51
|
Tomczynska I, Stumpe M, Doan TG, Mauch F. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. THE NEW PHYTOLOGIST 2020; 227:1467-1478. [PMID: 32396661 DOI: 10.1111/nph.16653] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the β-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Tu Giang Doan
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
52
|
Purayannur S, Cano LM, Bowman MJ, Childs KL, Gent DH, Quesada-Ocampo LM. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Front Genet 2020; 11:910. [PMID: 32849854 PMCID: PMC7432248 DOI: 10.3389/fgene.2020.00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew (DM), one of the most destructive diseases of cultivated hop that can lead to 100% crop loss in susceptible cultivars. We used the published genome of P. humuli to predict the secretome and effectorome and analyze the transcriptome variation among diverse isolates and during infection of hop leaves. Mining the predicted coding genes of the sequenced isolate OR502AA of P. humuli revealed a secretome of 1,250 genes. We identified 296 RXLR and RXLR-like effector-encoding genes in the secretome. Among the predicted RXLRs, there were several WY-motif-containing effectors that lacked canonical RXLR domains. Transcriptome analysis of sporangia from 12 different isolates collected from various hop cultivars revealed 754 secreted proteins and 201 RXLR effectors that showed transcript evidence across all isolates with reads per kilobase million (RPKM) values > 0. RNA-seq analysis of OR502AA-infected hop leaf samples at different time points after infection revealed highly expressed effectors that may play a relevant role in pathogenicity. Quantitative RT-PCR analysis confirmed the differential expression of selected effectors. We identified a set of P. humuli core effectors that showed transcript evidence in all tested isolates and elevated expression during infection. These effectors are ideal candidates for functional analysis and effector-assisted breeding to develop DM resistant hop cultivars.
Collapse
Affiliation(s)
- Savithri Purayannur
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Liliana M. Cano
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Ball Horticultural Company, West Chicago, IL, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - David H. Gent
- United States Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, OR, United States
| | - Lina M. Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
53
|
McLellan H, Chen K, He Q, Wu X, Boevink PC, Tian Z, Birch PR. The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. PLANT COMMUNICATIONS 2020; 1:100020. [PMID: 32715295 PMCID: PMC7371183 DOI: 10.1016/j.xplc.2020.100020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 01/02/2020] [Indexed: 05/12/2023]
Abstract
Ubiquitination is a post-translational modification that regulates many processes in plants. Several ubiquitin E3 ligases act as either positive or negative regulators of immunity by promoting the degradation of different substrates. StPUB17 is an E3 ligase that has previously been shown to positively regulate immunity to bacteria, fungi and oomycetes, including the late blight pathogen Phytophthora infestans. Silencing of StPUB17 promotes pathogen colonization and attenuates Cf4/avr4 cell death. Using yeast-2-hybrid and co-immunoprecipitation we identified the putative K-homology (KH) RNA-binding protein (RBP), StKH17, as a candidate substrate for degradation by StPUB17. StKH17 acts as a negative regulator of immunity that promotes P. infestans infection and suppresses specific immune pathways. A KH RBP domain mutant of StKH17 (StKH17GDDG) is no longer able to negatively regulate immunity, indicating that RNA binding is likely required for StKH17 function. As StPUB17 is a known target of the ubiquitin E3 ligase, StPOB1, we reveal an additional step in an E3 ligase regulatory cascade that controls plant defense.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Kai Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin He
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Petra C. Boevink
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Paul R.J. Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
54
|
He Q, McLellan H, Boevink PC, Birch PR. All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. PLANT COMMUNICATIONS 2020; 1:100050. [PMID: 33367246 PMCID: PMC7748000 DOI: 10.1016/j.xplc.2020.100050] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/06/2023]
Abstract
The ability to secrete effector proteins that can enter plant cells and manipulate host processes is a key determinant of what makes a successful plant pathogen. Here, we review intracellular effectors from filamentous (fungal and oomycete) phytopathogens and the host proteins and processes that are targeted to promote disease. We cover contrasting virulence strategies and effector modes of action. Filamentous pathogen effectors alter the fates of host proteins that they target, changing their stability, their activity, their location, and the protein partners with which they interact. Some effectors inhibit target activity, whereas others enhance or utilize it, and some target multiple host proteins. We discuss the emerging topic of effectors that target negative regulators of immunity or other plant proteins with activities that support susceptibility. We also highlight the commonly targeted host proteins that are manipulated by effectors from multiple pathogens, including those representing different kingdoms of life.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R.J. Birch
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Corresponding author
| |
Collapse
|
55
|
Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms 2020; 8:microorganisms8060917. [PMID: 32560346 PMCID: PMC7355776 DOI: 10.3390/microorganisms8060917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.
Collapse
|
56
|
Noman A, Aqeel M, Irshad MK, Qari SH, Hashem M, Alamri S, AbdulMajeed AM, Al-Sadi AM. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth. Crit Rev Biotechnol 2020; 40:821-832. [PMID: 32546015 DOI: 10.1080/07388551.2020.1779174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To fight against pathogens, defense systems in plants mainly depend upon preformed as well as induced responses. Pathogen detection activates induced responses and signals are transmitted for coordinated cellular events in order to restrict infection and spread. In spite of significant developments in manipulating genes, transcription factors and proteins for their involvement in immunity, absolute tolerance/resistance to pathogens has not been seen in plants/crops. Defense responses, among diverse plant types, to different pathogens involve modifications at the physio-biochemical and molecular levels. Secreted by oomycetes, elicitins are small, highly conserved and sterol-binding extracellular proteins with PAMP (pathogen associated molecular patterns) functions and are capable of eliciting plant defense reactions. Belonging to multigene families in oomycetes, elicitins are different from other plant proteins and show a different affinity for binding sterols and other lipids. These function for sterols binding to catalyze their inter-membrane and intra- as well as inter-micelle transport. Importantly, elicitins protect plants by inducing HR (hypersensitive response) and systemic acquired resistance. Despite immense metabolic significance and the involvement in defense activities, elicitins have not yet been fully studied and many questions regarding their functional activities remain to be explained. In order to address multiple questions associated with the role of elicitins, we have reviewed the understanding and topical advancements in plant defense mechanisms with a particular interest in elicitin-based defense actions and metabolic activities. This article offers potential attributes of elicitins as the biological control of plant diseases and can be considered as a baseline toward a more profound understanding of elicitins.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Hashem
- College of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, Egypt
| | - Saad Alamri
- College of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia.,Prince Sultan Ben Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Awatif M AbdulMajeed
- Biology Department, Faculty of Science, University of Tabook, Umluj, Saudi Arabia
| | - Abdullah M Al-Sadi
- College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
57
|
Pelgrom AJE, Meisrimler CN, Elberse J, Koorman T, Boxem M, Van den Ackerveken G. Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. PLoS One 2020; 15:e0226540. [PMID: 32396563 PMCID: PMC7217486 DOI: 10.1371/journal.pone.0226540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Joyce Elberse
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Thijs Koorman
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Developmental Biology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
58
|
