51
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
52
|
HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies. J Virol 2015; 89:4201-13. [PMID: 25631091 DOI: 10.1128/jvi.03608-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Broadly neutralizing antibodies (bNAbs) have been isolated from selected HIV-1-infected individuals and shown to bind to conserved sites on the envelope glycoprotein (Env). However, circulating plasma virus in these donors is usually resistant to autologous isolated bNAbs, indicating that during chronic infection, HIV-1 can escape from even broadly cross-reactive antibodies. Here, we evaluate if such viral escape is associated with an impairment of viral replication. Antibodies of the VRC01 class target the functionally conserved CD4 binding site and share a structural mode of gp120 recognition that includes mimicry of the CD4 receptor. We examined naturally occurring VRC01-sensitive and -resistant viral strains, as well as their mutated sensitive or resistant variants, and tested point mutations in the backbone of the VRC01-sensitive isolate YU2. In several cases, VRC01 resistance was associated with a reduced efficiency of CD4-mediated viral entry and diminished viral replication. Several mutations, alone or in combination, in the loop D or β23-V5 region of Env conferred a high level of resistance to VRC01 class antibodies, suggesting a preferred escape pathway. We further mapped the VRC01-induced escape pathway in vivo using Envs from donor 45, from whom antibody VRC01 was isolated. Initial escape mutations, including the addition of a key glycan, occurred in loop D and were associated with impaired viral replication; however, compensatory mutations restored full replicative fitness. These data demonstrate that escape from VRC01 class antibodies can diminish viral replicative fitness, but compensatory changes may explain the limited impact of neutralizing antibodies during the course of natural HIV-1 infection. IMPORTANCE Some antibodies that arise during natural HIV-1 infection bind to conserved regions on the virus envelope glycoprotein and potently neutralize the majority of diverse HIV-1 strains. The VRC01 class of antibodies blocks the conserved CD4 receptor binding site interaction that is necessary for viral entry, raising the possibility that viral escape from antibody neutralization might exert detrimental effects on viral function. Here, we show that escape from VRC01 class antibodies can be associated with impaired viral entry and replication; however, during the course of natural infection, compensatory mutations restore the ability of the virus to replicate normally.
Collapse
|
53
|
Abstract
Illustrations of the HIV Life Cycle. The illustrations include proteins, nucleic acids and membranes; small molecules and water are omitted for clarity. Host cell molecules are shown in shades of blue and green and blood plasma proteins are shown in shades of tan and brown. HIV proteins are shown in red and magenta, HIV RNA is in yellow and HIV DNA is in yellow-green. The 3D model of the mature virion was generated using CellPACK by Graham Johnson Illustrations of the major steps of HIV life cycle are presented that integrate information from structural and biophysical studies. The illustrations depict HIV and its interaction with its cellular host at a magnification that reveals all macromolecules. This report describes the sources of scientific support for the structures and processes shown in the illustrations.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology and RCSB Protein Data Bank, The Scripps Research Institute, La Jolla, 92037, CA, USA,
| |
Collapse
|
54
|
Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci U S A 2014; 111:17182-7. [PMID: 25404321 DOI: 10.1073/pnas.1414164111] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ebola virus (EBOV) and related filoviruses cause severe hemorrhagic fever, with up to 90% lethality, and no treatments are approved for human use. Multiple recent outbreaks of EBOV and the likelihood of future human exposure highlight the need for pre- and postexposure treatments. Monoclonal antibody (mAb) cocktails are particularly attractive candidates due to their proven postexposure efficacy in nonhuman primate models of EBOV infection. Two candidate cocktails, MB-003 and ZMAb, have been extensively evaluated in both in vitro and in vivo studies. Recently, these two therapeutics have been combined into a new cocktail named ZMapp, which showed increased efficacy and has been given compassionately to some human patients. Epitope information and mechanism of action are currently unknown for most of the component mAbs. Here we provide single-particle EM reconstructions of every mAb in the ZMapp cocktail, as well as additional antibodies from MB-003 and ZMAb. Our results illuminate key and recurring sites of vulnerability on the EBOV glycoprotein and provide a structural rationale for the efficacy of ZMapp. Interestingly, two of its components recognize overlapping epitopes and compete with each other for binding. Going forward, this work now provides a basis for strategic selection of next-generation antibody cocktails against Ebola and related viruses and a model for predicting the impact of ZMapp on potential escape mutations in ongoing or future Ebola outbreaks.
