51
|
Xia T, Yang Y, Zheng H, Han X, Jin H, Xiong Z, Qian W, Xia L, Ji X, Li G, Wang D, Zhang K. Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:897-909. [PMID: 33225586 PMCID: PMC8131041 DOI: 10.1111/pbi.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
The LRK10-like receptor kinases (LRK10L-RLKs) are ubiquitously present in higher plants, but knowledge of their expression and function is still limited. Here, we report expression and functional analysis of TtdLRK10L-1, a typical LRK10L-RLK in durum wheat (Triticum turgidum L. ssp. durum). The introns of TtdLRK10L-1 contained multiple kinds of predicted cis-elements. To investigate the potential effect of these cis-elements on TtdLRK10L-1 expression and function, two types of transgenic wheat lines were prepared, which expressed a GFP-tagged TtdLRK10L-1 protein (TtdLRK10L-1:GFP) from the cDNA or genomic DNA (gDNA) sequence of TtdLRK10L-1 under the native promoter. TtdLRK10L-1:GFP expression was up-regulated by the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) in both types of transgenic plants, with the scale of the elevation being much stronger in the gDNA lines. Both types of transgenic plants exhibited enhanced resistance to Bgt infection relative to wild type control. Notably, the Bgt defence activated in the gDNA lines was significantly stronger than that in the cDNA lines. Further analysis revealed that a putative MYB transcription factor binding site (MYB-BS, CAGTTA) located in TtdLRK10L-1 intron I was critical for the efficient expression and function of TtdLRK10L-1 in Bgt defence. This MYB-BS could also increase the activity of a superpromoter widely used in ectopic gene expression studies in plants. Together, our results deepen the understanding of the expression and functional characteristics of LRK10L-RLKs. TtdLRK10L-1 is likely useful for further dissecting the molecular processes underlying wheat defence against Bgt and for developing Bgt resistant wheat crops.
Collapse
Affiliation(s)
- Tengfei Xia
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yanping Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongyuan Zheng
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Huaibing Jin
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zijun Xiong
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesPeking UniversityBeijingChina
| | - Lanqi Xia
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xiang Ji
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Guangwei Li
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Daowen Wang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kunpu Zhang
- College of AgronomyState Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
52
|
Castro B, Citterico M, Kimura S, Stevens DM, Wrzaczek M, Coaker G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. NATURE PLANTS 2021; 7:403-412. [PMID: 33846592 PMCID: PMC8751180 DOI: 10.1038/s41477-021-00887-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
Reactive oxygen species (ROS) are essential for life and are involved in the regulation of almost all biological processes. ROS production is critical for plant development, response to abiotic stresses and immune responses. Here, we focus on recent discoveries in ROS biology emphasizing abiotic and biotic stress responses. Recent advancements have resulted in the identification of one of the first sensors for extracellular ROS and highlighted waves of ROS production during stress signalling in Arabidopsis. Enzymes that produce ROS, including NADPH oxidases, exhibit precise regulation through diverse post-translational modifications. Discoveries highlight the importance of both amino- and carboxy-terminal regulation of NADPH oxidases through protein phosphorylation and cysteine oxidation. Here, we discuss advancements in ROS compartmentalization, systemic ROS waves, ROS sensing and post-translational modification of ROS-producing enzymes and identify areas where foundational gaps remain.
Collapse
Affiliation(s)
- Bardo Castro
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
53
|
Planas-Riverola A, Markaide E, Caño-Delgado AI. New Role for LRR-Receptor Kinase in Sensing of Reactive Oxygen Species. TRENDS IN PLANT SCIENCE 2021; 26:102-104. [PMID: 33309457 DOI: 10.1016/j.tplants.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Understanding how reactive oxygen species (ROS) are sensed could help engineer plants with better stress responses that are relying on the production of ROS. Here, we summarize the latest research in ROS signaling with focus on the discovery by Wu et al. of a leucine-rich repeat receptor kinase (LRR-RK) as a hydrogen peroxide (H2O2) sensor.
Collapse
Affiliation(s)
- Ainoa Planas-Riverola
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Enara Markaide
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
| | - Ana I Caño-Delgado
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08193, Spain.
| |
Collapse
|
54
|
Maximiano MR, Miranda VJ, de Barros EG, Dias SC. Validation of an in vitro system to trigger changes in the gene expression of effectors of Sclerotinia sclerotiorum. J Appl Microbiol 2021; 131:885-897. [PMID: 33331046 DOI: 10.1111/jam.14973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/27/2022]
Abstract
AIMS Sclerotinia sclerotiorum, the causal agent of white mold, can infect several host species, including economically important crops. In this study, we propose and validate a new in vitro system able to mimic the conditions of interaction with the host and promote the induction of S. sclerotiorum effectors. METHODS AND RESULTS For culture media production, we selected three plant species, common bean (Phaseolus vulgaris L, cv. Requinte.), maize (Zea mays, cv. BRS1030) and beggarticks (Bidens pilosa). To validate this system as an in vitro inducer of effectors, the qRT-PCR technique was used to investigate the expression profile of some S. sclerotiorum effector genes in each growth medium at different times after inoculation. CONCLUSION The results obtained in this study provide a validation of a new method to study S. sclerotiorum during mimetic interaction with different hosts. Although leaf extract does not fully represent the plant environment, the presence of plant components in the culture medium seems to induce effector genes, mimicking in planta conditions. The use of MEVM is simpler than in planta growth, bypasses problems such as the amount of mycelium produced, as well as contamination of host cells during transcriptomic and proteomic analyses. SIGNIFICANCE AND IMPACT OF THE STUDY We have devised MEVM media as a model mimicking the interaction of S. sclerotiorum and its hosts and used it to evaluate in vitro expression of effectors normally expressed only in planta.
