51
|
Emerging Roles of Adipose Tissue in the Pathogenesis of Psoriasis and Atopic Dermatitis in Obesity. JID INNOVATIONS 2022; 2:100064. [PMID: 35024685 PMCID: PMC8659781 DOI: 10.1016/j.xjidi.2021.100064] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity is a growing epidemic worldwide, and it is also considered a major environmental factor contributing to the pathogenesis of inflammatory skin diseases, including psoriasis (PSO) and atopic dermatitis (AD). Moreover, obesity worsens the course and impairs the treatment response of these inflammatory skin diseases. Emerging evidence highlights that hypertrophied adipocytes and infiltrated immune cells secrete a variety of molecules, including fatty acids and adipokines, such as leptin, adiponectin, and a panel of cytokines/chemokines that modulate our immune system. In this review, we describe how adipose hypertrophy leads to a chronic low-grade inflammatory state in obesity and how obesity-related inflammatory factors are involved in the pathogenesis of PSO and/or AD. Finally, we discuss the potential role of antimicrobial peptides, mechanical stress and impairment of epidermal barrier function mediated by fast expansion, and dermal fat in modulating skin inflammation. Together, this review summarizes the current literature on how obesity is associated with the pathogenesis of PSO and AD, highlighting the potentially important but overlooked immunomodulatory role of adipose tissue in the skin.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptide
- AT, adipose tissue
- BAT, brown adipose tissue
- BMI, body mass index
- CI, confidence interval
- DC, dendritic cell
- DIO, diet-induced obesity
- FFA, free fatty acid
- HFD, high-fat diet
- KC, keratinocyte
- OA, oleic acid
- PA, palmitic acid
- PSO, psoriasis
- SCORAD, SCORing Atopic Dermatitis
- TC, total cholesterol
- TEWL, transepidermal water loss
- TG, triglyceride
- TLR, toll-like receptor
- Th, T helper
- WAT, white adipose tissue
- dFB, dermal fibroblast
- dWAT, dermal white adipose tissue
- sWAT, subcutaneous white adipose tissue
Collapse
|
52
|
Sekar M, Thirumurugan K. Autophagy: a molecular switch to regulate adipogenesis and lipolysis. Mol Cell Biochem 2022; 477:727-742. [PMID: 35022960 DOI: 10.1007/s11010-021-04324-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022]
Abstract
Obesity is a complex epidemic disease caused by an imbalance of adipose tissue function that results in hyperglycemia, hyperlipidemia and insulin resistance which further develop into type 2 diabetes, cardiovascular disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Adipose tissue is responsible for fat storage; white adipose tissue stores excess energy as fat for availability during starvation, whereas brown adipose tissue regulates thermogenesis through fat oxidation using uncoupling protein 1. However, hypertrophic fat storage results in inflammation and increase the chances for obesity which triggers autophagy genes and lipolytic enzymes to regulate lipid metabolism. Autophagy degrades cargo molecule with the help of lysosome and redistributes the energy back to the cell. Autophagy regulates adipocyte differentiation by modulating master regulators of adipogenesis. Adipogenesis is the process which stores excessive energy in the form of lipid droplets. Lipid droplets (LD) are dynamic cellular organelles that store toxic free-fatty acids into neutral triglycerides in adipose tissue. LD activates both lipolysis and lipophagy to degrade excess triglycerides. In obese tissue, autophagy is activated via pro-inflammatory cytokines produced by surplus fat stored in the adipose tissue. This review focused on the process of autophagy and adipogenesis and the transcription factors that regulate lipogenesis and lipolysis in the adipose tissue. We have also discussed about the importance of autophagic regulation within adipose tissue which controls the onset of obesity and its associated diseases.
Collapse
Affiliation(s)
- Mouliganesh Sekar
- Structural Biology Lab, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
53
|
Shen F, Weng S, Tsai M, Su Y, Li S, Chang S, Chen J, Chang Y, Liou C, Lin T, Chuang J, Lin C, Wang P. Mitochondrial haplogroups have a better correlation to insulin requirement than nuclear genetic variants for type 2 diabetes mellitus in Taiwanese individuals. J Diabetes Investig 2022; 13:201-208. [PMID: 34255930 PMCID: PMC8756312 DOI: 10.1111/jdi.13629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Identifying diabetes-susceptible genetic variants will help to provide personalized therapy for the management of type 2 diabetes. Previous studies have reported a genetic risk score (GRS), computed by the sum of nuclear DNA (nDNA) risk alleles, that may predict the future requirement for insulin therapy. Although mitochondrial dysfunction has a close association with insulin resistance (IR), there are few studies investigating whether genetic variants of mitochondrial DNA (mtDNA) will affect the clinical characteristics of type 2 diabetes. MATERIALS AND METHODS Mitochondrial haplogroups were determined using mtDNA whole genome next generation sequencing and 13 single nucleotide polymorphisms (SNPs) in nDNA susceptibility loci of 13 genes in 604 Taiwanese subjects with type 2 diabetes. A GRS of nDNA was computed by summation of the number of risk alleles. The correlation between the mtDNA haplogroup and the clinical characteristics of type 2 diabetes was assessed by logistic regression analysis. The results were compared with the GRS subgroups for the risk of insulin requirement. RESULTS Mitochondrial haplogroups modulate the clinical characteristics of type 2 diabetes, in which patients harboring haplogroup D4, compared with those harboring non-D4 haplotypes, were less prone to require insulin treatment, after adjusting for age, gender, and diabetes duration. However, there was no association between insulin requirement and GRS calculated from nuclear genetic variants. CONCLUSIONS Mitochondrial haplogroups, but not nuclear genetic variants, have a better association with the insulin requirement. The results highlight the role of mitochondria in the management of common metabolic diseases.
Collapse
Affiliation(s)
- Feng‐Chih Shen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shao‐Wen Weng
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Meng‐Han Tsai
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yu‐Jih Su
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Division of Rheumatology, Allergy, and ImmunologyDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Sung‐Chou Li
- Genomics & Proteomics Core LaboratoryDepartment of Medical ResearchKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shun‐Jen Chang
- Department of Kinesiology, Health and Leisure StudiesNational University of KaohsiungTaiwan
| | - Jung‐Fu Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yen‐Hsiang Chang
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chia‐Wei Liou
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Tsu‐Kung Lin
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Jiin‐Haur Chuang
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of SurgeryKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ching‐Yi Lin
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Pei‐Wen Wang
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| |
Collapse
|
54
|
Grigorova N, Ivanova Z, Vachkova E, Tacheva T, Penchev Georgiev I. Co-administration of oleic and docosahexaenoic acids enhances glucose uptake rather than lipolysis in mature 3T3-L1 adipocytes cell culture. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of different types of long-chain fatty acids and their combination on the triglyceride accumulation, glucose utilisation, and lipolysis in already obese adipocytes. 3T3-L1 MBX cells were first differentiated into mature adipocytes using adipogenic inducers (3-isobutyl-1-methylxanthine, dexamethasone, indomethacin, insulin, and high glucose), then 100 µM 0.1% ethanol extracts of palmitic (PA), oleic (OA), or docosahexaenoic acid (DHA) were applied for nine days. Unsaturated fatty acids decreased the intracellular lipid accumulation while maintaining glucose utilisation levels. However, unlike OA, self-administration of DHA only intensified lipolysis by 25% vs induced untreated control (IC), which may have a direct detrimental impact on the whole body’s metabolic state. DHA applied in equal proportion with PA elevated triglyceride accumulation by 10% compared to IC, but applied with OA, enhanced glucose uptake without any significant changes in the lipogenic drive and the lipolytic rate, suggesting that this unsaturated fatty acids combination may offer a considerable advantage in amelioration of obesity-related disorders.
Collapse
Affiliation(s)
- N. Grigorova
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Zh. Ivanova
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - E. Vachkova
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - T. Tacheva
- Department of Biochemistry, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - I. Penchev Georgiev
- Department of Animal Physiology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
55
|
Vidal-Ostos F, Ramos-Lopez O, Blaak EE, Astrup A, Martinez JA. The triglyceride-glucose index as an adiposity marker and a predictor of fat loss induced by a low-calorie diet. Eur J Clin Invest 2022; 52:e13674. [PMID: 34453322 DOI: 10.1111/eci.13674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND This study aimed to investigate the putative role of the triglyceride-glucose index (TyG index) computed as ln[TG (mg/dl) × glucose (mg/dl)/2] and derived proxies as predictors of adiposity and weight loss changes after a low-calorie diet (LCD) intervention. METHODS A total of 744 adult participants from the multicentre DIOGenes intervention study were prescribed a LCD (800 kcal/day) during 8 weeks. Body composition and fat content at baseline and after 8 weeks were estimated by DEXA/BIA. A multivariate analysis approach was used to estimate the difference in ΔWeight1-2 (kg), ΔBMI1-2 (kg/m2 ) or ΔFat1-2 (%) between the basal value (point 1) and after 8 weeks following a LCD (point 2), respectively. The TyG index at baseline (TyG1 ), after following the LCD for 8 weeks (TyG2 ) or the TyG index differences between both time points (ΔTyG1-2 ) were analysed as predictors of weight and fat changes. RESULTS TyG1 was associated with ΔWeight1-2 (kg) and ΔBMI1-2 (kg/m2 ), with β = 0.812 (p = .017) and β = 0.265 (p = .018), respectively. Also, TyG2 values were inversely related to ΔFat1-2 (%), β = -1.473 (p = .015). Moreover, ΔTyG1-2 was associated with ΔWeight1-2 (kg) and ΔFat1-2 (%), β = 0.689 (p = .045) and β = 1.764 (p = .002), respectively. Furthermore, an association between TyG2 and resistance to fat loss was found (p = .015). CONCLUSION TyG1 index is a good predictor of weight loss induced by LCD. Moreover, TyG2 was closely related to resistance to fat loss, while ΔTyG1-2 values were positively associated with body fat changes. Therefore, TyG index and derived estimations could be used as markers of individualized responses to energy restriction and a surrogate of body composition outcomes in clinical/epidemiological settings in obesity conditions.
Collapse
Affiliation(s)
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jose Alfredo Martinez
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition Program, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
56
|
Sahl RE, Høy Helms EF, Schmücker M, Flensted-Jensen M, Ingersen A, Morville T, Dela F, Helge JW, Larsen S. Reliability and variation in mitochondrial respiration in human adipose tissue. Adipocyte 2021; 10:605-611. [PMID: 34709990 PMCID: PMC8632116 DOI: 10.1080/21623945.2021.1991617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue mitochondrial function is gaining increasing interest since it is a good marker of overall health. Methodological challenges and variability in assessing mitochondrial respiration in fresh adipose tissue with high-resolution respirometry are unknown and should be explored. Mitochondrial respiratory capacity (MRC) in human adipose tissue declines in a gradual manner when analyses are postponed 3 h and 24 h, with a statistically significant decline 24 h after obtaining the biopsy. This decline in MRC is associated with a reduced integrity of the outer mitochondrial membrane at both time points. This study suggests that the optimal amount of tissue to be used is 20 mg and that different technicians handling the biopsy do not affect MRC.