Collapse
|
55
|
Synthesis of unsymmetrical 3,6-branched Man5 oligosaccharide: a comparison between one-pot sequential glycosylation and stepwise synthesis. Carbohydr Res 2014; 401:109-14. [PMID: 25481531 DOI: 10.1016/j.carres.2014.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023]
Abstract
An expeditious three-component, one-pot sequential glycosylation protocol has been developed for the preparation of 3,6-branched unsymmetrical mannopentaose (Man5), employing a mannose trisaccharide donor, a mannose monosaccharide donor and a mannose monosaccharide acceptor. The high efficiency of this one-pot procedure was demonstrated by comparison study with a stepwise synthesis using the same three building blocks.
Collapse
|
56
|
Antibody B cell responses in HIV-1 infection. Trends Immunol 2014; 35:549-61. [DOI: 10.1016/j.it.2014.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
|
57
|
Doolan DL, Apte SH, Proietti C. Genome-based vaccine design: the promise for malaria and other infectious diseases. Int J Parasitol 2014; 44:901-13. [PMID: 25196370 DOI: 10.1016/j.ijpara.2014.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/08/2023]
Abstract
Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years.
Collapse
Affiliation(s)
- Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Carla Proietti
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| |
Collapse
|
58
|
Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R, Smith PD, Mestecky J, Novak J. Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 2014; 11:23. [PMID: 25120578 PMCID: PMC4130436 DOI: 10.1186/1742-6405-11-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.
Collapse
|
59
|
Miller MS, Palese P. Peering into the crystal ball: influenza pandemics and vaccine efficacy. Cell 2014; 157:294-299. [PMID: 24725400 DOI: 10.1016/j.cell.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 11/17/2022]
Abstract
The looming threat of a new influenza virus pandemic has fueled ambitious efforts to devise more predictive parameters for assessing the risks associated with emergent virus strains. At the same time, a comprehensive understanding of critical factors that can accurately predict the outcome of vaccination is sorely needed in order to improve the effectiveness of influenza virus vaccines. Will new studies aimed at identifying adaptations required for virus transmissibility and systems-level analyses of influenza virus vaccine responses provide an improved framework for predictive models of viral adaptation and vaccine efficacy?
Collapse
Affiliation(s)
- Matthew S Miller
- Department of Microbiology, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
60
|
van Riet E, Ainai A, Suzuki T, Kersten G, Hasegawa H. Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv Drug Deliv Rev 2014; 74:28-34. [PMID: 24862579 DOI: 10.1016/j.addr.2014.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 04/16/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Currently, several successful vaccines are available. However, for pathogens with a highly variable genetic composition, and for which serum IgG antibodies are not a useful correlate of protection, effective vaccines are yet to be developed. This is due to a lack of both the understanding of the immunological pathways leading to long-term protection and the ability to translate the available knowledge into a suitable vaccine formulation. Regarding the latter, nanoparticles can be an attractive platform for vaccine development, as they offer multiple options for improving safety and efficacy. For example, side effects might be decreased upon encapsulation of the adjuvant and the concomitant delivery of antigen and adjuvant is a very promising tool for increasing efficacy. In addition to the many promises, the use of nanoparticles as vaccine carriers should be implemented with caution: the more sophisticated a particle, the more parameters need to be controlled during production and storage.
Collapse
|
61
|
Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc Natl Acad Sci U S A 2014; 111:10275-80. [PMID: 24982157 DOI: 10.1073/pnas.1409954111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rapidly evolving pathogens, such as human immunodeficiency and influenza viruses, escape immune defenses provided by most vaccine-induced antibodies. Proposed strategies to elicit broadly neutralizing antibodies require a deeper understanding of antibody affinity maturation and evolution of the immune response to vaccination or infection. In HIV-infected individuals, viruses and B cells evolve together, creating a virus-antibody "arms race." Analysis of samples from an individual designated CH505 has illustrated the interplay between an antibody lineage, CH103, and autologous viruses at various time points. The CH103 antibodies, relatively broad in their neutralization spectrum, interact with the CD4 binding site of gp120, with a contact dominated by CDRH3. We show by analyzing structures of progenitor and intermediate antibodies and by correlating them with measurements of binding to various gp120s that there was a shift in the relative orientation of the light- and heavy-chain variable domains during evolution of the CH103 lineage. We further show that mutations leading to this conformational shift probably occurred in response to insertions in variable loop 5 (V5) of the HIV envelope. The shift displaced the tips of the light chain away from contact with V5, making room for the inserted residues, which had allowed escape from neutralization by the progenitor antibody. These results, which document the selective mechanism underlying this example of a virus-antibody arms race, illustrate the functional significance of affinity maturation by mutation outside the complementarity determining region surface of the antibody molecule.
