51
|
Complement 5 Inhibition Ameliorates Hepatic Ischemia/reperfusion Injury in Mice, Dominantly via the C5a-mediated Cascade. Transplantation 2021; 104:2065-2077. [PMID: 32384381 DOI: 10.1097/tp.0000000000003302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion injury (IRI) is a serious complication in liver surgeries, including transplantation. Complement activation seems to be closely involved in hepatic IRI; however, no complement-targeted intervention has been clinically applied. We investigated the therapeutic potential of Complement 5 (C5)-targeted regulation in hepatic IRI. METHODS C5-knockout (B10D2/oSn) and their corresponding wild-type mice (WT, B10D2/nSn) were exposed to 90-minute partial (70%) hepatic ischemia/reperfusion with either anti-mouse-C5 monoclonal antibody (BB5.1) or corresponding control immunoglobulin administration 30 minutes before ischemia. C5a receptor 1 antagonist was also given to WT to identify which cascade, C5a or C5b-9, is dominant. RESULTS C5-knockout and anti-C5-Ab administration to WT both significantly reduced serum transaminase release and histopathological damages from 2 hours after reperfusion. This improvement was characterized by significantly reduced CD41+ platelet aggregation, maintained F4/80+ cells, and decreased high-mobility group box 1 release. After 6 hours of reperfusion, the infiltration of CD11+ and Ly6-G+ cells, cytokine/chemokine expression, single-stranded DNA+ cells, and cleaved caspase-3 expression were all significantly alleviated by anti-C5-Ab. C5a receptor 1 antagonist was as effective as anti-C5-Ab for reducing transaminases. CONCLUSIONS Anti-C5 antibody significantly ameliorated hepatic IRI, predominantly via the C5a-mediated cascade, not only by inhibiting platelet aggregation during the early phase but also by attenuating the activation of infiltrating macrophages/neutrophils and hepatocyte apoptosis in the late phase of reperfusion. Given its efficacy, clinical availability, and controllability, C5-targeted intervention may provide a novel therapeutic strategy against hepatic IRI.
Collapse
|
52
|
Persson C. Early humoral defence: Contributing to confining COVID-19 to conducting airways? Scand J Immunol 2021; 93:e13024. [PMID: 33523532 PMCID: PMC7994976 DOI: 10.1111/sji.13024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Early airway responses to severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) infection are of interest since they could decide whether coronavirus disease‐19 (COVID‐19) will proceed to life‐threatening pulmonary disease stages. Here I discuss endothelial‐epithelial co‐operative in vivo responses producing first‐line, humoral innate defence opportunities in human airways. The pseudostratified epithelium of human nasal and tracheobronchial airways are prime sites of exposure and infection by SARS‐CoV‐2. Just beneath the epithelium runs a profuse systemic microcirculation. Its post‐capillary venules respond conspicuously to mucosal challenges with autacoids, allergens and microbes, and to mere loss of epithelium. By active venular endothelial gap formation, followed by transient yielding of epithelial junctions, non‐sieved plasma macromolecules move from the microcirculation to the mucosal surface. Hence, plasma‐derived protein cascade systems and antimicrobial peptides would have opportunity to operate jointly on an unperturbed mucosal lining. Similarly, a plasma‐derived, dynamic gel protects sites of epithelial sloughing‐regeneration. Precision for this indiscriminate humoral molecular response lies in restricted location and well‐regulated duration of plasma exudation. Importantly, the endothelial responsiveness of the airway microcirculation differs distinctly from the relatively non‐responsive, low‐pressure pulmonary microcirculation that non‐specifically, almost irreversibly, leaks plasma in life‐threatening COVID‐19. Observations in humans of infections with rhinovirus, coronavirus 229E, and influenza A and B support a general but individually variable early occurrence of plasma exudation in human infected nasal and tracheobronchial airways. Investigations are warranted to elucidate roles of host‐ and drug‐induced airway plasma exudation in restriction of viral infection and, specifically, whether it contributes to variable disease responses following exposure to SARS‐CoV‐2.
Collapse
Affiliation(s)
- Carl Persson
- Laboratory Medicine, University Hospital of Lund, Lund, Sweden
| |
Collapse
|
53
|
Deng F, Zhai W, Yin Y, Peng C, Ning C. Advanced protein adsorption properties of a novel silicate-based bioceramic: A proteomic analysis. Bioact Mater 2021; 6:208-218. [PMID: 32913929 PMCID: PMC7451930 DOI: 10.1016/j.bioactmat.2020.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Silicate bioceramics have been shown to possess excellent cytocompatibility and osteogenic activity, but the exact mechanism is still unclear. Protein adsorption is the first event taking place at the biomaterial-tissue interface, which is vital to the subsequent cellular behavior and further influence the biomaterial-tissue interaction. In this work, the protein adsorption behavior of a novel CPS bioceramic was evaluated using the proteomics technology. The results showed that CPS adsorbed more amount and types of serum proteins than HA. FN1 and IGF1 proteins selected from proteomics results were validated by Western-blot experiment. Pathway analysis also revealed mechanistic insights how these absorbed proteins by CPS help mediate cell adhesion and promotes osteogenic activity. Firstly, the dramatically enhanced adsorption of FN1 could greatly promote cell adhesion and growth. Secondly, IGF1 was uniquely adsorbed on CPS bioceramic and IGF1 could activate Rap1 signaling pathway to promote cell adhesion. Thirdly, the increased adsorption of FN1, IGF1 and COL1A2 proteins on CPS explains its better ability on bone regeneration than HA. Fourthly, the increased adsorption of IGF1, CHAD, COL2A1 and THBS4 proteins on CPS explains its ability on cartilage formation. Lastly, the increased adsorption of immunological related proteins on CPS may also play a positive role in bone regeneration. In addition, CPS had a much better cell adhesion ability than HA, proving that more adsorbed proteins really had a positive effect on cell behavior. The more adsorbed proteins on CPS than HA might indicated a better bone regeneration rate at early stage of implantation.
Collapse
Affiliation(s)
- Fanyan Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wanyin Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Congqin Ning
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
54
|
Medjeral-Thomas NR, Troldborg A, Hansen AG, Gisby J, Clarke CL, Prendecki M, McAdoo SP, Sandhu E, Lightstone L, Thomas DC, Willicombe M, Botto M, Peters JE, Pickering MC, Thiel S. Plasma Lectin Pathway Complement Proteins in Patients With COVID-19 and Renal Disease. Front Immunol 2021; 12:671052. [PMID: 33995410 PMCID: PMC8118695 DOI: 10.3389/fimmu.2021.671052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.
Collapse
Affiliation(s)
- Nicholas R. Medjeral-Thomas
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Nicholas R. Medjeral-Thomas,
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jack Gisby
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Candice L. Clarke
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Stephen P. McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Eleanor Sandhu
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Liz Lightstone
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David C. Thomas
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Marina Botto
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - James E. Peters
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
55
|
Poblete RA, Arenas M, Sanossian N, Freeman WD, Louie SG. The role of bioactive lipids in attenuating the neuroinflammatory cascade in traumatic brain injury. Ann Clin Transl Neurol 2020. [PMCID: PMC7732250 DOI: 10.1002/acn3.51240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity, mortality, and economic burden. Despite this, there are no proven medical therapies in the pharmacologic management of TBI. A better understanding of disease pathophysiology might lead to novel approaches. In one area of increasing interest, bioactive lipids known to attenuate inflammation might serve as an important biomarker and mediator of disease after TBI. In this review, we describe the pathophysiology of inflammation following TBI, the actions of endogenous bioactive lipids in attenuating neuroinflammation, and their possible therapeutic role in the management of TBI. In particular, specialized pro‐resolving lipid mediators (SPMs) of inflammation represent endogenous compounds that might serve as important biomarkers of disease and potential therapeutic targets. We aim to discuss the current literature from animal models of TBI and limited human experiences that suggest that bioactive lipids and SPMs are mechanistically important to TBI recovery, and by doing so, aim to highlight the need for further clinical and translational research. Early investigations of dietary and parenteral supplementation of pro‐resolving bioactive lipids have been promising. Given the high morbidity and mortality that occurs with TBI, novel approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - Marcela Arenas
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - Nerses Sanossian
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - William D. Freeman
- Department of Neurology and Neurosurgery Mayo Clinic Florida 4500 San Pablo Road Jacksonville Florida32224USA
| | - Stan G. Louie
- Department of Clinical Pharmacy School of Pharmacy University of Southern California Los Angeles CaliforniaUSA
| |
Collapse
|
56
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
57
|
Messerer DAC, Vidoni L, Erber M, Stratmann AEP, Bauer JM, Braun CK, Hug S, Adler A, Nilsson Ekdahl K, Nilsson B, Barth E, Radermacher P, Huber-Lang M. Animal-Free Human Whole Blood Sepsis Model to Study Changes in Innate Immunity. Front Immunol 2020; 11:571992. [PMID: 33178198 PMCID: PMC7592114 DOI: 10.3389/fimmu.2020.571992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Studying innate immunity in humans is crucial for understanding its role in the pathophysiology of systemic inflammation, particularly in the complex setting of sepsis. Therefore, we standardized a step-by-step process from the venipuncture to the transfer in a human model system, while closely monitoring the inflammatory response for up to three hours. We designed an animal-free, human whole blood sepsis model using a commercially available, simple to use, tubing system. First, we analyzed routine clinical parameters, including cell count and blood gas analysis. Second, we demonstrated that extracellular activation markers (e.g., CD11b and CD62l) as well as intracellular metabolic (intracellular pH) and functional (generation of radical oxygen species) features remained stable after incubation in the whole blood model. Third, we mimicked systemic inflammation during early sepsis by exposure of whole blood to pathogen-associated molecular patterns. Stimulation with lipopolysaccharide revealed the capability of the model system to evoke a sepsis-like inflammatory phenotype of innate immunity. In summary, the presented model serves as a convenient, economic, and reliable platform to study innate immunity in human whole blood, which may yield clinically important insights.
