51
|
Identification and characterization of the MADS-box genes highly expressed in the laticifer cells of Hevea brasiliensis. Sci Rep 2019; 9:12673. [PMID: 31481699 PMCID: PMC6722073 DOI: 10.1038/s41598-019-48958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
MADS-box transcription factors possess many functions in plant reproduction and development. However, few MADS-box genes related to secondary metabolites regulation have been identified. In Hevea brasiliensis, natural rubber is a representative cis-polyisoprenoids in secondary metabolism which occurs in the rubber laticifer cells, the molecular regulation basis of natural rubber biosynthesis is not clear. Here, a total of 24 MADS-box genes including 4 type I MADS-box genes and 20 type II MADS-box genes were identified in the transcriptome of rubber tree latex. The phylogenetic analysis was performed to clarify the evolutionary relationships of all the 24 rubber tree MADS-box proteins with MADS-box transcription factors from Arabidopsis thaliana and Oryza sativa. Four type I MADS-box genes were subdivided into Mα (3 genes) and Mβ (1 gene). Twenty type II MADS-box genes were subclassified into MIKC* (8 genes) and MIKCc (12 genes). Eight MADS-box genes (HblMADS3, 5, 6, 7, 9, 13, 23, 24) were predominant expression in laticifers. ABA up-regulated the expression of HblMADS9, and the expression of HblMADS3, HblMADS5, HblMADS24 were up-regulated by MeJA. The function of HblMADS24 was elucidated. HblMADS24 bound HbFPS1 promoter in yeast and HblMADS24 activated HbFPS1 promoter in tobacco plants. Moreover, we proposed that HblMADS24 is a transcription activator of HbFPS1 which taking part in natural rubber biosynthesis.
Collapse
|
52
|
Chen Y, Shen Q, Lyu P, Lin R, Sun C. Identification and expression profiling of selected MADS-box family genes in Dendrobium officinale. Genetica 2019; 147:303-313. [PMID: 31292836 DOI: 10.1007/s10709-019-00071-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
Dendrobium officinale, a herb with highly medicinal and ornamental value, is widely distributed in China. MADS-box genes encode transcription factors that regulate various growth and developmental processes in plants, particular in flowering. However, the MADS-box genes in D. officinale are largely unknown. In our study, expression profiling analyses of selected MADS-box genes in D. officinale were performed. In total, 16 DnMADS-box genes with full-length ORF were identified and named according to their phylogenetic relationships with model plants. The transient expression of eight selected MADS-box genes in the epidermal cells of tobacco leaves showed that these DnMADS-box proteins localized to the nucleus. Tissue-specific expression analysis pointed out eight flower-specific expressed MADS-box genes in D. officinale. Furthermore, expression patterns of DnMADS-box genes were investigated during the floral transition process. DnMADS3, DnMADS8 and DnMADS22 were significantly up-regulated in the reproductive phase compared with the vegetative phase, suggesting putative roles of these DnMADS-box genes in flowering. Our data showed that the expressions of MADS-box genes in D. officinale were controlled by diverse exogenous phytohormones. Together, these findings will facilitate further studies of MADS-box genes in Orchids and broaden our understanding of the genetics of flowering.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.,Key laboratory of creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Qi Shen
- Plant Protection and Microbiology, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural & Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Renan Lin
- Yueqing Forestry Varieties Tech Center, Yueqing, Zhejiang, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China. .,Key laboratory of creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
53
|
Xu J, Chen Q, Liu P, Jia W, Chen Z, Xu Z. Integration of mRNA and miRNA Analysis Reveals the Molecular Mechanism Underlying Salt and Alkali Stress Tolerance in Tobacco. Int J Mol Sci 2019; 20:E2391. [PMID: 31091777 PMCID: PMC6566703 DOI: 10.3390/ijms20102391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as "photosynthesis" and "starch and sucrose metabolism," were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.