Collapse
|
62
|
Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A 2014; 111:E2514-23. [PMID: 24927560 DOI: 10.1073/pnas.1402766111] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.
Collapse
|
63
|
Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 2014; 5:3614. [PMID: 24717798 DOI: 10.1038/ncomms4614] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/11/2014] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012-2013. Here we describe an antibody, F045-092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045-092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045-092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhanced avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.
Collapse
|
64
|
Alternative recognition of the conserved stem epitope in influenza A virus hemagglutinin by a VH3-30-encoded heterosubtypic antibody. J Virol 2014; 88:7083-92. [PMID: 24719426 DOI: 10.1128/jvi.00178-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED A human monoclonal heterosubtypic antibody, MAb 3.1, with its heavy chain encoded by VH3-30, was isolated using phage display with immobilized hemagglutinin (HA) from influenza virus A/Japan/305/1957(H2N2) as the target. Antibody 3.1 potently neutralizes influenza viruses from the H1a clade (i.e., H1, H2, H5, H6) but has little neutralizing activity against the H1b clade. Its crystal structure in complex with HA from a pandemic H1N1 influenza virus, A/South Carolina/1/1918(H1N1), revealed that like other heterosubtypic anti-influenza virus antibodies, MAb 3.1 contacts a hydrophobic groove in the HA stem, primarily using its heavy chain. However, in contrast to the closely related monoclonal antibody (Mab) FI6 that relies heavily on HCDR3 for binding, MAb 3.1 utilizes residues from HCDR1, HCDR3, and framework region 3 (FR3). Interestingly, HCDR1 of MAb 3.1 adopts an α-helical conformation and engages in hydrophobic interactions with the HA very similar to those of the de novo in silico-designed and affinity-matured synthetic protein HB36.3. These findings improve our understanding of the molecular requirements for binding to the conserved epitope in the stem of the HA protein and, therefore, aid the development of more universal influenza vaccines targeting these epitopes. IMPORTANCE Influenza viruses rapidly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by acquiring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by immunization or infection protect only against the immunizing or closely related strains. Here, we describe a novel monoclonal antibody that recognizes the conserved heterosubtypic epitope in the stem of influenza A virus hemagglutinin. This antibody, referred to as MAb 3.1, recognizes its epitope in a manner that resembles recognition of a similar epitope by the de novo in silico-designed and affinity-matured synthetic protein HB36.3. Thus, besides providing novel insights into the molecular interactions between heterosubtypic antibodies and influenza virus hemagglutinin, MAb 3.1 demonstrates that de novo in silico-designed and affinity-matured synthetic proteins can foretell naturally selected antibody binding. This knowledge will aid development of a pan-influenza virus vaccine.