Chen T, Liu R, Dou M, Li M, Li M, Yin X, Liu GT, Wang Y, Xu Y. Insight Into Function and Subcellular Localization of Plasmopara viticola Putative RxLR Effectors. Front Microbiol 2020; 11:692. [PMID: 32373100 PMCID: PMC7186587 DOI: 10.3389/fmicb.2020.00692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Grapevine downy mildew, caused by oomycete fungus Plasmopara viticola, is one of the most devastating diseases of grapes across the major production regions of the world. Although many putative effector molecules have been identified from this pathogen, the functions of the majority of these are still unknown. In this study, we analyzed the potential function of 26 P. viticola effectors from the highly virulent strain YL. Using transient expression in leaf cells of the tobacco Nicotiana benthamiana, we found that the majority of the effectors could suppress cell death triggered by BAX and INF1, while seven could induce cell death. The subcellular localization of effectors in N. benthamiana was consistent with their localization in cells of Vitis vinifera. Those effectors that localized to the nucleus (17/26) showed a variety of subnuclear localization. Ten of the effectors localized predominantly to the nucleolus, whereas the remaining seven localized to nucleoplasm. Interestingly, five of the effectors were strongly related in sequence and showed identical subcellular localization, but had different functions in N. benthamiana leaves and expression patterns in grapevine in response to P. viticola. This study highlights the potential functional diversity of P. viticola effectors.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Meijie Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
59
|
Kim HC, Kim KH, Song K, Kim JY, Lee BM. Identification and Validation of Candidate Genes Conferring Resistance to Downy Mildew in Maize ( Zea mays L.). Genes (Basel) 2020; 11:E191. [PMID: 32053973 PMCID: PMC7074223 DOI: 10.3390/genes11020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Downy mildew (DM) is a major disease of maize that causes significant yield loss in subtropical and tropical regions around the world. A variety of DM strains have been reported, and the resistance to them is polygenically controlled. In this study, we analyzed the quantitative trait loci (QTLs) involved in resistance to Peronosclerospora sorghi (sorghum DM), P. maydis (Java DM), and Sclerophthora macrospora (crazy top DM) using a recombinant inbred line (RIL) from a cross between B73 (susceptible) and Ki11 (resistant), and the candidate genes for P. sorghi, P. maydis, and S. macrospora resistance were discovered. The linkage map was constructed with 234 simple sequence repeat (SSR) and restriction fragment length polymorphism (RFLP) markers, which was identified seven QTLs (chromosomes 2, 3, 6, and 9) for three DM strains. The major QTL, located on chromosome 2, consists of 12.95% of phenotypic variation explained (PVE) and a logarithm of odds (LOD) score of 14.12. Sixty-two candidate genes for P. sorghi, P. maydis, and S. macrospora resistance were obtained between the flanked markers in the QTL regions. The relative expression level of candidate genes was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) using resistant (CML228, Ki3, and Ki11) and susceptible (B73 and CML270) genotypes. For the 62 candidate genes, 15 genes were upregulated in resistant genotypes. Among these, three (GRMZM2G028643, GRMZM2G128315, and GRMZM2G330907) and AC210003.2_FG004 were annotated as leucine-rich repeat (LRR) and peroxidase (POX) genes, respectively. These candidate genes in the QTL regions provide valuable information for further studies related to P. sorghi, P. maydis, and S. macrospora resistance.
Collapse
Affiliation(s)
- Hyo Chul Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| | - Kyung-Hee Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| | - Kitae Song
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea;
| | - Byung-Moo Lee
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea; (H.C.K.); (K.-H.K.); (K.S.)
| |
Collapse
|
60
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
61
|
Li W, Zhao D, Dong J, Kong X, Zhang Q, Li T, Meng Y, Shan W. AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. MOLECULAR PLANT PATHOLOGY 2020; 21:95-108. [PMID: 31701600 PMCID: PMC6913198 DOI: 10.1111/mpp.12883] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants have evolved powerful immune systems to recognize pathogens and avoid invasions, but the genetic basis of plant susceptibility is less well-studied, especially to oomycetes, which cause disastrous diseases in many ornamental plants and food crops. In this research, we identified a negative regulator of plant immunity to the oomycete Phytophthora parasitica, AtRTP5 (Arabidopsis thaliana Resistant to Phytophthora 5), which encodes a WD40 repeat domain-containing protein. The AtRTP5 protein, which was tagged with green fluorescent protein (GFP), is localized in the nucleus and plasma membrane. Both the A. thaliana T-DNA insertion rtp5 mutants and the Nicotiana benthamiana RTP5 (NbRTP5) silencing plants showed enhanced resistance to P. parasitica, while overexpression of AtRTP5 rendered plants more susceptible. The transcriptomic analysis showed that mutation of AtRTP5 suppressed the biosynthesis of endogenous jasmonic acid (JA) and JA-dependent responses. In contrast, salicylic acid (SA) biosynthesis and SA-dependent responses were activated in the T-DNA insertion mutant rtp5-3. These results show that AtRTP5 acts as a conserved negative regulator of plant immunity to Phytophthora pathogens by interfering with JA and SA signalling pathways.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Dan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jingwen Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xianglan Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
62
|
Chen W, Li Y, Yan R, Xu L, Ren L, Liu F, Zeng L, Yang H, Chi P, Wang X, Chen K, Ma D, Fang X. Identification and Characterization of Plasmodiophora brassicae Primary Infection Effector Candidates that Suppress or Induce Cell Death in Host and Nonhost Plants. PHYTOPATHOLOGY 2019; 109:1689-1697. [PMID: 31188071 DOI: 10.1094/phyto-02-19-0039-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Clubroot caused by Plasmodiophora brassicaeis one of the most important diseases in cruciferous crops. The recognition of P. brassicae by host plants is thought to occur at the primary infection stage, but the underlying mechanism remains unclear. Secretory proteins as effector candidates play critical roles in the recognition of pathogens and the interactions between pathogens and hosts. In this study, 33 P. brassicae secretory proteins expressed during primary infection were identified through transcriptome, secretory protein prediction, and yeast signal sequence trap analyses. Furthermore, the proteins that could suppress or induce cell death were screened through an Agrobacterium-mediated plant virus transient expression system and a protoplast transient expression system. Two secretory proteins, PBCN_002550 and PBCN_005499, were found to be capable of inducing cell death associated with H2O2 accumulation and electrolyte leakage in Nicotiana benthamiana. Moreover, PBCN_002550 could also induce cell death in Chinese cabbage. In addition, 24 of the remaining 31 tested secretory proteins could suppress mouse Bcl-2-associated X protein-induced cell death, and 28 proteins could suppress PBCN_002550-induced cell death.
Collapse
Affiliation(s)
- Wang Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Yan Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Ruibin Yan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Li Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Li Ren
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Fan Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Lingyi Zeng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Huan Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Peng Chi
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Xiuzhen Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Kunrong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
| | - Xiaoping Fang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| |
Collapse
|
63
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
64
|
Steele JFC, Hughes RK, Banfield MJ. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS One 2019; 14:e0221226. [PMID: 31461469 PMCID: PMC6713354 DOI: 10.1371/journal.pone.0221226] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Plant NLRs are modular immune receptors that trigger rapid cell death in response to attempted infection by pathogens. A highly conserved nucleotide-binding domain shared with APAF-1, various R-proteins and CED-4 (NB-ARC domain) is proposed to act as a molecular switch, cycling between ADP (repressed) and ATP (active) bound forms. Studies of plant NLR NB-ARC domains have revealed functional similarities to mammalian homologues, and provided insight into potential mechanisms of regulation. However, further advances have been limited by difficulties in obtaining sufficient yields of protein suitable for structural and biochemical techniques. From protein expression screens in Escherichia coli and Sf9 insect cells, we defined suitable conditions to produce the NB-ARC domain from the tomato NLR NRC1. Biophysical analyses of this domain showed it is a folded, soluble protein. Structural studies revealed the NRC1 NB-ARC domain had co-purified with ADP, and confirmed predicted structural similarities between plant NLR NB-ARC domains and their mammalian homologues.