Collapse
Affiliation(s)
- Jiayang Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Wei Jia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zheng Chen
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zicheng Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
54
|
Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications. PLoS Genet 2019; 15:e1008065. [PMID: 30946745 PMCID: PMC6467423 DOI: 10.1371/journal.pgen.1008065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/16/2019] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Integration of environmental and endogenous cues at plant shoot meristems determines the timing of flowering and reproductive development. The MADS box transcription factor FLOWERING LOCUS C (FLC) of Arabidopsis thaliana is an important repressor of floral transition, which blocks flowering until plants are exposed to winter cold. However, the target genes of FLC have not been thoroughly described, and our understanding of the mechanisms by which FLC represses transcription of these targets and how this repression is overcome during floral transition is still fragmentary. Here, we identify and characterize TARGET OF FLC AND SVP1 (TFS1), a novel target gene of FLC and its interacting protein SHORT VEGETATIVE PHASE (SVP). TFS1 encodes a B3-type transcription factor, and we show that tfs1 mutants are later flowering than wild-type, particularly under short days. FLC and SVP repress TFS1 transcription leading to deposition of trimethylation of Iysine 27 of histone 3 (H3K27me3) by the Polycomb Repressive Complex 2 at the TFS1 locus. During floral transition, after downregulation of FLC by cold, TFS1 transcription is promoted by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS box protein encoded by another target of FLC/SVP. SOC1 opposes PRC function at TFS1 through recruitment of the histone demethylase RELATIVE OF EARLY FLOWERING 6 (REF6) and the SWI/SNF chromatin remodeler ATPase BRAHMA (BRM). This recruitment of BRM is also strictly required for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) binding at TFS1 to coordinate RNAPII recruitment through the Mediator complex. Thus, we show that antagonistic chromatin modifications mediated by different MADS box transcription factor complexes play a crucial role in defining the temporal and spatial patterns of transcription of genes within a network of interactions downstream of FLC/SVP during floral transition. The initiation of flowering in plants is exquisitely sensitive to environmental signals, ensuring that reproduction occurs at the appropriate time of year. The sensitivity of these responses depends upon strong repression of flowering under inappropriate conditions. FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) are related transcription factors that act in concert to strongly inhibit flowering in crucifer plants through repressing transcription of their target genes. Many direct FLC/ SVP targets have been identified in genome-wide studies, however few of these genes have been characterized for their roles in regulating flowering time or other aspects of reproductive development. Here, we characterize TARGET OF FLC AND SVP1 (TFS1) as a novel target of FLC and SVP, and demonstrate that TFS1 contributes to proper flowering-time control. Moreover, we provide a detailed mechanistic view of how TFS1 transcription is controlled during reproductive development through the repressive activity of FLC/SVP being overcome by the transcriptional activator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. Thus we further elucidate the network of genes repressed by FLC/SVP to block flowering and determine mechanisms by which their repressive activity is overcome during the initiation of flowering.
Collapse
|
55
|
Collum TD, Lutton E, Raines CD, Dardick C, Culver JN. Identification of phloem-associated translatome alterations during leaf development in Prunus domestica L. HORTICULTURE RESEARCH 2019; 6:16. [PMID: 30729006 PMCID: PMC6355854 DOI: 10.1038/s41438-018-0092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/01/2023]
Abstract
Phloem plays a fundamental role in plants by transporting hormones, nutrients, proteins, RNAs, and carbohydrates essential for plant growth and development. However, the identity of the underlying phloem genes and pathways remain enigmatic especially in agriculturally important perennial crops, in part, due to the technical difficulty of phloem sampling. Here, we used two phloem-specific promoters and a translating ribosome affinity purification (TRAP) strategy to characterize the phloem translatome during leaf development at 2, 4, and 6 weeks post vernalization in plum (Prunus domestica L.). Results provide insight into the changing phloem processes that occur during leaf development. These processes included the early activation of DNA replication genes that are likely involved in phloem cell division during leaf expansion, as well as the upregulation of phloem genes associated with sink to source conversion, induction of defense processes, and signaling for reproduction. Combined these results reveal the dynamics of phloem gene expression during leaf development and establish the TRAP system as a powerful tool for studying phloem-specific functions and responses in trees.
Collapse
Affiliation(s)
- Tamara D. Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
| | - Elizabeth Lutton
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | - C. Douglas Raines
- USDA-ARS, Appalachian Fruit Research Laboratory, Kearneysville, WV USA
| | | | - James N. Culver
- Institute for Bioscience and Biotechnology Research, College Park, MD USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD USA
| |
Collapse
|
56
|
Zhou Y, Hu L, Song J, Jiang L, Liu S. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1534556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Yong Zhou
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, PR China
| | - Lifang Hu
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, PR China
| | - Jianbo Song
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
| | - Lunwei Jiang
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
| | - Shiqiang Liu
- Laboratory of Biochemistry and Molecular Biology College of Science, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
57
|
Szaker HM, Darkó É, Medzihradszky A, Janda T, Liu HC, Charng YY, Csorba T. miR824/AGAMOUS-LIKE16 Module Integrates Recurring Environmental Heat Stress Changes to Fine-Tune Poststress Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1454. [PMID: 31824525 PMCID: PMC6886564 DOI: 10.3389/fpls.2019.01454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/18/2019] [Indexed: 05/19/2023]
Abstract
Plant development is continually fine-tuned based on environmental factors. How environmental perturbations are integrated into the developmental programs and how poststress adaptation is regulated remains an important topic to dissect. Vegetative to reproductive phase change is a very important developmental transition that is complexly regulated based on endogenous and exogenous cues. Proper timing of flowering is vital for reproductive success. It has been shown previously that AGAMOUS LIKE 16 (AGL16), a MADS-box transcription factor negatively regulates flowering time transition through FLOWERING LOCUS T (FT), a central downstream floral integrator. AGL16 itself is negatively regulated by the microRNA miR824. Here we present a comprehensive molecular analysis of miR824/AGL16 module changes in response to mild and recurring heat stress. We show that miR824 accumulates gradually in response to heat due to the combination of transient transcriptional induction and posttranscriptional stability. miR824 induction requires heat shock cis-elements and activity of the HSFA1 family and HSFA2 transcription factors. Parallel to miR824 induction, its target AGL16 is decreased, implying direct causality. AGL16 posttranscriptional repression during heat stress, however, is more complex, comprising of a miRNA-independent, and a miR824-dependent pathway. We also show that AGL16 expression is leaf vein-specific and overlaps with miR824 (and FT) expression. AGL16 downregulation in response to heat leads to a mild derepression of FT. Finally, we present evidence showing that heat stress regulation of miR824/AGL16 is conserved within Brassicaceae. In conclusion, due to the enhanced post-transcriptional stability of miR824, stable repression of AGL16 is achieved following heat stress. This may serve to fine-tune FT levels and alter flowering time transition. Stress-induced miR824, therefore, can act as a "posttranscriptional memory factor" to extend the acute impact of environmental fluctuations in the poststress period.