Collapse
|
65
|
Baumgarth N. How specific is too specific? B-cell responses to viral infections reveal the importance of breadth over depth. Immunol Rev 2014; 255:82-94. [PMID: 23947349 DOI: 10.1111/imr.12094] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Influenza virus infection induces robust and highly protective B-cell responses. Knowledge gained from the analysis of such protective humoral responses can provide important clues for the design of successful vaccines and vaccination approaches and also provides a window into the regulation of fundamental aspects of B-cell responses that may not be at play when responses to non-replicating agents are studied. Here, I review features of the B-cell response to viruses, with emphasis on influenza virus infection, a highly localized infection of respiratory tract epithelial cells, and a response that is directed against a virus that continuously undergoes genetic changes to its surface spike protein, a major target of neutralizing antibodies. Two aspects of the B-cell response to influenza are discussed here, namely polyreactive natural antibodies and the role and function of germinal center responses. Both these features of the B-cell response raise the question of how important antibody fine-specificity is for long-term protection from infection. As outlined, the pathogenesis of influenza virus and the nature of the antiviral B-cell response seem to emphasize repertoire diversity over affinity maturation as driving forces behind the influenza-specific B-cell immunity.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine and the Department of Pathology, Microbiology & Immunology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
66
|
Li Y, Mariuzza RA. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol 2014; 5:123. [PMID: 24723923 PMCID: PMC3972465 DOI: 10.3389/fimmu.2014.00123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are key components of innate immune responses to tumors and viral infections. NK cell function is regulated by NK cell receptors that recognize both cellular and viral ligands, including major histocompatibility complex (MHC), MHC-like, and non-MHC molecules. These receptors include Ly49s, killer immunoglobulin-like receptors, leukocyte immunoglobulin-like receptors, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such as the stress-induced proteins MICA and ULBP. In addition, certain viruses have evolved MHC-like immunoevasins, such as UL18 and m157 from cytomegalovirus, that act as decoy ligands for NK receptors. A growing number of NK receptor–ligand interaction pairs involving non-MHC molecules have also been identified, including NKp30–B7-H6, killer cell lectin-like receptor G1–cadherin, and NKp80–AICL. Here, we describe crystal structures determined to date of NK cell receptors bound to MHC, MHC-related, and non-MHC ligands. Collectively, these structures reveal the diverse solutions that NK receptors have developed to recognize these molecules, thereby enabling the regulation of NK cytolytic activity by both host and viral ligands.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| |
Collapse
|
67
|
Awasthi S, Belshe RB, Friedman HM. Better neutralization of herpes simplex virus type 1 (HSV-1) than HSV-2 by antibody from recipients of GlaxoSmithKline HSV-2 glycoprotein D2 subunit vaccine. J Infect Dis 2014; 210:571-5. [PMID: 24652496 DOI: 10.1093/infdis/jiu177] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Herpevac Trial evaluated a herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit vaccine to prevent genital herpes. Unexpectedly, the vaccine protected against genital HSV-1 infection but not genital HSV-2 infection. We evaluated sera from 30 women seronegative for HSV-1 and HSV-2 who were immunized with gD2 in the Herpevac Trial. Neutralizing antibody titers to HSV-1 were 3.5-fold higher than those to HSV-2 (P < .001). HSV-2 gC2 and gE2 on the virus blocked neutralization by gD2 antibody, while HSV-1 gC1 and gE1 did not block neutralization by gD2 antibody. The higher neutralizing antibody titers to HSV-1 offer an explanation for the Herpevac results, and shielding neutralizing domains provides a potential mechanism.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Robert B Belshe
- Division of Infectious Disease, Allergy, and Immunology, Saint Louis University, Missouri
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
68
|
Brandenburg B, Koudstaal W, Goudsmit J, Klaren V, Tang C, Bujny MV, Korse HJWM, Kwaks T, Otterstrom JJ, Juraszek J, van Oijen AM, Vogels R, Friesen RHE. Mechanisms of hemagglutinin targeted influenza virus neutralization. PLoS One 2013; 8:e80034. [PMID: 24348996 PMCID: PMC3862845 DOI: 10.1371/journal.pone.0080034] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Human monoclonal antibodies have been identified which neutralize broad spectra of influenza A or B viruses. Here, we dissect the mechanisms by which such antibodies interfere with infectivity. We distinguish four mechanisms that link the conserved hemagglutinin (HA) epitopes of broadly neutralizing antibodies to critical processes in the viral life cycle. HA-stem binding antibodies can act intracellularly by blocking fusion between the viral and endosomal membranes and extracellularly by preventing the proteolytic activation of HA. HA-head binding antibodies prevent viral attachment and release. These insights into newly identified ways by which the human immune system can interfere with influenza virus infection may aid the development of novel universal vaccines and antivirals.
Collapse
Affiliation(s)
- Boerries Brandenburg
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Wouter Koudstaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Jaap Goudsmit
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Vincent Klaren
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Chan Tang
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Miriam V. Bujny
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Hans J. W. M. Korse
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Ted Kwaks
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Jason J. Otterstrom
- Centre for Synthetic Biology, Zernike Institute for Advanced Materials, Groningen, The Netherlands
- Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarek Juraszek
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Antoine M. van Oijen
- Centre for Synthetic Biology, Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | - Ronald Vogels
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
| | - Robert H. E. Friesen
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
69
|
Abstract
The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.