Collapse
Affiliation(s)
- David Alexander Christian Messerer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Laura Vidoni
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Maike Erber
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | | | - Jonas Martin Bauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Stefan Hug
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anna Adler
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Eberhard Barth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
58
|
Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, Tonby K, Barratt-Due A, Sokolova M, Schjalm C, Chaban V, Kolderup A, Tran T, Tollefsrud Gjølberg T, Skeie LG, Hesstvedt L, Ormåsen V, Fevang B, Austad C, Müller KE, Fladeby C, Holberg-Petersen M, Halvorsen B, Müller F, Aukrust P, Dudman S, Ueland T, Andersen JT, Lund-Johansen F, Heggelund L, Dyrhol-Riise AM, Mollnes TE. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A 2020; 117:25018-25025. [PMID: 32943538 PMCID: PMC7547220 DOI: 10.1073/pnas.2010540117] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory failure in the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is hypothesized to be driven by an overreacting innate immune response, where the complement system is a key player. In this prospective cohort study of 39 hospitalized coronavirus disease COVID-19 patients, we describe systemic complement activation and its association with development of respiratory failure. Clinical data and biological samples were obtained at admission, days 3 to 5, and days 7 to 10. Respiratory failure was defined as PO2/FiO2 ratio of ≤40 kPa. Complement activation products covering the classical/lectin (C4d), alternative (C3bBbP) and common pathway (C3bc, C5a, and sC5b-9), the lectin pathway recognition molecule MBL, and antibody serology were analyzed by enzyme-immunoassays; viral load by PCR. Controls comprised healthy blood donors. Consistently increased systemic complement activation was observed in the majority of COVID-19 patients during hospital stay. At admission, sC5b-9 and C4d were significantly higher in patients with than without respiratory failure (P = 0.008 and P = 0.034). Logistic regression showed increasing odds of respiratory failure with sC5b-9 (odds ratio 31.9, 95% CI 1.4 to 746, P = 0.03) and need for oxygen therapy with C4d (11.7, 1.1 to 130, P = 0.045). Admission sC5b-9 and C4d correlated significantly to ferritin (r = 0.64, P < 0.001; r = 0.69, P < 0.001). C4d, sC5b-9, and C5a correlated with antiviral antibodies, but not with viral load. Systemic complement activation is associated with respiratory failure in COVID-19 patients and provides a rationale for investigating complement inhibitors in future clinical trials.
Collapse
Affiliation(s)
- Jan C Holter
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Soeren E Pischke
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway;
- Division of Emergencies and Critical Care, Oslo University Hospital, 0424 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Eline de Boer
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Aleksander R Holten
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Andreas Barratt-Due
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Division of Emergencies and Critical Care, Oslo University Hospital, 0424 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Marina Sokolova
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Camilla Schjalm
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Viktoriia Chaban
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anette Kolderup
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Pharmacology, University of Oslo, 0315 Oslo, Norway
| | - Trung Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pharmacology, University of Oslo, 0315 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0424 Oslo, Norway
| | - Linda G Skeie
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Liv Hesstvedt
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Vidar Ormåsen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Austad
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Karl Erik Müller
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Fredrik Müller
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Susanne Dudman
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- ImmunoLingo Convergence Centre, University of Oslo, 0315 Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Anne M Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
- Research Laboratory, Nordland Hospital Bodø, 8092 Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
59
|
Jodele S, Köhl J. Tackling COVID-19 infection through complement-targeted immunotherapy. Br J Pharmacol 2020; 178:2832-2848. [PMID: 32643798 PMCID: PMC7361469 DOI: 10.1111/bph.15187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The complement system is an ancient part of innate immunity sensing highly pathogenic coronaviruses by mannan‐binding lectin (MBL) resulting in lectin pathway activation and subsequent generation of the anaphylatoxins (ATs) C3a and C5a as important effector molecules. Complement deposition on endothelial cells and high blood C5a serum levels have been reported in COVID‐19 patients with severe illness, suggesting vigorous complement activation leading to systemic thrombotic microangiopathy (TMA). Complement regulator gene variants prevalent in African‐Americans have been associated with a higher risk for severe TMA and multi‐organ injury. Strikingly, severe acute respiratory syndrome Coronavirus 2 (SARS‐CoV‐2)‐infected African‐Americans suffer from high mortality. These findings allow us to apply our knowledge from other complement‐mediated diseases to COVID‐19 infection to better understand severe disease pathogenesis. Here, we discuss the multiple aspects of complement activation, regulation, crosstalk with other parts of the immune system, and the options to target complement in COVID‐19 patients to halt disease progression and death.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
60
|
Donat C, Kölm R, Csorba K, Tuncer E, Tsakiris DA, Trendelenburg M. Complement C1q Enhances Primary Hemostasis. Front Immunol 2020; 11:1522. [PMID: 32765527 PMCID: PMC7381122 DOI: 10.3389/fimmu.2020.01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The cross-talk between the inflammatory complement system and hemostasis is becoming increasingly recognized. The interaction between complement C1q, initiation molecule of the classical pathway, and von Willebrand factor (vWF), initiator molecule of primary hemostasis, has been shown to induce platelet rolling and adhesion in vitro. As vWF disorders result in prolonged bleeding, a lack of C1q as binding partner for vWF might also lead to an impaired hemostasis. Therefore, this study aimed to investigate the in vivo relevance of C1q-dependent binding of vWF in hemostasis. For this purpose, we analyzed parameters of primary and secondary hemostasis and performed bleeding experiments in wild type (WT) and C1q-deficient (C1qa−/−) mice, with reconstitution experiments of C1q in the latter. Bleeding tendency was examined by quantification of bleeding time and blood loss. First, we found that complete blood counts and plasma vWF levels do not differ between C1qa−/− mice and WT mice. Moreover, platelet aggregation tests indicated that the platelets of both strains of mice are functional. Second, while the prothrombin time was comparable between both groups, the activated partial thromboplastin time was shorter in C1qa−/− mice. In contrast, tail bleeding times of C1qa−/− mice were prolonged accompanied by an increased blood loss. Upon reconstitution of C1qa−/− mice with C1q, parameters of increased bleeding could be reversed. In conclusion, our data indicate that C1q, a molecule of the first-line of immune defense, actively participates in primary hemostasis by promoting arrest of bleeding. This observation might be of relevance for the understanding of thromboembolic complications in inflammatory disorders, where excess of C1q deposition is observed.
Collapse
Affiliation(s)
- Claudia Donat
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Kölm
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kinga Csorba
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eylul Tuncer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dimitrios A Tsakiris
- Department of Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
61
|
Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020; 11:1212. [PMID: 32754149 PMCID: PMC7366831 DOI: 10.3389/fimmu.2020.01212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system, originally classified as part of innate immunity, is a tightly self-regulated system consisting of liquid phase, cell surface, and intracellular proteins. In the blood circulation, the complement system, platelets, coagulation system, and fibrinolysis system form a close and complex network. They activate and regulate each other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation of each cascade system results in clinical manifestations and the progression of different diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis, systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we summarize the crosstalk between the complement system, platelets, and coagulation, provide integrative insights into how complement dysfunction leads to hemopathic progression, and further discuss the therapeutic relevance of complement in hemolytic and thrombotic diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
62
|
Anticoagulation and Antithrombin in Veno-venous Extracorporeal Membrane Oxygenation. Anesthesiology 2020; 132:421-423. [PMID: 31899708 DOI: 10.1097/aln.0000000000003098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
63
|
Hovland A, Retterstøl K, Mollnes TE, Halvorsen B, Aukrust P, Lappegård KT. Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: an unused potential? SCAND CARDIOVASC J 2020; 54:274-279. [PMID: 32500743 DOI: 10.1080/14017431.2020.1775878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives. Inflammatory responses are closely knit with low-density lipoprotein (LDL)-cholesterol in driving atherosclerosis. Even if LDL-cholesterol is causative to atherosclerotic diseases and LDL-cholesterol lowering reduces hard clinical endpoints, there is a residual risk for clinical events, possibly driven by inflammatory processes, in accordance with its role in autoimmune diseases. Design. As LDL-cholesterol treatment targets are reduced, the use of non-statin lipid-lowering drugs will probably increase. Atherosclerotic plaques evolve through lipid infiltration and modification in the intima, furthermore infiltration of cells including monocytes, macrophages, T-lymphocytes and neutrophils initiating inflammatory signaling. Here we briefly review inflammation in atherosclerosis and the effects of the non-statin lipid-lowering drugs on inflammation. The review is limited to the most common non-statin lipid lowering drugs, i.e. proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors, bile acid sequestrants (BAS) and cholesterol absorption inhibitors. Results. PCSK9 inhibition is mostly studied together with statins and is associated with a reduction of pro-inflammatory cytokines. Furthermore, PCSK9 inhibitors seem to have an effect on monocyte migration trough CCR2. They also have an interaction with sirtuins, possibly offering a therapeutic target. BAS have several interesting effects on inflammation, including reduction of pro-inflammatory cytokines and a reduction of the number of infiltrating macrophages, however there are relatively few reports considering that these drugs have been on the market for decades. Ezetimibe also has effects on inflammation including reduction of pro-inflammatory cytokines and adhesion molecules, however these effects are usually accomplished in tandem with statins. Conclusion. This topic adds an interesting piece to the puzzle of atherosclerosis, indicating that PCSK9 inhibition, BAS and ezetimibe all affect thromboinflammation.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Kjetil Retterstøl
- The Lipid Clinic, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
64
|
Monitoring with In Vivo Electrochemical Sensors: Navigating the Complexities of Blood and Tissue Reactivity. SENSORS 2020; 20:s20113149. [PMID: 32498360 PMCID: PMC7308849 DOI: 10.3390/s20113149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
Abstract
The disruptive action of an acute or critical illness is frequently manifest through rapid biochemical changes that may require continuous monitoring. Within these changes, resides trend information of predictive value, including responsiveness to therapy. In contrast to physical variables, biochemical parameters monitored on a continuous basis are a largely untapped resource because of the lack of clinically usable monitoring systems. This is despite the huge testing repertoire opening up in recent years in relation to discrete biochemical measurements. Electrochemical sensors offer one of the few routes to obtaining continuous readout and, moreover, as implantable devices information referable to specific tissue locations. This review focuses on new biological insights that have been secured through in vivo electrochemical sensors. In addition, the challenges of operating in a reactive, biological, sample matrix are highlighted. Specific attention is given to the choreographed host rejection response, as evidenced in blood and tissue, and how this limits both sensor life time and reliability of operation. Examples will be based around ion, O2, glucose, and lactate sensors, because of the fundamental importance of this group to acute health care.