Collapse
Affiliation(s)
- John F. C. Steele
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, England, United Kingdom
| | - Richard K. Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, England, United Kingdom
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, England, United Kingdom
- * E-mail:
| |
Collapse
|
65
|
Becker MG, Haddadi P, Wan J, Adam L, Walker P, Larkan NJ, Daayf F, Borhan MH, Belmonte MF. Transcriptome Analysis of Rlm2-Mediated Host Immunity in the Brassica napus- Leptosphaeria maculans Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1001-1012. [PMID: 30938576 DOI: 10.1094/mpmi-01-19-0028-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.
Collapse
Affiliation(s)
- Michael G Becker
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Parham Haddadi
- 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Joey Wan
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lorne Adam
- 3Department of Plant Science, University of Manitoba
| | - Philip Walker
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Fouad Daayf
- 3Department of Plant Science, University of Manitoba
| | - M Hossein Borhan
- 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Mark F Belmonte
- 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
66
|
Chen XR, Zhang Y, Li HY, Zhang ZH, Sheng GL, Li YP, Xing YP, Huang SX, Tao H, Kuan T, Zhai Y, Ma W. The RXLR Effector PcAvh1 Is Required for Full Virulence of Phytophthora capsici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:986-1000. [PMID: 30811314 DOI: 10.1094/mpmi-09-18-0251-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Ye Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hai-Yang Li
- 3College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zi-Hui Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Gui-Lin Sheng
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yan-Peng Li
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yu-Ping Xing
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Shen-Xin Huang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hang Tao
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tung Kuan
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Yi Zhai
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
67
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
68
|
Ren Y, Armstrong M, Qi Y, McLellan H, Zhong C, Du B, Birch PRJ, Tian Z. Phytophthora infestans RXLR Effectors Target Parallel Steps in an Immune Signal Transduction Pathway. PLANT PHYSIOLOGY 2019; 180:2227-2239. [PMID: 31217198 PMCID: PMC6670088 DOI: 10.1104/pp.18.00625] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/12/2019] [Indexed: 05/12/2023]
Abstract
The potato (Solanum tuberosum) blight pathogen Phytophthora infestans delivers Arg-X-Leu-Arg (RXLR) effector proteins into host cells to subvert plant immune responses and promote colonization. We show that transient expression and stable transgenic expression of the RXLR effector Pi22926 in Nicotiana benthamiana promotes leaf colonization by P. infestans. Pi22926 suppresses cell death triggered by coexpression of the Cladosporium fulvum avirulence protein Avr4 and the tomato (Solanum lycopersicum) resistance protein Cf4. Pi22926 interacts with a potato mitogen-activated protein kinase kinase kinase, StMAP3Kβ2, in the nucleoplasm. Virus-induced gene silencing (VIGS) of the ortholog NbMAP3Kβ2 in N. benthamiana enhances P. infestans colonization and attenuates Cf4/Avr4-induced cell death, indicating that this host protein is a positive regulator of immunity. Cell death induced by Cf4/Avr4 is dependent on NbMAP3Kε and NbMAP3Kβ2, indicating that these MAP3Ks function in the same signaling pathway. VIGS of NbMAP3Kβ2 does not compromise cell death triggered by overexpression of MAP3Kε. Similarly, VIGS of NbMAP3Kε does not attenuate cell death triggered by MAP3Kβ2, demonstrating that these MAP3K proteins function in parallel. In agreement, Pi22926 or another RXLR effector, PexRD2, only suppresses cell death triggered by expression of StMAP3Kβ2 or StMAP3Kε, respectively. Our data reveal that two P. infestans effectors, PexRD2 and Pi22926, promote P. infestans colonization by targeting MAP3K proteins that act in parallel in the same signal transduction pathway.
Collapse
Affiliation(s)
- Yajuan Ren
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Miles Armstrong
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Yetong Qi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | - Cheng Zhong
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
| | - Bowen Du
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University (HZAU), Wuhan 430070, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
69
|
Zhang P, Jia Y, Shi J, Chen C, Ye W, Wang Y, Ma W, Qiao Y. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. THE NEW PHYTOLOGIST 2019; 223:839-852. [PMID: 30963588 DOI: 10.1111/nph.15836] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 05/27/2023]
Abstract
Phytophthora pathogens manipulate host innate immunity by secreting numerous RxLR effectors, thereby facilitating pathogen colonization. Predicted single and tandem repeats of WY domains are the most prominent C-terminal motifs conserved across the Phytophthora RxLR superfamily. However, the functions of individual WY domains in effectors remain poorly understood. The Phytophthora sojae effector PSR1 promotes infection by suppressing small RNA biogenesis in plant hosts. We identified one single WY domain following the RxLR motif in PSR1. This domain was required for RNA silencing suppression activity and infection in Nicotiana benthamiana, Arabidopsis and soybean. Mutations of the conserved residues in the WY domain did not affect the subcellular localization of PSR1 but abolished its effect on plant development and resistance to viral and Phytophthora pathogens. This is at least in part due to decreased protein stability of the PSR1 mutants in planta. The identification of the WY domain in PSR1 allows predicts that a family of PSR1-like effectors also possess RNA silencing suppression activity. Mutation of the conserved residues in two members of this family, PpPSR1L from P. parasitica and PcPSR1L from P. capsici, perturbed their biological functions, indicating that the WY domain is critical in Phytophthora PSR1 and PSR1-like effectors.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yijuan Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chen Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
70
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
71
|
Lan X, Liu Y, Song S, Yin L, Xiang J, Qu J, Lu J. Plasmopara viticola effector PvRXLR131 suppresses plant immunity by targeting plant receptor-like kinase inhibitor BKI1. MOLECULAR PLANT PATHOLOGY 2019; 20:765-783. [PMID: 30945786 PMCID: PMC6637860 DOI: 10.1111/mpp.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The grapevine downy mildew pathogen Plasmopara viticola secretes a set of RXLR effectors (PvRXLRs) to overcome host immunity and facilitate infection, but how these effectors function is unclear. Here, the biological function of PvRXLR131 was investigated via heterologous expression. Constitutive expression of PvRXLR131 in Colletotrichum gloeosporioides significantly enhanced its pathogenicity on grapevine leaves. Constitutive expression of PvRXLR131 in Arabidopsis promoted Pseudomonas syringae DC3000 and P. syringae DC3000 (hrcC- ) growth as well as suppressed defence-related callose deposition. Transient expression of PvRXLR131 in Nicotiana benthamiana leaves could also suppress different elicitor-triggered cell death and inhibit plant resistance to Phytophthora capsici. Further analysis revealed that PvRXLR131 interacted with host Vitis vinifera BRI1 kinase inhibitor 1 (VvBKI1), and its homologues in N. benthamiana (NbBKI1) and Arabidopsis (AtBKI1). Moreover, bimolecular fluorescence complementation analysis revealed that PvRXLR131 interacted with VvBKI1 in the plasma membrane. Deletion assays showed that the C-terminus of PvRXLR131 was responsible for the interaction and mutation assays showed that phosphorylation of a conserved tyrosine residue in BKI1s disrupted the interaction. BKI1 was a receptor inhibitor of growth- and defence-related brassinosteroid (BR) and ERECTA (ER) signalling. When silencing of NbBKI1 in N. benthamiana, the virulence function of PvRXLR131 was eliminated, demonstrating that the effector activity is mediated by BKI1. Moreover, PvRXLR131-transgenic plants displayed BKI1-overexpression dwarf phenotypes and suppressed BR and ER signalling. These physiological and genetic data clearly demonstrate that BKI1 is a virulence target of PvRXLR131. We propose that P. viticola secretes PvRXLR131 to target BKI1 as a strategy for promoting infection.