Collapse
|
70
|
Sattentau QJ. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines (Basel) 2013; 1:497-512. [PMID: 26344344 PMCID: PMC4494206 DOI: 10.3390/vaccines1040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 envelope glycoprotein spike is the target of neutralizing antibody attack, and hence represents the only relevant viral antigen for antibody-based vaccine design. Various approaches have been attempted to recapitulate Env in membrane-anchored and soluble forms, and these will be discussed here in the context of recent successes and challenges still to be overcome.
Collapse
Affiliation(s)
- Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE, UK.
| |
Collapse
|
71
|
Xu K, Rockx B, Xie Y, DeBuysscher BL, Fusco DL, Zhu Z, Chan YP, Xu Y, Luu T, Cer RZ, Feldmann H, Mokashi V, Dimitrov DS, Bishop-Lilly KA, Broder CC, Nikolov DB. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLoS Pathog 2013; 9:e1003684. [PMID: 24130486 PMCID: PMC3795035 DOI: 10.1371/journal.ppat.1003684] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/20/2013] [Indexed: 12/25/2022] Open
Abstract
The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines. Since their initial emergence, henipaviruses have continued to cause spillover events in both human and livestock populations, posing significant biothreats. Currently there are no licensed or approved therapies for treatment of henipavirus infection and the human case mortality rates average >70%. We used X-ray crystallography to determine the high-resolution structures of the Hendra virus G glycoprotein in complex with a cross-reactive neutralizing human monoclonal antibody. The structures provide detailed insight into the mechanism of HeV and NiV neutralization by this potent and clinically-relevant human monoclonal antibody that is currently in development for use in humans. This monoclonal antibody was recently shown to be an effective post-exposure therapy in non-human models of lethal Hendra virus infection. Indeed, it has already been used in four people on a compassionate use request, three in Australia and one in the United States, as a therapeutic agent. Furthermore, we identified and characterized two escape mutants generated in vitro and evaluated their mechanism of escape. Our results serve as a blueprint for further optimization of this antibody and for the development of novel entry inhibitors and vaccines. This report also supports the additional pre-clinical data required for eventual licensure by detailing the antibody's mechanism of henipavirus neutralization.
Collapse
Affiliation(s)
- Kai Xu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Barry Rockx
- Sealy Center for Vaccine Development, Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yihu Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Blair L. DeBuysscher
- Laboratory of Virology, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Division of Biological Sciences and the University of Montana, Missoula, Montana, United States of America
| | - Deborah L. Fusco
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Zhongyu Zhu
- Protein Interactions Group, CCRNP, CCR, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Yan Xu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Truong Luu
- Naval Medical Research Center, NMRC-Frederick, Fort Detrick, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Regina Z. Cer
- Naval Medical Research Center, NMRC-Frederick, Fort Detrick, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vishwesh Mokashi
- Naval Medical Research Center, NMRC-Frederick, Fort Detrick, Maryland, United States of America
| | - Dimiter S. Dimitrov
- Protein Interactions Group, CCRNP, CCR, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | - Kimberly A. Bishop-Lilly
- Naval Medical Research Center, NMRC-Frederick, Fort Detrick, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
72
|
Lee CC, Lin LL, Chan WE, Ko TP, Lai JS, Wang AHJ. Structural basis for the antibody neutralization of herpes simplex virus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1935-45. [PMID: 24100313 PMCID: PMC3792640 DOI: 10.1107/s0907444913016776] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/17/2013] [Indexed: 11/11/2022]
Abstract
Glycoprotein D (gD) of herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD-nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.