Collapse
|
65
|
Anitua E, Nurden P, Nurden AT, Padilla S. More than 500 million years of evolution in a fibrin-based therapeutic scaffold. Regen Med 2020; 15:1493-1498. [PMID: 32441555 DOI: 10.2217/rme-2020-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
66
|
Liesenborghs L, Meyers S, Vanassche T, Verhamme P. Coagulation: At the heart of infective endocarditis. J Thromb Haemost 2020; 18:995-1008. [PMID: 31925863 DOI: 10.1111/jth.14736] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Infective endocarditis is a life-threatening and enigmatic disease with a mortality of 30% and a pathophysiology that is poorly understood. However, at its core, an endocarditis lesion is mainly a fibrin and platelet blood clot infested with bacteria, clinging at the cardiac valves. Infective endocarditis therefore serves as a paradigm of immunothrombosis gone wrong. Immunothrombosis refers to the entanglement of the coagulation system with innate immunity and the role of coagulation in the isolation and clearance of invading pathogens. However, in the case of infective endocarditis, instead of containing the infection, immunothrombosis inadvertently creates the optimal shelter from the immune system and allows some bacteria to grow almost unimpeded. In every step of the disease, the coagulation system is heavily involved. It mediates the initial adhesion of bacteria to the leaflets, fuels the growth and maturation of a vegetation, and facilitates complications such as embolization and valve destruction. In addition, the number one cause of infective endocarditis, Staphylococcus aureus, has proven to be a true manipulator of immunothrombosis and thrives in the fibrin rich environment of an endocarditis vegetation. Considering its central role in infective endocarditis, the coagulation system is an attractive therapeutic target for this deadly disease. There is, however, a very delicate balance at play and the use of antithrombotic drugs in patients with endocarditis is often accompanied with a high bleeding risk.
Collapse
Affiliation(s)
- Laurens Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Severien Meyers
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
67
|
Cattaneo M, Bertinato EM, Birocchi S, Brizio C, Malavolta D, Manzoni M, Muscarella G, Orlandi M. Pulmonary Embolism or Pulmonary Thrombosis in COVID-19? Is the Recommendation to Use High-Dose Heparin for Thromboprophylaxis Justified? Thromb Haemost 2020; 120:1230-1232. [PMID: 32349132 PMCID: PMC7516356 DOI: 10.1055/s-0040-1712097] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Elena M Bertinato
- Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Simone Birocchi
- Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Carolina Brizio
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Daniele Malavolta
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Marco Manzoni
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Gesualdo Muscarella
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| | - Michela Orlandi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy.,Medicina II, ASST Santi Paolo e Carlo-Ospedale San Paolo, Milan, Italy
| |
Collapse
|
68
|
Persson C. Humoral First-Line Mucosal Innate Defence in vivo. J Innate Immun 2020; 12:373-386. [PMID: 32203966 DOI: 10.1159/000506515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Based on observations in vivo in guinea-pig and human airways, this review presents plasma exudation as non-sieved transmission of bulk plasma across an unperturbed mucosa that maintains its normal barrier functions. Several steps have led to the present understanding of plasma exudation as a non-injurious response to mucosal challenges. The implication of a swift appearance of all circulating multipotent protein systems (also including antimicrobial peptides that now are viewed as being exclusively produced by local cells) on challenged, but intact, mucosal surfaces cannot be trivial. Yet, involvement of early plasma exudation responses in innate mucosal immunology has dwelled below the radar. Admittedly, exploration of physiological plasma exudation mechanisms requires in vivo approaches beyond mouse studies. Plasma exudation also lacks the specificity that is a hallmark of biological revelations. These aspects separate plasma exudation from mainstream progress in immunology. The whole idea, presented here, thus competes with strong paradigms currently entertained in the accepted research front. The present focus on humoral innate immunity in vivo further deviates from most discussions, which concern cell-mediated innate defence. Indeed, plasma exudation has emerged as sole in vivo source of major mucosal defence proteins that now are viewed as local cell produce. In conclusion, this review highlights opportunities for complex actions and interactions provided by non-sieved plasma proteins/peptides on the surface of intact mucosal barriers in vivo.
Collapse
Affiliation(s)
- Carl Persson
- Laboratory Medicine, University Hospital of Lund, Lund, Sweden,
| |
Collapse
|
69
|
The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca 2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020; 12:cancers12030667. [PMID: 32182968 PMCID: PMC7139930 DOI: 10.3390/cancers12030667] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor and is very aggressive. Rapid migration and invasion of glioblastoma cells are two typical features driving malignance of GBM. Bradykinin functionally prompts calcium influx via activation of bradykinin receptor B1/B2 (BDKRB1/2). In this study, we evaluated the roles of bradykinin in migration and invasion of glioblastoma cells and the possible mechanisms. Expressions of aquaporin 4 (AQP4) mRNA and protein were upregulated in human glioblastomas. Furthermore, exposure of human U87 MG glioblastoma cells to bradykinin specifically increased levels of BDKRB1. Successively, bradykinin stimulated influx of calcium, phosphorylation of MEK1 and extracellular signal-regulated kinase (ERK)1/2, translocation and transactivation of nuclear factor-kappaB (NF-κB), and expressions of AQP4 mRNA and protein. Concomitantly, migration and invasion of human glioblastoma cells were elevated by bradykinin. Knocking-down BDKRB1 concurrently decreased AQP4 mRNA expression and cell migration and invasion. The bradykinin-induced effects were further confirmed in murine GL261 glioblastoma cells. Therefore, bradykinin can induce AQP4 expression and subsequent migration and invasion through BDKRB1-mediated calcium influx and subsequent activation of a MEK1-ERK1/2-NF-κB pathway. The bradykinin-BDKRB1 axis and AQP4 could be precise targets for treating GBM patients.
Collapse
|
70
|
Abstract
In sepsis, coagulation is activated and there is an increased risk of developing a consumptive coagulopathy with attendant increase in mortality. The processes that regulate hemostasis evolved as a component of the inflammatory response to infection. Many points of interaction occur on the endothelial cell surface linking the 2 cell types in the initiation and regulation of hemostasis and inflammation. Consequently, inflammation stimulates both platelets and endothelial cells in ways that affect both hemostasis and the immune response. Platelets are also prime drivers of the inflammatory response. This article discusses the pathways wherein inflammation regulates platelet and endothelial cell function.