Collapse
Affiliation(s)
- M R Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - V J Miranda
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - E G de Barros
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - S C Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
55
|
de Azevedo Manhães AME, Ortiz-Morea FA, He P, Shan L. Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:79-101. [PMID: 33305880 PMCID: PMC7855669 DOI: 10.1111/jipb.13051] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants are exposed to pathogen invasions and environmental fluctuations. To overcome the challenges of their surroundings, plants acquire the potential to sense endogenous and exogenous cues, resulting in their adaptability. Hence, plants have evolved a large collection of plasma membrane-resident receptors, including RECEPTOR-LIKE KINASEs (RLKs) and RECEPTOR-LIKE PROTEINs (RLPs) to perceive those signals and regulate plant growth, development, and immunity. The ability of RLKs and RLPs to recognize distinct ligands relies on diverse categories of extracellular domains evolved. Co-regulatory receptors are often required to associate with RLKs and RLPs to facilitate cellular signal transduction. RECEPTOR-LIKE CYTOPLASMIC KINASEs (RLCKs) also associate with the complex, bifurcating the signal to key signaling hubs, such as MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascades, to regulate diverse biological processes. Here, we discuss recent knowledge advances in understanding the roles of RLKs and RLPs in plant growth, development, and immunity, and their connection with co-regulatory receptors, leading to activation of diverse intracellular signaling pathways.
Collapse
Affiliation(s)
| | - Fausto Andres Ortiz-Morea
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Amazonicas CIMAZ-MACAGUAL, Universidad de la Amazonia, Florencia 180002622, Colombia
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
56
|
Wang R, Shi C, Wang X, Li R, Meng Y, Cheng L, Qi M, Xu T, Li T. Tomato SlIDA has a critical role in tomato fertilization by modifying reactive oxygen species homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2100-2118. [PMID: 32573872 DOI: 10.1111/tpj.14886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 05/25/2023]
Abstract
Anther development and pollen tube elongation are key steps for pollination and fertilization. The timing and spatial distribution of reactive oxygen species (ROS) and programmed cell death are central to these processes, but the regulatory mechanism of ROS production is not well understood. Inflorescence deficient in abscission (IDA) is implicated in many plant development and responses to environmental stimuli. However, their role in reproductive development is still unknown. We generated tomato knockout lines (CR-slida) of an IDA homolog (SlIDA), which is expressed in the tapetum, septum and pollen tube, and observed a severe defect in male gametes. Further analysis indicated that there was a programmed cell death defect in the tapetum and septum and a failure of anther dehiscence in the CR-slida lines, likely related to insufficient ROS signal. Liquid chromatography-tandem mass spectrometry identified mature SlIDA as a 14-mer EPIP peptide, which was shown to be secreted, and a complementation experiment showed that application of a synthetic 14-mer EPIP peptide rescued the CR-slida defect and enhanced the ROS signal. Moreover, the application of the ROS scavengers diphenyleneiodonium or Mn-TMPP suppressed peptide function. Collectively, our results revealed that SlIDA plays an essential role in pollen development and pollen tube elongation by modulating ROS homeostasis.
Collapse
Affiliation(s)
- Rong Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - ChunLin Shi
- Department of Biosciences, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yan Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
57
|
Janse van Rensburg HC, Takács Z, Freynschlag F, Toksoy Öner E, Jonak C, Van den Ende W. Fructans Prime ROS Dynamics and Botrytis cinerea Resistance in Arabidopsis. Antioxidants (Basel) 2020; 9:E805. [PMID: 32882794 PMCID: PMC7555011 DOI: 10.3390/antiox9090805] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Naturally derived molecules can be used as priming or defense stimulatory agents to protect against biotic stress. Fructans have gained strong interest due to their ability to induce resistance in a number of crop species. In this study, we set out to establish the role of fructan-induced immunity against the fungal pathogen Botrytis cinerea in Arabidopsis thaliana. We show that both inulin- and levan-type fructans from different sources can enhance Arabidopsis resistance against B. cinerea. We found that inulin from chicory roots and levan oligosaccharides from the exopolysaccharide-producing bacterium Halomonas smyrnensis primed the NADPH-oxidase-mediated reactive oxygen species (ROS) burst in response to the elicitors flg22, derived from the bacterial flagellum, and oligogalacturonides (OGs), derived from the host cell wall. Neither induced a direct ROS burst typical of elicitors. We also found a primed response after infection with B. cinerea for H2O2 accumulation and the activities of ascorbate peroxidase and catalase. Sucrose accumulated as a consequence of fructan priming, and glucose and sucrose levels increased in fructan-treated plants after infection with B. cinerea. This study shows that levan-type fructans, specifically from bacterial origin, can prime plant defenses and that both inulin and levan oligosaccharide-mediated priming is associated with changes in ROS dynamics and sugar metabolism. Establishing fructan-induced immunity in Arabidopsis is an important step to further study the underlying mechanisms since a broad range of biological resources are available for Arabidopsis.
Collapse
Affiliation(s)
| | - Zoltan Takács
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Florentina Freynschlag
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Ebru Toksoy Öner
- IBSB, Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, 34722 Istanbul, Turkey;
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria; (Z.T.); (F.F.); (C.J.)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
58
|
Waadt R, Köster P, Andrés Z, Waadt C, Bradamante G, Lampou K, Kudla J, Schumacher K. Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. THE PLANT CELL 2020; 32:2582-2601. [PMID: 32471862 PMCID: PMC7401017 DOI: 10.1105/tpc.19.00892] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 05/16/2023]
Abstract
Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.
Collapse
Affiliation(s)
- Rainer Waadt
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Philipp Köster
- Molekulare Genetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zaida Andrés
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | | | - Gabriele Bradamante
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Konstantinos Lampou
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jörg Kudla
- Molekulare Genetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Karin Schumacher
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
59
|
Nazir F, Fariduddin Q, Khan TA. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. CHEMOSPHERE 2020; 252:126486. [PMID: 32234629 DOI: 10.1016/j.chemosphere.2020.126486] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.