Collapse
Affiliation(s)
- Henrik Mihály Szaker
- Agricultural Biotechnology Institute, NARIC, Godollo, Hungary
- Faculty of Natural Sciences, Eötvös Lóránd University, Budapest, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | | | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Hsiang-chin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yee-yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tibor Csorba
- Agricultural Biotechnology Institute, NARIC, Godollo, Hungary
- *Correspondence: Tibor Csorba,
| |
Collapse
|
58
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
59
|
Susila H, Nasim Z, Ahn JH. Ambient Temperature-Responsive Mechanisms Coordinate Regulation of Flowering Time. Int J Mol Sci 2018; 19:ijms19103196. [PMID: 30332820 PMCID: PMC6214042 DOI: 10.3390/ijms19103196] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022] Open
Abstract
In plants, environmental conditions such as temperature affect survival, growth, and fitness, particularly during key stages such as seedling growth and reproduction. To survive and thrive in changing conditions, plants have evolved adaptive responses that tightly regulate developmental processes such as hypocotyl elongation and flowering time in response to environmental temperature changes. Increases in temperature, coupled with increasing fluctuations in local climate and weather, severely affect our agricultural systems; therefore, understanding the mechanisms by which plants perceive and respond to temperature is critical for agricultural sustainability. In this review, we summarize recent findings on the molecular mechanisms of ambient temperature perception as well as possible temperature sensing components in plants. Based on recent publications, we highlight several temperature response mechanisms, including the deposition and eviction of histone variants, DNA methylation, alternative splicing, protein degradation, and protein localization. We discuss roles of each proposed temperature-sensing mechanism that affects plant development, with an emphasis on flowering time. Studies of plant ambient temperature responses are advancing rapidly, and this review provides insights for future research aimed at understanding the mechanisms of temperature perception and responses in plants.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
60
|
Gustafsson C, Willforss J, Lopes-Pinto F, Ortiz R, Geleta M. Identification of genes regulating traits targeted for domestication of field cress (Lepidium campestre) as a biennial and perennial oilseed crop. BMC Genet 2018; 19:36. [PMID: 29843613 PMCID: PMC5975587 DOI: 10.1186/s12863-018-0624-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/18/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The changing climate and the desire to use renewable oil sources necessitate the development of new oilseed crops. Field cress (Lepidium campestre) is a species in the Brassicaceae family that has been targeted for domestication not only as an oilseed crop that produces seeds with a desirable industrial oil quality but also as a cover/catch crop that provides valuable ecosystem services. Lepidium is closely related to Arabidopsis and display significant proportions of syntenic regions in their genomes. Arabidopsis genes are among the most characterized genes in the plant kingdom and, hence, comparative genomics of Lepidium-Arabidopsis would facilitate the identification of Lepidium candidate genes regulating various desirable traits. RESULTS Homologues of 30 genes known to regulate vernalization, flowering time, pod shattering, oil content and quality in Arabidopsis were identified and partially characterized in Lepidium. Alignments of sequences representing field cress and two of its closely related perennial relatives: L. heterophyllum and L. hirtum revealed 243 polymorphic sites across the partial sequences of the 30 genes, of which 95 were within the predicted coding regions and 40 led to a change in amino acids of the target proteins. Within field cress, 34 polymorphic sites including nine non-synonymous substitutions were identified. The phylogenetic analysis of the data revealed that field cress is more closely related to L. heterophyllum than to L. hirtum. CONCLUSIONS There is significant variation within and among Lepidium species within partial sequences of the 30 genes known to regulate traits targeted in the present study. The variation within these genes are potentially useful to speed-up the process of domesticating field cress as future oil crop. The phylogenetic relationship between the Lepidium species revealed in this study does not only shed some light on Lepidium genome evolution but also provides important information to develop efficient schemes for interspecific hybridization between different Lepidium species as part of the domestication efforts.
Collapse
Affiliation(s)
- Cecilia Gustafsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| | - Jakob Willforss
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-23053, Alnarp, Sweden
| | - Fernando Lopes-Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-750 07, Uppsala, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-23053, Alnarp, Sweden.
| |
Collapse
|
61
|
Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.). Genes (Basel) 2018; 9:genes9040193. [PMID: 29617274 PMCID: PMC5924535 DOI: 10.3390/genes9040193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Mα). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.