Collapse
MESH Headings
- Antibodies, Blocking/chemistry
- Antibodies, Blocking/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Conserved Sequence
- Crystallography, X-Ray
- Epitope Mapping/methods
- Herpesvirus 1, Human/chemistry
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Herpesvirus 2, Human/chemistry
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/metabolism
- Humans
- Nectins
- Neutralization Tests/methods
- Protein Binding/immunology
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan
| | - Li-Ling Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan
| | - Woan-Eng Chan
- Development Center for Biotechnology, New Taipei City 221, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan
| | - Jiann-Shiun Lai
- Development Center for Biotechnology, New Taipei City 221, Taiwan
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei 100, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
73
|
Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol 2013; 87:12471-80. [PMID: 24027321 DOI: 10.1128/jvi.01388-13] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Influenza virus is a global health concern due to its unpredictable pandemic potential. This potential threat was realized in 2009 when an H1N1 virus emerged that resembled the 1918 virus in antigenicity but fortunately was not nearly as deadly. 5J8 is a human antibody that potently neutralizes a broad spectrum of H1N1 viruses, including the 1918 and 2009 pandemic viruses. Here, we present the crystal structure of 5J8 Fab in complex with a bacterially expressed and refolded globular head domain from the hemagglutinin (HA) of the A/California/07/2009 (H1N1) pandemic virus. 5J8 recognizes a conserved epitope in and around the receptor binding site (RBS), and its HCDR3 closely mimics interactions of the sialic acid receptor. Electron microscopy (EM) reconstructions of 5J8 Fab in complex with an HA trimer from a 1986 H1 strain and with an engineered stabilized HA trimer from the 2009 H1 pandemic virus showed a similar mode of binding. As for other characterized RBS-targeted antibodies, 5J8 uses avidity to extend its breadth and affinity against divergent H1 strains. 5J8 selectively interacts with HA insertion residue 133a, which is conserved in pandemic H1 strains and has precluded binding of other RBS-targeted antibodies. Thus, the RBS of divergent HAs is targeted by 5J8 and adds to the growing arsenal of common recognition motifs for design of therapeutics and vaccines. Moreover, consistent with previous studies, the bacterially expressed H1 HA properly refolds, retaining its antigenic structure, and presents a low-cost and rapid alternative for engineering and manufacturing candidate flu vaccines.
Collapse
|
74
|
Kulp DW, Schief WR. Advances in structure-based vaccine design. Curr Opin Virol 2013; 3:322-31. [PMID: 23806515 DOI: 10.1016/j.coviro.2013.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
Abstract
Despite the tremendous successes of current vaccines, infectious diseases still take a heavy toll on the global population, and that provides strong rationale for broadening our vaccine development repertoire. Structural vaccinology, in which protein structure information is utilized to design immunogens, has promise to provide new vaccines against traditionally difficult targets. Crystal structures of antigens containing one or more protection epitopes, especially when in complex with a protective antibody, are the launching point for immunogen design. Integrating structure and sequence information for families of broadly neutralizing antibodies (bNAbs) has recently enabled the creation of germline-targeting immunogens that bind and activate germline B-cells in order to initiate the elicitation of such antibodies. The contacts between antigen and neutralizing antibody define a structural epitope, and methods have been developed to transplant epitopes to scaffold proteins for structural stabilization, and to design minimized antigens that retain one or more key epitopes while eliminating other potentially distracting or unnecessary features. To develop vaccines that protect against antigenically variable pathogens, pioneering structure-based work demonstrated that multiple strain-specific epitopes could be engineered onto a single immunogen. We review these recent structural vaccinology efforts to engineer germline-targeting, epitope-specific, and/or broad coverage immunogens.
Collapse
Affiliation(s)
- Daniel W Kulp
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
75
|
Luo M, Velikovsky CA, Yang X, Siddiqui MA, Hong X, Barchi JJ, Gildersleeve JC, Pancer Z, Mariuzza RA. Recognition of the Thomsen-Friedenreich pancarcinoma carbohydrate antigen by a lamprey variable lymphocyte receptor. J Biol Chem 2013; 288:23597-606. [PMID: 23782692 DOI: 10.1074/jbc.m113.480467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs were recently shown to recognize glycans, such as the tumor-associated Thomsen-Friedenreich antigen (TFα; Galβ1-3GalNAcα), with a selectivity rivaling or exceeding that of lectins and antibodies. To understand the basis for TFα recognition by one such VLR (VLRB.aGPA.23), we measured thermodynamic parameters for the binding interaction and determined the structure of the VLRB.aGPA.23-TFα complex to 2.2 Å resolution. In the structure, four tryptophan residues form a tight hydrophobic cage encasing the TFα disaccharide that completely excludes buried water molecules. This cage together with hydrogen bonding of sugar hydroxyls to polar side chains explains the exquisite selectivity of VLRB.aGPA.23. The topology of the glycan-binding site of VLRB.aGPA.23 differs markedly from those of lectins or antibodies, which typically consist of long, convex grooves for accommodating the oligosaccharide. Instead, the TFα disaccharide is sandwiched between a variable loop and the concave surface of the VLR formed by the β-strands of the leucine-rich repeat modules. Longer oligosaccharides are predicted to extend perpendicularly across the β-strands, requiring them to bend to match the concavity of the VLR solenoid.