Collapse
Affiliation(s)
- Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tanveer Alam Khan
- Department of Plant Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
60
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
61
|
Ismail A, El-Sharkawy I, Sherif S. Salt Stress Signals on Demand: Cellular Events in the Right Context. Int J Mol Sci 2020; 21:ijms21113918. [PMID: 32486204 PMCID: PMC7313037 DOI: 10.3390/ijms21113918] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Plant stress is a real dilemma; it puzzles plant biologists and is a global problem that negatively affects people’s daily lives. Of particular interest is salinity, because it represents one of the major water-related stress types. We aimed to determine the signals that guide the cellular-related events where various adaptation mechanisms cross-talk to cope with salinity-related water stress in plants. In an attempt to unravel these mechanisms and introduce cellular events in the right context, we expansively discussed how salt-related signals are sensed, with particular emphasis on aquaporins, nonselective cation channels (NSCCs), and glycosyl inositol phosphorylceramide (GIPC). We also elaborated on the critical role Ca2+, H+, and ROS in mediating signal transduction pathways associated with the response and tolerance to salt stress. In addition, the fragmentary results from the literature were compiled to develop a harmonized, informational, and contemplative model that is intended to improve our perception of these adaptative mechanisms and set a common platform for plant biologists to identify intriguing research questions in this area.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, P.O. Box 22516, Damanhour, Egypt;
| | - Islam El-Sharkawy
- Florida A&M University, Center for Viticulture and Small Fruit Research. 6361 Mahan Drive, Tallahassee, FL 32308, USA;
| | - Sherif Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22062, USA
- Correspondence: ; Tel.: +1-540-232-6035
| |
Collapse
|
62
|
Li Y, Zhang H, Yao Y, Gong T, Dong R, Li D, Liu Y, Lei B. Promoted off-on recognition of H 2O 2 based on the fluorescence of silicon quantum dots assembled two-dimensional PEG-MnO 2 nanosheets hybrid nanoprobe. Mikrochim Acta 2020; 187:347. [PMID: 32458214 DOI: 10.1007/s00604-020-04276-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
An "off-on" assay system for H2O2 determination was developed based on assembling ultra-bright fluorescent silicon quantum dots (SiQDs) and PEG-MnO2 nanosheets. Among them, SiQDs acted as fluorometric reporter, which can effectively eliminate the interference of plant pigments under excitation of 365 nm. PEG-MnO2 nanosheets played dual function of nanoquencher and H2O2 recognizer. Unlike previous reports, the quenching mechanism of SiQDs by PEG-MnO2 nanosheets is attributed to both the associative effect of inner filter effect and the static quenching effect. Thus, the fluorescence intensity of SiQDs at 445 nm decreased with increasing concentration of PEG-MnO2 nanosheets. After addition of H2O2, PEG-MnO2 nanosheets were reduced to Mn2+, consequently resulting in the recovery of the SiQDs fluorescence. Combined with these properties, an off-on fluorescent method was built for determination of H2O2 in plant leaves with high sensitivity and selectivity. The present method has two linear ranges: from 0.05 to 1 μM with a detection limit of 0.09 μM and from 1 to 80 μM with a detection limit of 4.04 μM. Graphical abstract Schematic representation of the mechanism of SiQD/PEG-MnO2 nanoprobe for determination of H2O2.
Collapse
Affiliation(s)
- Yanjuan Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, and Key Laboratory for Modern Agriculture Materials of Ministry of Education, Guangzhou, 510642, People's Republic of China
| | - Haoran Zhang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Laboratory of Lingnan Modern Agriculture, and Key Laboratory for Modern Agriculture Materials of Ministry of Education, Guangzhou, 510642, People's Republic of China.
| | - Yuying Yao
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ting Gong
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Riyue Dong
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Dongna Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Bingfu Lei
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Laboratory of Lingnan Modern Agriculture, and Key Laboratory for Modern Agriculture Materials of Ministry of Education, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
63
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
64
|
Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meißner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M. CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. THE PLANT CELL 2020; 32:1063-1080. [PMID: 32034035 PMCID: PMC7145479 DOI: 10.1105/tpc.19.00525] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are important messengers in eukaryotic organisms, and their production is tightly controlled. Active extracellular ROS production by NADPH oxidases in plants is triggered by receptor-like protein kinase-dependent signaling networks. Here, we show that CYSTEINE-RICH RLK2 (CRK2) kinase activity is required for plant growth and CRK2 exists in a preformed complex with the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). Functional CRK2 is required for the full elicitor-induced ROS burst, and consequently the crk2 mutant is impaired in defense against the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Our work demonstrates that CRK2 regulates plant innate immunity. We identified in vitro CRK2-dependent phosphorylation sites in the C-terminal region of RBOHD. Phosphorylation of S703 RBOHD is enhanced upon flg22 treatment, and substitution of S703 with Ala reduced ROS production in Arabidopsis. Phylogenetic analysis suggests that phospho-sites in the C-terminal region of RBOHD are conserved throughout the plant lineage and between animals and plants. We propose that regulation of NADPH oxidase activity by phosphorylation of the C-terminal region might be an ancient mechanism and that CRK2 is an important element in regulating microbe-associated molecular pattern-triggered ROS production.
Collapse
Affiliation(s)
- Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Lauri Vaahtera
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Huy Cuong Tran
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Anne Harzen
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Lena Meißner
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Maya Melina Tabea Wilkens
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53593, USA
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
65
|
Zhang T. En Garde: CRK2 Preassociates with RBOHD and Regulates ROS Production. THE PLANT CELL 2020; 32:801-802. [PMID: 32051214 PMCID: PMC7145471 DOI: 10.1105/tpc.20.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
66
|
Konopka-Postupolska D, Dobrowolska G. ABA perception is modulated by membrane receptor-like kinases. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1210-1214. [PMID: 32076729 PMCID: PMC7031077 DOI: 10.1093/jxb/erz531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article comments on: Shang Y, Yang D, Ha Y, Shin H-Y, Nam KH. 2020. RPK1 and BAK1 sequentially form complexes with OST1 to regulate ABA-induced stomatal closure. Journal of Experimental Botany 71, 1491–1502.
Collapse
Affiliation(s)
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
67
|
Fraudentali I, Rodrigues-Pousada RA, Tavladoraki P, Angelini R, Cona A. Leaf-Wounding Long-Distance Signaling Targets AtCuAOβ Leading to Root Phenotypic Plasticity. PLANTS 2020; 9:plants9020249. [PMID: 32075218 PMCID: PMC7076439 DOI: 10.3390/plants9020249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
The Arabidopsis gene AtCuAOβ (At4g14940) encodes an apoplastic copper amine oxidase (CuAO) highly expressed in guard cells of leaves and flowers and in root vascular tissues, especially in protoxylem and metaxylem precursors, where its expression is strongly induced by the wound signal methyl jasmonate (MeJA). The hydrogen peroxide (H2O2) derived by the AtCuAOβ-driven oxidation of the substrate putrescine (Put), mediates the MeJA-induced early root protoxylem differentiation. Considering that early root protoxylem maturation was also induced by both exogenous Put and leaf wounding through a signaling pathway involving H2O2, in the present study we investigated the role of AtCuAOβ in the leaf wounding-induced early protoxylem differentiation in combination with Put treatment. Quantitative and tissue specific analysis of AtCuAOβ gene expression by RT-qPCR and promoter::green fluorescent protein-β-glucuronidase fusion analysis revealed that wounding of the cotiledonary leaf induced AtCuAOβ gene expression which was particularly evident in root vascular tissues. AtCuAOβ loss-of-function mutants were unresponsive to the injury, not showing altered phenotype upon wounding in comparison to wild type seedlings. Exogenous Put and wounding did not show synergy in inducing early root protoxylem maturation, suggesting their involvement in a shared signaling pathway.