Collapse
Affiliation(s)
- Tom van der Poll
- Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Meibergdreef 9, Room G2-130, Amsterdam 1105AZ, the Netherlands
| | - Robert I Parker
- Department of Pediatrics, Pediatric Hematology/Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8111, USA.
| |
Collapse
|
71
|
Jiang X, Liu X, Liu X, Wu X, Jose PA, Liu M, Yang Z. Low-Dose Aspirin Treatment Attenuates Male Rat Salt-Sensitive Hypertension via Platelet Cyclooxygenase 1 and Complement Cascade Pathway. J Am Heart Assoc 2020; 9:e013470. [PMID: 31852420 PMCID: PMC6988172 DOI: 10.1161/jaha.119.013470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Background The role of platelets in the development of vascular inflammation and endothelial dysfunction in the pathogenesis of hypertension is well established at this time. Aspirin is known to relieve pain, decrease fever, reduce inflammation, impair platelet aggregation, and prevent clotting, yet its effect in the context of salt-sensitive hypertension remains unclear. The present study investigated the importance of aspirin in inhibiting the abnormal activation of platelets and promoting the normal function of the vascular endothelium in a rat model of salt-sensitive hypertension. Method and Results Dahl salt-sensitive rats and salt-resistant rats were fed a normal-salt diet (4% NaCl), a high-salt diet (8% NaCl), or a high-salt diet with aspirin gavage (10 mg/kg per day) for 8 weeks. Blood pressure, platelet activation, vascular function, inflammatory response, and potential mechanism were measured. Low-dose aspirin (10 mg/kg per day) decreased the high-salt diet-induced elevation of blood pressure, platelet activation, leukocyte infiltration, and leukocyte-platelet aggregation (CD45+CD61+), as well as vascular endothelial and renal damage. These effects were related to the ability of aspirin to prevent the adhesion of leukocytes to endothelial cells via inhibition of the platelet cyclooxygenase 1 but not the cyclooxygenase 2 pathway. Aspirin also reversed the high-salt diet-induced abnormal activation of complement and coagulation cascades in platelets. Conclusions These results highlight a new property of aspirin in ameliorating vascular endothelial dysfunction induced by platelet activation, which may be beneficial in the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences CAMS&PUMC)BeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences CAMS&PUMC)BeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences CAMS&PUMC)BeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Xianxian Wu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences CAMS&PUMC)BeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Pedro A. Jose
- Division of Kidney Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine & Health SciencesWashingtonDC
- Department of Pharmacology and PhysiologyThe George Washington University School of Medicine & Health SciencesWashingtonDC
| | - Min Liu
- Department of HypertensionHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences CAMS&PUMC)BeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|
72
|
Holt M, Seim BE, Øgaard J, Olsen MB, Woldbæk PR, Kvitting JP, Aukrust P, Yndestad A, Mollnes TE, Nilsson PH, Louwe MC, Ranheim T. Selective and marked decrease of complement receptor C5aR2 in human thoracic aortic aneurysms: a dysregulation with potential inflammatory effects. Open Heart 2019; 6:e001098. [PMID: 31798913 PMCID: PMC6861114 DOI: 10.1136/openhrt-2019-001098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022] Open
Abstract
Objective The aetiology of thoracic aortic aneurysm (TAA) is largely unknown, but inflammation is
likely to play a central role in the pathogenesis. In this present study, we aim to
investigate the complement receptors in TAA. Methods Aortic tissue and blood from 31 patients with non-syndromic TAA undergoing thoracic
aortic repair surgery were collected. Aortic tissue and blood from 36 patients with
atherosclerosis undergoing coronary artery bypass surgery or aortic valve replacement
were collected and served as control material. The expression of the complement
anaphylatoxin receptors C3aR1, C5aR1 and C5aR2 in aortic tissue were examined by
quantitative RT-PCR and C5aR2 protein by immunohistochemistry. Colocalisation of C5aR2
to different cell types was analysed by immunofluorescence. Complement activation
products C3bc and sC5b-9 were measured in plasma. Results Compared with controls, TAA patients had substantial (73%) downregulated gene
expression of C5aR2 as seen both at the mRNA (p=0.005) level and protein (p=0.03) level.
In contrast, there were no differences in the expression of C3aR1 and C5aR1 between the
two groups. Immunofluorescence examination showed that C5aR2 was colocalised to
macrophages and T cells in the aortic media. There were no differences in the degree of
systemic complement activation between the two groups. Conclusion Our findings suggest downregulation of the C5aR2, regarded to act mainly
anti-inflammatory, in electively operated TAA as compared with non-aneurysmatic aortas
of patients with aortic stenosis and/or coronary artery disease. This may tip the
balance towards a relative increase in the inflammatory responses induced by C5aR1 and
thus enhance the inflammatory processes in TAA.
Collapse
Affiliation(s)
- Margrethe Holt
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bjørn E Seim
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria B Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Per R Woldbæk
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Ullevål, Oslo, Norway
| | - J P Kvitting
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom Eirik Mollnes
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Laboratory and Faculty of Health Sciences, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC - Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Per H Nilsson
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Mieke C Louwe
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trine Ranheim
- Institute of Clinical Medicine, University of Oslo Faculty of Medicine, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
73
|
Sauter RJ, Sauter M, Reis ES, Emschermann FN, Nording H, Ebenhöch S, Kraft P, Münzer P, Mauler M, Rheinlaender J, Madlung J, Edlich F, Schäffer TE, Meuth SG, Duerschmied D, Geisler T, Borst O, Gawaz M, Kleinschnitz C, Lambris JD, Langer HF. Functional Relevance of the Anaphylatoxin Receptor C3aR for Platelet Function and Arterial Thrombus Formation Marks an Intersection Point Between Innate Immunity and Thrombosis. Circulation 2019; 138:1720-1735. [PMID: 29802205 DOI: 10.1161/circulationaha.118.034600] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Platelets have distinct roles in the vascular system in that they are the major mediator of thrombosis, critical for restoration of tissue integrity, and players in vascular inflammatory conditions. In close spatiotemporal proximity, the complement system acts as the first line of defense against invading microorganisms and is a key mediator of inflammation. Whereas the fluid phase cross-talk between the complement and coagulation systems is well appreciated, the understanding of the pathophysiological implications of such interactions is still scant. METHODS We analyzed coexpression of the anaphylatoxin receptor C3aR with activated glycoprotein IIb/IIIa on platelets of 501 patients with coronary artery disease using flow cytometry; detected C3aR expression in human or murine specimen by polymerase chain reaction, immunofluorescence, Western blotting, or flow cytometry; and examined the importance of platelet C3aR by various in vitro platelet function tests, in vivo bleeding time, and intravital microscopy. The pathophysiological relevance of C3aR was scrutinized with the use of disease models of myocardial infarction and stroke. To approach underlying molecular mechanisms, we identified the platelet small GTPase Rap1b using nanoscale liquid chromatography coupled to tandem mass spectrometry. RESULTS We found a strong positive correlation of platelet complement C3aR expression with activated glycoprotein IIb/IIIa in patients with coronary artery disease and coexpression of C3aR with glycoprotein IIb/IIIa in thrombi obtained from patients with myocardial infarction. Our results demonstrate that the C3a/C3aR axis on platelets regulates distinct steps of thrombus formation such as platelet adhesion, spreading, and Ca2+ influx. Using C3aR-/- mice or C3-/- mice with reinjection of C3a, we uncovered that the complement activation fragment C3a regulates bleeding time after tail injury and thrombosis. Notably, C3aR-/- mice were less prone to experimental stroke and myocardial infarction. Furthermore, reconstitution of C3aR-/- mice with C3aR+/+ platelets and platelet depletion experiments demonstrated that the observed effects on thrombosis, myocardial infarction, and stroke were specifically caused by platelet C3aR. Mechanistically, C3aR-mediated signaling regulates the activation of Rap1b and thereby bleeding arrest after injury and in vivo thrombus formation. CONCLUSIONS Overall, our findings uncover a novel function of the anaphylatoxin C3a for platelet function and thrombus formation, highlighting a detrimental role of imbalanced complement activation in cardiovascular diseases.
Collapse
Affiliation(s)
- Reinhard J Sauter
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Manuela Sauter
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia (E.S.R., J.D.L.)
| | - Frederic N Emschermann
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Henry Nording
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Sonja Ebenhöch
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Peter Kraft
- Department of Neurology, University of Würzburg, Germany (P.K.)
| | - Patrick Münzer
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine (M.M., D.D.), University of Freiburg, Germany
| | - Johannes Rheinlaender
- Institute of Applied Physics (J.R., T.E.S.), Eberhard Karls-University Tübingen, Germany
| | - Johannes Madlung
- Proteom Center, Interfaculty Institute for Cell Biology (J.M.), Eberhard Karls-University Tübingen, Germany
| | - Frank Edlich
- Institute of Biochemistry (F.E.), University of Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, University of Freiburg, Germany (F.E.).,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Germany (F.E.)
| | - Tilman E Schäffer
- Institute of Applied Physics (J.R., T.E.S.), Eberhard Karls-University Tübingen, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Germany (S.G.M.)
| | - Daniel Duerschmied
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine (M.M., D.D.), University of Freiburg, Germany
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | | | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia (E.S.R., J.D.L.)
| | - Harald F Langer
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| |
Collapse
|
74
|
Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perspectives on Thromboinflammation. Front Immunol 2019; 10:2082. [PMID: 31572356 PMCID: PMC6737392 DOI: 10.3389/fimmu.2019.02082] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
Envenomation by viperid snakes is characterized by systemic thrombotic syndrome and prominent local inflammation. To date, the mechanisms underlying inflammation and blood coagulation induced by Viperidae venoms have been viewed as distinct processes. However, studies on the mechanisms involved in these processes have revealed several factors and signaling molecules that simultaneously act in both the innate immune and hemostatic systems, suggesting an overlap between both systems during viper envenomation. Moreover, distinct classes of venom toxins involved in these effects have also been identified. However, the interplay between inflammation and hemostatic alterations, referred as to thromboinflammation, has never been addressed in the investigation of viper envenomation. Considering that platelets are important targets of viper snake venoms and are critical for the process of thromboinflammation, in this review, we summarize the inflammatory effects and mechanisms induced by viper snake venoms, particularly from the Bothrops genus, which strongly activate platelet functions and highlight selected venom components (metalloproteases and C-type lectins) that both stimulate platelet functions and exhibit pro-inflammatory activities, thus providing insights into the possible role(s) of thromboinflammation in viper envenomation.