Collapse
|
62
|
Liu H, Yu H, Tang G, Huang T. Small but powerful: function of microRNAs in plant development. PLANT CELL REPORTS 2018; 37:515-528. [PMID: 29318384 DOI: 10.1007/s00299-017-2246-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are a group of endogenous noncoding small RNAs frequently 21 nucleotides long. miRNAs act as negative regulators of their target genes through sequence-specific mRNA cleavage, translational repression, or chromatin modifications. Alterations of the expression of a miRNA or its targets often result in a variety of morphological and physiological abnormalities, suggesting the strong impact of miRNAs on plant development. Here, we review the recent advances on the functional studies of plant miRNAs. We will summarize the regulatory networks of miRNAs in a series of developmental processes, including meristem development, establishment of lateral organ polarity and boundaries, vegetative and reproductive organ growth, etc. We will also conclude the conserved and species-specific roles of plant miRNAs in evolution and discuss the strategies for further elucidating the functional mechanisms of miRNAs during plant development.
Collapse
Affiliation(s)
- Haiping Liu
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Hongyang Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guiliang Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
63
|
Mishra A, Bohra A. Non-coding RNAs and plant male sterility: current knowledge and future prospects. PLANT CELL REPORTS 2018; 37:177-191. [PMID: 29332167 DOI: 10.1007/s00299-018-2248-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.
Collapse
Affiliation(s)
- Ankita Mishra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
64
|
Zhang L, Chen L, Yu D. Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering. PLANT PHYSIOLOGY 2018; 176:790-803. [PMID: 29133369 PMCID: PMC5761768 DOI: 10.1104/pp.17.00657] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/04/2023]
Abstract
Flowering time is tightly controlled by both endogenous and exogenous signals. Although several lines of evidence have suggested the involvement of WRKY transcription factors in floral initiation, the underlying mechanisms and signaling pathways involved remain elusive. Here, we newly identified Arabidopsis (Arabidopsis thaliana) WRKY DNA binding protein75 (WRKY75) as a positive regulator of flowering initiation. Mutation of WRKY75 resulted in a delay in flowering, whereas overexpression of WRKY75 significantly accelerated flowering in Arabidopsis. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) was lower in wrky75 mutants than in the wild type, but greater in WRKY75-overexpressing plants. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of FT Both in vivo and in vitro biochemical analyses demonstrated that WRKY75 interacts with DELLA proteins. We found that both REPRESSOR OF ga1-3 (RGA) RGA-LIKE1 (RGL1) and GA INSENSITIVE (GAI) can repress the activation ability of WRKY75, thereby attenuating expression of its regulon. Genetic analyses indicated that WRKY75 positively regulates flowering in a FT-dependent manner and overexpression of RGL1 or gain-of-function of GAI could partially rescue the early flowering phenotype of WRKY75-overexpressing plants. Taken together, our results demonstrate that WRKY75 may function as a new component of the GA-mediated signaling pathway to positively regulate flowering in Arabidopsis.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
65
|
Liu J, Fu X, Dong Y, Lu J, Ren M, Zhou N, Wang C. MIKC C-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. HORTICULTURE RESEARCH 2018; 5:25. [PMID: 29736250 PMCID: PMC5928068 DOI: 10.1038/s41438-018-0031-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 05/04/2023]
Abstract
MIKCC-type MADS-box (MIKCC) genes encode transcription factors that have crucial roles in controlling floral organogenesis and flowering time in plants. Although this gene family has been well characterized in many plant species, its evolutionary and comprehensive functional analysis in rose is lacking. In this study, 58 non-redundant MIKCC uni-transcripts were extensively identified from rose transcriptomes. Phylogenetic analysis placed these genes into 12 clades with their Arabidopsis and strawberry counterparts, and revealed that ABCDE model (including AP1/FUL, AP3/PI, AG, and SEP clades), and SOC1 and AGL6 clade genes have remarkably expanded in Rosa chinensis, whereas genes from the FLC and AGL17 clades were undetectable. Sequence alignments suggest that the AP3/PI clade may contribute to more specific functions in rose due to a high variation of amino acid residues within its MADS-box domains. A comparative analysis of gene expression in specific floral organ differentiation stages and floral organs between R. chinensis cv. Old Blush and the closely related mutant genotype R. chinensis cv. Viridiflora (floral organs mutated into leaf-like structures) further revealed the roles of ABCDE model genes during floral organogenesis in rose. Analysis of co-expression networks provided an overview of the regulatory mechanisms of rose MIKCC genes and shed light on both the prominent roles of AP3/PI clade genes in floral organogenesis and the roles of RcAGL19, RcAGL24, and RcSOC1 in regulating floral transition in rose. Our analyses provide an overall insight of MIKCC genes in rose and their potential roles in floral organogenesis.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Xiaodong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yuwei Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Ningning Zhou
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200 China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
66
|
Dong X, Jiang X, Kuang G, Wang Q, Zhong M, Jin D, Hu J. Genetic control of flowering time in woody plants: Roses as an emerging model. PLANT DIVERSITY 2017; 39:104-110. [PMID: 30159498 PMCID: PMC6112279 DOI: 10.1016/j.pld.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 05/11/2023]
Abstract
Genetic control of the timing of flowering in woody plants is complex and has yet to be adequately investigated due to their long life-cycle and difficulties in genetic modification. Studies in Populus, one of the best woody plant models, have revealed a highly conserved genetic network for flowering timing in annuals. However, traits like continuous flowering cannot be addressed with Populus. Roses and strawberries have relatively small, diploid genomes and feature enormous natural variation. With the development of new genetic populations and genomic tools, roses and strawberries have become good models for studying the molecular mechanisms underpinning the regulation of flowering in woody plants. Here, we review findings on the molecular and genetic factors controlling continuous flowering in roses and woodland strawberries. Natural variation at TFL1 orthologous genes in both roses and strawberries seems be the key plausible factor that regulates continuous flowering. However, recent efforts suggest that a two-recessive-loci model may explain the controlling of continuous flowering in roses. We propose that epigenetic factors, including non-coding RNAs or chromatin-related factors, might also play a role. Insights into the genetic control of flowering time variation in roses should benefit the development of new germplasm for woody crops and shed light on the molecular genetic bases for the production and maintenance of plant biodiversity.