Collapse
Affiliation(s)
- Xia Lan
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yunxiao Liu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Xiang
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
72
|
Turnbull D, Wang H, Breen S, Malec M, Naqvi S, Yang L, Welsh L, Hemsley P, Zhendong T, Brunner F, Gilroy EM, Birch PRJ. AVR2 Targets BSL Family Members, Which Act as Susceptibility Factors to Suppress Host Immunity. PLANT PHYSIOLOGY 2019; 180:571-581. [PMID: 30782963 PMCID: PMC6501069 DOI: 10.1104/pp.18.01143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/06/2019] [Indexed: 05/05/2023]
Abstract
To be successful plant pathogens, microbes use "effector proteins" to manipulate host functions to their benefit. Identifying host targets of effector proteins and characterizing their role in the infection process allow us to better understand plant-pathogen interactions and the plant immune system. Yeast two-hybrid analysis and coimmunoprecipitation were used to demonstrate that the Phytophthora infestans effector AVIRULENCE 2 (PiAVR2) interacts with all three BRI1-SUPPRESSOR1-like (BSL) family members from potato (Solanum tuberosum). Transient expression of BSL1, BSL2, and BSL3 enhanced P. infestans leaf infection. BSL1 and BSL3 suppressed INFESTIN 1 elicitin-triggered cell death, showing that they negatively regulate immunity. Virus-induced gene silencing studies revealed that BSL2 and BSL3 are required for BSL1 stability and show that basal levels of immunity are increased in BSL-silenced plants. Immune suppression by BSL family members is dependent on the brassinosteroid-responsive host transcription factor CIB1/HBI1-like 1. The P. infestans effector PiAVR2 targets all three BSL family members in the crop plant S. tuberosum These phosphatases, known for their role in growth-promoting brassinosteroid signaling, all support P. infestans virulence and thus can be regarded as susceptibility factors in late blight infection.
Collapse
Affiliation(s)
- Dionne Turnbull
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Haixia Wang
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Susan Breen
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Marek Malec
- Department of Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Shaista Naqvi
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Lina Yang
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, China (L.Y.)
| | - Lydia Welsh
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Piers Hemsley
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Tian Zhendong
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Frederic Brunner
- Department of Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Eleanor M Gilroy
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
73
|
He Q, McLellan H, Hughes RK, Boevink PC, Armstrong M, Lu Y, Banfield MJ, Tian Z, Birch PRJ. Phytophthora infestans effector SFI3 targets potato UBK to suppress early immune transcriptional responses. THE NEW PHYTOLOGIST 2019; 222:438-454. [PMID: 30536576 DOI: 10.1111/nph.15635] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/19/2018] [Indexed: 05/27/2023]
Abstract
The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Petra C Boevink
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Miles Armstrong
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Yuan Lu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
74
|
Li Q, Ai G, Shen D, Zou F, Wang J, Bai T, Chen Y, Li S, Zhang M, Jing M, Dou D. A Phytophthora capsici Effector Targets ACD11 Binding Partners that Regulate ROS-Mediated Defense Response in Arabidopsis. MOLECULAR PLANT 2019; 12:565-581. [PMID: 30703564 DOI: 10.1016/j.molp.2019.01.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species (ROS) play a vital role in plant immune response, but the genes involved in the regulation of ROS are scantily reported. Phytophthora pathogens produce a large number of effectors to promote infection, but the modes of action adopted are largely unknown. Here, we report that RxLR207 could activate ROS-mediated cell death in Nicotiana benthamiana and was essential for virulence of P. capsici. We found that this effector targeted BPA1 (binding partner of ACD11) and four members of BPLs (BPA1-Like proteins) in Arabidopsis, and the bpa1 and bpl mutants had enhanced ROS accumulation and cell death under biotic or abiotic stresses. Furthermore, we showed that BPA1 and several BPLs functioned redundantly in plant immunity to P. capsici. We discovered that BPA1 and all six BPLs interacted with ACD11, and stabilization of ACD11 was impaired in the bpa1, bpl2, bpl3, and bpl4 mutants. RxLR207 could promote the degradation of BPA1, BPL1, BPL2, and BPL4 to disrupt ACD11 stabilization in a 26S proteasome-dependent manner. Taken together, these findings indicate the important roles of Arabidopsis BPA1 and its homologs in ROS homeostasis and defense response, highlighting the usefulness of a pathogen effector-directed approach as a promising strategy for the discovery of novel plant immune regulators.
Collapse
Affiliation(s)
- Qi Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Ai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fen Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Bai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyu Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
75
|
Yang B, Wang Y, Guo B, Jing M, Zhou H, Li Y, Wang H, Huang J, Wang Y, Ye W, Dong S, Wang Y. The Phytophthora sojae RXLR effector Avh238 destabilizes soybean Type2 GmACSs to suppress ethylene biosynthesis and promote infection. THE NEW PHYTOLOGIST 2019; 222:425-437. [PMID: 30394556 DOI: 10.1111/nph.15581] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/29/2018] [Indexed: 05/06/2023]
Abstract
Phytophthora pathogens secrete many effector proteins to manipulate host innate immunity. PsAvh238 is a Phytophthora sojae N-terminal Arg-X-Leu-Arg (RXLR) effector, which evolved to escape host recognition by mutating one nucleotide while retaining plant immunity-suppressing activity to enhance infection. However, the molecular basis of the PsAvh238 virulence function remains largely enigmatic. By using coimmunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, we identified the 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms, the key enzymes in ethylene (ET) biosynthesis, as a host target of PsAvh238. We show that PsAvh238 interacts with soybean ACSs (GmACSs) in vivo and in vitro. By destabilizing Type2 GmACSs, PsAvh238 suppresses Type2 ACS-catalyzed ET biosynthesis and facilitates Phytophthora infection. Silencing of Type2 GmACSs, and inhibition of ET biosynthesis or signaling, increase soybean susceptibility to P. sojae infection, supporting a role for Type2 GmACSs and ET in plant immunity against P. sojae. Moreover, wild-type P. sojae but not the PsAvh238-disrupted mutants, inhibits ET induction and promotes P. sojae infection in soybean. Our results highlight the ET biosynthesis pathway as an essential part in plant immunity against P. sojae and a direct effector target.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuyin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Hao Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yufei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
76
|
Youssar L, Wernet V, Hensel N, Yu X, Hildebrand HG, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, Fischer R. Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet 2019; 15:e1008029. [PMID: 30917129 PMCID: PMC6453484 DOI: 10.1371/journal.pgen.1008029] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/08/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus. Nematode-trapping fungi are fascinating microorganisms, because they are able to switch from saprotrophic growth to a predatory lifestyle. Duddingtonia flagrans forms adhesive trap systems and conidia and resistant chlamydospores. Chlamydospores are ideal for dissemination in the environment to control nematode populations in the field. We show that D. flagrans is able to catch C. elegans but also the very large wine-pathogenic nematode Xiphinema index. We sequenced the D. flagrans genome and show that it encodes about 10,000 genes with a large proportion of secreted proteins. We hypothesize that virulence effector proteins are involved in the interkingdom organismic interaction and identified more than 100 candidates. In order to investigate the molecular biology of D. flagrans and its interaction with nematodes, we established a transformation system and several molecular tools. We show that cell-to-cell communication and hyphal fusion are required for trap formation. Finally, we show that one putative virulence effector protein targets nuclei when expressed in C. elegans.