Collapse
Affiliation(s)
- Catarina Teixeira
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Cristina Maria Fernandes
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Elbio Leiguez
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
75
|
Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 2019; 16:397-409. [PMID: 29720707 DOI: 10.1038/s41579-018-0019-y] [Citation(s) in RCA: 1235] [Impact Index Per Article: 205.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medical device-associated infections account for a large proportion of hospital-acquired infections. A variety of opportunistic pathogens can cause implant infections, depending on the type of the implant and on the anatomical site of implantation. The success of these versatile pathogens depends on rapid adhesion to virtually all biomaterial surfaces and survival in the hostile host environment. Biofilm formation on implant surfaces shelters the bacteria and encourages persistence of infection. Furthermore, implant-infecting bacteria can elude innate and adaptive host defences as well as biocides and antibiotic chemotherapies. In this Review, we explore the fundamental pathogenic mechanisms underlying implant infections, highlighting orthopaedic implants and Staphylococcus aureus as a prime example, and discuss innovative targets for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy. .,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
76
|
Lopatko Fagerström I, Ståhl AL, Mossberg M, Tati R, Kristoffersson AC, Kahn R, Bascands JL, Klein J, Schanstra JP, Segelmark M, Karpman D. Blockade of the kallikrein-kinin system reduces endothelial complement activation in vascular inflammation. EBioMedicine 2019; 47:319-328. [PMID: 31444145 PMCID: PMC6796560 DOI: 10.1016/j.ebiom.2019.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background The complement and kallikrein-kinin systems (KKS) are activated during vascular inflammation. The aim of this study was to investigate if blockade of the KKS can affect complement activation on the endothelium during inflammation. Methods Complement deposition on endothelial microvesicles was assayed in vasculitis patient plasma samples and controls. Plasma was perfused over glomerular endothelial cells and complement deposition assayed by flow cytometry. The effect of the kinin system was assessed using kinin receptor antagonists and C1-inhibitor. The in vivo effect was assessed in kidney sections from mice with nephrotoxic serum-induced glomerulonephritis treated with a kinin receptor antagonist. Findings Vasculitis patient plasma had significantly more C3- and C9-positive endothelial microvesicles than controls. Perfusion of patient acute-phase plasma samples over glomerular endothelial cells induced the release of significantly more complement-positive microvesicles, in comparison to remission or control plasma. Complement activation on endothelial microvesicles was reduced by kinin B1- and B2-receptor antagonists or by C1-inhibitor (the main inhibitor of the classical pathway and the KKS). Likewise, perfusion of glomerular endothelial cells with C1-inhibitor-depleted plasma induced the release of complement-positive microvesicles, which was significantly reduced by kinin-receptor antagonists or C1-inhibitor. Mice with nephrotoxic serum-induced glomerulonephritis exhibited significantly reduced glomerular C3 deposition when treated with a B1-receptor antagonist. Interpretation Excessive complement deposition on the endothelium will promote endothelial injury and the release of endothelial microvesicles. This study demonstrates that blockade of the KKS can reduce complement activation and thereby the inflammatory response on the endothelium. Funding Full details are provided in the Acknowledgements/Funding section.
Collapse
Affiliation(s)
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Maria Mossberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ramesh Tati
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Jean-Loup Bascands
- Institut National de la Sante et de la Recherche Medicale (INSERM), U1188, Université de La Réunion, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Mårten Segelmark
- Department of Nephrology, Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
77
|
Jenny L, Noser D, Larsen JB, Dobó J, Gál P, Pál G, Schroeder V. MASP-1 of the complement system alters fibrinolytic behaviour of blood clots. Mol Immunol 2019; 114:1-9. [PMID: 31325724 DOI: 10.1016/j.molimm.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The lectin pathway serine protease mannan-binding lectin-associated serine protease 1 (MASP-1) has been demonstrated to be a major link between complement and coagulation, yet little is known about its interactions with the fibrinolytic system. The aim of this work was to assess the effects of MASP-1 on fibrin clot lysis in different experimental settings. METHODS Rotational thrombelastometry was used to evaluate the effect of MASP-1 on the lysis of clots formed in whole blood under static conditions. Whole blood clots were also formed in the presence and absence of MASP-1 under flow conditions in the Chandler loop and their lysis was analysed separately by fluorescence release of incorporated labelled fibrin. Real-time observation by laser scanning confocal microscopy was used to investigate the lysis of plasma clots where MASP-1 was present either during clot formation or lysis. Cleavage of tPA or plasminogen by MASP-1 was analysed by gel electrophoresis. We performed a turbidimetric clot lysis assay in the presence and absence of the MASP-1 inhibitor SGMI-1 (Schistocerca gregaria protease inhibitor (SGPI)-based MASP inhibitor-1) to evaluate the effect of endogenous MASP-1 in normal plasma and plasma samples from sepsis patients. RESULTS In the thrombelastometric experiments, where MASP-1 was present during the entire clotting and lysis process, MASP-1 had a significant profibrinolytic effect and accelerated clot lysis. When clots were formed in the presence of MASP-1 under flow in the Chandler loop, the effects on fibrinolysis were heterogenous with impaired fibrinolysis in some individuals (n = 5) and no (n = 3) or even the opposite effect (n = 2) in others. In plasma clot lysis observed by confocal microscopy, lysis was prolonged when MASP-1 was added to the lysis solution, yet there was no difference in lysis time when MASP-1 was present during clot formation. When MASP-1 was incubated with tPA or plasminogen, respectively, cleavage of single-chain tPA into two-chain tPA and a slight reduction of plasminogen were observed. SGMI-1 significantly prolonged clot lysis in the turbidimetric clot lysis assay suggesting that MASP-1 accelerated lysis in plasma samples. CONCLUSION MASP-1 is able to alter the susceptibility of blood clots to the fibrinolytic system. MASP-1 has complex, mostly promoting effects on fibrinolysis with high inter-individual variation. Interactions of MASP-1 with the fibrinolytic system may be relevant in the development and therapy of cardiovascular and thrombotic diseases.
Collapse
Affiliation(s)
- Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Danilo Noser
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - József Dobó
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
78
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
79
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
80
|
Gossart A, Letourneur D, Gand A, Regnault V, Ben Mlouka MA, Cosette P, Pauthe E, Ollivier V, Santerre JP. Mitigation of monocyte driven thrombosis on cobalt chrome surfaces in contact with whole blood by thin film polar/hydrophobic/ionic polyurethane coatings. Biomaterials 2019; 217:119306. [PMID: 31271854 DOI: 10.1016/j.biomaterials.2019.119306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Monocytes are active at the crossroads between inflammation and coagulation processes since they can secrete pro-inflammatory cytokines and express tissue factor (TF), a major initiator of coagulation. Cobalt-chrome (CoCr), a metal alloy, used as a biomaterial for vascular stents, has been shown to be potentially pro-thrombotic and pro-inflammatory. Research work with a polymer from a family of degradable-polar hydrophobic ionic polyurethanes (D-PHI), called HHHI, has been shown to exhibit anti-inflammatory responses from human monocytes. We have generated multifunctional polyurethane thin films (MPTF) based on the HHHI chemistry, as a thin coating for CoCr and have evaluated the reactivity of blood with MPTF-coated CoCr. The results showed that the coating of CoCr with MPTF derived from HHHI prevents thrombin generation, reduces coagulation activation, and suppresses fibrin formation in whole blood. Activation of monocytes was also suppressed at the surface of MPTF-coated CoCr and specifically the decrease in thrombin generation was accompanied by a significant decrease in TF and pro-inflammatory cytokine levels. Mass spectroscopy of the adsorbed proteins showed lower levels of fibrinogen, fibronectin and complement C3, C4, and C8 when compared to CoCr. We can conclude that MPTFs reduce the pro-thrombotic and pro-inflammatory phenotype of monocytes and macrophages on CoCr, and prevent clotting in whole blood.