Collapse
Affiliation(s)
- Ilaria Fraudentali
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
| | | | - Paraskevi Tavladoraki
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
| | - Riccardo Angelini
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
| | - Alessandra Cona
- Department of Science, University “Roma Tre”, 00146 Rome, Italy; (I.F.); (P.T.); (R.A.)
- Correspondence: ; Tel.: +39-06-5733-6360
| |
Collapse
|
68
|
Chen P, Jung NU, Giarola V, Bartels D. The Dynamic Responses of Cell Walls in Resurrection Plants During Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2020; 10:1698. [PMID: 32038677 PMCID: PMC6985587 DOI: 10.3389/fpls.2019.01698] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/02/2019] [Indexed: 05/17/2023]
Abstract
Plant cell walls define the shape of the cells and provide mechanical support. They function as osmoregulators by controlling the transport of molecules between cells and provide transport pathways within the plant. These diverse functions require a well-defined and flexible organization of cell wall components, i.e., water, polysaccharides, proteins, and other diverse substances. Cell walls of desiccation tolerant resurrection plants withstand extreme mechanical stress during complete dehydration and rehydration. Adaptation to the changing water status of the plant plays a crucial role during this process. This review summarizes the compositional and structural variations, signal transduction and changes of gene expression which occur in cell walls of resurrection plants during dehydration and rehydration.
Collapse
Affiliation(s)
| | | | | | - Dorothea Bartels
- Faculty of Natural Sciences, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
69
|
Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants (Basel) 2019; 8:antiox8120641. [PMID: 31842380 PMCID: PMC6943533 DOI: 10.3390/antiox8120641] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are produced in all aerobic life forms under both physiological and adverse conditions. Unregulated ROS/NO generation causes nitro-oxidative damage, which has a detrimental impact on the function of essential macromolecules. ROS/NO production is also involved in signaling processes as secondary messengers in plant cells under physiological conditions. ROS/NO generation takes place in different subcellular compartments including chloroplasts, mitochondria, peroxisomes, vacuoles, and a diverse range of plant membranes. This compartmentalization has been identified as an additional cellular strategy for regulating these molecules. This assessment of subcellular ROS/NO metabolisms includes the following processes: ROS/NO generation in different plant cell sites; ROS interactions with other signaling molecules, such as mitogen-activated protein kinases (MAPKs), phosphatase, calcium (Ca2+), and activator proteins; redox-sensitive genes regulated by the iron-responsive element/iron regulatory protein (IRE-IRP) system and iron regulatory transporter 1(IRT1); and ROS/NO crosstalk during signal transduction. All these processes highlight the complex relationship between ROS and NO metabolism which needs to be evaluated from a broad perspective.
Collapse
|
70
|
Yu K, Pieterse CM, Bakker PA, Berendsen RL. Beneficial microbes going underground of root immunity. PLANT, CELL & ENVIRONMENT 2019; 42:2860-2870. [PMID: 31353481 PMCID: PMC6851990 DOI: 10.1111/pce.13632] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 05/19/2023]
Abstract
Plant roots interact with an enormous diversity of commensal, mutualistic, and pathogenic microbes, which poses a big challenge to roots to distinguish beneficial microbes from harmful ones. Plants can effectively ward off pathogens following immune recognition of conserved microbe-associated molecular patterns (MAMPs). However, such immune elicitors are essentially not different from those of neutral and beneficial microbes that are abundantly present in the root microbiome. Recent studies indicate that the plant immune system plays an active role in influencing rhizosphere microbiome composition. Moreover, it has become increasingly clear that root-invading beneficial microbes, including rhizobia and arbuscular mycorrhiza, evade or suppress host immunity to establish a mutualistic relationship with their host. Evidence is accumulating that many free-living rhizosphere microbiota members can suppress root immune responses, highlighting root immune suppression as an important function of the root microbiome. Thus, the gate keeping functions of the plant immune system are not restricted to warding off root-invading pathogens but also extend to rhizosphere microbiota, likely to promote colonization by beneficial microbes and prevent growth-defense tradeoffs triggered by the MAMP-rich rhizosphere environment.
Collapse
Affiliation(s)
- Ke Yu
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Peter A.H.M. Bakker
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| | - Roeland L. Berendsen
- Plant‐Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4LifeUtrecht UniversityUtrecht3508TBThe Netherlands
| |
Collapse
|
71
|
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019; 20:ijms20184407. [PMID: 31500275 PMCID: PMC6770548 DOI: 10.3390/ijms20184407] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
72
|
Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M. CRK2 Enhances Salt Tolerance by Regulating Callose Deposition in Connection with PLD α1. PLANT PHYSIOLOGY 2019; 180:2004-2021. [PMID: 31118265 PMCID: PMC6670071 DOI: 10.1104/pp.19.00560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 05/03/2023]
Abstract
High salinity is an increasingly prevalent source of stress to which plants must adapt. The receptor-like protein kinases, including members of the Cys-rich receptor-like kinase (CRK) subfamily, are a highly expanded family of transmembrane proteins in plants that are largely responsible for communication between cells and the extracellular environment. Various CRKs have been implicated in biotic and abiotic stress responses; however, their functions on a cellular level remain largely uncharacterized. Here we have shown that CRK2 enhances salt tolerance at the germination stage in Arabidopsis (Arabidopsis thaliana) and also modulates root length. We established that functional CRK2 is required for salt-induced callose deposition. In doing so, we revealed a role for callose deposition in response to increased salinity and demonstrated its importance for salt tolerance during germination. Using fluorescently tagged proteins, we observed specific changes in the subcellular localization of CRK2 in response to various stress treatments. Many of CRK2's cellular functions were dependent on phospholipase D activity, as were the subcellular localization changes. Thus, we propose that CRK2 acts downstream of phospholipase D during salt stress, promoting callose deposition and regulating plasmodesmal permeability, and that CRK2 adopts specific stress-dependent subcellular localization patterns that allow it to carry out its functions.