Collapse
Affiliation(s)
- Ronni Eg Sahl
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Eva Frederikke Høy Helms
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Malte Schmücker
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Mathias Flensted-Jensen
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Arthur Ingersen
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Thomas Morville
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging – Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Mærsk Tower, Panum, Copenhagen-N, Denmark
| |
Collapse
|
57
|
Rondini EA, Ramseyer VD, Burl RB, Pique-Regi R, Granneman JG. Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Mol Metab 2021; 53:101307. [PMID: 34298199 PMCID: PMC8385178 DOI: 10.1016/j.molmet.2021.101307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The current study addresses the cellular complexity and plasticity of subcutaneous (inguinal) white adipose tissue (iWAT) in mice during the critical periods of perinatal growth and establishment. METHODS We performed a large-scale single cell transcriptomic (scRNA-seq) and epigenomic (snATAC-seq) characterization of cellular subtypes (adipose stromal cells (ASC) and adipocyte nuclei) during inguinal WAT (subcutaneous; iWAT) development in mice, capturing the early postnatal period (postnatal days (PND) 06 and 18) through adulthood (PND56). RESULTS Perinatal and adult iWAT contain 3 major ASC subtypes that can be independently identified by RNA expression profiles and DNA transposase accessibility. Furthermore, the transcriptomes and enhancer landscapes of both ASC and adipocytes dynamically change during postnatal development. Perinatal ASC (PND06) are highly enriched for several imprinted genes (IGs; e.g., Mest, H19, Igf2) and extracellular matrix proteins whose expression then declines prior to weaning (PND18). By comparison, adult ASC (PND56) are more enriched for transcripts associated with immunoregulation, oxidative stress, and integrin signaling. Two clusters of mature adipocytes, identified through single nuclei RNA sequencing (snRNA-seq), were distinctive for proinflammatory/immune or metabolic gene expression patterns that became more transcriptionally diverse in adult animals. Single nuclei assay for transposase-accessible chromatin (snATAC-seq) revealed that differences in gene expression were associated with developmental changes in chromatin accessibility and predicted transcription factor motifs (e.g., Plagl1, Ar) in both stromal cells and adipocytes. CONCLUSIONS Our data provide new insights into transcriptional and epigenomic signaling networks important during iWAT establishment at a single cell resolution, with important implications for the field of metabolic programming.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Vanesa D Ramseyer
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Rayanne B Burl
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Center for Integrative Metabolic and Endocrine Research, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
58
|
Gastaldelli A, Sabatini S, Carli F, Gaggini M, Bril F, Belfort‐DeAguiar R, Positano V, Barb D, Kadiyala S, Harrison S, Cusi K. PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH. Liver Int 2021; 41:2659-2670. [PMID: 34219361 PMCID: PMC9290929 DOI: 10.1111/liv.15005] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor (PPAR)-γ agonists decrease hepatic/visceral fat (VF) and improve necroinflammation despite subcutaneous (SC) fat weight-gain. Understanding the impact of changes in VF, VF-to-SC fat distribution (VF/SC) and adiponectin (ADPN) levels in relation to histological improvement after weight-loss or pioglitazone is relevant as novel PPAR-γ agonists are being developed for treating non-alcoholic steatohepatitis (NASH). METHODS Fifty-five patients with NASH received a -500 kcal/d hypocaloric diet and were randomized (double-blind) to pioglitazone (45 mg/d) or placebo for 6-months. Before and after treatment patients underwent a liver biopsy and measurement of hepatic/peripheral glucose fluxes, hepatic/adipose tissue-IR and, in 35 patients, hepatic and VF/SC-fat was measured by magnetic resonance spectroscopy/imaging. Data were examined by multivariable statistical analyses combined with machine-learning techniques (partial least square discriminant analysis [PLS-DA]). RESULTS Both pioglitazone (despite weight-gain) and placebo (if weight-loss) reduced steatosis but only pioglitazone ameliorated necroinflammation. Using machine-learning PLS-DA showed that the treatment differences induced by a PPAR-γ agonist vs placebo on metabolic variables and liver histology could be best explained by the increase in ADPN and a decrease in VF/SC, and to a lesser degree, improvement in oral glucose tolerance test-glucose concentrations and ALT. Decrease in steatosis and disease activity score (ballooning plus lobular inflammation) kept a close relationship with an increase in ADPN (r = -.71 and r = -.44, P < .007, respectively) and reduction in VF/SC fat (r = .41 and r = .37, P < .03 respectively). CONCLUSIONS Reduction in VF and improved VF/SC-distribution, combined with an increase in ADPN, mediate the histological benefits of PPAR-γ action, highlighting the central role of fat metabolism and its distribution on steatohepatitis disease activity in patients with NASH.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Diabetes DivisionThe University of Texas Health Science Center at San AntonioSan AntonioTXUSA,Institute of Clinical PhysiologyNational Research CouncilCNRPisaItaly
| | - Silvia Sabatini
- Institute of Clinical PhysiologyNational Research CouncilCNRPisaItaly,Università degli Studi di SienaSienaItaly
| | - Fabrizia Carli
- Institute of Clinical PhysiologyNational Research CouncilCNRPisaItaly
| | - Melania Gaggini
- Institute of Clinical PhysiologyNational Research CouncilCNRPisaItaly
| | - Fernando Bril
- Division of Endocrinology, Diabetes and MetabolismUniversity of FloridaGainesvilleFLUSA
| | - Renata Belfort‐DeAguiar
- Department of Internal Medicine and EndocrinologyYale University School of MedicineNew HavenCTUSA
| | | | - Diana Barb
- Division of Endocrinology, Diabetes and MetabolismUniversity of FloridaGainesvilleFLUSA
| | - Sushma Kadiyala
- Division of Endocrinology, Diabetes and MetabolismUniversity of FloridaGainesvilleFLUSA,Division of Endocrinology, Diabetes and MetabolismMalcom Randall Veteran Administration Medical Center at GainesvilleGainesvilleFLUSA
| | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and MetabolismUniversity of FloridaGainesvilleFLUSA,Division of Endocrinology, Diabetes and MetabolismMalcom Randall Veteran Administration Medical Center at GainesvilleGainesvilleFLUSA
| |
Collapse
|
59
|
Wang C, Chen Z, Zhao X, Lin C, Hong S, Lou Y, Shi X, Zhao M, Yang X, Guan MX, Xi Y. Transcriptome-Based Analysis Reveals Therapeutic Effects of Resveratrol on Endometriosis in aRat Model. Drug Des Devel Ther 2021; 15:4141-4155. [PMID: 34616146 PMCID: PMC8487867 DOI: 10.2147/dddt.s323790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Endometriosis (EMs) is associated with severe chronic pelvic pain and infertility and the development of improved EMs treatment options is an ongoing focus. In this study, we investigated the effects of resveratrol on EMs and analyzed transcriptional changes in the lesions of model rats before and after resveratrol treatment. METHODS We established arat model of endometriosis through the trans-implantation of endometrial fragments to the peritoneal wall and then used resveratrol as treatment. We then analyzed the results using RNA sequencing of the lesion tissues of each of the model rats before resveratrol treatment and the reduced lesion tissues after the treatment. Examinations of anatomy, biochemistry, immunohistochemical staining and flow cytometry examinations were also conducted. Other trans-implanted rats were also given sham treatments as sham-treatment control and other untrans-implanted rats served as sham-operation controls. RESULTS In addition to the obvious lesions observed in the model rats, there were significant differences in the glucose tolerance, macrophage M1/M2 polarization, and adipocyte sizes between the treated model rats and sham (control) rats. Resveratrol treatment in the model rats showed significant efficacy and positive therapeutic effect. Transcriptional analysis showed that the effects of resveratrol on the endometriosis model rats were manifested by alterations in the PPAR, insulin resistance, MAPK and PI3K/Akt signaling pathways. Correspondingly, changes in PPARγ activation, M1/M2 polarization and lipid metabolism were also detected after resveratrol treatment. DISCUSSION Our study revealed that resveratrol treatment displayed efficient therapeutic effects for EMs model rats, probably through its important roles in anti-inflammation, immunoregulation and lipid-related metabolism regulation.
Collapse
Affiliation(s)
- Chunyan Wang
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Zhengyun Chen
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xianlei Zhao
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Cuicui Lin
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Shenghui Hong
- Laboratory Animal Center of Zhejiang University, Hangzhou, Zhejiang, 310001, People's Republic of China
| | - Yuhan Lou
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiaomeng Shi
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Mengdan Zhao
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xiaohang Yang
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yongmei Xi
- The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
- Institute of Genetics, Zhejiang University; Department of Human Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, 310058, People's Republic of China
| |
Collapse
|
60
|
Lee D, Kim DW, Yoon S, Nam AR, Lee KH, Nam KH, Cho SM, Yoon Y, Cho JY. CXCL5 secreted from macrophages during cold exposure mediates white adipose tissue browning. J Lipid Res 2021; 62:100117. [PMID: 34537202 PMCID: PMC8512628 DOI: 10.1016/j.jlr.2021.100117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue affects metabolic-related diseases because it consists of various cell types involved in fat metabolism and adipokine release. CXC ligand 5 (CXCL5) is a member of the CXC chemokine family and is highly expressed by macrophages in white adipose tissue (WAT). In this study, we generated and investigated the function of CXCL5 in knockout (KO) mice using CRISPR/Cas9. The male KO mice did not show significant phenotype differences in normal conditions. However, proteomic analysis revealed that many proteins involved in fatty acid beta-oxidation and mitochondrial localization were enriched in the inguinal WAT (iWAT) of Cxcl5 KO mice. Cxcl5 KO mice also showed decreased protein and transcript expression of genes associated with thermogenesis, including uncoupling protein 1 (UCP1), a well-known thermogenic gene, and increased expression of genes associated with inflammation. The increase in UCP1 expression in cold conditions was significantly retarded in Cxcl5 KO mice. Finally, we found that CXCL5 treatment increased the expression of transcription factors that mediate Ucp1 expression and Ucp1 itself. Collectively, our data show that Ucp1 expression is induced in adipocytes by CXCL5, which is secreted upon β-adrenergic stimulation by cold stimulation in M1 macrophages. Our data indicate that CXCL5 plays a crucial role in regulating energy metabolism, particularly upon cold exposure. These results strongly suggest that targeting CXCL5 could be a potential therapeutic strategy for people suffering from disorders affecting energy metabolism.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Sanghyuk Yoon
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - A-Reum Nam
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institution of Bioscience and Biotechnology (KRIBB), Chungju, South Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institution of Bioscience and Biotechnology (KRIBB), Chungju, South Korea
| | - Yeodae Yoon
- Laboratory Animal Resource Center, Korea Research Institution of Bioscience and Biotechnology (KRIBB), Chungju, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
61
|
Hanttu A, Vuoti S, Kivelä P, Arkkila P, Lundbom N, Hakkarainen A, Lundbom J, Lehtimäki T, Viskari H, Lehtinen V, Pietiläinen KH, Sutinen J. Liver Fat, Adipose Tissue, and Body Composition Changes After Switching from a Protease Inhibitor or Efavirenz to Raltegravir. AIDS Patient Care STDS 2021; 35:335-341. [PMID: 34524919 DOI: 10.1089/apc.2021.0106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integrase inhibitors appear to increase body weight, but paradoxically some data indicate that raltegravir (RAL) may decrease liver fat. Our objective was to study the effects of switching from a protease inhibitor (PI) or efavirenz (EFV) to RAL on liver fat, body composition, and metabolic parameters among people living with HIV (PLWH) with high risk for nonalcoholic fatty liver disease (NAFLD). We randomized overweight PLWH with signs of metabolic syndrome to switch a PI or EFV to RAL (n = 19) or to continue unchanged antiretroviral therapy (control, n = 24) for 24 weeks. Liver fat was measured by magnetic resonance spectroscopy (MRS), body composition by magnetic resonance imaging, and bioimpedance analysis; subcutaneous fat biopsies were obtained. Median (interquartile range) liver fat content was normal in RAL 2.3% (1.1-6.0) and control 3.1% (1.6-7.3) group at baseline. Liver fat and visceral adipose tissue remained unchanged during the study. Body weight [from 85.9 kg (76.1-97.7) to 89.3 (78.7-98.7), p = 0.019], body fat mass [from 20.3 kg (14.6-29.7) to 22.7 (17.0-29.7), p = 0.015], and subcutaneous adipose tissue (SAT) volume [from 3979 mL (2068-6468) to 4043 (2206-6433), p = 0.048] increased, yet, adipocyte size [from 564 pL (437-733) to 478 (423-587), p = 0.019] decreased in RAL but remained unchanged in control group. Circulating lipids and inflammatory markers improved in RAL compared to control group. The median liver fat measured by MRS was unexpectedly within normal range in this relatively small study population with presumably high risk for NAFLD contradicting high prevalence of NAFLD reported with other methods. Despite weight gain, increase in SAT together with decreased adipocyte size and reduced inflammation may reflect improved adipose tissue function. Clinical Trial Registration number: NCT03374358.