Collapse
Affiliation(s)
- Audrey Gossart
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France; Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France; Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Didier Letourneur
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France
| | | | - Mohamed Amine Ben Mlouka
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Pascal Cosette
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Biomaterial for Health Research Group, Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000 Neuville sur Oise, France
| | - Véronique Ollivier
- Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, Paris, France.
| | - J Paul Santerre
- Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
81
|
Ekdahl KN, Fromell K, Mohlin C, Teramura Y, Nilsson B. A human whole-blood model to study the activation of innate immunity system triggered by nanoparticles as a demonstrator for toxicity. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:688-698. [PMID: 31275460 PMCID: PMC6598515 DOI: 10.1080/14686996.2019.1625721] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
In this review article, we focus on activation of the soluble components of the innate immune system triggered by nonbiological compounds and stress variances in activation due to the difference in size between nanoparticles (NPs) and larger particles or bulk material of the same chemical and physical composition. We then discuss the impact of the so-called protein corona which is formed on the surface of NPs when they come in contact with blood or other body fluids. For example, NPs which bind inert proteins, proteins which are prone to activate the contact system (e.g., factor XII), which may lead to clotting and fibrin formation or the complement system (e.g., IgG or C3), which may result in inflammation and vascular damage. Furthermore, we describe a whole blood model which we have developed to monitor activation and interaction between different components of innate immunity: blood protein cascade systems, platelets, leukocytes, cytokine generation, which are induced by NPs. Finally, we describe our own studies on innate immunity system activation induced by three fundamentally different species of NPs (two types of engineered NPs and diesel NPs) as demonstrator of the utility of an initial determination of the composition of the protein corona formed on NPs exposed to ethylenediaminetetraacetic acid (EDTA) plasma and subsequent analysis in our whole blood model.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
82
|
Hulsart-Billström G, Janson O, Engqvist H, Welch K, Hong J. Thromboinflammation as bioactivity assessment of H 2O 2-alkali modified titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:66. [PMID: 31127371 PMCID: PMC6534515 DOI: 10.1007/s10856-019-6248-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The release of growth factors from platelets, mediated by the coagulation and the complement system, plays an important role in the bone formation around implants. This study aimed at exploring the thromboinflammatory response of H2O2-alkali soaked commercially pure titanium grade 2 discs exposed to whole human blood, as a way to assess the bioactivity of the discs. Commercially pure titanium grade 2 discs were modified by soaking in H2O2, NaOH and Ca(OH)2. The platelet aggregation, coagulation activation and complement activation was assessed by exposing the discs to fresh whole blood from human donors. The platelet aggregation was examined by a cell counter and the coagulation and complement activation were assessed by ELISA-measurements of the concentration of thrombin-antithrombin complex, C3a and terminal complement complex. The modified surface showed a statistically significant increased platelet aggregation, coagulation activation and complement activation compared to unexposed blood. The surface also showed a statistically significant increase of coagulation activation compared to PVC. The results of this study showed that the H2O2-alkali soaked surfaces induced a thromboinflammatory response that indicates that the surfaces are bioactive.
Collapse
Affiliation(s)
- Gry Hulsart-Billström
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Oscar Janson
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, 751 21, Uppsala, Sweden
| | - Ken Welch
- Department of Engineering Sciences, Division of Nanotechnology and Functional Materials, Uppsala University, 751 21, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
83
|
Savelli SL, Roubey RAS, Kitzmiller KJ, Zhou D, Nagaraja HN, Mulvihill E, Barbar-Smiley F, Ardoin SP, Wu YL, Yu CY. Opposite Profiles of Complement in Antiphospholipid Syndrome (APS) and Systemic Lupus Erythematosus (SLE) Among Patients With Antiphospholipid Antibodies (aPL). Front Immunol 2019; 10:885. [PMID: 31134052 PMCID: PMC6514053 DOI: 10.3389/fimmu.2019.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
APS is the association of antiphospholipid antibodies (aPL) with thromboses and/or recurrent pregnancy loss (RPL). Among patients with SLE, one-third have aPL and 10–15% have a manifestation of secondary APS. Animal studies suggested that complement activation plays an important role in the pathogenesis of thrombosis and pregnancy loss in APS. We performed a cross-sectional study on complement proteins and genes in 525 patients with aPL. Among them, 237 experienced thromboses and 293 had SLE; 111 had both SLE and thromboses, and 106 had neither SLE nor thrombosis. Complement protein levels were determined by radial immunodiffusion for C4, C3 and factor H; and by functional ELISA for mannan binding lectin (MBL). Total C4, C4A and C4B gene copy numbers (GCN) were measured by TaqMan-based realtime PCR. Two to six copies of C4 genes are frequently present in a diploid genome, and each copy may code for an acidic C4A or a basic C4B protein. We observed significantly (a) higher protein levels of total C4, C4A, C4B, C3, and anticardiolipin (ACLA) IgG, (b) increased frequencies of lupus anticoagulant and males, and (c) decreased levels of complement factor H, MBL and ACLA-IgM among patients with thrombosis than those without thrombosis (N = 288). We also observed significantly lower GCNs of total C4 and C4A among aPL-positive patients with both SLE and thrombosis than others. By contrast, aPL-positive subjects with SLE had significantly reduced protein levels of C3, total C4, C4A, C4B and ACLA-IgG, and higher frequency of females than those without SLE. Patients with thrombosis but without SLE (N = 126), and patients with SLE but without thrombosis (N = 182) had the greatest differences in mean protein levels of C3 (p = 2.6 × 10−6), C4 (p = 2.2 × 10−9) and ACLA-IgG (p = 1.2 × 10−5). RPL occurred in 23.7% of female patients and thrombotic SLE patients had the highest frequency of RPL (41.0%; p = 3.8 × 10−10). Compared with non-RPL females, RPL had significantly higher frequency of thrombosis and elevated C4 protein levels. Female patients with homozygous C4A deficiency all experienced RPL (p = 0.0001) but the opposite was true for patients with homozygous C4B deficiency (p = 0.017). These results provide new insights and biomarkers for diagnosis and management of APS and SLE.
Collapse
Affiliation(s)
- Stephanie L Savelli
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Robert A S Roubey
- Division of Rheumatology, Allergy and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kathryn J Kitzmiller
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Danlei Zhou
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Haikady N Nagaraja
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Evan Mulvihill
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Fatima Barbar-Smiley
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Stacy P Ardoin
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Yee Ling Wu
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Chack-Yung Yu
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
84
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
85
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, Federzoni E, Dandro A, Ayares D. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 2019; 26:e12516. [PMID: 30989742 PMCID: PMC10154075 DOI: 10.1111/xen.12516] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Xenotransplantation research has made considerable progress in recent years, largely through the increasing availability of pigs with multiple genetic modifications. We suggest that a pig with nine genetic modifications (ie, currently available) will provide organs (initially kidneys and hearts) that would function for a clinically valuable period of time, for example, >12 months, after transplantation into patients with end-stage organ failure. The national regulatory authorities, however, will likely require evidence, based on in vitro and/or in vivo experimental data, to justify the inclusion of each individual genetic modification in the pig. We provide data both from our own experience and that of others on the advantages of pigs in which (a) all three known carbohydrate xenoantigens have been deleted (triple-knockout pigs), (b) two human complement-regulatory proteins (CD46, CD55) and two human coagulation-regulatory proteins (thrombomodulin, endothelial cell protein C receptor) are expressed, (c) the anti-apoptotic and "anti-inflammatory" molecule, human hemeoxygenase-1 is expressed, and (d) human CD47 is expressed to suppress elements of the macrophage and T-cell responses. Although many alternative genetic modifications could be made to an organ-source pig, we suggest that the genetic manipulations we identify above will all contribute to the success of the initial clinical pig kidney or heart transplants, and that the beneficial contribution of each individual manipulation is supported by considerable experimental evidence.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Second Affiliated Hospital, University of South China, Hengyang City, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elena Federzoni
- Exponential Biotherapeutic Engineering, United Therapeutics, LaJolla, California
| | | | | |
Collapse
|
86
|
Sotiri I, Robichaud M, Lee D, Braune S, Gorbet M, Ratner BD, Brash JL, Latour RA, Reviakine I. BloodSurf 2017: News from the blood-biomaterial frontier. Acta Biomater 2019; 87:55-60. [PMID: 30660001 DOI: 10.1016/j.actbio.2019.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
From stents and large-diameter vascular grafts, to mechanical heart valves and blood pumps, blood-contacting devices are enjoying significant clinical success owing to the application of systemic antiplatelet and anticoagulation therapies. On the contrary, research into material and device hemocompatibility aimed at alleviating the need for systemic therapies has suffered a decline. This research area is undergoing a renaissance fueled by recent fundamental insights into coagulation and inflammation that are offering new avenues of investigation, the growing recognition of the limitations facing existing therapeutic approaches, and the severity of the cardiovascular disorders epidemic. This Opinion article discusses clinical needs for hemocompatible materials and the emerging research directions for fulfilling those needs. Based on the 2017 BloodSurf conference that brought together clinicians, scientists, and engineers from academia, industry, and regulatory bodies, its purpose is to draw the attention of the wider clinical and scientific community to stimulate further growth. STATEMENT OF SIGNIFICANCE: The article highlights recent fundamental insights into coagulation, inflammation, and blood-biomaterial interactions that are fueling a renaissance in the field of material hemocompatibility. It will be useful for clinicians, scientists, engineers, representatives of industry and regulatory bodies working on the problem of developing hemocompatible materials and devices for treating cardiovascular disorders.