Collapse
Affiliation(s)
- Kerri Hunter
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Huy Cuong Tran
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michael Wrzaczek
- Viikki Plant Science Centre, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
73
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
74
|
On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants (Basel) 2019; 8:antiox8040105. [PMID: 30999668 PMCID: PMC6523537 DOI: 10.3390/antiox8040105] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) have been recognized as important signaling compounds of major importance in a number of developmental and physiological processes in plants. The existence of cellular compartments enables efficient redox compartmentalization and ensures proper functioning of ROS-dependent signaling pathways. Similar to other organisms, the production of individual ROS in plant cells is highly localized and regulated by compartment-specific enzyme pathways on transcriptional and post-translational level. ROS metabolism and signaling in specific compartments are greatly affected by their chemical interactions with other reactive radical species, ROS scavengers and antioxidant enzymes. A dysregulation of the redox status, as a consequence of induced ROS generation or decreased capacity of their removal, occurs in plants exposed to diverse stress conditions. During stress condition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead to oxidative or nitrosative stress conditions, associated with potential damaging modifications of cell biomolecules. Here, we present an overview of compartment-specific pathways of ROS production and degradation and mechanisms of ROS homeostasis control within plant cell compartments.
Collapse
|
75
|
Cheng H, Liang Q, Chen X, Zhang Y, Qiao F, Guo D. Hydrogen peroxide facilitates Arabidopsis seedling establishment by interacting with light signalling pathway in the dark. PLANT, CELL & ENVIRONMENT 2019; 42:1302-1317. [PMID: 30474863 DOI: 10.1111/pce.13482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Light is essential for the plant establishment. Arabidopsis seedlings germinated in the dark cannot grow leaf and only have closed cotyledons. However, exogenous application of H2 O2 can induce leaves (establishment) in the dark. Comparative transcriptomic analysis revealed that light-responsive genes were activated by H2 O2 treatment. These genes are functionally correlated with photosynthesis, photorespiration, and components of photosystem, such as antenna proteins and light-harvesting chlorophyll proteins. We further found that application of H2 O2 facilitates cell cycle by accelerating G2 -M checkpoint transition in shoot apical meristem. Phytochrome-mediated light signalling pathway was also involved in the H2 O2 -facilitated establishment process. The constitutive photomorphogenesis 1 and phytochrome interacting factor 3 proteins were shown to be down-regulated by H2 O2 treatment and accordingly removed their inhibitory effects on photomorphogenesis in the dark. The crosstalk between oxidation and light signal pathways explains the mechanism that H2 O2 regulates plant dark establishment. The endogenous photorespiratory H2 O2 production was mimicked by overexpression of glycolate oxidase genes and supplement of substrate glycolate. As expected, seedling establishment was also induced by the endogenously produced H2 O2 under dark condition. These findings also suggest that photorespiratory H2 O2 production is at least partially involved in postgermination establishment.
Collapse
Affiliation(s)
- Han Cheng
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Qun Liang
- School of Agricultural Science, Hainan University, Haikou, Hainan, China
| | - Xiang Chen
- School of Agricultural Science, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
| | - Fei Qiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
| | - Dianjing Guo
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
76
|
Pokou DN, Fister AS, Winters N, Tahi M, Klotioloma C, Sebastian A, Marden JH, Maximova SN, Guiltinan MJ. Resistant and susceptible cacao genotypes exhibit defense gene polymorphism and unique early responses to Phytophthora megakarya inoculation. PLANT MOLECULAR BIOLOGY 2019; 99:499-516. [PMID: 30739243 DOI: 10.1007/s11103-019-00832-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/24/2019] [Indexed: 05/26/2023]
Abstract
Key genes potentially involved in cacao disease resistance were identified by transcriptomic analysis of important cacao cultivars. Defense gene polymorphisms were identified which could contribute to pathogen recognition capacity. Cacao suffers significant annual losses to the water mold Phytophthora spp. (Oomycetes). In West Africa, P. megakarya poses a major threat to farmer livelihood and the stability of cocoa production. As part of a long-term goal to define key disease resistance genes in cacao, here we use a transcriptomic analysis of the disease-resistant cacao clone SCA6 and the susceptible clone NA32 to characterize basal differences in gene expression, early responses to infection, and polymorphisms in defense genes. Gene expression measurements by RNA-seq along a time course revealed the strongest transcriptomic response 24 h after inoculation in the resistant genotype. We observed strong regulation of several pathogenesis-related genes, pattern recognition receptors, and resistance genes, which could be critical for the ability of SCA6 to combat infection. These classes of genes also showed differences in basal expression between the two genotypes prior to infection, suggesting that prophylactic expression of defense-associated genes could contribute to SCA6's broad-spectrum disease resistance. Finally, we analyzed polymorphism in a set of defense-associated receptors, identifying coding variants between SCA6 and NA32 which could contribute to unique capacities for pathogen recognition. This work is an important step toward characterizing genetic differences underlying a successful defense response in cacao.
Collapse
Affiliation(s)
- Désiré N Pokou
- Centre National de Recherche Agronomique, Laboratoire Central de Biotechnologie, 01 BP 1740, Abidjan 01, Côte d'Ivoire
| | - Andrew S Fister
- Department of Plant Sciences, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
| | - Noah Winters
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mathias Tahi
- Centre National de Recherche Agronomique, Laboratoire Central de Biotechnologie, 01 BP 1740, Abidjan 01, Côte d'Ivoire
| | - Coulibaly Klotioloma
- Centre National de Recherche Agronomique, Laboratoire Central de Biotechnologie, 01 BP 1740, Abidjan 01, Côte d'Ivoire
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - James H Marden
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Siela N Maximova
- Department of Plant Sciences, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark J Guiltinan
- Department of Plant Sciences, Life Sciences Building, Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
77
|
Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M, Kangasjärvi J, Löytynoja A, Hothorn M, Salojärvi J, Wrzaczek M. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun Biol 2019; 2:56. [PMID: 30775457 PMCID: PMC6368629 DOI: 10.1038/s42003-019-0306-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.