Collapse
Affiliation(s)
- Xue Dong
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Xiaodong Jiang
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Guoqiang Kuang
- Second High School, Rongcheng 264309, Shandong Province, PR China
| | - Qingbo Wang
- Second High School, Rongcheng 264309, Shandong Province, PR China
| | - Micai Zhong
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Dongmin Jin
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Jinyong Hu
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
- Corresponding author.
| |
Collapse
|
67
|
Hayama R, Sarid-Krebs L, Richter R, Fernández V, Jang S, Coupland G. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO J 2017; 36:904-918. [PMID: 28270524 PMCID: PMC5376961 DOI: 10.15252/embj.201693907] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs.
Collapse
Affiliation(s)
- Ryosuke Hayama
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Liron Sarid-Krebs
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Virginia Fernández
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Seonghoe Jang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
68
|
Ma Z, Jiang J, Hu Z, Lyu T, Yang Y, Jiang J, Cao J. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis. PLANT MOLECULAR BIOLOGY 2017; 93:313-326. [PMID: 27909970 DOI: 10.1007/s11103-016-0563-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis. MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.
Collapse
Affiliation(s)
- Zhiming Ma
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianxia Jiang
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziwei Hu
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Tianqi Lyu
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Yang
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Jiang
- State Key Lab of Agrobiotechnology, Shenzhen Base, Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Jiashu Cao
- Lab of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
69
|
Shi T, Wang K, Yang P. The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:442-457. [PMID: 27743419 DOI: 10.1111/tpj.13394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre-eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA-likes. Additionally, the MIRNAs participating in lotus pollen-pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.
Collapse
Affiliation(s)
- Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
70
|
Fernández V, Takahashi Y, Le Gourrierec J, Coupland G. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:426-40. [PMID: 27117775 DOI: 10.1111/tpj.13183] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Plants detect changes in day length to induce seasonal patterns of flowering. The photoperiodic pathway accelerates the flowering of Arabidopsis thaliana under long days (LDs) whereas it is inactive under short days (SDs), resulting in delayed flowering. This delay is overcome by exposure of plants to high temperature (27°C) under SDs (27°C-SD). Previously, the high-temperature flowering response was proposed to involve either the impaired activity of MADS-box transcription factor (TF) floral repressors or PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) TF-mediated activation of FLOWERING LOCUS T (FT), which encodes the output signal of the photoperiodic pathway. We integrate these observations by studying several PIFs, the MADS-box SHORT VEGETATIVE PHASE (SVP) and the photoperiodic pathway under 27°C-SD. We find that the mRNAs of FT and its paralogue TWIN SISTER OF FT (TSF) are increased at dusk under 27°C-SD compared with 21°C-SD, and that this requires PIF4 and PIF5 as well as CONSTANS (CO), a TF that promotes flowering under LDs. The CO and PIF4 proteins are present at dusk under 27°C-SD, and they physically interact. Although Col-0 plants flower at similar times under 27°C-SD and 21°C-LD the expression level of FT is approximately 10-fold higher under 21°C-LD, suggesting that responsiveness to FT is also increased under 27°C-SD, perhaps as a result of the reduced activity of SVP in the meristem. Accordingly, only svp-41 ft-10 tsf-1 plants flowered at the same time under 21°C-SD and 27°C-SD. Thus, we propose that under non-inductive SDs, elevated temperatures increase the activity and sensitize the response to the photoperiod pathway.