Collapse
Affiliation(s)
- Loubna Youssar
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Valentin Wernet
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Nicole Hensel
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Xi Yu
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Heinz-Georg Hildebrand
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Marius Kriegler
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | | | - Phillip Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
77
|
Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. MOLECULAR PLANT PATHOLOGY 2019; 20:356-371. [PMID: 30320960 PMCID: PMC6637884 DOI: 10.1111/mpp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RXLR effectors encoded by Phytophthora species play a central role in pathogen-plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.
Collapse
Affiliation(s)
- Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhirou Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Institute of Plant and Food Science, Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
78
|
Pelgrom AJE, Eikelhof J, Elberse J, Meisrimler C, Raedts R, Klein J, Van den Ackerveken G. Recognition of lettuce downy mildew effector BLR38 in Lactuca serriola LS102 requires two unlinked loci. MOLECULAR PLANT PATHOLOGY 2019; 20:240-253. [PMID: 30251420 PMCID: PMC6637914 DOI: 10.1111/mpp.12751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors-BLN06, BLR38 and BLR40-were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Jelle Eikelhof
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Joyce Elberse
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Claudia‐Nicole Meisrimler
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Rob Raedts
- BASF Vegetable SeedsPO Box 4005, 6080 AA, Haelenthe Netherlands
| | - Joël Klein
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Guido Van den Ackerveken
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| |
Collapse
|
79
|
Wang S, McLellan H, Bukharova T, He Q, Murphy F, Shi J, Sun S, van Weymers P, Ren Y, Thilliez G, Wang H, Chen X, Engelhardt S, Vleeshouwers V, Gilroy EM, Whisson SC, Hein I, Wang X, Tian Z, Birch PRJ, Boevink PC. Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:343-356. [PMID: 30329083 PMCID: PMC6305197 DOI: 10.1093/jxb/ery360] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 05/23/2023]
Abstract
Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Hazel McLellan
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Tatyana Bukharova
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Qin He
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Fraser Murphy
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Jiayang Shi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shaohui Sun
- Heilongjiang Bayi Agricultural University, Daqing, China
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Pauline van Weymers
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Yajuan Ren
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaetan Thilliez
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Haixia Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xinwei Chen
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stefan Engelhardt
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Eleanor M Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Ingo Hein
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Xiaodan Wang
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Paul R J Birch
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
80
|
Naveed ZA, Bibi S, Ali GS. The Phytophthora RXLR Effector Avrblb2 Modulates Plant Immunity by Interfering With Ca 2+ Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2019; 10:374. [PMID: 30984224 PMCID: PMC6447682 DOI: 10.3389/fpls.2019.00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 05/03/2023]
Abstract
In plants, subcellular fluctuations in Ca2+ ion concentration are among the earliest responses to biotic and abiotic stresses. Calmodulin, which is a ubiquitous Ca2+ ion sensor in eukaryotes, plays a major role in translating these Ca2+ signatures to cellular responses by interacting with numerous proteins located in plasma membranes, cytoplasm, organelles and nuclei. In this report, we show that one of the Phytophthora RXLR effector, Avrblb2, interacts with calmodulin at the plasma membrane of the plant cells. Using deletion and single amino acid mutagenesis, we found that calmodulin binds to the effector domain of Avrblb2. In addition, we show that most known homologs of Avrblb2 in three different Phytophthora species interact with different isoforms of calmodulin. Type of amino acids at position 69 in Avrblb2, which determines Rbi-blb2 resistance protein-mediated defense responses, is not involved in the Avrblb2-calmodulin interaction. Using in planta functional analyses, we show that calmodulin binding to Avrblb2 is required for its recognition by Rpi-blb2 to incite hypersensitive response. These findings suggest that Avrblb2 by interacting with calmodulin interfere with plant defense associated Ca2+ signaling in plants.
Collapse
|
81
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
82
|
Wang H, Chen Y, Wu X, Long Z, Sun C, Wang H, Wang S, Birch PRJ, Tian Z. A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5573-5586. [PMID: 30137408 PMCID: PMC6255708 DOI: 10.1093/jxb/ery310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant STRUBBELIG (SUB)-RECEPTOR FAMILY (SRF) genes encode putative leucine-rich repeat transmembrane receptor-like kinases. SRFs have been reported to play essential roles in tissue morphogenesis in many plant organs. Here, we show that a potato SRF family gene, StLRPK1, is involved in plant immunity. StLRPK1 is located at the cell plasma membrane and is strongly induced by culture filtrate from in vitro growth of the late blight pathogen Phytophthora infestans. Overexpression of StLRPK1 in stable transgenic potato or ectopic expression in Nicotiana benthamiana plants enhances P. infestans disease resistance, whereas RNA interference (RNAi) of StLRPK1 in potato decreases disease resistance. We found that StLRPK1 constitutively interacts with a pivotal co-receptor, SERK3A/BAK1, which plays a central role in plant immunity. Virus-induced gene silencing of SERK3A/BAK1 in N. benthamiana lines expressing StLRPK1 attenuated P. infestans resistance, indicating that SERK3A/BAK1 is required for StLRPK1-mediated immunity. Finally, we show that StLRPK1-triggered late blight resistance depends on the mitogen-activated protein kinase kinase MEK2 and mitogen-activated protein kinase WIPK. We propose a model in which StLRPK1 associates with SERK3A/BAK1 to positively regulate plant immunity to P. infestans through a MAPK cascade. These data provide new insights into our understanding of SRF function in plant immunity.
Collapse
Affiliation(s)
- Haixia Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yanlin Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xingtong Wu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zongshang Long
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chunlian Sun
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hairong Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shumei Wang
- Division of Plant Sciences, School of Life Science, University of Dundee, James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Paul R J Birch
- Division of Plant Sciences, School of Life Science, University of Dundee, James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
83
|
Mandal MK, Suren H, Ward B, Boroujerdi A, Kousik C. Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J Pineal Res 2018; 65:e12505. [PMID: 29766569 DOI: 10.1111/jpi.12505] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022]
Abstract
Since the 1950s, research on the animal neurohormone, melatonin, has focused on its multiregulatory effect on patients suffering from insomnia, cancer, and Alzheimer's disease. In plants, melatonin plays major role in plant growth and development, and is inducible in response to diverse biotic and abiotic stresses. However, studies on the direct role of melatonin in disease suppression and as a signaling molecule in host-pathogen defense mechanism are lacking. This study provides insight on the predicted biosynthetic pathway of melatonin in watermelon (Citrullus lanatus), and how application of melatonin, an environmental-friendly immune inducer, can boost plant immunity and suppress pathogen growth where fungicide resistance and lack of genetic resistance are major problems. We evaluated the effect of spray-applied melatonin and also transformed watermelon plants with the melatonin biosynthetic gene SNAT (serotonin N-acetyltransferase) to determine the role of melatonin in plant defense. Increased melatonin levels in plants were found to boost resistance against the foliar pathogen Podosphaera xanthii (powdery mildew), and the soil-borne oomycete Phytophthora capsici in watermelon and other cucurbits. Further, transcriptomic data on melatonin-sprayed (1 mmol/L) watermelon leaves suggest that melatonin alters the expression of genes involved in both PAMP-mediated (pathogen-associated molecular pattern) and ETI-mediated (effector-triggered immunity) defenses. Twenty-seven upregulated genes were associated with constitutive defense as well as initial priming of the melatonin-induced plant resistance response. Our results indicate that developing strategies to increase melatonin levels in specialty crops such as watermelon can lead to resistance against diverse filamentous pathogens.