Collapse
Affiliation(s)
- Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Andres Veidenberg
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Markéta Luklová
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- Present Address: Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| |
Collapse
|
78
|
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. THE NEW PHYTOLOGIST 2019; 221:1197-1214. [PMID: 30222198 DOI: 10.1111/nph.15488] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1197 I. Introduction 1198 II. Measurement and imaging of H2 O2 1198 III. H2 O2 and O2·- toxicity 1199 IV. Production of H2 O2 : enzymes and subcellular locations 1200 V. H2 O2 transport 1205 VI. Control of H2 O2 concentration: how and where? 1205 VII. Metabolic functions of H2 O2 1207 VIII. H2 O2 signalling 1207 IX. Where next? 1209 Acknowledgements 1209 References 1209 SUMMARY: Hydrogen peroxide (H2 O2 ) is produced, via superoxide and superoxide dismutase, by electron transport in chloroplasts and mitochondria, plasma membrane NADPH oxidases, peroxisomal oxidases, type III peroxidases and other apoplastic oxidases. Intracellular transport is facilitated by aquaporins and H2 O2 is removed by catalase, peroxiredoxin, glutathione peroxidase-like enzymes and ascorbate peroxidase, all of which have cell compartment-specific isoforms. Apoplastic H2 O2 influences cell expansion, development and defence by its involvement in type III peroxidase-mediated polymer cross-linking, lignification and, possibly, cell expansion via H2 O2 -derived hydroxyl radicals. Excess H2 O2 triggers chloroplast and peroxisome autophagy and programmed cell death. The role of H2 O2 in signalling, for example during acclimation to stress and pathogen defence, has received much attention, but the signal transduction mechanisms are poorly defined. H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors. Quantification of the sources and sinks of H2 O2 is being improved by the spatial and temporal resolution of genetically encoded H2 O2 sensors, such as HyPer and roGFP2-Orp1. These H2 O2 sensors, combined with the detection of specific proteins modified by H2 O2 , will allow a deeper understanding of its signalling roles.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
79
|
De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, Piccinelli AL, D’Agostino N, Tucci M. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. HORTICULTURE RESEARCH 2019; 6:5. [PMID: 30603091 PMCID: PMC6312540 DOI: 10.1038/s41438-018-0079-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 05/13/2023]
Abstract
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots-beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma-interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant-Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Maria Salzano
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Teresa Docimo
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | | | - Nunzio D’Agostino
- CREA, Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
80
|
He M, He CQ, Ding NZ. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1771. [PMID: 30581446 PMCID: PMC6292871 DOI: 10.3389/fpls.2018.01771] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 05/19/2023]
Abstract
Abiotic stresses, such as low or high temperature, deficient or excessive water, high salinity, heavy metals, and ultraviolet radiation, are hostile to plant growth and development, leading to great crop yield penalty worldwide. It is getting imperative to equip crops with multistress tolerance to relieve the pressure of environmental changes and to meet the demand of population growth, as different abiotic stresses usually arise together in the field. The feasibility is raised as land plants actually have established more generalized defenses against abiotic stresses, including the cuticle outside plants, together with unsaturated fatty acids, reactive species scavengers, molecular chaperones, and compatible solutes inside cells. In stress response, they are orchestrated by a complex regulatory network involving upstream signaling molecules including stress hormones, reactive oxygen species, gasotransmitters, polyamines, phytochromes, and calcium, as well as downstream gene regulation factors, particularly transcription factors. In this review, we aimed at presenting an overview of these defensive systems and the regulatory network, with an eye to their practical potential via genetic engineering and/or exogenous application.
Collapse
Affiliation(s)
| | | | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
81
|
Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach. Mol Biotechnol 2018; 60:636-650. [PMID: 29943149 DOI: 10.1007/s12033-018-0100-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are continually facing biotic and abiotic stresses, and hence, they need to respond and adapt to survive. Plant response during multiple and combined biotic and abiotic stresses is highly complex and varied than the individual stress. These stresses resulted alteration of plant behavior through regulating the levels of microRNA, heat shock proteins, epigenetic variations. These variations can cause many adverse effects on the growth and development of the plant. Further, in natural conditions, several abiotic stresses causing factors make the plant more susceptible to pathogens infections and vice-versa. A very intricate and multifaceted interactions of various biomolecules are involved in metabolic pathways that can direct towards a cross-tolerance and improvement of plant's defence system. Systems biology approach plays a significant role in the investigation of these molecular interactions. The valuable information obtained by systems biology will help to develop stress-resistant plant varieties against multiple stresses. Thus, this review aims to decipher various multilevel interactions at the molecular level under combinatorial biotic and abiotic stresses and the role of systems biology to understand these molecular interactions.
