L promoted accumulation of lignin in shoots, whereas the RNAi lines showed opposite patterns of lignin accumulation. OsTF1L is mainly expressed in outer cell layers including the epidermis, and the vasculature of the shoots, which coincides with areas of lignification. In addition, OsTF1L overexpression enhances stomatal closure under drought conditions resulted in drought tolerance. More importantly, OsTF1L directly bound to the promoters of lignin biosynthesis and drought-related genes involving poxN/PRX38, Nodulin protein, DHHC4, CASPL5B1 and AAA-type ATPase. Collectively, our results provide a new insight into the role of OsTF1L in enhancing drought tolerance through lignin biosynthesis and stomatal closure in rice.
Collapse
Affiliation(s)
- Seung Woon Bang
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Center for Nutraceutical and Pharmaceutical MaterialsDivision of BioinformaticsMyongji UniversityYongin, GyeonggiKorea
| | - Dong‐Keun Lee
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Present address:
NUS Synthetic Biology for Clinical and Technological InnovationDepartment of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore117596Singapore
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Yang Do Choi
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Joo‐Won Suh
- Center for Nutraceutical and Pharmaceutical MaterialsDivision of BioinformaticsMyongji UniversityYongin, GyeonggiKorea
| | - Ju‐Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
62
|
The molecular mechanism of DHHC protein acyltransferases. Biochem Soc Trans 2018; 47:157-167. [PMID: 30559274 DOI: 10.1042/bst20180429] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Protein S-acylation is a reversible lipidic posttranslational modification where a fatty acid chain is covalently linked to cysteine residues by a thioester linkage. A family of integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs) catalyze this reaction. With the rapid development of the techniques used for identifying lipidated proteins, the repertoire of S-acylated proteins continues to increase. This, in turn, highlights the important roles that S-acylation plays in human physiology and disease. Recently, the first molecular structures of DHHC-PATs were determined using X-ray crystallography. This review will comment on the insights gained on the molecular mechanism of S-acylation from these structures in combination with a wealth of biochemical data generated by researchers in the field.
Collapse
|
63
|
Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc Natl Acad Sci U S A 2018; 116:313-318. [PMID: 30545913 DOI: 10.1073/pnas.1808400115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.
Collapse
|
64
|
Li E, Cui Y, Ge FR, Chai S, Zhang WT, Feng QN, Jiang L, Li S, Zhang Y. AGC1.5 Kinase Phosphorylates RopGEFs to Control Pollen Tube Growth. MOLECULAR PLANT 2018; 11:1198-1209. [PMID: 30055264 DOI: 10.1016/j.molp.2018.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/22/2023]
Abstract
Double fertilization in angiosperms requires the targeted delivery of immotile sperm to the eggs through pollen tubes. The polarity of tip-growing pollen tubes is maintained through dynamic association of active Rho GTPases of plants (ROP-GTP) with the apical plasma membrane. Guanine nucleotide exchange factors for ROPs (RopGEFs) catalyze the activation of ROPs and thereby affect spatiotemporal ROP signaling. Whereas RopGEFs have been found to be phosphorylated proteins, the kinases responsible for their phosphorylation in vivo and biological consequences of RopGEF phosphorylation in pollen tube growth remain unclear. We report here that the Arabidopsis AGC1.5 subfamily of cytoplasmic kinases is critical for the restricted localization of ROP-GTP during pollen tube growth. Loss of AGC1.5 and AGC1.7 functions resulted in the mistargeting of active ROPs and defective events downstream of ROP signaling in pollen tubes. AGC1.5 interacts with RopGEFs via their catalytic PRONE domain and phosphorylates RopGEFs at a conserved Ser residue of PRONE domain. Loss of AGC1.5 and AGC1.7 functions resulted in the mistargeting of RopGEFs in pollen tubes, similar to the phenotype caused by the mutation that renders RopGEFs non-phosphorylatable by AGC1.5. Collectively, our results provide mechanistic insights into the spatiotemporal activation of ROPs during the polar growth of pollen tubes.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sen Chai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei-Tong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
65
|
Li H, Zeng R, Chen Z, Liu X, Cao Z, Xie Q, Yang C, Lai J. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4459-4468. [PMID: 29931348 PMCID: PMC6093331 DOI: 10.1093/jxb/ery228] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/08/2018] [Indexed: 05/11/2023]
Abstract
Geminiviruses, such as beet severe curly top virus (BSCTV), are a group of DNA viruses that cause severe plant diseases and agricultural losses. The C4 protein is a major symptom determinant in several geminiviruses; however, its regulatory mechanism and molecular function in plant cells remain unclear. Here, we show that BSCTV C4 is S-acylated in planta, and that this post-translational lipid modification is necessary for its membrane localization and functions, especially its regulation of shoot development of host plants. Furthermore, the S-acylated form of C4 interacts with CLAVATA 1 (CLV1), an important receptor kinase in meristem maintenance, and consequentially affects the expression of WUSCHEL, a major target of CLV1. The abnormal development of siliques in Arabidopsis thaliana infected with BSCTV is also dependent on the S-acylation of C4, implying a potential role of CLAVATA signaling in this process. Collectively, our results show that S-acylation is essential for BSCTV C4 function, including the regulation of the CLAVATA pathway, during geminivirus infection.