Collapse
Affiliation(s)
- Anna Hanttu
- Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sauli Vuoti
- Department of Clinical Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Pia Kivelä
- Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Perttu Arkkila
- Department of Gastroenterology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, Helsinki Medical Imaging Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, Helsinki Medical Imaging Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jesper Lundbom
- Department of Radiology, Helsinki Medical Imaging Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Lehtimäki
- Department of Radiology, Helsinki Medical Imaging Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Viskari
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ville Lehtinen
- Department of Internal Medicine, Central Hospital of Päijät-Häme, Lahti, Finland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Center, Abdominal Center, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Sutinen
- Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
62
|
Imai M, Kawakami F, Kubo M, Kanzaki M, Maruyama H, Kawashima R, Maekawa T, Kurosaki Y, Kojima F, Ichikawa T. LRRK2 Inhibition Ameliorates Dexamethasone-Induced Glucose Intolerance via Prevents Impairment in GLUT4 Membrane Translocation in Adipocytes. Biol Pharm Bull 2021; 43:1660-1668. [PMID: 33132310 DOI: 10.1248/bpb.b20-00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson's disease. LRRK2 is a large protein with multiple functional domains, including a guanosine 5'-triphosphate (GTP)-binding domain and a protein kinase domain. Recent studies indicated that the members of the Rab GTPase family, Rab8a and Rab10, which are involved in the membrane transport of the glucose transporter type 4 (GLUT4) during insulin-dependent glucose uptake, are phosphorylated by LRRK2. However, the physiological role of LRRK2 in the regulation of glucose metabolism is largely unknown. In the present study, we investigated the role of LRRK2 using dexamethasone (DEX)-induced glucose intolerance in mice. LRRK2 knockout (KO) mice exhibited suppressed glucose intolerance, even after treatment with DEX. The phosphorylation of LRRK2, Rab8a and Rab10 was increased in the adipose tissues of DEX-treated wild-type mice. In addition, inhibition of the LRRK2 kinase activity prevented the DEX-induced inhibition of GLUT4 membrane translocation and glucose uptake in cultured 3T3-L1 adipocytes. These results suggest that LRRK2 plays an important role in glucose metabolism in adipose tissues.
Collapse
Affiliation(s)
- Motoki Imai
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| | - Makoto Kubo
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Division of Clinical Immunology, Graduate School of Medical Sciences, Kitasato University
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University
| | - Hiroko Maruyama
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Department of Cytopathology, Graduate School of Medical Sciences, Kitasato University
| | - Rei Kawashima
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| | - Tatsunori Maekawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| | - Yoshifumi Kurosaki
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences
| | - Fumiaki Kojima
- Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science.,Department of Pharmacology, Kitasato University School of Allied Health Sciences
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University.,Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Science
| |
Collapse
|
63
|
Kim AK, Kwon DW, Yeom E, Lee KP, Kwon KS, Yu K, Lee KS. Lipophorin receptor 1 (LpR1) in Drosophila muscle influences life span by regulating mitochondrial aging. Biochem Biophys Res Commun 2021; 568:95-102. [PMID: 34217014 DOI: 10.1016/j.bbrc.2021.06.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Sarcopenia is a syndrome characterized by progressive loss of muscle mass and function during aging. Although mitochondrial dysfunction and related metabolic defects precede age-related changes in muscle, their contributions to muscle aging are still not well known. In this study, we used a Drosophila model to investigate the role of lipophorin receptors (LpRs), a Drosophila homologue of the mammalian very low-density lipoprotein receptor (VLDLR), in mitochondrial dynamics and muscle aging. Muscle-specific knockdown of LpR1 or LpR2 resulted in mitochondrial dysfunction and reduced proteostasis, which contributed to muscle aging. Activation of AMP-activated protein kinase (AMPK) ameliorated muscle dysfunction induced by LpR1 knockdown. These results suggest that LpR1/VLDLR is a novel key target that modulates age-dependent lipid remodeling and muscle homeostasis.
Collapse
Affiliation(s)
- Ae-Kyeong Kim
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea
| | - Dae-Woo Kwon
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Tunneling Nanotube Research Cnter, Korea University, Seoul, 02841, South Korea
| | - Kwang-Pyo Lee
- Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Aging Research Center, KRIBB, Daejeon, 34141, South Korea; Aventi Inc. Daejeon, 34141, South Korea
| | - Ki-Sun Kwon
- Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Aging Research Center, KRIBB, Daejeon, 34141, South Korea; Aventi Inc. Daejeon, 34141, South Korea
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea; Convergence Research Center of Dementia, KIST, Seoul, 02792, South Korea.
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, 34141, South Korea; Department of Functional Genomics, UST, Daejeon, 34113, South Korea.
| |
Collapse
|
64
|
Wu Y, Lou X. Multifocal lipoatrophy secondary to insulin injection in a patient with type 2 diabetes, hepatitis B virus infection, and liver cirrhosis. J Int Med Res 2021; 49:300060521990237. [PMID: 33682487 PMCID: PMC7944535 DOI: 10.1177/0300060521990237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipoatrophy secondary to insulin injection is a rare complication of insulin use. Localized lipoatrophy is recognized by a loss of subcutaneous fat caused by insulin injection. We report the case of a 69-year-old non-obese female patient with type 2 diabetes mellitus, decompensated liver cirrhosis, and hepatitis B virus (HBV) infection who developed multifocal lipoatrophy during the administration of human insulin and an insulin analog.
Collapse
Affiliation(s)
- Yuedan Wu
- Department of Endocrinology, Dongyang People's Hospital, Jinhua City, Zhejiang, China
| | - Xiaojia Lou
- Department of Endocrinology, Dongyang People's Hospital, Jinhua City, Zhejiang, China
| |
Collapse
|
65
|
Xochitl AF, Rosalía RC, Minerva RG, Mendoza-Sánchez M, Mora O, Pérez-Ramírez IF. Polyphenols and avenanthramides extracted from oat (Avena sativa L.) grains and sprouts modulate genes involved in glucose and lipid metabolisms in 3T3 L1 adipocytes. J Food Biochem 2021; 45:e13738. [PMID: 33899247 DOI: 10.1111/jfbc.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of polyphenol (PE) and avenanthramide (AE) extracts from oat grains (OG) and sprouts (OS) on genes related to glucose and lipid metabolisms in 3T3 L1 adipocytes. The AE-OS exerted the greatest effect on genes involved in glucose metabolism, increasing Glut4, Irs1, and Pi3k expression by 3.0- to 3.9-fold. Conversely, the PE-OS exerted the greatest effect on genes involved in lipid metabolism, decreasing Fasn and Acaca expression by 0.2- to 0.3-fold, and increasing Cpt1a and Acadm expression by 2.7- to 3.0-fold. These effects were mainly related to their high content of avenanthramides A (2p), B (2f), and C (2c), quercetin 3-O-rutinoside, kaempferol, sinapoylquinic acid, and apigenin and luteolin derivatives according to the chemometric analysis. In conclusion, this study demonstrated that oat sprouts extract exerts a greater effect than oat grains on the regulation of genes involved in glucose and lipid metabolisms in adipocytes. PRACTICAL APPLICATIONS: This study demonstrates that polyphenols and avenanthramides extracted from oat (Avena sativa L.) grains and sprouts modulate key genes involved in glucose and lipid metabolisms in adipocytes and that oat sprouts exert a greatest health beneficial effect than oat grains due to their higher content of bioactive compounds. In addition, the chemometric analysis identified the bioactive compounds that can be associated with the beneficial effects of oat grains and sprouts, which can be further used for the identification of oat varieties and oat-derived products with high content of these bioactive compounds and, thus, with high nutraceutical potential.
Collapse
Affiliation(s)
| | | | - Ramos-Gómez Minerva
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| | | | - Ofelia Mora
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| |
Collapse
|
66
|
Secoisolariciresinol Diglucoside Regulates Adipose Tissue Metabolic Disorder in Obese Mice Induced by a Western Diet. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5580772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Secoisolariciresinol diglucoside (SDG) is the main component of flax lignans. Current studies have reported a positive effect of SDG on obesity and metabolic diseases. SDG has strong blood fat- and blood sugar-lowering, anti-inflammatory, and antioxidant effects and prevents heart disease and other chronic diseases. In this study, we explored the effects of SDG on Western diet-induced obesity and lipid metabolic disorder. Supplementing Western diet-induced obese mice with 40 mg kg1 d1, SDG for 12 weeks significantly reduced body and tissue weights. Increased adiponectin levels and decreased serum leptin and resistin levels were observed in obese mice orally administered SDG. Proliferation of adipose tissue was observed by hematoxylin and eosin staining, and cell size was quantitatively analyzed. As a result, SDG inhibited the proliferation of adipose tissue. In addition, SDG suppressed the mRNA expression of lipid synthetic genes and upregulated the mRNA expression of lipolytic genes. Overall, these results indicate that SDG inhibits obesity induced by a Western diet and regulates adipose tissue metabolic disorder. These results provide a theoretical basis for further study on the regulation of obesity and lipid metabolic disorder caused by SDG.