Collapse
|
82
|
Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress. PLANTS 2018; 7:plants7040089. [PMID: 30360552 PMCID: PMC6313904 DOI: 10.3390/plants7040089] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022]
Abstract
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Collapse
|
83
|
Ruiz‐May E, Segura‐Cabrera A, Elizalde‐Contreras JM, Shannon LM, Loyola‐Vargas VM. A recent advance in the intracellular and extracellular redox post‐translational modification of proteins in plants. J Mol Recognit 2018; 32:e2754. [DOI: 10.1002/jmr.2754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Eliel Ruiz‐May
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Aldo Segura‐Cabrera
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute, Wellcome Genome Campus Hinxton Cambridgeshire UK
| | - Jose M. Elizalde‐Contreras
- Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic® Xalapa Veracruz Mexico
| | - Laura M. Shannon
- Department of Horticultural ScienceUniversity of Minnesota Saint Paul MN USA
| | - Víctor M. Loyola‐Vargas
- Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de Yucatán Mérida Yucatán Mexico
| |
Collapse
|
84
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
85
|
Foyer CH, Wilson MH, Wright MH. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic Biol Med 2018; 122:137-149. [PMID: 29605447 PMCID: PMC6146653 DOI: 10.1016/j.freeradbiomed.2018.03.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/16/2023]
Abstract
Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as 'pro-life' signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael H Wilson
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Megan H Wright
- The Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
86
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
87
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
88
|
Lou L, Li X, Chen J, Li Y, Tang Y, Lv J. Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One 2018; 13:e0194625. [PMID: 29566049 PMCID: PMC5864061 DOI: 10.1371/journal.pone.0194625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Ascorbate-glutathione (ASA-GSH) cycle is a major pathway of H2O2 scavenging and an effective mechanism of detoxification in plants. The differences in photosynthesis, chlorophyll content (Chl), relative water content (RWC), antioxidants and antioxidative enzyme activities involved in ASA-GSH metabolism were measured between the flag leaves and spike bracts (glumes and lemmas) during grain filling under drought stress. The expression of APX1, GRC1, DHAR, MDHAR, GPX1, and GS3 in ASA-GSH cycle was also measured. Compared with the flag leaves, the spike bracts exhibited stable net photosynthetic rate (PN) and chlorophyll content (Chl), a lower accumulation of reactive oxygen species (ROS), and more enhanced percentages of antioxidant enzyme activities and key enzymes gene transcription levels involved in ASA-GSH metabolism during the grain-filling stage under drought conditions. This could be the reasonable explanation for the more stable photosynthetic capacity in spikes, and the glumes and lemmas senesced later than the flag leaves at the late grain-filling stage. Also, the function of ASA-GSH cycle could not be ignored in alleviating oxidative damage by scavenging more excess ROS in spikes under drought stress.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
89
|
Zhang H, Zhang TT, Liu H, Shi DY, Wang M, Bie XM, Li XG, Zhang XS. Thioredoxin-Mediated ROS Homeostasis Explains Natural Variation in Plant Regeneration. PLANT PHYSIOLOGY 2018; 176:2231-2250. [PMID: 28724620 PMCID: PMC5841725 DOI: 10.1104/pp.17.00633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/17/2017] [Indexed: 05/18/2023]
Abstract
Plant regeneration is fundamental to basic research and agricultural applications. The regeneration capacity of plants varies largely in different genotypes, but the reason for this variation remains elusive. Here, we identified a novel thioredoxin DCC1 in determining the capacity of shoot regeneration among Arabidopsis (Arabidopsis thaliana) natural variation. Loss of function of DCC1 resulted in inhibited shoot regeneration. DCC1 was expressed mainly in the inner tissues of the callus and encoded a functional thioredoxin that was localized in the mitochondria. DCC1 protein interacted directly with CARBONIC ANHYDRASE2 (CA2), which is an essential subunit of the respiratory chain NADH dehydrogenase complex (Complex I). DCC1 regulated Complex I activity via redox modification of CA2 protein. Mutation of DCC1 or CA2 led to reduced Complex I activity and triggered mitochondrial reactive oxygen species (ROS) production. The increased ROS level regulated shoot regeneration by repressing expression of the genes involved in multiple pathways. Furthermore, linkage disequilibrium analysis indicated that DCC1 was a major determinant of the natural variation in shoot regeneration among Arabidopsis ecotypes. Thus, our study uncovers a novel regulatory mechanism by which thioredoxin-dependent redox modification regulates de novo shoot initiation via the modulation of ROS homeostasis and provides new insights into improving the capacity of plant regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ting Ting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - De Ying Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Min Bie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
90
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
91
|
Liang D. A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication. Front Cell Dev Biol 2018; 6:2. [PMID: 29503816 PMCID: PMC5821100 DOI: 10.3389/fcell.2018.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
The reactive oxygen species, generally labeled toxic due to high reactivity without target specificity, are gradually uncovered as signaling molecules involved in a myriad of biological processes. But one important feature of ROS roles in macromolecule movement has not caught attention until recent studies with technique advance and design elegance have shed lights on ROS signaling for intercellular and interorganelle communication. This review begins with the discussions of genetic and chemical studies on the regulation of symplastic dye movement through intercellular tunnels in plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning macromolecule movement including small RNA-mediated gene silencing movement and protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in mammalian cells are the key physical structures to sustain intercellular communication, movement of macromolecules and signals is efficiently facilitated by ROS-induced membrane protrusions formation, which is analogously applied to the interorganelle communication in plant cells. Although ROS regulatory differences between plant and mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying conservative theme in multicellular organisms. These mechanisms may represent the evolutionary advances that have enabled multicellularity to gain the ability to generate and utilize ROS to govern material exchanges between individual cells in oxygenated environment.
Collapse
Affiliation(s)
- Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China.,Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
92
|
Overmyer K, Vuorinen K, Brosché M. Interaction points in plant stress signaling pathways. PHYSIOLOGIA PLANTARUM 2018; 162:191-204. [PMID: 28857168 DOI: 10.1111/ppl.12639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 05/29/2023]
Abstract
Plants live in a world where they are challenged by abiotic and biotic stresses. In response to unfavorable conditions or an acute challenge like a pathogen attack, plants use various signaling pathways that regulate expression of defense genes and other mechanisms to provide resistance or stress adaptation. Identification of the regulatory steps in defense signaling has seen much progress in recent years. Many of the identified signaling pathways show interactions with each other, exemplified by the modulation of the jasmonic acid response by salicylic acid. Accordingly, defense regulation is more appropriately thought of as a web of interactions, rather than linear pathways. Here we describe various regulatory components and how they interact to provide an appropriate defense response. One of the common assays to monitor the output of defense signaling, as well as interaction between signaling pathways, is the measurement of altered gene expression. We illustrate that, while this is a suitable assay to monitor defense regulation, it can also inadvertently provide overstated conclusions about interaction among signaling pathways.