Collapse
Affiliation(s)
- Huiyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Runxiu Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zian Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zhendan Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Correspondence:
| |
Collapse
|
66
|
Zhang WT, Li E, Guo YK, Yu SX, Wan ZY, Ma T, Li S, Hirano T, Sato MH, Zhang Y. Arabidopsis VAC14 Is Critical for Pollen Development through Mediating Vacuolar Organization. PLANT PHYSIOLOGY 2018; 177:1529-1538. [PMID: 29884680 PMCID: PMC6084655 DOI: 10.1104/pp.18.00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 05/20/2023]
Abstract
Pollen viability depends on dynamic vacuolar changes during pollen development involving increases and decreases of vacuolar volume through water and osmolite accumulation and vacuolar fission. Mutations in FAB1A to FAB1D, the genes encoding phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]-converting kinases, are male gametophyte lethal in Arabidopsis (Arabidopsis thaliana) due to defective vacuolar fission after pollen mitosis I, suggesting a key role of the phospholipid in dynamic vacuolar organization. However, other genetic components that regulate the production of PI(3,5)P2 and its involvement in pollen germination and tube growth are unknown. Here, we identified and characterized Arabidopsis VAC14, a homolog of the yeast and metazoan VAC14s that are crucial for the production of PI(3,5)P2VAC14 is constitutively expressed and highly present in developing pollen. Loss of function of VAC14 was male gametophyte lethal due to defective pollen development. Ultrastructural studies showed that vacuolar fission after pollen mitosis I was compromised in vac14 mutant microspores, which led to pollen abortion. We further showed that inhibiting the production of PI(3,5)P2 or exogenous application of PI(3,5)P2 mimicked or rescued the pollen developmental defect of the vac14 mutant, respectively. Genetic interference and pharmacological approaches suggested a role of PI(3,5)P2 in pollen germination and tube growth. Our results provide insights into the function of VAC14 and, by inference, that of PI(3,5)P2 in plant cells.
Collapse
Affiliation(s)
- Wei-Tong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan-Kui Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi-Yuan Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ting Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
67
|
Song SJ, Feng QN, Li CL, Li E, Liu Q, Kang H, Zhang W, Zhang Y, Li S. A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement. PLANT PHYSIOLOGY 2018; 177:1666-1678. [PMID: 29898977 PMCID: PMC6084651 DOI: 10.1104/pp.18.00377] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/05/2018] [Indexed: 05/22/2023]
Abstract
Stomatal movement, critical for photobiosynthesis, respiration, and stress responses, is regulated by many factors, among which abscisic acid (ABA) is critical. Early events of ABA signaling involve Ca2+ influx and an increase of cytoplasmic calcium ([Ca2+]cyt). Positive regulators of this process have been extensively studied, whereas negative regulators are obscure. ABA-induced stomatal closure involves K+ flux and vacuolar convolution. How these processes are connected with Ca2+ is not fully understood. We report that pat10-1, a null mutant of Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is hypersensitive to ABA-induced stomatal closure and vacuolar convolution. A similar phenotype was observed in cbl2;cbl3, the double mutant of CBL2 and CBL3, whose tonoplast association depends on PAT10. Functional loss of the PAT10-CBL2/CBL3 system resulted in enhanced Ca2+ influx and [Ca2+]cyt elevation. Promoting vacuolar K+ accumulation by overexpressing NHX2 suppressed ABA-hypersensitive stomatal closure and vacuolar convolution of the mutants, suggesting that PAT10-CBL2/CBL3 positively mediates vacuolar K+ accumulation. We have identified CBL-interacting protein kinases (CIPKs) that mediate CBL2/CBL3 signaling during ABA-induced stomatal movement. Functional loss of the PAT10-CBL2/3-CIPK9/17 system in guard cells enhanced drought tolerance. We propose that the tonoplast CBL-CIPK complexes form a signaling module that negatively regulates ABA signaling during stomatal movement.
Collapse
Affiliation(s)
- Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Chun-Long Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qi Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
68
|
Liang X, Feng QN, Li S, Zhang Y. Vacuolar trafficking in pollen tube growth and guidance. PLANT SIGNALING & BEHAVIOR 2018; 13:e1464854. [PMID: 29701540 PMCID: PMC6103282 DOI: 10.1080/15592324.2018.1464854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Vacuoles are versatile organelles in plant cells, critical for growth and responses to environmental cues. Vacuoles are dynamic tubular structures in pollen tubes, the male gametophytes. Mutations at vacuolar fusion machinery caused male gametophytic lethality by affecting pollen tube growth and guidance, which are critical steps leading to angiosperm reproduction. In comparison, the role of vacuolar trafficking and its cargoes in this process is less understood. In this mini-review, we summarize old and recent findings that indicate the involvement of vacuolar trafficking in pollen tube growth and guidance. We also point at future studies that would provide insights into a key role of vacuolar trafficking and its cargos in pollen tube growth and guidance.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
69
|
Dewhirst RA, Fry SC. Oxalyltransferase, a plant cell-wall acyltransferase activity, transfers oxalate groups from ascorbate metabolites to carbohydrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:743-757. [PMID: 29882267 PMCID: PMC6099474 DOI: 10.1111/tpj.13984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
In the plant apoplast, ascorbate is oxidised, via dehydroascorbic acid, to O-oxalyl esters [oxalyl-l-threonate (OxT) and cyclic oxalyl-l-threonate (cOxT)]. We tested whether OxT and cOxT can donate the oxalyl group in transacylation reactions to form oxalyl-polysaccharides, potentially modifying the cell wall. [oxalyl-14 C]OxT was incubated with living spinach (Spinacia oleracea) and Arabidopsis cell-suspension cultures in the presence or absence of proposed acceptor substrates (carbohydrates). In addition, [14 C]OxT and [14 C]cOxT were incubated in vitro with cell-wall enzyme preparations plus proposed acceptor substrates. Radioactive products were monitored electrophoretically. Oxalyltransferase activity was detected. Living cells incorporated oxalate groups from OxT into cell-wall polymers via ester bonds. When sugars were added, [14 C]oxalyl-sugars were formed, in competition with OxT hydrolysis. Preferred acceptor substrates were carbohydrates possessing primary alcohols e.g. glucose. A model transacylation product, [14 C]oxalyl-glucose, was relatively stable in vivo (half-life >24 h), whereas [14 C]OxT underwent rapid turnover (half-life ~6 h). Ionically wall-bound enzymes catalysed similar transacylation reactions in vitro with OxT or cOxT as oxalyl donor substrates and any of a range of sugars or hemicelluloses as acceptor substrates. Glucosamine was O-oxalylated, not N-oxalylated. We conclude that plants possess apoplastic acyltransferase (oxalyltransferase) activity that transfers oxalyl groups from ascorbate catabolites to carbohydrates, forming relatively long-lived O-oxalyl-carbohydrates. The findings increase the range of known metabolites whose accumulation in vivo indicates vitamin C catabolism. Possible signalling roles of the resulting oxalyl-sugars can now be investigated, as can the potential ability of polysaccharide oxalylation to modify the wall's physical properties.