Collapse
Affiliation(s)
- Mihir Kumar Mandal
- USDA, ARS, U.S. Vegetable Laboratory, Charleston, SC, USA
- ORISE Participant sponsored by the U.S. Vegetable Laboratory, USDA, ARS, Charleston, SC, USA
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Brian Ward
- Clemson University, CREC, Charleston, SC, USA
| | | | | |
Collapse
|
84
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
85
|
Zheng X, Wagener N, McLellan H, Boevink PC, Hua C, Birch PRJ, Brunner F. Phytophthora infestans RXLR effector SFI5 requires association with calmodulin for PTI/MTI suppressing activity. THE NEW PHYTOLOGIST 2018; 219:1433-1446. [PMID: 29932222 PMCID: PMC6099356 DOI: 10.1111/nph.15250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/03/2018] [Indexed: 05/04/2023]
Abstract
Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
- Center for Molecular Cell and Systems BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Nadine Wagener
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Hazel McLellan
- Division of Plant SciencesUniversity of Dundee (at James Hutton Institute)Errol RdInvergowrie, DundeeDD2 5DAUK
| | - Petra C. Boevink
- Cell and Molecular SciencesThe James Hutton InstituteErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Chenlei Hua
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of Dundee (at James Hutton Institute)Errol RdInvergowrie, DundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Frédéric Brunner
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
- PlantResponse Biotech, S.L.Centre for Plant Biotechnology and Genomics (CBGP)Campus de Montegancedo28223Pozuelo de Alarcón, MadridSpain
| |
Collapse
|
86
|
Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, Wen Q, Shan W. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity. MOLECULAR PLANT 2018; 11:1067-1083. [PMID: 29864524 DOI: 10.1016/j.molp.2018.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora pathogens secrete a large arsenal of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Phytophthora effectors manipulate host plant cells still remain largely unclear. In this study, we report that PcAvr3a12, a Phytophthora capsici RXLR effector and a member of the Avr3a effector family, suppresses plant immunity by targeting and inhibiting host plant peptidyl-prolyl cis-trans isomerase (PPIase). Overexpression of PcAvr3a12 in Arabidopsis thaliana enhanced plant susceptibility to P. capsici. FKBP15-2, an endoplasmic reticulum (ER)-localized protein, was identified as a host target of PcAvr3a12 during early P. capsici infection. Analyses of A. thaliana T-DNA insertion mutant (fkbp15-2), RNAi, and overexpression lines consistently showed that FKBP15-2 positively regulates plant immunity in response to Phytophthora infection. FKBP15-2 possesses PPIase activity essential for its contribution to immunity but is directly suppressed by PcAvr3a12. Interestingly, we found that FKBP15-2 is involved in ER stress sensing and is required for ER stress-mediated plant immunity. Taken together, these results suggest that P. capsici deploys an RXLR effector, PcAvr3a12, to facilitate infection by targeting and suppressing a novel ER-localized PPIase, FKBP15-2, which is required for ER stress-mediated plant immunity.
Collapse
Affiliation(s)
- Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyu Qiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
87
|
Carella P, Evangelisti E, Schornack S. Sticking to it: phytopathogen effector molecules may converge on evolutionarily conserved host targets in green plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:175-180. [PMID: 30071474 PMCID: PMC6119762 DOI: 10.1016/j.pbi.2018.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 04/28/2018] [Indexed: 05/26/2023]
Abstract
•Phytopathogen effectors converge on similar sets of host proteins in angiosperms. •Effectors may target host proteins and processes present across the green plant lineage. •Bryophyte model plants are promising systems to investigate effector–target relationships. Plant-associated microbes secrete effector proteins that subvert host cellular machinery to facilitate the colonization of plant tissues and cells. Accumulating data suggests that independently evolved effectors from bacterial, fungal, and oomycete pathogens may converge on a similar set of host proteins in certain angiosperm models, however, whether this concept is relevant throughout the green plant lineage is unknown. Here, we explore the idea that pathogen effector molecules target host proteins present across evolutionarily distant land plant lineages to promote disease. We discuss that host proteins targeted by phytopathogens or integrated into angiosperm immune receptors are likely found across green plant genomes, from early diverging non-vascular lineages (bryophytes) to flowering plants (angiosperms). This would suggest that independently evolved pathogens might manipulate their hosts by targeting `vulnerability’ hubs that are present across land plants. Future work focusing on accessible early divergent land plant model systems may therefore provide an insightful evolutionary backdrop for effector–target research.
Collapse
Affiliation(s)
- Philip Carella
- University of Cambridge, Sainsbury Laboratory, Cambridge, United Kingdom
| | | | | |
Collapse
|
88
|
Zhang Y, Huang J, Ochola SO, Dong S. Functional Analysis of PsAvr3c Effector Family From Phytophthora Provides Probes to Dissect SKRP Mediated Plant Susceptibility. FRONTIERS IN PLANT SCIENCE 2018; 9:1105. [PMID: 30090111 PMCID: PMC6069499 DOI: 10.3389/fpls.2018.01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 05/28/2023]
Abstract
PsAvr3c is an effector identified from oomycete plant pathogen Phytophthora sojae that causes soybean root and stem rot disease. Earlier studies have demonstrated that PsAvr3c binds to a novel soybean spliceosomal complex protein, GmSKRP, to reprogram the splicing of hundreds of pre-mRNAs and consequently subvert host immunity. PsAvr3c family genes are present in some other Phytophthora species, but their function remains unknown. Here, we characterized the functions of PsAvh27b (PsAvr3c paralog from P. sojae), ProbiAvh89 and PparvAvh214 (orthologs from P. cinnamomi var. robiniae and Phytophthora parvispora, respectively). The study reveals that both PsAvh27b and ProbiAvh89 interact with GmSKRPs in vitro, and stabilize GmSKRP1 in vivo. However, PparvAvh214 cannot interact with GmSKRPs proteins. The qRT-PCR result illustrates that the alternative splicing of pre-mRNAs of several soybean defense-related genes are altered in PsAvh27b and ProbiAvh89 when over-expressed on soybean hairy roots. Moreover, PsAvr3c family members display differences in promoting Phytophthora infection in a SKRP-dependent manner. Overall, this study highlights that the effector-mediated host pre-mRNA alternative splicing occurs in other pathosystems, thus providing new probes to further dissect SKRP-mediated plant susceptibility.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Sylvans O. Ochola
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, Chxsina
| |
Collapse
|
89
|
Tomczynska I, Stumpe M, Mauch F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:187-203. [PMID: 29671919 DOI: 10.1111/tpj.13928] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| |
Collapse
|
90
|
Ma LS, Pellegrin C, Kahmann R. Repeat-containing effectors of filamentous pathogens and symbionts. Curr Opin Microbiol 2018; 46:123-130. [PMID: 29929732 DOI: 10.1016/j.mib.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Pathogenic and symbiotic filamentous microbes secrete effectors which suppress host immune responses and promote a successful colonization. Pathogen effectors are engaged in the arms race with their hosts and because of this they are subject to intense evolutionary pressure. Effectors particularly prone to rapid evolution display repeat-containing domains which can easily expand or contract and accumulate point mutations without altering their original function. In this review we address the diversity of function in such repeat-containing effectors, focus on new findings and point out avenues for future work.