Collapse
|
67
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
68
|
Peripancreatic Adipose Tissue Remodeling and Inflammation during High Fat Intake of Palm Oils or Lard in Rats. Nutrients 2021; 13:nu13041134. [PMID: 33808251 PMCID: PMC8065769 DOI: 10.3390/nu13041134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Excessive fat consumption leads to the development of ectopic adipose tissues, affecting the organs they surround. Peripancreatic adipose tissue is implicated in glucose homeostasis regulation and can be impaired in obesity. High palm oil consumption's effects on health are still debated. We hypothesised that crude and refined palm oil high-fat feeding may have contrasting effects on peripancreatic adipocyte hypertrophy, inflammation and lipid oxidation compound production in obese rats. In Wistar rats, morphological changes, inflammation and isoprostanoid production following oxidative stress were assessed in peripancreatic adipose tissue after 12 weeks of diets enriched in crude or refined palm oil or lard (56% energy from fat in each case) versus a standard chow diet (11% energy from fat). Epididymal white and periaortic brown adipose tissues were also included in the study. A refined palm oil diet disturbed glucose homeostasis and promoted lipid deposition in periaortic locations, as well as adipocyte hypertrophy, macrophage infiltration and isoprostanoid (5-F2c-isoprostane and 7(RS)-ST-Δ8-11-dihomo-isofuran) production in peripancreatic adipose tissue. Crude palm oil induced a lower impact on adipose deposits than its refined form and lard. Our results show that the antioxidant composition of crude palm oil may have a protective effect on ectopic adipose tissues under the condition of excessive fat intake.
Collapse
|
69
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
70
|
Roles of interstitial fluid pH and weak organic acids in development and amelioration of insulin resistance. Biochem Soc Trans 2021; 49:715-726. [PMID: 33769491 DOI: 10.1042/bst20200667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common lifestyle-related diseases (metabolic disorders) due to hyperphagia and/or hypokinesia. Hyperglycemia is the most well-known symptom occurring in T2DM patients. Insulin resistance is also one of the most important symptoms, however, it is still unclear how insulin resistance develops in T2DM. Detailed understanding of the pathogenesis primarily causing insulin resistance is essential for developing new therapies for T2DM. Insulin receptors are located at the plasma membrane of the insulin-targeted cells such as myocytes, adipocytes, etc., and insulin binds to the extracellular site of its receptor facing the interstitial fluid. Thus, changes in interstitial fluid microenvironments, specially pH, affect the insulin-binding affinity to its receptor. The most well-known clinical condition regarding pH is systemic acidosis (arterial blood pH < 7.35) frequently observed in severe T2DM associated with insulin resistance. Because the insulin-binding site of its receptor faces the interstitial fluid, we should recognize the interstitial fluid pH value, one of the most important factors influencing the insulin-binding affinity. It is notable that the interstitial fluid pH is unstable compared with the arterial blood pH even under conditions that the arterial blood pH stays within the normal range, 7.35-7.45. This review article introduces molecular mechanisms on unstable interstitial fluid pH value influencing the insulin action via changes in insulin-binding affinity and ameliorating actions of weak organic acids on insulin resistance via their characteristics as bases after absorption into the body even with sour taste at the tongue.
Collapse
|
71
|
Solares I, Izquierdo-Sánchez L, Morales-Conejo M, Jericó D, Castelbón FJ, Córdoba KM, Sampedro A, Lumbreras C, Moreno-Aliaga MJ, Enríquez de Salamanca R, Berraondo P, Fontanellas A. High Prevalence of Insulin Resistance in Asymptomatic Patients with Acute Intermittent Porphyria and Liver-Targeted Insulin as a Novel Therapeutic Approach. Biomedicines 2021; 9:255. [PMID: 33807619 PMCID: PMC8002016 DOI: 10.3390/biomedicines9030255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute porphyria attacks are associated with the strong up-regulation of hepatic heme synthesis and over-production of neurotoxic heme precursors. First-line therapy is based on carbohydrate loading. However, altered glucose homeostasis could affect its efficacy. Our first aim was to investigate the prevalence of insulin resistance (IR) in an observational case-control study including 44 Spanish patients with acute intermittent porphyria (AIP) and 55 age-, gender- and BMI-matched control volunteers. Eight patients (18.2%) and one control (2.3%, p = 0.01) showed a high HOMA-IR index (cut-off ≥ 3.4). Patients with IR and hyperinsulinemia showed clinically stable disease. Thus, the second aim was to evaluate the effect of the co-administration of glucose and a fast-acting or new liver-targeted insulin (the fusion protein of insulin and apolipoprotein A-I, Ins-ApoAI) in AIP mice. The combination of glucose and the Ins-ApoAI promoted partial but sustained protection against hepatic heme synthesis up-regulation compared with glucose alone or co-injected with fast-acting insulin. In a prevention study, Ins-ApoAI improved symptoms associated with a phenobarbital-induced attack but maintained high porphyrin precursor excretion, probably due to the induction of hepatic mitochondrial biogenesis mediated by apolipoprotein A-I. In conclusion, a high prevalence of IR and hyperinsulinemia was observed in patients with AIP. The experimental data provide proof-of-concept for liver-targeted insulin as a way of enhancing glucose therapy for AIP.
Collapse
Affiliation(s)
- Isabel Solares
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - Laura Izquierdo-Sánchez
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain
| | - Montserrat Morales-Conejo
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Jericó
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
| | - Francisco Javier Castelbón
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - Karol Marcela Córdoba
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
| | - Ana Sampedro
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
| | - Carlos Lumbreras
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - María Jesús Moreno-Aliaga
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 28029 Madrid, Spain
| | - Rafael Enríquez de Salamanca
- Reference Center for Inherited Metabolic Disease-MetabERN, Department of Internal Medicine, University Hospital 12 de Octubre, UCM, 28041 Madrid, Spain; (I.S.); (M.M.-C.); (F.J.C.); (C.L.); (R.E.d.S.)
| | - Pedro Berraondo
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERonc, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Program, Cima Universidad de Navarra, 31008 Pamplona, Spain; (L.I.-S.); (D.J.); (K.M.C.); (A.S.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (M.J.M.-A.); (P.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
72
|
Lyu K, Zhang D, Song J, Li X, Perry RJ, Samuel VT, Shulman GI. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI Insight 2021; 6:139946. [PMID: 33411692 PMCID: PMC7934919 DOI: 10.1172/jci.insight.139946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
White adipose tissue (WAT) insulin action has critical anabolic function and is dysregulated in overnutrition. However, the mechanism of short-term high-fat diet-induced (HFD-induced) WAT insulin resistance (IR) is poorly understood. Based on recent evidences, we hypothesize that a short-term HFD causes WAT IR through plasma membrane (PM) sn-1,2-diacylglycerol (sn-1,2-DAG) accumulation, which promotes protein kinase C-ε (PKCε) activation to impair insulin signaling by phosphorylating insulin receptor (Insr) Thr1160. To test this hypothesis, we assessed WAT insulin action in 7-day HFD-fed versus regular chow diet-fed rats during a hyperinsulinemic-euglycemic clamp. HFD feeding caused WAT IR, reflected by impaired insulin-mediated WAT glucose uptake and lipolysis suppression. These changes were specifically associated with PM sn-1,2-DAG accumulation, higher PKCε activation, and impaired insulin-stimulated Insr Tyr1162 phosphorylation. In order to examine the role of Insr Thr1160 phosphorylation in mediating lipid-induced WAT IR, we examined these same parameters in InsrT1150A mice (mouse homolog for human Thr1160) and found that HFD feeding induced WAT IR in WT control mice but not in InsrT1150A mice. Taken together, these data demonstrate the importance of the PM sn-1,2-DAG/PKCε/Insr Thr1160 phosphorylation pathway in mediating lipid-induced WAT IR and represent a potential therapeutic target to improve WAT insulin sensitivity.
Collapse
Affiliation(s)
- Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joongyu Song
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiruo Li
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
73
|
Tung YC, Shih YA, Nagabhushanam K, Ho CT, Cheng AC, Pan MH. Coleus forskohlii and Garcinia indica extracts attenuated lipid accumulation by regulating energy metabolism and modulating gut microbiota in obese mice. Food Res Int 2021; 142:110143. [PMID: 33773654 DOI: 10.1016/j.foodres.2021.110143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Obesity is related to energy imbalance and energy metabolism. In this study, we investigated the anti-obesity effects of Garcinia indica extract (GIE), Coleus forskohlii extract (CFE), and the combinations of these two extracts in a 3T3-L1 cells and high-fat diet (HFD)-induced obese mice. In vitro, GIE showed better effect on TG content than CFE, CFE showed better effect on glycerol released than GIE, and the combinations of GIE and CFE showed both effects compared with GIE and CFE alone. In vivo, GIE, LMIX (0.005% GIE + 0.025% CFE), and HMIX (0.01% GIE + 0.025% CFE) down-regulated adipogenesis-related transcription factors PPARγ and C/EBPα protein expression, CFE promoted lipolysis by up-regulated p-HSL and p-PKA protein expression, and four supplementations promoted fatty acid β-oxidation by up-regulating CPT-1A and PPARα protein expression to decrease lipid accumulation in adipose tissue. Moreover, we found that CFE, LMIX and HMIX, except GIE exert increasing the abundance of Bacteroides caccae compared with HFD group. Overall, GIE, CFE, and the combinations of GIE and CFE were able to decrease body weight and adipocyte size by promoting fatty acid β-oxidation and modulating gut microbiota in HFD-induced obese mice.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Institute of Food Science and Technology, National Taiwan University, Taiwan; Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yi-Ang Shih
- Institute of Food Science and Technology, National Taiwan University, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - An-Chin Cheng
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
74
|
Osawa S, Kato H, Maeda Y, Takakura H, Ogasawara J, Izawa T. Metabolomic Profiles in Adipocytes Differentiated from Adipose-Derived Stem Cells Following Exercise Training or High-Fat Diet. Int J Mol Sci 2021; 22:ijms22020966. [PMID: 33478060 PMCID: PMC7835847 DOI: 10.3390/ijms22020966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Controlling the differentiation potential of adipose-derived stem cells (ADSCs) is attracting attention as a new strategy for the prevention and treatment of obesity. Here, we aimed to observe the effect of exercise training (TR) and high-fat diet (HFD) on the metabolic profiles of ADSCs-derived adipocytes. The rats were divided into four groups: normal diet (ND)-fed control (ND-SED), ND-fed TR (ND-TR), HFD-fed control (HFD-SED), and HFD-fed TR (HFD-TR). After 9 weeks of intervention, ADSCs of epididymal and inguinal adipose tissues were differentiated into adipocytes. In the metabolome analysis of adipocytes after isoproterenol stimulation, 116 metabolites were detected. The principal component analysis demonstrated that ADSCs-derived adipocytes segregated into four clusters in each fat pad. Amino acid accumulation was greater in epididymal ADSCs-derived adipocytes of ND-TR and HFD-TR, but lower in inguinal ADSCs-derived adipocytes of ND-TR, than in the respective controls. HFD accumulated several metabolites including amino acids in inguinal ADSCs-derived adipocytes and more other metabolites in epididymal ones. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that TR mainly affected the pathways related to amino acid metabolism, except in inguinal ADSCs-derived adipocytes of HFD-TR rats. These findings provide a new way to understand the mechanisms underlying possible changes in the differentiation of ADSCs due to TR or HFD.