Collapse
Affiliation(s)
- Rebecca A. Dewhirst
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Present address:
wildFIRE labHatherly LaboratoriesPrince of Wales RoadUniversity of ExeterExeterUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
70
|
Feng QN, Liang X, Li S, Zhang Y. The ADAPTOR PROTEIN-3 Complex Mediates Pollen Tube Growth by Coordinating Vacuolar Targeting and Organization. PLANT PHYSIOLOGY 2018; 177:216-225. [PMID: 29523712 PMCID: PMC5933126 DOI: 10.1104/pp.17.01722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/27/2018] [Indexed: 05/19/2023]
Abstract
Pollen tube growth is an essential step for successful plant reproduction. Vacuolar trafficking and dynamic organization are important for pollen tube growth; however, the key proteins involved in these processes are not well understood. Here, we report that the ADAPTOR PROTEIN-3 (AP-3) complex and its tonoplast cargo PROTEIN S-ACYL TRANSFERASE10 (PAT10) are critical for pollen tube growth in Arabidopsis (Arabidopsis thaliana). AP-3 is a heterotetrameric protein complex consisting of four subunits, δ, β, µ, and σ. AP-3 regulates tonoplast targeting of several cargoes, such as PAT10. We show that functional loss of any of the four AP-3 subunits reduces plant fertility. In ap-3 mutants, pollen development was normal but pollen tube growth was compromised, leading to reduced male transmission. Functional loss of PAT10 caused a similar reduction in pollen tube growth, suggesting that the tonoplast association of PAT10 mediated by AP-3 is crucial for this process. Indeed, the Ca2+ gradient during pollen tube growth was reduced significantly due to AP-3 loss of function, consistent with the abnormal targeting of CALCINUERIN B-LIKE2 (CBL2) and CBL3, whose tonoplast association depends on PAT10. Furthermore, we show that the pollen tubes of ap-3 mutants have vacuoles with simplified tubules and bulbous structures, indicating that AP-3 affects vacuolar organization. Our results demonstrate a role for AP-3 in plant reproduction and provide insights into the role of vacuoles in polarized cell growth.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
71
|
Turnbull D, Hemsley PA. Fats and function: protein lipid modifications in plant cell signalling. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:63-70. [PMID: 28772175 DOI: 10.1016/j.pbi.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 05/12/2023]
Abstract
The post-translational lipid modifications N-myristoylation, prenylation and S-acylation are traditionally associated with increasing protein membrane affinity and localisation. However this is an over-simplification, with evidence now implicating these modifications in a variety of roles such as membrane microdomain partitioning, protein trafficking, protein complex assembly and polarity maintenance. Evidence for a regulatory role is also emerging, with changes or manipulation of lipid modifications offering a means of directly controlling various aspects of protein function. Proteomics advances have revealed an enrichment of signalling proteins in the lipid-modified proteome, potentially indicating an important role for these modifications in responding to stimuli. This review highlights some of the key themes and possible functions of lipid modification during signalling processes in plants.
Collapse
Affiliation(s)
- Dionne Turnbull
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.
| |
Collapse
|
72
|
N-terminal S-acylation facilitates tonoplast targeting of the calcium sensor CBL6. FEBS Lett 2017; 591:3745-3756. [DOI: 10.1002/1873-3468.12880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
73
|
Identifying Novel Regulators of Vacuolar Trafficking by Combining Fluorescence Imaging-Based Forward Genetic Screening and In Vitro Pollen Germination. Methods Mol Biol 2017. [PMID: 28861829 DOI: 10.1007/978-1-4939-7262-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Subcellular targeting of vacuolar proteins depends on cellular machinery regulating vesicular trafficking. Plant-specific vacuolar trafficking routes have been reported. However, regulators mediating these processes are obscure. By combining a fluorescence imaging-based forward genetic approach and in vitro pollen germination system, we show an efficient protocol of identifying regulators of plant-specific vacuolar trafficking routes.
Collapse
|
74
|
Feng QN, Li S, Zhang Y. Update on adaptor protein-3 in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356969. [PMID: 28786748 PMCID: PMC5616146 DOI: 10.1080/15592324.2017.1356969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Adaptor proteins (APs) mediate protein sorting within endomembrane compartments in eukaryotic cells. AP-3 is an ancient AP complex mediating vacuolar trafficking in different phyla. Only recently, a few tonoplast proteins have been identified as AP-3 cargos in Arabidopsis whereas the function of AP-3 was largely unexplored. Here, we summarize recent advances on AP-3 in Arabidopsis, pointing at the potential roles of AP-3 in plant development and cellular processes.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
75
|
Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. A Lipid-Anchored NAC Transcription Factor Is Translocated into the Nucleus and Activates Glyoxalase I Expression during Drought Stress. THE PLANT CELL 2017; 29:1748-1772. [PMID: 28684428 PMCID: PMC5559744 DOI: 10.1105/tpc.17.00044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/09/2017] [Accepted: 07/04/2017] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in Medicago falcata MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through S-palmitoylation. However, a Cys26-to-Ser mutation or inhibition of S-palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de-S-palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I (MtGlyl) promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an S-palmitoylated NAC in response to stress.