Collapse
Affiliation(s)
- Ming Luo
- University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Yewdell JW. To dream the impossible dream: universal influenza vaccination. Curr Opin Virol 2013; 3:316-21. [PMID: 23835048 PMCID: PMC3713083 DOI: 10.1016/j.coviro.2013.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/10/2013] [Indexed: 01/12/2023]
Abstract
Year in and year out, influenza viruses exact a deadly and expensive toll on humanity. Current vaccines simply do not keep pace with viral immune evasion, providing partial protection, at best, among various age groups. A quantum leap in understanding the basic principles of the adaptive and innate immune responses to influenza viruses offers the opportunity to develop vaccines that forestall, and potentially ultimately defeat, influenza virus antigenic variation.
Collapse
|
77
|
Affiliation(s)
- Christopher B Brooke
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | |
Collapse
|
78
|
Jardine J, Julien JP, Menis S, Ota T, Kalyuzhniy O, McGuire A, Sok D, Huang PS, MacPherson S, Jones M, Nieusma T, Mathison J, Baker D, Ward AB, Burton DR, Stamatatos L, Nemazee D, Wilson IA, Schief WR. Rational HIV immunogen design to target specific germline B cell receptors. Science 2013; 340:711-6. [PMID: 23539181 DOI: 10.1126/science.1234150] [Citation(s) in RCA: 638] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1-infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.
Collapse
Affiliation(s)
- Joseph Jardine
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Julien JP, Lee JH, Cupo A, Murin CD, Derking R, Hoffenberg S, Caulfield MJ, King CR, Marozsan AJ, Klasse PJ, Sanders RW, Moore JP, Wilson IA, Ward AB. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci U S A 2013; 110:4351-6. [PMID: 23426631 PMCID: PMC3600498 DOI: 10.1073/pnas.1217537110] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PG9 is the founder member of an expanding family of glycan-dependent human antibodies that preferentially bind the HIV (HIV-1) envelope (Env) glycoprotein (gp) trimer and broadly neutralize the virus. Here, we show that a soluble SOSIP.664 gp140 trimer constructed from the Clade A BG505 sequence binds PG9 with high affinity (∼11 nM), enabling structural and biophysical characterizations of the PG9:Env trimer complex. The BG505 SOSIP.664 gp140 trimer is remarkably stable as assessed by electron microscopy (EM) and differential scanning calorimetry. EM, small angle X-ray scattering, size exclusion chromatography with inline multiangle light scattering and isothermal titration calorimetry all indicate that only a single PG9 fragment antigen-binding (Fab) binds to the Env trimer. An ∼18 Å EM reconstruction demonstrates that PG9 recognizes the trimer asymmetrically at its apex via contact with two of the three gp120 protomers, possibly contributing to its reported preference for a quaternary epitope. Molecular modeling and isothermal titration calorimetry binding experiments with an engineered PG9 mutant suggest that, in addition to the N156 and N160 glycan interactions observed in crystal structures of PG9 with a scaffolded V1/V2 domain, PG9 makes secondary interactions with an N160 glycan from an adjacent gp120 protomer in the antibody-trimer complex. Together, these structural and biophysical findings should facilitate the design of HIV-1 immunogens that possess all elements of the quaternary PG9 epitope required to induce broadly neutralizing antibodies against this region.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, NY 10021
| | - Charles D. Murin
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands; and
| | - Simon Hoffenberg
- International AIDS Vaccine Initiative, Design and Development Laboratory, New York, NY 10038
| | - Michael J. Caulfield
- International AIDS Vaccine Initiative, Design and Development Laboratory, New York, NY 10038
| | - C. Richter King
- International AIDS Vaccine Initiative, Design and Development Laboratory, New York, NY 10038
| | | | | | - Rogier W. Sanders
- Weill Medical College of Cornell University, New York, NY 10021
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands; and
| | - John P. Moore
- Weill Medical College of Cornell University, New York, NY 10021
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| |
Collapse
|
80
|
Affiliation(s)
- K Christopher Garcia
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA, USA.
| |
Collapse
|