Collapse
|
91
|
Murphy F, He Q, Armstrong M, Giuliani LM, Boevink PC, Zhang W, Tian Z, Birch PRJ, Gilroy EM. The Potato MAP3K StVIK Is Required for the Phytophthora infestans RXLR Effector Pi17316 to Promote Disease. PLANT PHYSIOLOGY 2018; 177:398-410. [PMID: 29588335 PMCID: PMC5933144 DOI: 10.1104/pp.18.00028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/04/2018] [Indexed: 05/19/2023]
Abstract
Plant pathogens deliver effectors to manipulate processes in their hosts, creating a suitable environment for invasion and proliferation. Yet, little is known about the host proteins that are targeted by effectors from filamentous pathogens. Here, we show that stable transgenic expression in potato (Solanum tuberosum) and transient expression in Nicotiana benthamiana of the arginine-any amino acid-leucine-arginine effector Pi17316 enhances leaf colonization by the late blight pathogen Phytophthora infestans Expression of Pi17316 also attenuates cell death triggered by the pathogen-associated molecular pattern Infestin1 (INF1), indicating that the effector suppresses pattern-triggered immunity. However, this effector does not attenuate cell death triggered by a range of resistance proteins, showing that it specifically suppresses INF1-triggered cell death (ICD). In yeast two-hybrid assays, Pi17316 interacts directly with the potato ortholog of VASCULAR HIGHWAY1-interacting kinase (StVIK), encoding a predicted MEK kinase (MAP3K). Interaction in planta was confirmed by coimmunoprecipitation and occurs at the plant plasma membrane. Virus-induced gene silencing of VIK in N. benthamiana attenuated P. infestans colonization, whereas transient overexpression of StVIK enhanced colonization, indicating that this host protein acts as a susceptibility factor. Moreover, VIK overexpression specifically attenuated ICD, indicating that it is a negative regulator of immunity. The abilities of Pi17316 to enhance P. infestans colonization or suppress ICD were compromised significantly in NbVIK-silenced plants, demonstrating that the effector activity of Pi17316 is mediated by this MAP3K. Thus, StVIK is exploited by P. infestans as a susceptibility factor to promote late blight disease.
Collapse
Affiliation(s)
- Fraser Murphy
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Qin He
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Miles Armstrong
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Licida M Giuliani
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Wei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Paul R J Birch
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Eleanor M Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
92
|
Ma L, Djavaheri M, Wang H, Larkan NJ, Haddadi P, Beynon E, Gropp G, Borhan MH. Leptosphaeria maculans Effector Protein AvrLm1 Modulates Plant Immunity by Enhancing MAP Kinase 9 Phosphorylation. iScience 2018; 3:177-191. [PMID: 30428318 PMCID: PMC6137710 DOI: 10.1016/j.isci.2018.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 01/03/2023] Open
Abstract
Leptosphaeria maculans, the causal agent of blackleg disease in canola (Brassica napus), secretes an array of effectors into the host to overcome host defense. Here we present evidence that the L. maculans effector protein AvrLm1 functions as a virulence factor by interacting with the B. napus mitogen-activated protein (MAP) kinase 9 (BnMPK9), resulting in increased accumulation and enhanced phosphorylation of the host protein. Transient expression of BnMPK9 in Nicotiana benthamiana induces cell death, and this phenotype is enhanced in the presence of AvrLm1, suggesting that induction of cell death due to enhanced accumulation and phosphorylation of BnMPK9 by AvrLm1 supports the initiation of necrotrophic phase of L. maculans infection. Stable expression of BnMPK9 in B. napus perturbs hormone signaling, notably salicylic acid response genes, to facilitate L. maculans infection. Our findings provide evidence that a MAP kinase is directly targeted by a fungal effector to modulate plant immunity. Leptosphaeria maculans effector AvrLm1 interacts with the Brassica napus MPK9 (BnMPK9) AvrLm1 increases the accumulation and enhances the phosphorylation of BnMPK9 AvrLm1 enhances BnMPK9-dependent cell death in Nicotiana benthamiana Stable expression of BnMPK9 in B. napus facilitates L. maculans infection
Collapse
Affiliation(s)
- Lisong Ma
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Mohammad Djavaheri
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Haiyan Wang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Nicholas J Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; Armatus Genetics Inc., Saskatoon, SK S7J 4M2, Canada
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Elena Beynon
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Gordon Gropp
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - M Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| |
Collapse
|
93
|
Dalio RJD, Maximo HJ, Oliveira TS, Dias RO, Breton MC, Felizatti H, Machado M. Phytophthora parasitica Effector PpRxLR2 Suppresses Nicotiana benthamiana Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:481-493. [PMID: 29165046 DOI: 10.1094/mpmi-07-17-0158-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytophthora species secrete several classes of effector proteins during interaction with their hosts. These proteins can have multiple functions including modulation of host physiology and immunity. The RxLR effectors have the ability to enter plant cells using the plant machinery. Some of these effectors have been characterized as immunity suppressors; however, very little is known about their functions in the interaction between Phytophthora parasitica and its hosts. Using a bioinformatics pipeline, we have identified 172 candidate RxLR effectors (CREs) in the isolate IAC 01_95 of P. parasitica. Of these 172 CREs, 93 were found to be also present in eight other genomes of P. parasitica, isolated from different hosts and continents. After transcriptomics and gene expression analysis, we have found five CREs to be up-regulated in in-vitro and in-planta samples. Subsequently, we selected three CREs for functional characterization in the model plant Nicotiana benthamiana. We show that PpRxLR2 is able to completely suppress INF-1-induced cell death, whereas PpRxLR3 and PpRxLR5 moderately suppressed N. benthamiana immunity in a less-extensive manner. Moreover, we confirmed the effector-triggered susceptibility activity of these proteins after transient transformation and infection of N. benthamiana plants. All three CREs enhanced virulence of P. parasitica during the interaction with N. benthamiana. These effectors, in particular PpRxLR2, can be targeted for the development of biotechnology-based control strategies of P. parasitica diseases.