Collapse
Affiliation(s)
- Virginia Fernández
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| | - Yasuyuki Takahashi
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| | - José Le Gourrierec
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829, Cologne, Germany
| |
Collapse
|
71
|
Bai S, Saito T, Ito A, Tuan PA, Xu Y, Teng Y, Moriguchi T. Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia 'Kosui'). BMC Genomics 2016; 17:230. [PMID: 26976036 PMCID: PMC4791883 DOI: 10.1186/s12864-016-2514-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 01/12/2023] Open
Abstract
Background In woody perennial plants, including deciduous fruit trees, such as pear, endodormancy is a strategy for surviving the cold winter. A better understanding of the mechanism underlying the endodormancy phase transition is necessary for developing countermeasures against the effects of global warming. In this study, we analyzed the sRNAome of Japanese pear flower buds in endodormant and ecodormant stages over two seasons by implementing of RNA-seq and degradome-sequencing. Results We identified 137 conserved or less conserved miRNAs and 50 pear-specific miRNAs. However, none of the conserved microRNAs or pear-specific miRNAs was differentially expressed between endodormancy and ecodormancy stages. On the contrast, 1540 of 218,050 loci that produced sRNAs were differentially expressed between endodormancy and ecodormancy, suggesting their potential roles on the phase transition from endodormancy to ecodomancy. We also characterized a multifunctional miRNA precursor MIR168, which produces two functional miR168 transcripts, namely miR168.1 and miR168.2; cleavage events were predominantly mediated by the non-conserved variant miR168.2 rather than the conserved variant miR168.1. Finally, we showed that a TAS3 trans-acting siRNA triggered phased siRNA within the ORF of one of its target genes, AUXIN RESPONSE FACTOR 4, via the analysis of phased siRNA loci, indicating that siRNAs are able to trigger phased siRNAs in pear. Conclusion We analyzed the sRNAome of pear flower bud during dormant phase transition. Our work described the sRNA profiles of pear winter buds during dormant phase transition, showing that dormancy release is a highly coordinated physiological process involving the regulation of sRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2514-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan. .,Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan.,Present address: Graduate School of Horticulture, Chiba University, Matsudo-shi, Chiba, 271-8510, Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | - Pham Anh Tuan
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | - Ying Xu
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuanwen Teng
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan.
| |
Collapse
|
72
|
Li C, Wang Y, Xu L, Nie S, Chen Y, Liang D, Sun X, Karanja BK, Luo X, Liu L. Genome-Wide Characterization of the MADS-Box Gene Family in Radish ( Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1390. [PMID: 27703461 PMCID: PMC5028395 DOI: 10.3389/fpls.2016.01390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/01/2016] [Indexed: 05/08/2023]
Abstract
The MADS-box gene family is an important transcription factor (TF) family that is involved in various aspects of plant growth and development, especially flowering time and floral organogenesis. Although it has been reported in many plant species, the systematic identification and characterization of MADS-box TF family is still limited in radish (Raphanus sativus L.). In the present study, a comprehensive analysis of MADS-box genes was performed, and a total of 144 MADS-box family members were identified from the whole radish genome. Meanwhile, a detailed list of MADS-box genes from other 28 plant species was also investigated. Through the phylogenetic analysis between radish and Arabidopsis thaliana, all the RsMADS genes were classified into two groups including 68 type I (31 Mα, 12 Mβ and 25Mγ) and 76 type II (70 MIKCC and 6 MIKC∗). Among them, 41 (28.47%) RsMADS genes were located in nine linkage groups of radish from R1 to R9. Moreover, the homologous MADS-box gene pairs were identified among radish, A. thaliana, Chinese cabbage and rice. Additionally, the expression profiles of RsMADS genes were systematically investigated in different tissues and growth stages. Furthermore, quantitative real-time PCR analysis was employed to validate expression patterns of some crucial RsMADS genes. These results could provide a valuable resource to explore the potential functions of RsMADS genes in radish, and facilitate dissecting MADS-box gene-mediated molecular mechanisms underlying flowering and floral organogenesis in root vegetable crops.
Collapse
Affiliation(s)
- Chao Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Shanshan Nie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yinglong Chen
- School of Earth and Environment, The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Dongyi Liang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Benard K. Karanja
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Liwang Liu,
| |
Collapse
|
73
|
Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, Qiao M, Wang N, Li S, Cao X, Park CM, Xiang F. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:96-106. [PMID: 26643131 DOI: 10.1111/tpj.13092] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 05/03/2023]
Abstract
Flowering is crucial for achieving reproductive success. A large number of well-delineated factors affecting flowering are involved in complex genetic networks in Arabidopsis thaliana. However, the underlying part played by the WRKY transcription factors in this process is not yet clear. Here, we report that WRKY71 is able to accelerate flowering in Arabidopsis. An activation-tagged mutant WRKY71-1D and a constitutive over-expresser of WRKY71 both flowered earlier than the wild type (WT). In contrast, both the RNA interference-based multiple WRKY knock-out mutant (w71w8 + 28RNAi) and the dominant repression line (W71-SRDX) flowered later. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) and the floral meristem identity genes LEAFY (LFY), APETALA1 (AP1) and FRUITFULL (FUL) were greater in WRKY71-1D than in the WT, but lower in w71w8 + 28RNAi and W71-SRDX. Further, WRKY71 was shown to bind to the W-boxes in the FT and LFY promoters in vitro and in vivo. The suggestion is that WRKY71 activity hastens flowering via the direct activation of FT and LFY.