Collapse
Affiliation(s)
- Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Hisashi Kato
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
- Organisation for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Yuki Maeda
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Junetsu Ogasawara
- Division of Health Science, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Hokkaido 078-8510, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
75
|
He Q, Ding G, Zhang M, Nie P, Yang J, Liang D, Bo J, Zhang Y, Liu Y. Trends in the Use of Sphingosine 1 Phosphate in Age-Related Diseases: A Scientometric Research Study (1992-2020). J Diabetes Res 2021; 2021:4932974. [PMID: 33791388 PMCID: PMC7984909 DOI: 10.1155/2021/4932974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This study was designed to explore the intellectual landscape of research into the application of sphingosine 1 phosphate (S1P) in age-related diseases and to identify thematic development trends and research frontiers in this area. METHODS Scientometric research was conducted by analyzing bibliographic records retrieved from the Web of Science (WOS) Sci-Expanded Database dated between 1900 and 2020. Countries, institutions, authors, keyword occurrence analysis, and cooperation network analysis were performed using the CiteSpace and VOSviewer software. RESULTS A total of 348 valid records were included in the final dataset, and the number of publications and the frequency of citations have grown rapidly over the last ten years. The USA (n = 175), China (n = 42), and Germany (n = 37) were the three largest contributors to the global publications on S1P and aging, while the Medical University of South Carolina (n = 15), University of California, San Francisco (n = 13), and University of Toronto (n = 13) were the leading institutions in this field. Analysis showed that early studies primarily focused on the mechanism of S1P intervention in AD. While S1P and its relevant metabolites have remained a long-term active area of research, recent studies have focused more on interventions aimed at improving retinal degeneration, cardiomyopathy, multiple sclerosis, and diabetes, among others. CONCLUSIONS It is worth mentioning that this manuscript is the first to describe any bibliometric analysis of S1P and its application in age-related interventions. This study includes a discussion of the (1) historical overview of the topic; (2) main contributors: journals, countries, institutes, funding agencies, and authors; (3) collaboration between institutes and authors; (4) research hot spots and zones; and 5) research trends and frontiers. This will enable scholars to understand the current status of S1P research in age-related diseases.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Gaofeng Ding
- Department of Second Medical College, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Mengyuan Zhang
- Department of Plastic Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Peng Nie
- Department of Radiotherapy, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Dong Liang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Jiaqi Bo
- Department of Second Medical College, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi Province, China
| |
Collapse
|
76
|
Li C, Li J, He F, Li K, Li X, Zhang Y. Matrix Gla protein regulates adipogenesis and is serum marker of visceral adiposity. Adipocyte 2020; 9:68-76. [PMID: 32000575 PMCID: PMC6999844 DOI: 10.1080/21623945.2020.1721692] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Objective Matrix Gla protein (MGP) is a potent calcification inhibitor. Mgp-/- mice display increased proportion of brown adipose tissue. However, whether MGP is involved in fat metabolism remains unclear. This study aims to investigate the involvement. Methods Expression of adipocyte differentiation markers was examined by RT-qPCR. Adipocyte formation was assessed by Oil Red staining. Serum triglyceride, cholesterol, and desphosphorylated-uncarboxylated MGP (dp-ucMGP) were quantified by ELISA. Visceral fat was detected by bioelectrical impedance analysis. Results MGP is highly expressed in visceral fat. MGP expression is induced during preadipocyte differentiation. Knockout of MGP leads to retardation of 3T3-L1 differentiation. Intracellular triglyceride amount is impaired while glycerol release is increased in MGP-depleted cells. Serum dp-ucMGP level is significantly increased in individual with higher visceral fat index (VFI) and waist height ratio (WHtR), but not body mass index (BMI). Additionally, dp-ucMGP positively correlates to low-density lipoprotein cholesterol (LDL-C) level. Conclusions MGP is involved in fat metabolism and serum inactive MGP level is associated with visceral fat. Our study uncovers for the first time the link between MGP and fat metabolism, and sheds light on the potential of dp-ucMGP as a novel serum marker.
Collapse
Affiliation(s)
- Chaomin Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fang He
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kun Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Clinical Laboratory, ShanXi Mineral Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
77
|
Da Eira D, Jani S, Sung H, Sweeney G, Ceddia RB. Effects of the adiponectin mimetic compound ALY688 on glucose and fat metabolism in visceral and subcutaneous rat adipocytes. Adipocyte 2020; 9:550-562. [PMID: 32897149 PMCID: PMC7714433 DOI: 10.1080/21623945.2020.1817230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adiponectin regulates white adipose tissue (WAT) metabolism and promotes insulin-sensitizing and anti-atherosclerotic effects in vivo. In this context, small molecule adiponectin receptor agonists have become of great therapeutic value for the treatment of metabolic diseases. Here, we investigated the effects of the adiponectin mimetic compound ALY688 on WAT metabolism. To accomplish this, rat epididymal (Epid) and subcutaneous inguinal (Sc Ing) adipocytes were isolated and incubated with ALY688. Subsequently, several parameters of glucose and fat metabolism were assessed. ALY688 promoted AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, enhanced glucose oxidation, and suppressed fat oxidation in adipocytes from both fat depots. ALY688 did not affect basal and insulin-stimulated rates of glucose uptake, glucose incorporation into lipids, and AKTSer473 and p38 mitogen-activated protein kinase (MAPK) phosphorylations in either Epid or Sc Ing adipocytes. ALY688 did not alter basal lipolysis in Epid and Sc Ing adipocytes, but it enhanced isoproterenol-induced lipolysis in Epid adipocytes. Adiponectin receptor 2 (AdipoR2) mRNA was the prevalent isoform expressed in all adipocytes, and Epid adipocytes displayed significantly higher AdipoR2 mRNA expression than Sc Ing adipocytes. In conclusion, ALY688 can regulate adiposity and affect glycaemic control by altering substrate portioning in the WAT in a fat depot-specific manner.
Collapse
Affiliation(s)
- Daniel Da Eira
- School of Kinesiology and Health Science, York University, North York, Canada
| | - Shailee Jani
- School of Kinesiology and Health Science, York University, North York, Canada
| | - Hyekyoung Sung
- Department of Biology, York University, North York, Canada
| | - Gary Sweeney
- Department of Biology, York University, North York, Canada
| | - Rolando B. Ceddia
- School of Kinesiology and Health Science, York University, North York, Canada
| |
Collapse
|
78
|
Anti-Obesity Effects of a Prunus persica and Nelumbo nucifera Mixture in Mice Fed a High-Fat Diet. Nutrients 2020; 12:nu12113392. [PMID: 33158191 PMCID: PMC7694277 DOI: 10.3390/nu12113392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prunus persica and Nelumbo nucifera are major crops cultivated worldwide. In East Asia, both P. persica flowers and N. nucifera leaves are traditionally used for therapeutic purposes and consumed as teas for weight loss. Herein, we investigated the anti-obesity effects of an herbal extract mixture of P. persica and N. nucifera (HT077) and the underlying mechanism using a high-fat diet (HFD)-induced obesity model. Male C57BL/6 mice were fed a normal diet, HFD, HFD containing 0.02% orlistat (positive control), or HFD containing 0.1, 0.2, or 0.4% HT077 for 12 weeks. HT077 significantly reduced final body weights, weight gain, abdominal fat weights, liver weights, and hepatic levels of triglycerides and total cholesterol. HT077 also lowered glucose, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and leptin levels and increased AST/ALT and adiponectin/leptin ratios and adiponectin levels. Real-time polymerase chain reaction analysis showed that HT077 decreased the expression of lipogenic genes and increased the expression of fatty acid oxidation-related genes in adipose tissue. Our results indicate that HT077 exerts anti-obesity effects and prevents the development of obesity-related metabolic disorders. These beneficial effects might be partially attributed to ameliorating adipokine imbalances and regulating lipid synthesis and fatty acid oxidation in adipose tissue.
Collapse
|
79
|
Hüttl M, Markova I, Miklankova D, Makovicky P, Pelikanova T, Šeda O, Šedová L, Malinska H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants (Basel) 2020; 9:antiox9090803. [PMID: 32878255 PMCID: PMC7555565 DOI: 10.3390/antiox9090803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1).
Collapse
Affiliation(s)
- Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Pavol Makovicky
- Faculty of Education, Department of Biology, J. Selye University, 94501 Komarno, Slovakia;
| | - Terezie Pelikanova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Ondrej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (O.Š.); (L.Š.)
| | - Lucie Šedová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (O.Š.); (L.Š.)
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| |
Collapse
|
80
|
Akter S, Eguchi M, Kochi T, Kabe I, Nanri A, Mizoue T. Association of Serum Calcium and Phosphate Concentrations with Glucose Metabolism Markers: The Furukawa Nutrition and Health Study. Nutrients 2020; 12:nu12082344. [PMID: 32764504 PMCID: PMC7468836 DOI: 10.3390/nu12082344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 01/03/2023] Open
Abstract
Calcium and phosphate may play an important role in cardio-metabolic abnormalities, including type 2 diabetes; however, epidemiological evidence of the association of calcium and phosphate status with glucose metabolism among Asians is limited. In the current study, we performed a cross-sectional analysis of the association of serum calcium, phosphate, and calcium–phosphate product concentrations with glucose metabolism markers among Japanese individuals. Overall, 1701 workers (aged 18–78 years) who participated in a health survey were enrolled in this study. Multivariable linear regression models were used to estimate means of homeostatic model assessment of insulin resistance (HOMA-IR), homeostatic model assessment of β-cell function (HOMA-β), and glycated hemoglobin (HbA1c). Serum calcium concentration was positively associated with HOMA-IR and HbA1c (p for trend < 0.01). Multivariable-adjusted means (95% confidence interval (CI)) of HOMA-IR for the lowest and highest quartiles of serum calcium were 0.78 (0.75–0.82) and 1.01 (0.96–1.07), respectively. The corresponding values for HbA1c were 5.24 (5.22–5.27) and 5.29 (5.26–5.32), respectively. Serum phosphate and calcium–phosphate product concentrations were inversely associated with HOMA-IR (p for trend < 0.01). Multivariable-adjusted means (95% CI) of HOMA-IR for the lowest and highest quartiles of serum phosphate were 1.04 (0.99–1.09) and 0.72 (0.69–0.76), respectively. The corresponding values for calcium–phosphate product were 1.04 (0.99–1.09) and 0.73 (0.69–0.77), respectively. The current findings suggest that higher serum calcium and lower serum phosphate concentrations are associated with IR among apparently healthy adults.