Collapse
Affiliation(s)
- R J D Dalio
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - H J Maximo
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - T S Oliveira
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - R O Dias
- 2 Instituto de Química, Universidade de São Paulo USP, São Paulo, SP, Brazil; and
| | - M C Breton
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - H Felizatti
- 3 Instituto de Matemática, Física e Computação Científica, Universidade Estadual de Campinas Unicamp, Campinas, SP, Brazil
| | - M Machado
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| |
Collapse
|
94
|
Cui J, Xu P, Meng J, Li J, Jiang N, Luan Y. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:787-800. [PMID: 29234827 DOI: 10.1007/s00122-017-3035-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/01/2017] [Indexed: 05/22/2023]
Abstract
SpWRKY3 was identified as a resistance gene to Phytophthora infestans from Solanum pimpinellifolium L3708 and its transgenic tomato showed a significant resistance to P. infestans. This finding reveals the potential application of SpWRKY3 in future molecular breeding. Transcription factors (TFs) play crucial roles in the plant response to various pathogens. In this present study, we used comparative transcriptome analysis of tomatoes inoculated with and without Phytophthora infestans to identify 1103 differentially expressed genes. Seven enrichment GO terms (level 4) associated with the plant resistance to pathogens were identified. It was found that thirty-five selected TF genes from GO enriched term, sequence-specific DNA binding transcription factor activity (GO: 0003700), were induced by P. infestans. Of these TFs, the accumulation of a homologous gene of WRKY (SpWRKY3) was significantly changed after P. infestans induction, and it was also isolated form P. infestans-resistant tomato, Solanum pimpinellifolium L3708. Overexpression of SpWRKY3 in tomato positively modulated P. infestans defense response as shown by decreased number of necrotic cells, lesion sizes and disease index, while the resistance was impaired after SpWRKY3 silencing. After P. infestans infection, the expression levels of PR genes in transgenic tomato plants overexpressed SpWRKY3 were significantly higher than those in WT, while the number of necrotic cells and the reactive oxygen species (ROS) accumulation were fewer and lower. These results suggest that SpWRKY3 induces PR gene expression and reduces the ROS accumulation to protect against cell membrane injury, leading to enhanced resistance to P. infestans. Our results provide insight into SpWRKY3 as a positive regulator involved in tomato-P. infestans interaction, and its function may enhance tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Pinsan Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jingbin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
95
|
Lee JH, Lee SE, Oh S, Seo E, Choi D. HSP70s Enhance a Phytophthora infestans Effector-Induced Cell Death via an MAPK Cascade in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:356-362. [PMID: 29140163 DOI: 10.1094/mpmi-07-17-0156-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A destructive pathogen, Phytophthora infestans, secretes hundreds of effectors for successful survival in its host plants. The effectors modulate the plant defense system at diverse cellular compartments to take an advantage of pathogen survivals. A few research studies have shown the mode of action of each effector and their interacting proteins in plant cells. Here, we investigated the mode of action of a P. infestans effector, Pi23226, which induces cell death in Nicotiana benthamiana. To identify its host factors, we performed coimmunoprecipitation and liquid chromatography-mass spectrometry, and selected members of heat shock protein 70 (HSP70s) as candidates. These HSP70s, known to function as chaperones, were associated with Pi23226 in planta and accelerated Pi23226-induced cell death. Additionally, they were found to be involved in plant basal defense by suppressing the growth of P. infestans. We also found that specific components of a mitogen-activated protein kinase cascade were involved in Pi23226-induced cell death. Our findings show that HSP70s functions in defense systems by regulating effector-triggered cell death and by suppressing the growth of the pathogen. This suggests that host plants manipulate the ubiquitous proteins to detect pathogen effectors for functioning in the defense system.
Collapse
Affiliation(s)
- Joo Hyun Lee
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - So Eui Lee
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - Soohyun Oh
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - Eunyoung Seo
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
| | - Doil Choi
- 1 Department of Plant Science and Plant Genomics and Breeding Institute, Institute of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; and
- 2 Institute of Seed Biotechnology, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| |
Collapse
|
96
|
Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, Guo J, Rao W, Jing S, Guan W, Ma Y, Wu Y, Hu L, Chen R, Du B, Zhu L, Yu D, He G. A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants. PLANT PHYSIOLOGY 2018; 176:552-565. [PMID: 29133370 PMCID: PMC5761773 DOI: 10.1104/pp.17.00755] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/09/2017] [Indexed: 05/20/2023]
Abstract
The brown planthopper, Nilaparvata lugens, is a pest that threatens rice (Oryza sativa) production worldwide. While feeding on rice plants, planthoppers secrete saliva, which plays crucial roles in nutrient ingestion and modulating plant defense responses, although the specific functions of salivary proteins remain largely unknown. We identified an N. lugens-secreted mucin-like protein (NlMLP) by transcriptome and proteome analyses and characterized its function, both in brown planthopper and in plants. NlMLP is highly expressed in salivary glands and is secreted into rice during feeding. Inhibition of NlMLP expression in planthoppers disturbs the formation of salivary sheaths, thereby reducing their performance. In plants, NlMLP induces cell death, the expression of defense-related genes, and callose deposition. These defense responses are related to Ca2+ mobilization and the MEK2 MAP kinase and jasmonic acid signaling pathways. The active region of NlMLP that elicits plant responses is located in its carboxyl terminus. Our work provides a detailed characterization of a salivary protein from a piercing-sucking insect other than aphids. Our finding that the protein functions in plant immune responses offers new insights into the mechanism underlying interactions between plants and herbivorous insects.
Collapse
Affiliation(s)
- Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bingfang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Zhizheng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Weiwei Rao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Shengli Jing
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Liang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Dazhao Yu
- Institute for Plant Protection and Soil Sciences, Hubei Academy of Agricultural Sciences, 430064 Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
97
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
98
|
Giesbers AKJ, Pelgrom AJE, Visser RGF, Niks RE, Van den Ackerveken G, Jeuken MJW. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. THE NEW PHYTOLOGIST 2017; 216:915-926. [PMID: 28833168 PMCID: PMC5656935 DOI: 10.1111/nph.14741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 05/03/2023]
Abstract
Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna.
Collapse
Affiliation(s)
- Anne K. J. Giesbers
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | - Alexandra J. E. Pelgrom
- Plant–Microbe InteractionsDepartment of BiologyUtrecht University3584CH Utrechtthe Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | - Rients E. Niks
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| | | | - Marieke J. W. Jeuken
- Laboratory of Plant BreedingWageningen University & Research6700AJ Wageningenthe Netherlands
| |
Collapse
|
99
|
Abstract
In 2007, we reported that a phytopathogen effector directly inhibits a MAP kinase cascade. In the decade since, many more effectors have been found to inhibit MAP kinase cascades, providing not only a mechanistic understanding of pathogenesis and immunity in plants, but also the identification of previously unknown enzymes.
Collapse
Affiliation(s)
- Guozhi Bi
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
100
|
Franco-Orozco B, Berepiki A, Ruiz O, Gamble L, Griffe LL, Wang S, Birch PRJ, Kanyuka K, Avrova A. A new proteinaceous pathogen-associated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. THE NEW PHYTOLOGIST 2017; 214:1657-1672. [PMID: 28386988 DOI: 10.1111/nph.14542] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/15/2017] [Indexed: 05/09/2023]
Abstract
Pathogen-associated molecular patterns (PAMPs) are detected by plant pattern recognition receptors (PRRs), which gives rise to PAMP-triggered immunity (PTI). We characterized a novel fungal PAMP, Cell Death Inducing 1 (RcCDI1), identified in the Rhynchosporium commune transcriptome sampled at an early stage of barley (Hordeum vulgare) infection. The ability of RcCDI1 and its homologues from different fungal species to induce cell death in Nicotiana benthamiana was tested following agroinfiltration or infiltration of recombinant proteins produced by Pichia pastoris. Virus-induced gene silencing (VIGS) and transient expression of Phytophthora infestans effectors PiAVR3a and PexRD2 were used to assess the involvement of known components of PTI in N. benthamiana responses to RcCDI1. RcCDI1 was highly upregulated early during barley colonization with R. commune. RcCDI1 and its homologues from different fungal species, including Zymoseptoria tritici, Magnaporthe oryzae and Neurospora crassa, exhibited PAMP activity, inducing cell death in Solanaceae but not in other families of dicots or monocots. RcCDI1-triggered cell death was shown to require N. benthamiana Brassinosteroid insensitive 1-Associated Kinase 1 (NbBAK1), N. benthamiana suppressor of BIR1-1 (NbSOBIR1) and N. benthamiana SGT1 (NbSGT1), but was not suppressed by PiAVR3a or PexRD2. We report the identification of a novel Ascomycete PAMP, RcCDI1, recognized by Solanaceae but not by monocots, which activates cell death through a pathway that is distinct from that triggered by the oomycete PAMP INF1.
Collapse
Affiliation(s)
- Barbara Franco-Orozco
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Adokiye Berepiki
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Olaya Ruiz
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Louise Gamble
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Lucie L Griffe
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Shumei Wang
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
| | - Kostya Kanyuka
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Anna Avrova
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|