Collapse
Affiliation(s)
- Yanchong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Long Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Sang-Gyu Kim
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Pil J Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Meng Qiao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Nan Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chung-Mo Park
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
74
|
Feng SJ, Zhang XD, Liu XS, Tan SK, Chu SS, Meng JG, Zhao KX, Zheng JF, Yang ZM. Characterization of long non-coding RNAs involved in cadmium toxic response in Brassica napus. RSC Adv 2016. [DOI: 10.1039/c6ra05459e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence of long non-coding RNA (lncRNA) involvement in a variety of biological responses to environmental stresses.
Collapse
Affiliation(s)
- Sheng Jun Feng
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Xian Duo Zhang
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Shang Kun Tan
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Shan Shan Chu
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jin Guo Meng
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Kai Xuan Zhao
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jian Feng Zheng
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|
75
|
Mittal A, Jiang Y, Ritchie GL, Burke JJ, Rock CD. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:78-95. [PMID: 26706061 DOI: 10.1016/j.plantsci.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Yingwen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Glen L Ritchie
- Department of Plant and Soils Science, Texas Tech University, Lubbock, TX 79409-2122, United States.
| | - John J Burke
- USDA-ARS Plant Stress and Germplasm Laboratory, Lubbock, TX 79415, United States.
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
76
|
Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Tyagi AK, Parida SK. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. PLANT MOLECULAR BIOLOGY 2015; 89:403-20. [PMID: 26394865 DOI: 10.1007/s11103-015-0377-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/02/2015] [Indexed: 05/08/2023]
Abstract
A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200-250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34% combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6-27.3% PVE at 5.4-11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41% combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea.
Collapse
Affiliation(s)
- Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
77
|
Bratzel F, Turck F. Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biol 2015; 16:192. [PMID: 26374394 PMCID: PMC4571075 DOI: 10.1186/s13059-015-0770-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plants commit to flowering based on endogenous and exogenous information that they can remember across mitotic cell divisions. Here, we review how signal perception and epigenetic memory converge at key integrator genes, and we show how variation in their regulatory circuits supports the diversity of plant lifestyles.
Collapse
Affiliation(s)
- Fabian Bratzel
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Carl von Linne Weg 10, 50829, Cologne, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Department of Plant Developmental Biology, Carl von Linne Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
78
|
Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 2015; 5:14034. [PMID: 26369897 PMCID: PMC4570191 DOI: 10.1038/srep14034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/13/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops.
Collapse
|
79
|
Liu W, Han X, Zhan G, Zhao Z, Feng Y, Wu C. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.). Int J Mol Sci 2015; 16:20657-73. [PMID: 26404246 PMCID: PMC4613224 DOI: 10.3390/ijms160920657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022] Open
Abstract
The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.
Collapse
Affiliation(s)
- Wei Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Xiangdong Han
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Ge Zhan
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Zhenfang Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| | - Cunxiang Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement and MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, the Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
80
|
Teotia S, Tang G. To bloom or not to bloom: role of microRNAs in plant flowering. MOLECULAR PLANT 2015; 8:359-77. [PMID: 25737467 DOI: 10.1016/j.molp.2014.12.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 05/02/2023]
Abstract
During the course of their life cycles, plants undergo various morphological and physiological changes underlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their interactions, and applications are presented.
Collapse
Affiliation(s)
- Sachin Teotia
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; School of Biotechnology, Gautam Buddha University, Greater Noida, U.P. 201312, India; Department of Biological Sciences and Biotechnology Research Center (BRC), Michigan Technological University, Houghton, MI 49931, USA
| | - Guiliang Tang
- Provincial State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences and Biotechnology Research Center (BRC), Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
81
|
Wang JJ, Guo HS. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. THE PLANT CELL 2015; 27:574-90. [PMID: 25794935 PMCID: PMC4558675 DOI: 10.1105/tpc.15.00101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/20/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.
Collapse
Affiliation(s)
- Jing-Jing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Beijing 100101, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Beijing 100101, China
| |
Collapse
|
82
|
Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. PLANT PHYSIOLOGY 2015; 167:854-71. [PMID: 25560877 PMCID: PMC4348782 DOI: 10.1104/pp.114.255430] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/30/2014] [Indexed: 05/18/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host's response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development.
Collapse
Affiliation(s)
- Li Xue
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Haitao Cui
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Benjamin Buer
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Vinod Vijayakumar
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Pierre-Marc Delaux
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Stefanie Junkermann
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| |
Collapse
|
83
|
Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:353-62. [DOI: 10.1002/jez.b.22598] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
|
84
|
Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol 2015; 16:31. [PMID: 25853185 PMCID: PMC4378019 DOI: 10.1186/s13059-015-0597-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Background The initiation of flowering is an important developmental transition as it marks the beginning of the reproductive phase in plants. The MADS-box transcription factors (TFs) FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) form a complex to repress the expression of genes that initiate flowering in Arabidopsis. Both TFs play a central role in the regulatory network by conferring seasonal patterns of flowering. However, their interdependence and biological relevance when acting as a complex have not been extensively studied. Results We characterized the effects of both TFs individually and as a complex on flowering initiation using transcriptome profiling and DNA-binding occupancy. We find four major clusters regulating transcriptional responses, and that DNA binding scenarios are highly affected by the presence of the cognate partner. Remarkably, we identify genes whose regulation depends exclusively on simultaneous action of both proteins, thus distinguishing between the specificity of the SVP:FLC complex and that of each TF acting individually. The downstream targets of the SVP:FLC complex include a higher proportion of genes regulating floral induction, whereas those bound by either TF independently are biased towards floral development. Many genes involved in gibberellin-related processes are bound by the SVP:FLC complex, suggesting that direct regulation of gibberellin metabolism by FLC and SVP contributes to their effects on flowering. Conclusions The regulatory codes controlled by SVP and FLC were deciphered at the genome-wide level revealing substantial flexibility based on dependent and independent DNA binding that may contribute to variation and robustness in the regulation of flowering. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0597-1) contains supplementary material, which is available to authorized users.