Collapse
Affiliation(s)
- Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Crop Research Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lanming Gou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, Oklahoma 73401
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
76
|
Feng QN, Song SJ, Yu SX, Wang JG, Li S, Zhang Y. Adaptor Protein-3-Dependent Vacuolar Trafficking Involves a Subpopulation of COPII and HOPS Tethering Proteins. PLANT PHYSIOLOGY 2017; 174:1609-1620. [PMID: 28559361 PMCID: PMC5490925 DOI: 10.1104/pp.17.00584] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/25/2017] [Indexed: 05/20/2023]
Abstract
Plant vacuoles are versatile organelles critical for plant growth and responses to environment. Vacuolar proteins are transported from the endoplasmic reticulum via multiple routes in plants. Two classic routes bear great similarity to other phyla with major regulators known, such as COPII and Rab5 GTPases. By contrast, vacuolar trafficking mediated by adaptor protein-3 (AP-3) or that independent of the Golgi has few recognized cargos and none of the regulators. In search of novel regulators for vacuolar trafficking routes and by using a fluorescence-based forward genetic screen, we demonstrated that the multispan transmembrane protein, Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is an AP-3-mediated vacuolar cargo. We show that the tonoplast targeting of PAT10 is mediated by the AP-3 complex but independent of the Rab5-mediated post-Golgi trafficking route. We also report that AP-3-mediated vacuolar trafficking involves a subpopulation of COPII and requires the vacuolar tethering complex HOPS. In addition, we have identified two novel mutant alleles of AP-3δ, whose point mutations interfered with the formation of the AP-3 complex as well as its membrane targeting. The results presented here shed new light on the vacuolar trafficking route mediated by AP-3 in plant cells.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
77
|
AP1G mediates vacuolar acidification during synergid-controlled pollen tube reception. Proc Natl Acad Sci U S A 2017; 114:E4877-E4883. [PMID: 28559348 DOI: 10.1073/pnas.1617967114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Double fertilization in angiosperms requires the delivery of immotile sperm through pollen tubes, which enter embryo sacs to initiate synergid degeneration and to discharge. This fascinating process, called pollen tube reception, involves extensive communications between pollen tubes and synergids, within which few intracellular regulators involved have been revealed. Here, we report that vacuolar acidification in synergids mediated by AP1G and V-ATPases might be critical for pollen tube reception. Functional loss of AP1G or VHA-A, encoding the γ subunit of adaptor protein 1 or the shared component of two endomembrane V-ATPases, respectively, impaired synergid-controlled pollen tube reception and caused partial female sterility. AP1G works in parallel to the plasma membrane-associated receptor FERONIA in synergids, suggesting that synergid-mediated pollen tube reception requires proper sorting of vacuolar cargos by AP1G. Although AP1G did not mediate the targeting of V-ATPases, AP1G loss of function or the expression of AP1G-RNAi compromised vacuolar acidification mediated by V-ATPases, implying their genetic interaction. We propose that vacuolar acidification might represent a distinct cell-death mechanism specifically adopted by the plant phylum, which is critical for synergid degeneration during pollen tube reception.
Collapse
|
78
|
Yu SX, Feng QN, Xie HT, Li S, Zhang Y. Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato. BMC PLANT BIOLOGY 2017; 17:76. [PMID: 28427341 PMCID: PMC5399379 DOI: 10.1186/s12870-017-1025-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/06/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Hybrid vigor is highly valued in the agricultural industry. Male sterility is an important trait for crop breeding. Pollen development is under strict control of both gametophytic and sporophytic factors, and defects in this process can result in male sterility. Both in the dicot Arabidopsis and in the moncot rice, proper timing of programmed cell death (PCD) in the tapetum ensures pollen development. Dynamic ROS levels have been reported to control tapetal PCD, and thus pollen development, in Arabidopsis and rice. However, it was unclear whether it is evolutionarily conserved, as only those two distantly related species were studied. RESULTS Here, we performed histological analyses of anther development of two economically important dicot species, tobacco and tomato. We identified the same ROS amplitude during anther development in these two species and found that dynamic ROS levels correlate with the initiation and progression of tapetal PCD. We further showed that manipulating ROS levels during anther development severely impaired pollen development, resulting in partial male sterility. Finally, real-time quantitative PCR showed that several tobacco and tomato RBOHs, encoding NADPH oxidases, are preferentially expressed in anthers. CONCLUSION This study demonstrated evolutionarily conserved ROS amplitude during anther development by examining two commercially important crop species in the Solanaceae. Manipulating ROS amplitude through genetic interference of RBOHs therefore may provide a practical way to generate male sterile plants.
Collapse
Affiliation(s)
- Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong-Tao Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
79
|
Wan ZY, Zhang Y, Li S. Protein S-acyl transferase 4 controls nucleus position during root hair tip growth. PLANT SIGNALING & BEHAVIOR 2017; 12:e1311438. [PMID: 28368733 PMCID: PMC5437833 DOI: 10.1080/15592324.2017.1311438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 05/29/2023]
Abstract
Protein S-acyl transferases (PATs) play critical roles in plant developmental and environmental responses by catalyzing S-acylation of substrate proteins, most of which are involved in cellular signaling. However, only few plant PATs have been functionally characterized. We recently demonstrated that Arabidopsis PAT4 mediates root hair elongation by positively regulating the membrane association of ROP2 and actin microfilament organization. Here, we show that apex-associated re-positioning of nucleus during root hair elongation was impaired by PAT4 loss-of-function. Results presented here pose a significant question concerning the molecular machinery mediating nuclear migration during root hair growth.
Collapse
Affiliation(s)
- Zhi-Yuan Wan
- Stage Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yan Zhang
- Stage Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Sha Li
- Stage Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
80
|
Wan ZY, Chai S, Ge FR, Feng QN, Zhang Y, Li S. Arabidopsis PROTEIN S-ACYL TRANSFERASE4 mediates root hair growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:249-260. [PMID: 28107768 DOI: 10.1111/tpj.13484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/10/2017] [Indexed: 05/18/2023]
Abstract
Polar growth of root hairs is critical for plant survival and requires fine-tuned Rho of plants (ROP) signaling. Multiple ROP regulators participate in root hair growth. However, protein S-acyl transferases (PATs), mediating the S-acylation and membrane partitioning of ROPs, are yet to be found. Using a reverse genetic approach, combining fluorescence probes, pharmacological drugs, site-directed mutagenesis and genetic analysis with related root-hair mutants, we have identified and characterized an Arabidopsis PAT, which may be responsible for ROP2 S-acylation in root hairs. Specifically, functional loss of PAT4 resulted in reduced root hair elongation, which was rescued by a wild-type but not an enzyme-inactive PAT4. Membrane-associated ROP2 was significantly reduced in pat4, similar to S-acylation-deficient ROP2 in the wild type. We further showed that PAT4 and SCN1, a ROP regulator, additively mediate the stability and targeting of ROP2. The results presented here indicate that PAT4-mediated S-acylation mediates the membrane association of ROP2 at the root hair apex and provide novel insights into dynamic ROP signaling during plant tip growth.