Collapse
Affiliation(s)
- Shamima Akter
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (A.N.); (T.M.)
- Correspondence: ; Tel.: +81-3-3202-7181; Fax: +81-3-3202-7364
| | - Masafumi Eguchi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo 100-8322, Japan; (M.E.); (T.K.); (I.K.)
| | - Takeshi Kochi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo 100-8322, Japan; (M.E.); (T.K.); (I.K.)
| | - Isamu Kabe
- Department of Health Administration, Furukawa Electric Corporation, Tokyo 100-8322, Japan; (M.E.); (T.K.); (I.K.)
| | - Akiko Nanri
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (A.N.); (T.M.)
- Department of Food and Health Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (A.N.); (T.M.)
| |
Collapse
|
81
|
Brunetta HS, Politis-Barber V, Petrick HL, Dennis KMJH, Kirsh AJ, Barbeau PA, Nunes EA, Holloway GP. Nitrate attenuates high fat diet-induced glucose intolerance in association with reduced epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission. J Physiol 2020; 598:3357-3371. [PMID: 32449521 DOI: 10.1113/jp279455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2023] Open
Abstract
KEY POINTS Dietary nitrate is a prominent therapeutic strategy to mitigate some metabolic deleterious effects related to obesity. Mitochondrial dysfunction is causally linked to adipose tissue inflammation and insulin resistance. Whole-body glucose tolerance is prevented by nitrate independent of body weight and energy expenditure. Dietary nitrate reduces epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission while preserving insulin signalling. Metabolic beneficial effects of nitrate consumption are associated with improvements in mitochondrial redox balance in hypertrophic adipose tissue. ABSTRACT Evidence has accumulated to indicate that dietary nitrate alters energy expenditure and the metabolic derangements associated with a high fat diet (HFD), but the mechanism(s) of action remain incompletely elucidated. Therefore, we aimed to determine if dietary nitrate (4 mm sodium nitrate via drinking water) could prevent HFD-mediated glucose intolerance in association with improved mitochondrial bioenergetics within both white (WAT) and brown (BAT) adipose tissue in mice. HFD feeding caused glucose intolerance (P < 0.05) and increased body weight. As a result of higher body weight, energy expenditure increased proportionally. HFD-fed mice displayed greater mitochondrial uncoupling and a twofold increase in uncoupling protein 1 content within BAT. Within epididymal white adipose tissue (eWAT), HFD increased cell size (i.e. hypertrophy), mitochondrial H2 O2 emission, oxidative stress, c-Jun N-terminal kinase phosphorylation and leucocyte infiltration, and induced insulin resistance. Remarkably, dietary nitrate consumption attenuated and/or mitigated all these responses, including rendering mitochondria more coupled within BAT, and normalizing mitochondrial H2 O2 emission and insulin-mediated Akt-Thr308 phosphorylation within eWAT. Intriguingly, the positive effects of dietary nitrate appear to be independent of eWAT mitochondrial respiratory capacity and content. Altogether, these data suggest that dietary nitrate attenuates the development of HFD-induced insulin resistance in association with attenuating WAT inflammation and redox balance, independent of changes in either WAT or BAT mitochondrial respiratory capacity/content.
Collapse
Affiliation(s)
- Henver S Brunetta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Valerie Politis-Barber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kaitlyn M J H Dennis
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Aleah J Kirsh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pierre-Andre Barbeau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Everson A Nunes
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
82
|
Lechner J, Mayer W. Mitochondrial Function and Root-Filled Teeth - Detrimental and Unknown Interfaces in Systemic Immune Diseases. Int J Gen Med 2020; 13:387-402. [PMID: 32765044 PMCID: PMC7360410 DOI: 10.2147/ijgm.s258170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Mitochondriopathy has recently been linked to several immune system diseases. Historically, there have been many conversations regarding the possible toxic effects of root-filled teeth (RFT), although discussions about the possible decreases in adenosine triphosphate (ATP) activity on the mitochondrial membrane, as caused by dental toxins, are rare. In fact, only a few methods currently exist to assess toxin release in teeth. OBJECTIVE An experimental clinical study design is used to investigate the extent to which RFT release toxins in a solution created specifically following extraction (Tox-sol). Our laboratory is investigating the extent to which these Tox-sols reduce ATP activity in patients. PATIENTS AND METHODS RFTs were identified and extracted to assess their local toxin release using a semi-quantitative volatile sulfur compound indicator (VSCI). These RFTs are placed in an aqueous solution at room temperature for 24 hours and subsequently removed. The resulting solution (Tox-sol) is diluted to 1:100; peripheral blood mononuclear cells (PBMCs) obtained from patients were added to the solution in the laboratory. The remaining ATP activity was measured on the mitochondrial membrane and was compared with the baseline ATP activity of each patient. RESULTS The total population (n=30) showed a ~10% reduction in ATP activity following 24 hours of exposure to the Tox-sol. Three groups emerged with greatly reduced (n=16), neutral (n=10), and increased (n=4) ATP activity. In four different disease groups (rheumatism, neurological disorders, allergies, and tumors), a non-disease specific inhibition of ATP activity was observed. DISCUSSION The study design was limited, as patients were exposed to the Tox-sol and PBMC fraction for only 24 hours. The actual exposure time in a patient's mouth can continue for years and the actual levels can increase over time. Disease-specific effects of Tox-sol were not found. CONCLUSION Within the short exposure time of 24 hours, and at a dilution of 1:100, the Tox-sol caused a median decrease in ATP activity of ~15% in 50% of test subjects. A practical VSCI reliably showed the effects of toxic sulfur compounds on the RFT. The toxic degradation products of biogenic amines from RFT can thus serve as possible contributing factors in the development of mitochondriopathies.
Collapse
Affiliation(s)
- Johann Lechner
- Immunology, Clinic Integrative Dentistry, Munich, Germany
| | | |
Collapse
|
83
|
Bódis K, Jelenik T, Lundbom J, Markgraf DF, Strom A, Zaharia OP, Karusheva Y, Burkart V, Müssig K, Kupriyanova Y, Ouni M, Wolkersdorfer M, Hwang JH, Ziegler D, Schürmann A, Roden M, Szendroedi J. Expansion and Impaired Mitochondrial Efficiency of Deep Subcutaneous Adipose Tissue in Recent-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5678088. [PMID: 31838512 PMCID: PMC7060761 DOI: 10.1210/clinem/dgz267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
CONTEXT/OBJECTIVE Impaired adipose tissue (AT) function might induce recent-onset type 2 diabetes (T2D). Understanding AT energy metabolism could yield novel targets for the treatment of T2D. DESIGN/PATIENTS Male patients with recently-diagnosed T2D and healthy male controls (CON) of similar abdominal subcutaneous AT (SAT)-thickness, fat mass, and age (n = 14 each), underwent hyperinsulinemic-euglycemic clamps with [6,6-2H2]glucose and indirect calorimetry. We assessed mitochondrial efficiency (coupling: state 3/4o; proton leak: state 4o/u) via high-resolution respirometry in superficial (SSAT) and deep (DSAT) SAT-biopsies, hepatocellular lipids (HCL) and fat mass by proton-magnetic-resonance-spectroscopy and -imaging. RESULTS T2D patients (known diabetes duration: 2.5 [0.1; 5.0] years) had 43%, 44%, and 63% lower muscle insulin sensitivity (IS), metabolic flexibility (P < 0.01) and AT IS (P < 0.05), 73% and 31% higher HCL (P < 0.05), and DSAT-thickness (P < 0.001), but similar hepatic IS compared with CON. Mitochondrial efficiency was ~22% lower in SSAT and DSAT of T2D patients (P < 0.001) and ~8% lower in SSAT vs DSAT (P < 0.05). In both fat depots, mitochondrial coupling correlated positively with muscle IS and metabolic flexibility (r ≥ 0.40; P < 0.05), proton leak correlated positively (r ≥ 0.51; P < 0.01) and oxidative capacity negatively (r ≤ -0.47; P < 0.05) with fasting free fatty acids (FFA). Metabolic flexibility correlated positively with SAT-oxidative capacity (r ≥ 0.48; P < 0.05) and negatively with DSAT-thickness (r = -0.48; P < 0.05). DSAT-thickness correlated negatively with mitochondrial coupling in both depots (r ≤ -0.50; P < 0.01) and muscle IS (r = -0.59; P < 0.01), positively with FFA during clamp (r = 0.63; P < 0.001) and HCL (r = 0.49; P < 0.01). CONCLUSIONS Impaired mitochondrial function, insulin resistance, and DSAT expansion are AT abnormalities in recent-onset T2D that might promote whole-body insulin resistance and increased substrate flux to the liver.
Collapse
Affiliation(s)
- Kálmán Bódis
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jesper Lundbom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Meriem Ouni
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dan Ziegler
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Szendroedi
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Correspondence: Dr. Julia Szendroedi, PhD, Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany, c/o Auf’m Hennekamp 65, 40225 Düsseldorf, Germany. E-mail:
| | | |
Collapse
|
84
|
|
85
|
Kim JY, Kim MH, Lee HJ, Huh JW, Lee SR, Lee HS, Lee DS. Peroxiredoxin 4 inhibits insulin-induced adipogenesis through regulation of ER stress in 3T3-L1 cells. Mol Cell Biochem 2020; 468:97-109. [PMID: 32185676 DOI: 10.1007/s11010-020-03714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Obesity was originally considered a disease endemic to developed countries but has since emerged as a global health problem. Obesity is characterized by abnormal or excessive lipid accumulation (World Health Organization, WHO) resulting from pre-adipocyte differentiation (adipogenesis). The endoplasmic reticulum (ER) produces proteins and cholesterol and shuttles these compounds to their target sites. Many studies have implicated ER stress, indicative of ER dysfunction, in adipogenesis. Reactive oxygen species (ROS) are also known to be involved in pre-adipocyte differentiation. Prx4 specific to the ER lumen exhibits ROS scavenging activity, and we thereby focused on ER-specific Prx4 in tracking changes in adipocyte differentiation and lipid accumulation. Overexpression of Prx4 reduced ER stress and suppressed lipid accumulation by regulating adipogenic gene expression during adipogenesis. Our results demonstrate that Prx4 inhibits ER stress, lowers ROS levels, and attenuates pre-adipocyte differentiation. These findings suggested enhancing the activity of Prx4 may be helpful in the treatment of obesity; the data also support the development of new therapeutic approaches to obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Jae Yeop Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea.,Research Institute, E-Biogen Inc, Seoul, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea. .,School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
86
|
Abstract
The term "adipose tissue" represents a multicellular and multifunctional organ involved in lipid storage, in hormone and temperature regulation, and in the protection of bones and vital organs from impact-based damage. Emerging evidence now suggests a more malignant role of adipose tissue in promoting cancer onset and progression via the release of secreted factors such as interleukin-6 (IL6) and extracellular vesicles (EVs). These adipose-source factors subsequently affect various aspects of tumorigenesis and/or cancer progression by either directly enhancing the tumor cell oncogenic phenotype or indirectly by the stimulating adjacent normal cells to adopt a more pro-cancer phenotype. Due to the recent growing interest in the role of IL6 and EVs released by adipose tissue in cancer promotion and progression, we are focusing on the protumorigenic impact of fat tissue via IL6 and EV secretion.