Collapse
Affiliation(s)
- Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Katariina Vuorinen
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
93
|
Li TG, Zhang DD, Zhou L, Kong ZQ, Hussaini AS, Wang D, Li JJ, Short DPG, Dhar N, Klosterman SJ, Wang BL, Yin CM, Subbarao KV, Chen JY, Dai XF. Genome-Wide Identification and Functional Analyses of the CRK Gene Family in Cotton Reveals GbCRK18 Confers Verticillium Wilt Resistance in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2018; 9:1266. [PMID: 30254650 PMCID: PMC6141769 DOI: 10.3389/fpls.2018.01266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 05/07/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a large subfamily of plant receptor-like kinases that play a critical role in disease resistance in plants. However, knowledge about the CRK gene family in cotton and its function against Verticillium wilt (VW), a destructive disease caused by Verticillium dahliae that significantly reduces cotton yields is lacking. In this study, we identified a total of 30 typical CRKs in a Gossypium barbadense genome (GbCRKs). Eleven of these (>30%) are located on the A06 and D06 chromosomes, and 18 consisted of 9 paralogous pairs encoded in the A and D subgenomes. Phylogenetic analysis showed that the GbCRKs could be classified into four broad groups, the expansion of which has probably been driven by tandem duplication. Gene expression profiling of the GbCRKs in resistant and susceptible cotton cultivars revealed that a phylogenetic cluster of nine of the GbCRK genes were up-regulated in response to V. dahliae infection. Virus-induced gene silencing of each of these nine GbCRKs independently revealed that the silencing of GbCRK18 was sufficient to compromise VW resistance in G. barbadense. GbCRK18 expression could be induced by V. dahliae infection or jasmonic acid, and displayed plasma membrane localization. Therefore, our expression analyses indicated that the CRK gene family is differentially regulated in response to Verticillium infection, while gene silencing experiments revealed that GbCRK18 in particular confers VW resistance in G. barbadense.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adamu S. Hussaini
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dylan P. G. Short
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Steven J. Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| |
Collapse
|
94
|
Rasool B, McGowan J, Pastok D, Marcus SE, Morris JA, Verrall SR, Hedley PE, Hancock RD, Foyer CH. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality. PLANT PHYSIOLOGY 2017; 175:259-271. [PMID: 28743764 PMCID: PMC5580759 DOI: 10.1104/pp.17.00625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/21/2017] [Indexed: 05/05/2023]
Abstract
The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation.
Collapse
Affiliation(s)
- Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jack McGowan
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Daria Pastok
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sue E Marcus
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jenny A Morris
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Susan R Verrall
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Peter E Hedley
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Robert D Hancock
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
95
|
Qi J, Wang J, Gong Z, Zhou JM. Apoplastic ROS signaling in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:92-100. [PMID: 28511115 DOI: 10.1016/j.pbi.2017.04.022] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are widely produced in different cellular compartments under both biotic and abiotic stress conditions. ROS play a central role in plant signaling and regulate diverse cellular processes. Recent advances are shedding new light on sophisticated mechanisms controlling ROS biogenesis and signaling in plant immunity. In this review, we summarize our current understanding of the regulation of apoplastic ROS production in response to microbial molecular patterns and draw comparison with abscisic acid (ABA)-induced apoplastic ROS. We also discuss how ROS act as signal molecules to regulate cellular activities using stomatal movement as an example.
Collapse
Affiliation(s)
- Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinlong Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
96
|
Abstract
The superfamily of small monomeric GTPases originated in a common ancestor of eukaryotic multicellular organisms and, since then, it has evolved independently in each lineage to cope with the environmental challenges imposed by their different life styles. Members of the small GTPase family function in the control of vesicle trafficking, cytoskeleton rearrangements and signaling during crucial biological processes, such as cell growth and responses to environmental cues. In this review, we discuss the emerging roles of these small GTPases in the pathogenic and symbiotic interactions established by plants with microorganisms present in their nearest environment, in which membrane trafficking is crucial along the different steps of the interaction, from recognition and signal transduction to nutrient exchange.
Collapse
Affiliation(s)
- Claudio Rivero
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Soledad Traubenik
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - María Eugenia Zanetti
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Flavio Antonio Blanco
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| |
Collapse
|
97
|
Vie AK, Najafi J, Winge P, Cattan E, Wrzaczek M, Kangasjärvi J, Miller G, Brembu T, Bones AM. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3557-3571. [PMID: 28586470 PMCID: PMC5853212 DOI: 10.1093/jxb/erx168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2017] [Indexed: 05/13/2023]
Abstract
Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis.
Collapse
Affiliation(s)
- Ane Kjersti Vie
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Javad Najafi
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ester Cattan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Wrzaczek
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Finland
- Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tore Brembu
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
98
|
Eckardt NA. The Plant Cell Reviews Plant Immunity: Receptor-Like Kinases, ROS-RLK Crosstalk, Quantitative Resistance, and the Growth/Defense Trade-Off. THE PLANT CELL 2017; 29:601-602. [PMID: 28396552 PMCID: PMC5435444 DOI: 10.1105/tpc.17.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
99
|
Lee DS, Kim YC, Kwon SJ, Ryu CM, Park OK. The Arabidopsis Cysteine-Rich Receptor-Like Kinase CRK36 Regulates Immunity through Interaction with the Cytoplasmic Kinase BIK1. FRONTIERS IN PLANT SCIENCE 2017; 8:1856. [PMID: 29163585 PMCID: PMC5663720 DOI: 10.3389/fpls.2017.01856] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 05/20/2023]
Abstract
Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and overexpressing (CRK36OE) plants were prepared. CRK36OE plants exhibited increased hypersensitive cell death and ROS burst in response to avirulent pathogens. Treatment with a typical pathogen-associated molecular pattern, flg22, markedly induced pattern-triggered immune responses, notably stomatal defense, in CRK36OE plants. The immune responses were weakened in crk36 plants. Protein-protein interaction assays revealed the in vivo association of CRK36, FLS2, and BIK1. CRK36 enhanced flg22-triggered BIK1 phosphorylation, which showed defects with Cys mutations in the DUF26 motifs of CRK36. Disruption of BIK1 and RbohD/RbohF genes further impaired CRK36-mediated stomatal defense. We propose that CRK36, together with BIK1 and NADPH oxidases, may form a positive activation loop that enhances ROS burst and leads to the promotion of stomatal immunity.
Collapse
Affiliation(s)
- Dong Sook Lee
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Young Cheon Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Sun Jae Kwon
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, South Korea
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, South Korea
- *Correspondence: Ohkmae K. Park
| |
Collapse
|
100
|
Čerekovic N, Poltronieri P. Plant signaling pathways activating defence response and interfering mechanisms by pathogen effectors, protein decoys and bodyguards. AIMS MOLECULAR SCIENCE 2017; 4:370-388. [DOI: 10.3934/molsci.2017.3.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|