Collapse
Affiliation(s)
- Zhi-Yuan Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Sen Chai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| |
Collapse
|
81
|
Li Y, Qi B. Progress toward Understanding Protein S-acylation: Prospective in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:346. [PMID: 28392791 PMCID: PMC5364179 DOI: 10.3389/fpls.2017.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2017] [Indexed: 05/02/2023]
Abstract
S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.
Collapse
|
82
|
Cho E, Park M. Palmitoylation in Alzheimers disease and other neurodegenerative diseases. Pharmacol Res 2016; 111:133-151. [DOI: 10.1016/j.phrs.2016.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
|
83
|
Wang JG, Feng C, Liu HH, Ge FR, Li S, Li HJ, Zhang Y. HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis. PLoS Genet 2016; 12:e1006269. [PMID: 27541731 PMCID: PMC4991792 DOI: 10.1371/journal.pgen.1006269] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/30/2016] [Indexed: 11/18/2022] Open
Abstract
Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it's achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the μ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis.
Collapse
Affiliation(s)
- Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chong Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hai-Hong Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail:
| |
Collapse
|
84
|
Genomics and expression analysis of DHHC-cysteine-rich domain S-acyl transferase protein family in apple. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
85
|
Chai S, Ge FR, Feng QN, Li S, Zhang Y. PLURIPETALA mediates ROP2 localization and stability in parallel to SCN1 but synergistically with TIP1 in root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:413-25. [PMID: 27037800 DOI: 10.1111/tpj.13179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 05/10/2023]
Abstract
Prenylation, the post-translational attachment of prenyl groups to substrate proteins, can affect their distribution and interactomes. Arabidopsis PLURIPETALA (PLP) encodes the shared α subunit of two heterodimeric protein isoprenyltransferases, whose functional loss provides a unique opportunity to study developmental and cellular processes mediated by its prenylated substrates, such as ROP GTPases. As molecular switches, the distribution and activation of ROPs are mediated by various factors, including guanine nucleotide exchange factors, GTPase activating proteins, guanine nucleotide dissociation inhibitors (RhoGDIs), prenylation, and S-acylation. However, how these factors together ensure that dynamic ROP signalling is still obscure. We report here that a loss-of-function allele of PLP resulted in cytoplasmic accumulation of ROP2 in root hairs and reduced its stability. Consequently, two downstream events of ROP signalling, i.e. actin microfilament (MF) organization and the production of reactive oxygen species (ROS), were compromised. Genetic, cytological and biochemical evidence supports an additive interaction between prenylation and RhoGDI1/SCN1 in ROP2 distribution and stability whereas PLP acts synergistically with the protein S-acyl transferase TIP GROWTH DEFECTIVE1 during root hair growth. By using root hair growth as a model system, we uncovered complex interactions among prenylation, RhoGDIs, and S-acylation in dynamic ROP signalling.
Collapse
Affiliation(s)
- Sen Chai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
86
|
Bhardwaj J, Gangwar I, Panzade G, Shankar R, Yadav SK. Global De Novo Protein-Protein Interactome Elucidates Interactions of Drought-Responsive Proteins in Horse Gram (Macrotyloma uniflorum). J Proteome Res 2016; 15:1794-809. [PMID: 27161830 DOI: 10.1021/acs.jproteome.5b01114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inspired by the availability of de novo transcriptome of horse gram (Macrotyloma uniflorum) and recent developments in systems biology studies, the first ever global protein-protein interactome (PPI) map was constructed for this highly drought-tolerant legume. Large-scale studies of PPIs and the constructed database would provide rationale behind the interplay at cascading translational levels for drought stress-adaptive mechanisms in horse gram. Using a bidirectional approach (interolog and domain-based), a high-confidence interactome map and database for horse gram was constructed. Available transcriptomic information for shoot and root tissues of a sensitive (M-191; genotype 1) and a drought-tolerant (M-249; genotype 2) genotype of horse gram was utilized to draw comparative PPI subnetworks under drought stress. High-confidence 6804 interactions were predicted among 1812 proteins covering about one-fourth of the horse gram proteome. The highest number of interactions (33.86%) in horse gram interactome matched with Arabidopsis PPI data. The top five hub nodes mostly included ubiquitin and heat-shock-related proteins. Higher numbers of PPIs were found to be responsive in shoot tissue (416) and root tissue (2228) of genotype 2 compared with shoot tissue (136) and root tissue (579) of genotype 1. Characterization of PPIs using gene ontology analysis revealed that kinase and transferase activities involved in signal transduction, cellular processes, nucleocytoplasmic transport, protein ubiquitination, and localization of molecules were most responsive to drought stress. Hence, these could be framed in stress adaptive mechanisms of horse gram. Being the first legume global PPI map, it would provide new insights into gene and protein regulatory networks for drought stress tolerance mechanisms in horse gram. Information compiled in the form of database (MauPIR) will provide the much needed high-confidence systems biology information for horse gram genes, proteins, and involved processes. This information would ease the effort and increase the efficacy for similar studies on other legumes. Public access is available at http://14.139.59.221/MauPIR/ .