Collapse
|
87
|
Varela-Rodríguez BM, Juiz-Valiña P, Varela L, Outeiriño-Blanco E, Bravo SB, García-Brao MJ, Mena E, Noguera JF, Valero-Gasalla J, Cordido F, Sangiao-Alvarellos S. Beneficial Effects of Bariatric Surgery-Induced by Weight Loss on the Proteome of Abdominal Subcutaneous Adipose Tissue. J Clin Med 2020; 9:jcm9010213. [PMID: 31941045 PMCID: PMC7019912 DOI: 10.3390/jcm9010213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bariatric surgery (BS) is the most effective treatment for obesity and has a positive impact on cardiometabolic risk and in the remission of type 2 diabetes. Following BS, the majority of fat mass is lost from the subcutaneous adipose tissue depot (SAT). However, the changes in this depot and functions and as well as its relative contribution to the beneficial effects of this surgery are still controversial. With the aim of studying altered proteins and molecular pathways in abdominal SAT (aSAT) after body weight normalization induced by BS, we carried out a proteomic approach sequential window acquisition of all theoretical mass spectra (SWATH-MS) analysis. These results were complemented by Western blot, electron microscopy and RT-qPCR. With all of the working tools mentioned, we confirmed that after BS, up-regulated proteins were associated with metabolism, the citric acid cycle and respiratory electron transport, triglyceride catabolism and metabolism, formation of ATP, pyruvate metabolism, glycolysis/gluconeogenesis and thermogenesis among others. In contrast, proteins with decreased values are part of the biological pathways related to the immune system. We also confirmed that obesity caused a significant decrease in mitochondrial density and coverage, which was corrected by BS. Together, these findings reveal specific molecular mechanisms, genes and proteins that improve adipose tissue function after BS characterized by lower inflammation, increased glucose uptake, higher insulin sensitivity, higher de novo lipogenesis, increased mitochondrial function and decreased adipocyte size.
Collapse
Affiliation(s)
- Bárbara María Varela-Rodríguez
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
| | - Paula Juiz-Valiña
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Elena Outeiriño-Blanco
- Department of Endocrinology, Hospital Universitario A Coruña, A Coruña, 15006 A Coruña, Spain;
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain;
| | - María Jesús García-Brao
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - Enrique Mena
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - José Francisco Noguera
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - Javier Valero-Gasalla
- Department of Plastic, Reconstructive & Aesthetic Surgery. Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Fernando Cordido
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
- Department of Endocrinology, Hospital Universitario A Coruña, A Coruña, 15006 A Coruña, Spain;
| | - Susana Sangiao-Alvarellos
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
- Correspondence:
| |
Collapse
|
88
|
Zhao J, Wu Y, Rong X, Zheng C, Guo J. Anti-Lipolysis Induced by Insulin in Diverse Pathophysiologic Conditions of Adipose Tissue. Diabetes Metab Syndr Obes 2020; 13:1575-1585. [PMID: 32494174 PMCID: PMC7227813 DOI: 10.2147/dmso.s250699] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
As an important energy reservoir, adipose tissue maintains lipid balance and regulates energy metabolism. When the body requires energy, adipocytes provide fatty acids to peripheral tissues through lipolysis. Insulin plays an important role in regulating normal fatty acid levels by inhibiting lipolysis. When the morphology of adipose tissue is abnormal, its microenvironment changes and the lipid metabolic balance is disrupted, which seriously impairs insulin sensitivity. As the most sensitive organ to respond to insulin, lipolysis levels in adipose tissue are affected by impaired insulin function, which results in serious metabolic diseases. However, the specific underlying mechanisms of this process have not yet been fully elucidated, and further study is required. The purpose of this review is to discuss the effects of adipose tissue on the anti-lipolysis process triggered by insulin under different conditions. In particular, the functional changes of this process respond to inconsonantly morphological changes of adipose tissue.
Collapse
Affiliation(s)
- Jia Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
| | - YaYun Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
| | - XiangLu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
- Guangdong TCM Key Laboratory for the Prevention and Treatment of Metabolic Diseases, Guangdong, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong and Macao Regions on Metabolic Diseases, Guangdong, People's Republic of China
| | - CuiWen Zheng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangdong, People's Republic of China
- Guangdong TCM Key Laboratory for the Prevention and Treatment of Metabolic Diseases, Guangdong, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong and Macao Regions on Metabolic Diseases, Guangdong, People's Republic of China
| |
Collapse
|
89
|
Abstract
Obesity and type 2 diabetes are the most frequent metabolic disorders, but their causes remain largely unclear. Insulin resistance, the common underlying abnormality, results from imbalance between energy intake and expenditure favouring nutrient-storage pathways, which evolved to maximize energy utilization and preserve adequate substrate supply to the brain. Initially, dysfunction of white adipose tissue and circulating metabolites modulate tissue communication and insulin signalling. However, when the energy imbalance is chronic, mechanisms such as inflammatory pathways accelerate these abnormalities. Here we summarize recent studies providing insights into insulin resistance and increased hepatic gluconeogenesis associated with obesity and type 2 diabetes, focusing on data from humans and relevant animal models.
Collapse
|
90
|
Impact of skeletal muscle IL-6 on subcutaneous and visceral adipose tissue metabolism immediately after high- and moderate-intensity exercises. Pflugers Arch 2019; 472:217-233. [PMID: 31781893 DOI: 10.1007/s00424-019-02332-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
White adipose tissue is a major energy reserve for the body and is essential for providing fatty acids for other tissues when needed. Skeletal muscle interleukin-6 (IL-6) has been shown to be secreted from the working muscle and has been suggested to signal to adipose tissue and enhance lipolysis. The aim of the present study was to investigate the role of skeletal muscle IL-6 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) lipolysis and glyceroneogenesis with prolonged moderate-intensity exercise and high-intensity exercise in mice. Female inducible muscle-specific IL-6 knockout (IL-6 iMKO) mice and littermate control (Floxed) mice performed a single exercise bout for either 120 min at 16 m/min and 10° slope (moderate intensity) or 30 min at 20 m/min and 10° slope (high intensity), or they remained rested (rest). Visceral and subcutaneous adipose tissues, quadriceps muscles, and blood were quickly obtained. Plasma IL-6 increased in Floxed mice but not in IL-6 iMKO mice with high-intensity exercise. VAT signal transducer and activator of transcription (STAT)3Tyr705 phosphorylation was lower, and VAT hormone-sensitive lipase (HSL)Ser563 phosphorylation was higher in IL-6 iMKO mice than in Floxed mice at rest. Furthermore, HSLSer563 and HSLSer660 phosphorylation increased in VAT and phosphoenolpyruvate carboxykinase protein decreased in SAT with moderate-intensity exercise in both genotypes. On the other hand, both exercise protocols increased pyruvate dehydrogenaseSer232 phosphorylation in VAT only in IL-6 iMKO mice and decreased tumor necrosis factor-α messenger RNA in SAT and VAT only in Floxed mice. In conclusion, the present findings suggest that skeletal muscle IL-6 regulates markers of lipolysis in VAT in the basal state and pyruvate availability for glyceroneogenesis in VAT with exercise. Moreover, skeletal muscle IL-6 may contribute to exercise-induced anti-inflammatory effects in SAT and VAT.
Collapse
|
91
|
dos Santos GF, Veras ASC, de Freitas MC, McCabe J, Seraphim PM, Teixeira GR. Strength training reduces lipid accumulation in liver of obese Wistar rats. Life Sci 2019; 235:116834. [DOI: 10.1016/j.lfs.2019.116834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
|
92
|
Pierzynová A, Šrámek J, Cinkajzlová A, Kratochvílová H, Lindner J, Haluzík M, Kučera T. The number and phenotype of myocardial and adipose tissue CD68+ cells is associated with cardiovascular and metabolic disease in heart surgery patients. Nutr Metab Cardiovasc Dis 2019; 29:946-955. [PMID: 31307852 DOI: 10.1016/j.numecd.2019.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CD68+ cells are a potent source of inflammatory cytokines in adipose tissue and myocardium. The development of low-grade inflammation in adipose tissue is implicated in the pathogenesis of obesity-associated disorders including type 2 diabetes mellitus (T2DM) and cardiovascular disease. The main aim of the study was to characterize and quantify myocardial and adipose tissue CD68+ cells and adipose tissue crown-like structures (CLS) in patients with obesity, coronary artery disease (CAD) and T2DM. METHODS AND RESULTS Samples were obtained from the right atrium, epicardial (EAT) and subcutaneous adipose tissue (SAT) during elective heart surgery (non-obese, n = 34 patients; obese, n = 24 patients). Immunohistochemistry was used to visualize CD68+ cells. M1-polarized macrophages were visualized by immunohistochemical detection of CD11c. The proportion of CD68+ cells was higher in EAT than in SAT (43.4 ± 25.0 versus 32.5 ± 23.1 cells per 1 mm2; p = 0.015). Myocardial CD68+ cells were more abundant in obese patients (45.6 ± 24.5 versus 27.7 ± 14.8 cells per 1 mm2; p = 0.045). In SAT, CD68+ cells were more frequent in CAD patients (37.3 ± 23.0 versus 23.1 ± 20.9 cells per 1 mm2; p = 0.012). Patients having CLS in their SAT had higher average BMI (34.1 ± 6.4 versus 29.0 ± 4.5; p = 0.024). CONCLUSIONS Regional-based increases in the frequency of CD68+ cells and changes of their phenotype in CLS were detected in obese patients and CAD patients. Therapeutic modulation of adipose tissue inflammation may represent a target for treatment of obesity.