Collapse
|
87
|
Jin X, Ma Q, Sun Z, Yang X, Zhou Q, Qu G, Liu Q, Liao C, Li Z, Jiang G. Airborne Fine Particles Induce Hematological Effects through Regulating the Crosstalk of the Kallikrein-Kinin, Complement, and Coagulation Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2840-2851. [PMID: 30742439 DOI: 10.1021/acs.est.8b05817] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Particulate air pollution caused by human activities has drawn global attention due to its potential health risks. Considering the inevitable contact of inhaled airborne fine particulate matter (PM) with plasma, the hematological effects of PM are worthy of study. In this study, the potential effect of PM on hematological homeostasis through triggering the crosstalk of the kallikrein-kinin system (KKS), complement, and coagulation systems in plasma was investigated. The ex vivo, in vitro, and in vivo KKS activation assays confirmed that PM samples could efficiently cause the cascade activation of key zymogens in the KKS, wherein the particles coupled with lipopolysaccharide attachment provided substantial contribution. The binding of Hageman factor XII (FXII) with PM samples and its subsequent autoactivation initiated this process. The crucial elements in the complement cascade, including complement 3 (C3) and complement 5 (C5), and coagulation system (prothrombin) were also found to be actively induced by PM exposure, which was regulated by the interplay of KKS activation. The data provided solid evidence on hematological effects of airborne PM through inducing the activation of the KKS, complement, and coagulation systems, which would be valuable in the risk assessment on air-pollution-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoting Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- Institutes of Biomedical Sciences , Shanxi University , Taiyuan 030006 , PR China
| | - Qianchi Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , PR China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , PR China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , PR China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences , Shanxi University , Taiyuan 030006 , PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , PR China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| |
Collapse
|
88
|
Sun Z, Liu X, Wu D, Gao H, Jiang J, Yang Y, Wu J, Gao Q, Wang J, Jiang Z, Xu Y, Xu X, Li L. Circulating proteomic panels for diagnosis and risk stratification of acute-on-chronic liver failure in patients with viral hepatitis B. Am J Cancer Res 2019; 9:1200-1214. [PMID: 30867825 PMCID: PMC6401414 DOI: 10.7150/thno.31991] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic HBV infection (CHB) can lead to acute-on-chronic liver failure (HBV-ACLF) characterized by high mortality. This study aimed to reveal ACLF-related proteomic alterations, from which protein based diagnostic and prognostic scores for HBV-ACLF were developed. Methods: Ten healthy controls, 16 CHB, and 19 HBV-ACLF according to COSSH (Chinese group on the study of severe hepatitis B) criteria were enrolled to obtain the comprehensive proteomic portrait related to HBV-ACLF initiation and progression. Potential markers of HBV-ACLF were further selected based on organ specificity and functionality. An additional cohort included 77 healthy controls, 92 CHB and 71 HBV-ACLF was used to validate the proteomic signatures via targeted proteomic assays. Results: Significant losses of plasma proteins related to multiple functional clusters, including fatty acid metabolism/transport, immuno-response, complement and coagulation systems, were observed in ACLF patients. In the validation study, 28 proteins were confirmed able to separate ACLF, CHB patients. A diagnostic classifier P4 (APOC3, HRG, TF, KLKB1) was built to differentiate ACLF from CHB with high accuracy (auROC = 0.956). A prognostic model P8 (GC, HRG, HPR, SERPINA6, age, NEU, INR and total protein) was built to distinguish survivors from non-survivors in 28 and 90-days follow-up (auROC = 0.882, 0.871), and to stratify ACLF patients into risk subgroups showing significant difference in 28 and 90-days mortality (HR=7.77, 7.45, both P<0.0001). In addition, P8 score correlated with ACLF grades and numbers of extra-hepatic organ failures in ACLF patients, and was able to predict ACLF-associated coagulation and brain failure within 90 days (auROC = 0.815, 0.842). Conclusions: Proteomic signatures developed in this study reflected the deficiency of key hematological functions in HBV-ACLF patients, and show potential for HBV-ACLF diagnosis and risk prediction in complementary to current clinical based parameters.
Collapse
|
89
|
Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133:906-918. [PMID: 30642917 DOI: 10.1182/blood-2018-11-882993] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombosis with associated inflammation (thromboinflammation) occurs commonly in a broad range of human disorders. It is well recognized clinically in the context of superficial thrombophlebitis (thrombosis and inflammation of superficial veins); however, it is more dangerous when it develops in the microvasculature of injured tissues and organs. Microvascular thrombosis with associated inflammation is well recognized in the context of sepsis and ischemia-reperfusion injury; however, it also occurs in organ transplant rejection, major trauma, severe burns, the antiphospholipid syndrome, preeclampsia, sickle cell disease, and biomaterial-induced thromboinflammation. Central to thromboinflammation is the loss of the normal antithrombotic and anti-inflammatory functions of endothelial cells, leading to dysregulation of coagulation, complement, platelet activation, and leukocyte recruitment in the microvasculature. α-Thrombin plays a critical role in coordinating thrombotic and inflammatory responses and has long been considered an attractive therapeutic target to reduce thromboinflammatory complications. This review focuses on the role of basic aspects of coagulation and α-thrombin in promoting thromboinflammatory responses and discusses insights gained from clinical trials on the effects of various inhibitors of coagulation on thromboinflammatory disorders. Studies in sepsis patients have been particularly informative because, despite using anticoagulant approaches with different pharmacological profiles, which act at distinct points in the coagulation cascade, bleeding complications continue to undermine clinical benefit. Future advances may require the development of therapeutics with primary anti-inflammatory and cytoprotective properties, which have less impact on hemostasis. This may be possible with the growing recognition that components of blood coagulation and platelets have prothrombotic and proinflammatory functions independent of their hemostatic effects.
Collapse
|
90
|
Kreuziger LB, Massicotte MP. Adult and pediatric mechanical circulation: a guide for the hematologist. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:507-515. [PMID: 30504351 PMCID: PMC6245997 DOI: 10.1182/asheducation-2018.1.507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mechanical circulatory support (MCS) is the overarching term that encompasses the temporary and durable devices used in patients with severe heart failure. MCS disturbs the hematologic and coagulation system, leading to platelet activation, activation of the contact pathway of coagulation, and acquired von Willebrand syndrome. Ischemic stroke and major hemorrhage occur in up to 30% of patients. Hematologists are an essential part of the MCS team because they understand the delicate balance between bleeding and clotting and alteration of hemostasis with antithrombotic therapy. However, prior to this important collaborative role, learning the terminology used in the field and types of MCS devices allows improved communication with the MCS team and best patient care. Understanding which antithromobotic therapies are used at baseline is also required to provide recommendations if hemorrhage or thrombosis occurs. Additional challenging consultations in MCS patients include the influence of thrombophilia on the risk for thrombosis and management of heparin-induced thrombocytopenia. This narrative review will provide a foundation to understand MCS devices how to prevent, diagnose, and manage MCS thrombosis for the practicing hematologist.
Collapse
Affiliation(s)
- Lisa Baumann Kreuziger
- Division of Hematology, Department of Medicine, BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, WI; and
| | | |
Collapse
|
91
|
Albert-Weissenberger C, Hopp S, Nieswandt B, Sirén AL, Kleinschnitz C, Stetter C. How is the formation of microthrombi after traumatic brain injury linked to inflammation? J Neuroimmunol 2018; 326:9-13. [PMID: 30445364 DOI: 10.1016/j.jneuroim.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 02/01/2023]
Abstract
Traumatic brain injury (TBI) is characterized by mechanical disruption of brain tissue due to an external force and by subsequent secondary injury. Secondary brain injury events include inflammatory responses and the activation of coagulation resulting in microthrombi formation in the brain vasculature. Recent research suggests that these mechanisms do not work independently. There is strong evidence that FXII and platelet activation connects both, inflammation and the formation of microthrombi. This review summarizes the current knowledge on posttraumatic microthrombus formation and its link to inflammation.
Collapse
Affiliation(s)
- Christiane Albert-Weissenberger
- Institute of Physiology, Department of Neurophysiology, Julius Maximilian University, Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Sarah Hopp
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Duisburg-Essen, Essen, Germany.
| | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
92
|
Ramirez GA, Efthymiou M, Isenberg DA, Cohen H. Under crossfire: thromboembolic risk in systemic lupus erythematosus. Rheumatology (Oxford) 2018; 58:940-952. [DOI: 10.1093/rheumatology/key307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/31/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Giuseppe A Ramirez
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Efthymiou
- Haemostasis Research Unit, Department of Haematology, University College London, London, UK
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hannah Cohen
- Haemostasis Research Unit, Department of Haematology, University College London, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
93
|
Venom from Bothrops lanceolatus, a Snake Species Native to Martinique, Potently Activates the Complement System. J Immunol Res 2018; 2018:3462136. [PMID: 30116749 PMCID: PMC6079423 DOI: 10.1155/2018/3462136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Bothrops lanceolatus snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of B. lanceolatus venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation. Data presented show that B. lanceolatus venom is able to activate all C-pathways. In human serum, the venom strongly induced the generation of anaphylatoxins, such as C5a and C4a, and the Terminal Complement complex. The venom also induced cleavage of purified human components C3, C4, and C5, with the production of biologically active C5a. Furthermore, the venom enzymatically inactivated the soluble C-regulator and the C1-inhibitor (C1-INH), and significantly increased the expression of bound C-regulators, such as MCP and CD59, on the endothelial cell membrane. Our observations that B. lanceolatus venom activates the three Complement activation pathways, resulting in anaphylatoxins generation, may suggest that this could play an important role in local inflammatory reaction and systemic thrombosis caused by the venom. Inactivation of C1-INH, which is also an important inhibitor of several coagulation proteins, may also contribute to inflammation and thrombosis. Thus, further in vivo studies may support the idea that therapeutic management of systemic B. lanceolatus envenomation could include the use of Complement inhibitors as adjunct therapy.