Collapse
Affiliation(s)
| | | | | | | | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB) , Mohali 160071, Punjab, India
| |
Collapse
|
87
|
Zhao XY, Wang JG, Song SJ, Wang Q, Kang H, Zhang Y, Li S. Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling. Sci Rep 2016; 6:20309. [PMID: 26842807 PMCID: PMC4740857 DOI: 10.1038/srep20309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022] Open
Abstract
We report here that Arabidopsis PROTEIN S-ACYL TRANSFERASE14 (PAT14), through its palmitate transferase activity, acts at the vacuolar trafficking route to repress salicylic acid (SA) signaling, thus mediating age-dependent but not carbon starvation-induced leaf senescence. Functional loss of PAT14 resulted in precocious leaf senescence and its transcriptomic analysis revealed that senescence was dependent on salicylic acid. Overexpressing PAT14 suppressed the expression of SA responsive genes. Introducing the SA deficient mutants, npr1-5 and NahG, but not other hormonal mutants, completely suppressed the precocious leaf senescence of PAT14 loss-of-function, further supporting the epistatic relation between PAT14 and the SA pathway. By confocal fluorescence microscopy, we showed that PAT14 is localized at the Golgi, the trans-Golg network/early endosome, and prevacuolar compartments, indicating its roles through vacuolar trafficking. By reporter analysis and real time PCRs, we showed that the expression PAT14, unlike most of the senescence associated genes, is not developmentally regulated, suggesting post-transcriptional regulatory mechanisms on its functionality. We further showed that the maize and wheat homologs of PAT14 fully rescued the precocious leaf senescence of pat14-2, demonstrating that the role of PAT14 in suppressing SA signaling during age-dependent leaf senescence is evolutionarily conserved between dicots and monocots.
Collapse
Affiliation(s)
- Xin-Ying Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
88
|
Feng QN, Kang H, Song SJ, Ge FR, Zhang YL, Li E, Li S, Zhang Y. Arabidopsis RhoGDIs Are Critical for Cellular Homeostasis of Pollen Tubes. PLANT PHYSIOLOGY 2016; 170:841-56. [PMID: 26662604 PMCID: PMC4734571 DOI: 10.1104/pp.15.01600] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 05/19/2023]
Abstract
Rhos of plants (ROPs) play a key role in plant cell morphogenesis, especially in tip-growing pollen tubes and root hairs, by regulating an array of intracellular activities such as dynamic polymerization of actin microfilaments. ROPs are regulated by guanine nucleotide exchange factors (RopGEFs), GTPase activating proteins (RopGAPs), and guanine nucleotide dissociation inhibitors (RhoGDIs). RopGEFs and RopGAPs play evolutionarily conserved function in ROP signaling. By contrast, although plant RhoGDIs regulate the membrane extraction and cytoplasmic sequestration of ROPs, less clear are their positive roles in ROP signaling as do their yeast and metazoan counterparts. We report here that functional loss of all three Arabidopsis (Arabidopsis thaliana) GDIs (tri-gdi) significantly reduced male transmission due to impaired pollen tube growth in vitro and in vivo. We demonstrate that ROPs were ectopically activated at the lateral plasma membrane of the tri-gdi pollen tubes. However, total ROPs were reduced posttranslationally in the tri-gdi mutant, resulting in overall dampened ROP signaling. Indeed, a ROP5 mutant that was unable to interact with GDIs failed to induce growth, indicating the importance of the ROP-GDI interaction for ROP signaling. Functional loss of GDIs impaired cellular homeostasis, resulting in excess apical accumulation of wall components in pollen tubes, similar to that resulting from ectopic phosphatidylinositol 4,5-bisphosphate signaling. GDIs and phosphatidylinositol 4,5-bisphosphate may antagonistically coordinate to maintain cellular homeostasis during pollen tube growth. Our results thus demonstrate a more complex role of GDIs in ROP-mediated pollen tube growth.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
89
|
Li Y, Scott R, Doughty J, Grant M, Qi B. Protein S-Acyltransferase 14: A Specific Role for Palmitoylation in Leaf Senescence in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:415-28. [PMID: 26537563 PMCID: PMC4704564 DOI: 10.1104/pp.15.00448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/03/2015] [Indexed: 05/18/2023]
Abstract
The Asp-His-His-Cys-Cys-rich domain-containing Protein S-Acyl Transferases (PATs) are multipass transmembrane proteins that catalyze S-acylation (commonly known as S-palmitoylation), the reversible posttranslational lipid modification of proteins. Palmitoylation enhances the hydrophobicity of proteins, contributes to their membrane association, and plays roles in protein trafficking and signaling. In Arabidopsis (Arabidopsis thaliana), there are at least 24 PATs; previous studies on two PATs established important roles in growth, development, and stress responses. In this study, we identified a, to our knowledge, novel PAT, AtPAT14, in Arabidopsis. Complementation studies in yeast (Saccharomyces cerevisiae) and Arabidopsis demonstrate that AtPAT14 possesses PAT enzyme activity. Disruption of AtPAT14 by T-DNA insertion resulted in an accelerated senescence phenotype. This coincided with increased transcript levels of some senescence-specific and pathogen-resistant marker genes. We show that early senescence of pat14 does not involve the signaling molecules jasmonic acid and abscisic acid, or autophagy, but associates with salicylic acid homeostasis and signaling. This strongly suggests that AtPAT14 plays a pivotal role in regulating senescence via salicylic acid pathways. Senescence is a complex process required for normal plant growth and development and requires the coordination of many genes and signaling pathways. However, precocious senescence results in loss of biomass and seed production. The negative regulation of leaf senescence by AtPAT14 in Arabidopsis highlights, to our knowledge for the first time, a specific role for palmitoylation in leaf senescence.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom (Y.L., R.S., J.D., B.Q.); andCollege of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom (M.G.)
| | - Rod Scott
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom (Y.L., R.S., J.D., B.Q.); andCollege of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom (M.G.)
| | - James Doughty
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom (Y.L., R.S., J.D., B.Q.); andCollege of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom (M.G.)
| | - Murray Grant
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom (Y.L., R.S., J.D., B.Q.); andCollege of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom (M.G.)