Collapse
Affiliation(s)
- Aneta Pierzynová
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaromír Šrámek
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Cinkajzlová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Helena Kratochvílová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
93
|
Adipose lipidomics and RNA-Seq analysis revealed the enhanced mitochondrial function in UCP1 knock-in pigs. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1375-1383. [PMID: 31271850 DOI: 10.1016/j.bbalip.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/31/2019] [Accepted: 06/28/2019] [Indexed: 11/24/2022]
Abstract
Uncoupling protein 1 (UCP1) plays a key role in nonshivering thermogenesis and is involved in the pathogenesis of obesity. In a previous study, we generated adipocyte-specific UCP1 knock-in (UCP1-KI) pigs, which exhibited improved thermoregulatory ability and decreased fat deposition. To investigate whether UCP1 knock-in alters the lipid composition of adipose tissues, lipidomics of inguinal subcutaneous white adipose tissue (iWAT) and backfat from 6-month-old cold-treated UCP1-KI pigs and wild-type (WT) pigs were profiled. In addition, genome-wide RNA-sequencing of iWAT was performed to further study the genetic basis for lipid alterations. The results showed that iWAT and backfat from UCP1-KI pigs exhibited distinct lipidomic profiles, as the mild lipid alteration was observed in backfat of UCP1 knock-in pigs. Inguinal WAT from UCP1-KI pigs contained significantly decreased total triacylglycerol (p < 0.05), together with the downregulation of genes involved in fatty acid metabolism, suggesting the decreased lipogenesis in iWAT of UCP1-KI pigs. Significantly increased levels of total sphingolipids (p<0.05) were also observed in iWAT from UCP1-KI pigs. Notably, two mitochondrial-specific lipid species, cardiolipin CL72:8 (18:2) and CL74:9 (18:2), were found to be dramatically increased in iWAT from UCP1-KI pigs, suggesting enhanced mitochondrial function. This observation was further supported by the significant upregulation of numerous mitochondrial-related genes and significantly increased number of large mitochondria and mitochondrial cristae in iWAT of UCP1-KI pigs. Taken together, these data illustrate the specific role of UCP1 in lipid metabolism of fat tissues in pigs and provide new data for characterization of fat traits in UCP1-KI pigs.
Collapse
|
94
|
Simon MC, Möller-Horigome A, Strassburger K, Nowotny B, Knebel B, Müssig K, Herder C, Szendroedi J, Roden MW. Correlates of Insulin-Stimulated Glucose Disposal in Recent-Onset Type 1 and Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:2295-2304. [PMID: 30689904 DOI: 10.1210/jc.2018-02057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/23/2019] [Indexed: 02/10/2023]
Abstract
CONTEXT AND OBJECTIVE Not only type 2 diabetes (T2D), but also type 1 diabetes (T1D), can be associated with insulin resistance, as assessed using insulin-stimulated whole-body glucose disposal (M-value). We hypothesized that different factors would affect the M-value at the onset of T1D and T2D. DESIGN AND PATIENTS We examined 132 patients with T1D or T2D matched for sex, age, and body mass index with a known diabetes duration of <12 months. Multivariable linear regression analyses were applied to test the associations between glycemic control, blood lipid levels, adiponectin, and proinflammatory immune mediators and the M-value, obtained from the hyperinsulinemic-euglycemic clamp. RESULTS Despite comparable age, body mass index, and near-normoglycemic control, the mean M-value was lower in those with T2D than in those with T1D. Patients with T1D had a lower waist/hip ratio and serum triglycerides but higher serum adiponectin than patients with T2D. However, the circulating proinflammatory markers were not different. Even with adjustments for glucose-lowering treatments, the fasting blood glucose correlated negatively with the M-value in both groups. However, gamma-glutamyl transferase-independently of any treatments-correlated negatively only in T2D. In contrast, serum adiponectin correlated positively with the M-values. CONCLUSIONS Fasting glycemia correlated with insulin-stimulated glucose disposal in both diabetes types. However, altered liver and adipose tissue function were associated with insulin-stimulated glucose disposal only in T2D, underpinning the specific differences between these diabetes types.
Collapse
Affiliation(s)
- Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Akiko Möller-Horigome
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael W Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
95
|
Li N, Zhan X. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA J 2019; 10:153-172. [PMID: 31258820 PMCID: PMC6562010 DOI: 10.1007/s13167-019-00170-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
RELEVANCE Molecular network changes are the hallmark of the pathogenesis of ovarian cancers (OCs). Network-based biomarkers benefit for the effective treatment of OC. PURPOSE This study sought to identify key pathway-network alterations and network-based biomarkers for clarification of molecular mechanisms and treatment of OCs. METHODS Ingenuity Pathway Analysis (IPA) platform was used to mine signaling pathway networks with 1198 human tissue mitochondrial differentially expressed proteins (mtDEPs) and compared those pathway network changes between OCs and controls. The mtDEPs in important cancer-related pathway systems were further validated with qRT-PCR and Western blot in OC cell models. Moreover, integrative analysis of mtDEPs and Cancer Genome Atlas (TCGA) data from 419 patients was used to identify hub molecules with molecular complex detection method. Hub molecule-based survival analysis and multiple multivariate regression analysis were used to identify survival-related hub molecules and hub molecule signature model. RESULTS Pathway network analysis revealed 25 statistically significant networks, 192 canonical pathways, and 5 significant molecular/cellular function models. A total of 52 canonical pathways were activated or inhibited in cancer pathogenesis, including antigen presentation, mitochondrial dysfunction, GP6 signaling, EIF2 signaling, and glutathione-mediated detoxification. Of them, mtDEPs (TPM1, CALR, GSTP1, LYN, AKAP12, and CPT2) in those canonical pathway and molecular/cellular models were validated in OC cell models at the mRNA and protein levels. Moreover, 102 hub molecules were identified, and they were regulated by post-translational modifications and functioned in multiple biological processes. Of them, 62 hub molecules were individually significantly related to OC survival risk. Furthermore, multivariate regression analysis of 102 hub molecules identified significant seven hub molecule signature models (HIST1H2BK, ALB, RRAS2, HIBCH, EIF3E, RPS20, and RPL23A) to assess OC survival risks. CONCLUSION These findings provided the overall signaling pathway network profiling of human OCs; offered scientific data to discover pathway network-based cancer biomarkers for diagnosis, prognosis, and treatment of OCs; and clarify accurate molecular mechanisms and therapeutic targets. These findings benefit for the discovery of effective and reliable biomarkers based on pathway networks for OC predictive and personalized medicine.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
96
|
Américo ALV, Muller CR, Vecchiatto B, Martucci LF, Fonseca-Alaniz MH, Evangelista FS. Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue. PLoS One 2019; 14:e0215896. [PMID: 31022246 PMCID: PMC6483229 DOI: 10.1371/journal.pone.0215896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
We investigate the effects of aerobic exercise training (AET) on the thermogenic response, substrate metabolism and renin angiotensin system (RAS) in the subcutaneous white adipose tissue (SC-WAT) of mice fed cafeteria diet (CAF). Male C57BL/6J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 10), CHOW-TR (chow diet, trained; n = 10), CAF-SED (CAF, sedentary; n = 10) and CAF-TR (CAF, trained; n = 10). AET consisted in running sessions of 60 min at 60% of maximal speed, five days per week for eight weeks. The CAF-SED group showed higher body weight and adiposity, glucose intolerance and insulin resistance (IR), while AET prevented such damages in CAF-TR group. AET reduced the p-AKT/t-AKT ratio and increased ATGL expression in CHOW-TR and CAF-TR groups and increased t-HSL and p-HSL/t-HSL ratio in CAF-TR. AET prevented adipocyte hypertrophy in CAF-TR group and increased UCP-1 protein expression only in CHOW-TR. Serum ACE2 increased in CHOW-TR and CAF-TR groups, and Ang (1–7) increased in the CHOW-TR group. In the SC-WAT, CAF-TR group increased the expression of AT1, AT2 and Mas receptors, whereas CHOW-TR increased Ang (1–7) and Ang (1–7)/Ang II ratio in SC-WAT. No changes were observed in ACE and Ang II. Positive correlations were observed between UCP-1 and kITT (r = 0.6), between UCP-1 and Ang (1–7) concentration (r = 0.6), and between UCP-1 and Ang (1–7)/Ang II ratio (r = 0.7). In conclusion, the AET prevented obesity and IR, reduced insulin signaling proteins and increased lipolysis signaling proteins in the SC-WAT. In addition, the CAF diet precludes the AET-induced thermogenic response and the partial modulation of the RAS suggests that the protective effect of AET against obesity and IR could not be associated with SC-WAT RAS.
Collapse
Affiliation(s)
- Anna Laura V. Américo
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cynthia R. Muller
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bruno Vecchiatto
- School of Arts, Science and Humanities, University of Sao Paulo, São Paulo, Brazil
| | - Luiz Felipe Martucci
- Department of Experimental Pathophysiology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Fabiana S. Evangelista
- School of Arts, Science and Humanities, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
97
|
Hagman E, Besor O, Hershkop K, Santoro N, Pierpont B, Mata M, Caprio S, Weiss R. Relation of the degree of obesity in childhood to adipose tissue insulin resistance. Acta Diabetol 2019; 56:219-226. [PMID: 30637483 PMCID: PMC6373259 DOI: 10.1007/s00592-018-01285-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023]
Abstract
AIMS In this study, we investigated whether adipose tissue insulin resistance (IR) is affected by the degree of obesity during the fasting and post-prandial state, independent of glucose tolerance among obese children and adolescents. We also tested whether systemic subclinical inflammation is associated with adipose tissue IR. METHODS Subjects were recruited to the Yale Pathophysiology of Type 2 Diabetes in Youth Study (NCT01967849). An oral glucose-tolerance test was performed to establish glucose-tolerance status and blood samples were drawn for measurement of free fatty acids (FFAs), to calculate the area under the curve (AUC) of FFA. Adipose tissue insulin resistance was calculated as the product of insulin and FFA concentrations. RESULTS In total, 671 children and adolescents (58.6% females) were included with a mean age of 13.3(2.7) years and BMI Z score of 2.45(0.31). The degree of obesity emerged as an independent predictor of both fasting and post-prandial adipose IR, p < 0.0001. Higher degree of obesity was associated with greater AUC FFA (lower suppression) compared to lower degree of obesity, p = 0.01. Furthermore, higher levels of IL-6 were positively associated with post-prandial adipose tissue IR, p = 0.02. CONCLUSIONS The degree of obesity in childhood and adolescence is strongly associated with adipose tissue IR independent of glucose tolerance. This is reflected not only in calculated indices of adipose IR but also in lower suppression of FFAs during the OGTT regardless of glucose tolerance or fasting adipose tissue IR. Furthermore, markers of subclinical inflammation such as IL-6 are associated with adipose tissue IR, independent of other factors.
Collapse
Affiliation(s)
- Emilia Hagman
- Department of Human Metabolism and Nutrition, Braun School of Public Health, Hebrew University, Jerusalem, Israel.
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Blickagången 6A, 141 57, Stockholm, Sweden.
| | - Omri Besor
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Karen Hershkop
- Department of Human Metabolism and Nutrition, Braun School of Public Health, Hebrew University, Jerusalem, Israel
| | - Nicola Santoro
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Mariana Mata
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ram Weiss
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
98
|
Lee HC, Yu SC, Lo YC, Lin IH, Tung TH, Huang SY. A high linoleic acid diet exacerbates metabolic responses and gut microbiota dysbiosis in obese rats with diabetes mellitus. Food Funct 2019; 10:786-798. [DOI: 10.1039/c8fo02423e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary polyunsaturated fatty acid (PUFA) levels may affect inflammatory responses and lipid metabolism.
Collapse
Affiliation(s)
- Hsiu-Chuan Lee
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - Shao-Chuan Yu
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - Yun-Chun Lo
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - I-Hsuan Lin
- Research Center of Cancer Translational Medicine
- Taipei Medical University
- Taipei
- Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
- Graduate Institute of Metabolism and Obesity Sciences
| |
Collapse
|