Collapse
|
85
|
Wells CE, Vendramin E, Jimenez Tarodo S, Verde I, Bielenberg DG. A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC PLANT BIOLOGY 2015; 15:41. [PMID: 25848674 PMCID: PMC4329201 DOI: 10.1186/s12870-015-0436-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/22/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND MADS-box genes encode a family of eukaryotic transcription factors distinguished by the presence of a highly-conserved ~58 amino acid DNA-binding and dimerization domain (the MADS-box). The central role played by MADS-box genes in peach endodormancy regulation led us to examine this large gene family in more detail. We identified the locations and sequences of 79 MADS-box genes in peach, separated them into established subfamilies, and broadly surveyed their tissue-specific and dormancy-induced expression patterns using next-generation sequencing. We then focused on the dormancy-related SVP/AGL24 and FLC subfamilies, comparing their numbers and phylogenetic relationships with those of other sequenced woody perennial genomes. RESULTS We identified 79 MADS-box genes distributed across all eight peach chromosomes and frequently located in clusters of two or more genes. They encode proteins with a mean length of 248 ± 72 amino acids and include representatives from most of the thirteen Type II (MIKC) subfamilies, as well as members of the Type I Mα, Mβ, and Mγ subfamilies. Most Type I genes were present in species-specific monophyletic lineages, and their expression in the peach sporophyte was low or absent. Most Type II genes had Arabidopsis orthologs and were expressed at much higher levels throughout vegetative and fruit tissues. During short-day-induced growth cessation, seven Type II genes from the SVP/AGL24, AGL17, and SEP subfamilies showed significant changes in expression. Phylogenetic analyses indicated that multiple, independent expansions have taken place within the SVP/AGL24 and FLC lineages in woody perennial species. CONCLUSIONS Most Type I genes appear to have arisen through tandem duplications after the divergence of the Arabidopsis and peach lineages, whereas Type II genes appear to have increased following whole genome duplication events. An exception to the latter rule occurs in the FLC and SVP/AGL24 Type II subfamilies, in which species-specific tandem duplicates have been retained in a number of perennial species. These subfamilies comprise part of a genetic toolkit that regulates endodormancy transitions, but phylogenetic and expression data suggest that individual orthologs may not function identically across all species.
Collapse
Affiliation(s)
- Christina E Wells
- />Department of Biological Sciences, Clemson University, Long Hall, 29634 Clemson, SC USA
| | - Elisa Vendramin
- />Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per la Frutticoltura (CRA-FRU), Rome, Italy
| | - Sergio Jimenez Tarodo
- />School of Agriculture, Forestry and Life Sciences, Clemson University, Poole Agricultural Center, 29634 Clemson, SC USA
| | - Ignazio Verde
- />Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria, Centro di Ricerca per la Frutticoltura (CRA-FRU), Rome, Italy
| | - Douglas G Bielenberg
- />Department of Biological Sciences, Clemson University, Long Hall, 29634 Clemson, SC USA
| |
Collapse
|
86
|
Qin Z, Li C, Mao L, Wu L. Novel insights from non-conserved microRNAs in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:586. [PMID: 25389431 PMCID: PMC4211545 DOI: 10.3389/fpls.2014.00586] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Plant microRNAs (miRNAs), a class of small non-coding regulatory RNAs, are canonically 20-24 nucleotides in length and bind to complementary target RNA sequences, guiding target attenuation via mRNA degradation or translation inhibition. Of the annotated miRNA families, evolutionarily conserved families have been well known to extensively regulate analogous targets and play critical roles in plant development and adaptation to adverse environments. By contrast, majority of these families that are merely present in a specific lineage or in a few closely related species have not been well functionally explored until recently. The fast-growing progresses being made in the actions of non-conserved miRNAs nowadays in diverse plant species may represent a highly promising research field in future. This review thereby summarizes the emerging advances in our understanding of the biogenesis, associated effectors, modes to targets, and biological functions of plant non-conserved miRNAs. In addition, it outlines the regulatory units recently discovered between conserved miRNAs and their alternative targets.
Collapse
Affiliation(s)
- Zhengrui Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Liang Wu and Long Mao, National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China e-mail: ;
| | - Liang Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Liang Wu and Long Mao, National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China e-mail: ;
| |
Collapse
|