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom (Y.L., R.S., J.D., B.Q.); andCollege of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom (M.G.)
| |
Collapse
|
90
|
Srivastava V, Weber JR, Malm E, Fouke BW, Bulone V. Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes. FRONTIERS IN PLANT SCIENCE 2016; 7:477. [PMID: 27148305 PMCID: PMC4828459 DOI: 10.3389/fpls.2016.00477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
- *Correspondence: Vincent Bulone, ; Vaibhav Srivastava,
| | - Joseph R. Weber
- Roy J. Carver Biotechnology Centre, Institute for Genomic Biology, University of Illinois Urbana–ChampaignUrbana, IL, USA
| | - Erik Malm
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
| | - Bruce W. Fouke
- Roy J. Carver Biotechnology Centre, Institute for Genomic Biology, University of Illinois Urbana–ChampaignUrbana, IL, USA
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite CampusUrrbrae, SA, Australia
- *Correspondence: Vincent Bulone, ; Vaibhav Srivastava,
| |
Collapse
|
91
|
Lai J, Yu B, Cao Z, Chen Y, Wu Q, Huang J, Yang C. Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6345-53. [PMID: 26160582 DOI: 10.1093/jxb/erv347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lipid modification on the cysteine residues of proteins, known as S-palmitoylation or S-acylation, regulates the subcellular localization and the function of proteins. S-acylation is catalysed by a group of protein acyltransferases (PATs) with a conserved Asp-His-His-Cys (DHHC) motif. The molecular function of S-acylation has been studied in details in yeast and mammalian cells, but its role in plant cells remains unclear. Here it is reported that the expression of two homologous protein acyltransferases- PAT13 and PAT14 -was moderately increased in the older leaves of Arabidopsis. The double mutant of PAT13 and PAT14 displayed a severely early leaf senescence phenotype. The phenotype was complemented by PAT13 or PAT14 overexpression in the double mutant, confirming the roles of PAT13 and PAT14 in this process. Furthermore, the levels of reactive oxygen species (ROS) and cell death were dramatically induced in the double mutant. To investigate the molecular functions of PAT13 and PAT14, their potential S-acylation substrates were predicted by bioinformatics methods. The subcellular localization and S-acylation of a candidate substrate NITRIC OXIDE ASSOCIATED 1 (NOA1), which also plays a role in leaf senescence control, were partially disrupted in the protoplasts of the double mutant. Impairment of S-acylation on NOA1 affected its subcellular localization and its function in leaf senescence regulation. Conclusively, protein S-acyltransferases PAT13 and PAT14 are involved in leaf senescence control- possibly via NOA1 S-acylation-, providing a new sight into the regulation mechanism of S-acylation in leaf senescence.
Collapse
Affiliation(s)
- Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Boya Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendan Cao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanming Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jingyi Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
92
|
Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal SK, Kim BG, Lee SC, Cheong YH, Kudla J, Luan S. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:780-92. [PMID: 26198257 PMCID: PMC4577403 DOI: 10.1104/pp.15.00623] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/18/2015] [Indexed: 05/20/2023]
Abstract
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.
Collapse
Affiliation(s)
- Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Leonie Steinhorst
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Akhlilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Beom-Gi Kim
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Sung-Chul Lee
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Yong-Hwa Cheong
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Jörg Kudla
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Sheng Luan
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| |
Collapse
|
93
|
Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma L, Zhu Z. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis. MOLECULAR PLANT 2015; 8:1038-52. [PMID: 25617718 DOI: 10.1016/j.molp.2015.01.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the transcriptional level; however, little is known about this process at the posttranscriptional level. Recently, we demonstrated that SKIP is a component of spliceosome that interacts with clock gene pre-mRNAs and is essential for regulating their alternative splicing and mRNA maturation. In this study, we found that skip-1 plants are hypersensitive to both salt and osmotic stresses, and that SKIP is required for the alternative splicing and mRNA maturation of several salt-tolerance genes, including NHX1, CBL1, P5CS1, RCI2A, and PAT10. A genome-wide analysis revealed that SKIP mediates the alternative splicing of many genes under salt-stress conditions, and that most of the alternative splicing events in skip-1 involve intron retention and can generate a premature termination codon in the transcribed mRNA. SKIP also controls alternative splicing by modulating the recognition or cleavage of 5' and 3' splice donor and acceptor sites under salt-stress conditions. Therefore, this study addresses the fundamental question of how the mRNA splicing machinery in plants contributes to salt-stress responses at the posttranscriptional level, and provides a link between alternative splicing and salt tolerance.
Collapse
Affiliation(s)
- Jinlin Feng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jingjing Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Zhaoxu Gao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China; College of Life Sciences, Peking University, Beijing 100871, China
| | - Yaru Lu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Junya Yu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qian Zheng
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Shuning Yan
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Wenjiao Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Zhengge Zhu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
94
|
Meng LS, Wang YB, Yao SQ, Liu A. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8. J Cell Sci 2015; 128:2919-27. [PMID: 26054800 DOI: 10.1242/jcs.172072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 01/29/2023] Open
Abstract
The Arabidopsis AINTEGUMENTA (ANT) gene, which encodes an APETALA2 (AP2)-like transcription factor, controls plant organ cell number and organ size throughout shoot development. ANT is thus a key factor in the development of plant shoots. Here, we have found that ANT plays an essential role in conferring salt tolerance in Arabidopsis. ant-knockout mutants presented a salt-tolerant phenotype, whereas transgenic plants expressing ANT under the 35S promoter (35S:ANT) exhibited more sensitive phenotypes under high salt stress. Further analysis indicated that ANT functions mainly in the shoot response to salt toxicity. Target gene analysis revealed that ANT bound to the promoter of SOS3-LIKE CALCIUM BINDING PROTEIN 8 (SCABP8), which encodes a putative Ca(2+) sensor, thereby inhibiting expression of SCABP8 (also known as CBL10). It has been reported that the salt sensitivity of scabp8 is more prominent in shoot tissues. Genetic experiments indicated that the mutation of SCABP8 suppresses the ant-knockout salt-tolerant phenotype, implying that ANT functions as a negative transcriptional regulator of SCABP8 upon salt stress. Taken together, the above results reveal that ANT is a novel regulator of salt stress and that ANT binds to the SCABP8 promoter, mediating salt tolerance.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- School of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, People's Republic of China Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China Division of Molecular Life Sciences, Pohang University of Science and Technology, Hyoja-dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Yi-Bo Wang
- School of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, People's Republic of China
| | - Shun-Qiao Yao
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| |
Collapse
|
95
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
96
|
Konrad SSA, Ott T. Molecular principles of membrane microdomain targeting in plants. TRENDS IN PLANT SCIENCE 2015; 20:351-61. [PMID: 25936559 DOI: 10.1016/j.tplants.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 05/19/2023]
Abstract
Plasma membranes (PMs) are heterogeneous lipid bilayers comprising diverse subdomains. These sites can be labeled by various proteins in vivo and may serve as hotspots for signal transduction. They are found at apical, basal, and lateral membranes of polarized cells, at cell equatorial planes, or almost isotropically distributed throughout the PM. Recent advances in imaging technologies and understanding of mechanisms that allow proteins to target specific sites in PMs have provided insights into the dynamics and complexity of their specific segregation. Here we present a comprehensive overview of the different types of membrane microdomain and describe the molecular modes that determine site-directed targeting of membrane-resident proteins at the PM.
Collapse
Affiliation(s)
- Sebastian S A Konrad
- Ludwig-Maximilians-Universität München, Genetics, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thomas Ott
- Ludwig-Maximilians-Universität München, Genetics, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
97
|
Hurst CH, Hemsley PA. Current perspective on protein S-acylation in plants: more than just a fatty anchor? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1599-606. [PMID: 25725093 DOI: 10.1093/jxb/erv053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Membranes are an important signalling platform in plants. The plasma membrane is the point where information about the external environment must be converted into intracellular signals, while endomembranes are important sites of protein trafficking, organization, compartmentalization, and intracellular signalling. This requires co-ordinating the spatial distribution of proteins, their activation state, and their interacting partners. This regulation frequently occurs through post-translational modification of proteins. Proteins that associate with the cell membrane do so through transmembrane domains, protein-protein interactions, lipid binding motifs/domains or use the post-translational addition of lipid groups as prosthetic membrane anchors. S-acylation is one such lipid modification capable of anchoring proteins to the membrane. Our current knowledge of S-acylation function in plants is fairly limited compared with other post-translational modifications and S-acylation in other organisms. However, it is becoming increasingly clear that S-acylation can act as more than just a simple membrane anchor: it can also act as a regulatory mechanism in signalling pathways in plants. S-acylation is, therefore, an ideal mechanism for regulating protein function at membranes. This review discusses our current knowledge of S-acylated proteins in plants, the interaction of different lipid modifications, and the general effects of S-acylation on cellular function.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| | - Piers A Hemsley
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| |
Collapse
|
98
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
99
|
Zhang YL, Li E, Feng QN, Zhao XY, Ge FR, Zhang Y, Li S. Protein palmitoylation is critical for the polar growth of root hairs in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:50. [PMID: 25849075 PMCID: PMC4340681 DOI: 10.1186/s12870-015-0441-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Protein palmitoylation, which is critical for membrane association and subcellular targeting of many signaling proteins, is catalyzed mainly by protein S-acyl transferases (PATs). Only a few plant proteins have been experimentally verified to be subject to palmitoylation, such as ROP GTPases, calcineurin B like proteins (CBLs), and subunits of heterotrimeric G proteins. However, emerging evidence from palmitoyl proteomics hinted that protein palmitoylation as a post-translational modification might be widespread. Nonetheless, due to the large number of genes encoding PATs and the lack of consensus motifs for palmitoylation, progress on the roles of protein palmitoylation in plants has been slow. RESULTS We combined pharmacological and genetic approaches to examine the role of protein palmitoylation in root hair growth. Multiple PATs from different endomembrane compartments may participate in root hair growth, among which the Golgi-localized PAT24/TIP GROWTH DEFECTIVE1 (TIP1) plays a major role while the tonoplast-localized PAT10 plays a secondary role in root hair growth. A specific inhibitor for protein palmitoylation, 2-bromopalmitate (2-BP), compromised root hair elongation and polarity. Using various probes specific for cellular processes, we demonstrated that 2-BP impaired the dynamic polymerization of actin microfilaments (MF), the asymmetric plasma membrane (PM) localization of phosphatidylinositol (4,5)-bisphosphate (PIP2), the dynamic distribution of RabA4b-positive post-Golgi secretion, and endocytic trafficking in root hairs. CONCLUSIONS By combining pharmacological and genetic approaches and using root hairs as a model, we show that protein palmitoylation, regulated by protein S-acyl transferases at different endomembrane compartments such as the Golgi and the vacuole, is critical for the polar growth of root hairs in Arabidopsis. Inhibition of protein palmitoylation by 2-BP disturbed key intracellular activities in root hairs. Although some of these effects are likely indirect, the cytological data reported here will contribute to a deep understanding of protein palmitoylation during tip growth in plants.
Collapse
Affiliation(s)
- Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xin-Ying Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
100
|
Hemsley PA. The importance of lipid modified proteins in plants. THE NEW PHYTOLOGIST 2015; 205:476-89. [PMID: 25283240 DOI: 10.1111/nph.13085] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
Membranes have long been known to act as more than physical barriers within and between plant cells. Trafficking of membrane proteins, signalling from and across membranes, organisation of membranes and transport through membranes are all essential processes for plant cellular function. These processes rely on a myriad array of proteins regulated in a variety of manners and are frequently required to be directly associated with membranes. For integral membrane proteins, the mode of membrane association is readily apparent, but many peripherally associated membrane proteins are outwardly soluble proteins. In these cases the proteins are frequently modified by the addition of lipids allowing direct interaction with the hydrophobic core of membranes. These modifications include N-myristoylation, S-acylation (palmitoylation), prenylation and GPI anchors but until recently little was truly known about their function in plants. New data suggest that these modifications are able to act as more than just membrane anchors, and dynamic S-acylation in particular is emerging as a means of regulating protein function in a similar manner to phosphorylation. This review discusses how these modifications occur, their impact on protein function, how they are regulated, recent advances in the field and technical approaches for studying these modifications.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, University of Dundee, Dundee, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
| |
Collapse
|