Collapse
|
94
|
Skjeflo EW, Christiansen D, Fure H, Ludviksen JK, Woodruff TM, Espevik T, Nielsen EW, Brekke OL, Mollnes TE. Staphylococcus aureus-induced complement activation promotes tissue factor-mediated coagulation. J Thromb Haemost 2018; 16:905-918. [PMID: 29437288 DOI: 10.1111/jth.13979] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 12/13/2022]
Abstract
Essentials Complement, Toll-like receptors and coagulation cross-talk in the process of thromboinflammation. This is explored in a unique human whole-blood model of S. aureus bacteremia. Coagulation is here shown as a downstream event of C5a-induced tissue factor (TF) production. Combined inhibition of C5 and CD14 efficiently attenuated TF and coagulation. SUMMARY Background There is extensive cross-talk between the complement system, the Toll-like receptors (TLRs), and hemostasis. Consumptive coagulopathy is a hallmark of sepsis, and is often mediated through increased tissue factor (TF) expression. Objectives To study the relative roles of complement, TLRs and TF in Staphylococcus aureus-induced coagulation. Methods Lepirudin-anticoagulated human whole blood was incubated with the three S. aureus strains Cowan, Wood, and Newman. C3 was inhibited with compstatin, C5 with eculizumab, C5a receptor 1 (C5aR1) and activated factor XII with peptide inhibitors, CD14, TLR2 and TF with neutralizing antibodies, and TLR4 with eritoran. Complement activation was measured by ELISA. Coagulation was measured according to prothrombin fragment 1 + 2 (PTF1 + 2 ) determined with ELISA, and TF mRNA, monocyte surface expression and functional activity were measured with quantitative PCR, flow cytometry, and ELISA, respectively. Results All three strains generated substantial and statistically significant amounts of C5a, terminal complement complex, PTF1 + 2 , and TF mRNA, and showed substantial TF surface expression on monocytes and TF functional activity. Inhibition of C5 cleavage most efficiently and significantly inhibited all six markers in strains Cowan and Wood, and five markers in Newman. The effect of complement inhibition was shown to be completely dependent on C5aR1. The C5 blocking effect was equally potentiated when combined with blocking of CD14 or TLR2, but not TLR4. TF blocking significantly reduced PTF1 + 2 levels to baseline levels. Conclusions S. aureus-induced coagulation in human whole blood was mainly attributable to C5a-induced mRNA upregulation, monocyte TF expression, and plasma TF activity, thus underscoring complement as a key player in S. aureus-induced coagulation.
Collapse
Affiliation(s)
- E W Skjeflo
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - H Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - J K Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - T M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - T Espevik
- Center of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E W Nielsen
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Anesthesiology, Nordland Hospital, Bodø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - O L Brekke
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
| | - T E Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Health Sciences, K. G. Jebsen TREC, UiT - The Arctic University of Norway, Tromsø, Norway
- Center of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Immunology, Oslo University Hospital and K. G. Jebsen IRC, University of Oslo, Oslo, Norway
| |
Collapse
|
95
|
Abstract
Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.
Collapse
|
96
|
Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost 2018; 16:441-454. [PMID: 29251820 DOI: 10.1111/jth.13928] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/15/2022]
Abstract
The coagulation system does not only offer protection against bleeding, but also aids in our defense against invading microorganisms. The hemostatic system and innate immunity are strongly entangled, which explains why so many infections are complicated by either bleeding or thrombosis. Staphylococcus aureus (S. aureus), currently the most deadly infectious agent in the developed world, causes devastating intravascular infections such as sepsis and infective endocarditis. During these infections S. aureus comes in close contact with the host hemostatic system and proves to be a master in manipulating coagulation. The coagulases of S. aureus directly induce coagulation by activating prothrombin. S. aureus also manipulates fibrinolysis by triggering plasminogen activation via staphylokinase. Furthermore, S. aureus binds and activates platelets and interacts with key coagulation proteins such as fibrin(ogen), fibronectin and von Willebrand factor. By manipulating the coagulation system S. aureus gains a significant advantage over the host defense mechanisms. Studying the interplay between S. aureus and the hemostatic system can therefore lead to new innovative therapies for battling S. aureus infections.
Collapse
Affiliation(s)
- L Liesenborghs
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - P Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| | - T Vanassche
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven - University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
97
|
Ricklin D, Lambris JD. Preformed mediators of defense-Gatekeepers enter the spotlight. Immunol Rev 2018; 274:5-8. [PMID: 27782322 DOI: 10.1111/imr.12497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Daniel Ricklin
- Institute of Molecular Pharmacy, University of Basel, Basel, Switzerland. .,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
98
|
Jenny L, Dobó J, Gál P, Pál G, Lam WA, Schroeder V. MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model. PLoS One 2018; 13:e0191292. [PMID: 29324883 PMCID: PMC5764403 DOI: 10.1371/journal.pone.0191292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/02/2018] [Indexed: 12/04/2022] Open
Abstract
The complement and coagulation systems closely interact with each other. These interactions are believed to contribute to the proinflammatory and prothrombotic environment involved in the development of thrombotic complications in many diseases. Complement MASP-1 (mannan-binding lectin-associated serine protease-1) activates coagulation factors and promotes clot formation. However, this was mainly shown in purified or plasma-based static systems. Here we describe the role of MASP-1 and complement activation in fibrin clot formation in a microvascular, whole blood flow model. This microfluidic system simulates blood flow through microvessels at physiological flow and shear rates and represents the closest model system to human physiology so far. It features parallel microchannels cultured with endothelial cells in a transparent microfluidic chip allowing real-time evaluation of clot formation by confocal microscopy. To test their effects on clot formation, we added the following activators or inhibitors (individually or in combination) to whole blood and performed perfusion experiments: rMASP-1cf (recombinant active form of MASP-1), complement activator zymosan, selective MASP-1 inhibitor SGMI-1 (based on the Schistocerca gregaria protease inhibitor scaffold), classical pathway inhibitor rSALO (recombinant salivary anti-complement from Lutzomyia longipalpis). Addition of rMASP-1cf resulted in accelerated fibrin clot formation while addition of SGMI-1 delayed it. Complement activation by zymosan led to increased clot formation and this effect was partially reversed by addition of rSALO and almost abolished in combination with SGMI-1. We show for the first time a strong influence of MASP-1, complement activation and pathway-specific inhibition on coagulation in a microvascular flow system that is closest to human physiology, further underpinning the in vivo relevance of coagulation and complement interactions.
Collapse
Affiliation(s)
- Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - József Dobó
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
99
|
Mazaleuskaya LL, Salamatipour A, Sarantopoulou D, Weng L, FitzGerald GA, Blair IA, Mesaros C. Analysis of HETEs in human whole blood by chiral UHPLC-ECAPCI/HRMS. J Lipid Res 2018; 59:564-575. [PMID: 29301865 PMCID: PMC5832923 DOI: 10.1194/jlr.d081414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Indexed: 12/30/2022] Open
Abstract
The biosynthesis of eicosanoids occurs enzymatically via lipoxygenases, cyclooxygenases, and cytochrome P450, or through nonenzymatic free radical reactions. The enzymatic routes are highly enantiospecific. Chiral separation and high-sensitivity detection methods are required to differentiate and quantify enantioselective HETEs in complex biological fluids. We report here a targeted chiral lipidomics analysis of human blood using ultra-HPLC-electron capture (EC) atmospheric pressure chemical ionization/high-resolution MS. Monitoring the high-resolution ions formed by the fragmentation of pentafluorobenzyl derivatives of oxidized lipids during the dissociative EC, followed by in-trap fragmentation, increased sensitivity by an order of magnitude when compared with the unit resolution MS. The 12(S)-HETE, 12(S)-hydroxy-(5Z,8E,10E)-heptadecatrienoic acid [12(S)-HHT], and 15(S)-HETE were the major hydroxylated nonesterified chiral lipids in serum. Stimulation of whole blood with zymosan and lipopolysaccharide (LPS) resulted in stimulus- and time-dependent effects. An acute exposure to zymosan induced ∼80% of the chiral plasma lipids, including 12(S)-HHT, 5(S)-HETE, 15(R)-HETE, and 15(S)-HETE, while a maximum response to LPS was achieved after a long-term stimulation. The reported method allows for a rapid quantification with high sensitivity and specificity of enantiospecific responses to in vitro stimulation or coagulation of human blood.
Collapse
Affiliation(s)
- Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ashkan Salamatipour
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Liwei Weng
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ian A Blair
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160.,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Clementina Mesaros
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160 .,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| |
Collapse
|
100
|
Bitzan M, Zieg J. Influenza-associated thrombotic microangiopathies. Pediatr Nephrol 2018; 33:2009-2025. [PMID: 28884355 PMCID: PMC6153504 DOI: 10.1007/s00467-017-3783-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
Thrombotic microangiopathy (TMA) refers to phenotypically similar disorders, including hemolytic uremic syndromes (HUS) and thrombotic thrombocytopenic purpura (TTP). This review explores the role of the influenza virus as trigger of HUS or TTP. We conducted a literature survey in PubMed and Google Scholar using HUS, TTP, TMA, and influenza as keywords, and extracted and analyzed reported epidemiological and clinical data. We identified 25 cases of influenza-associated TMA. Five additional cases were linked to influenza vaccination and analyzed separately. Influenza A was found in 83%, 10 out of 25 during the 2009 A(H1N1) pandemic. Two patients had bona fide TTP with ADAMTS13 activity <10%. Median age was 15 years (range 0.5-68 years), two thirds were male. Oligoanuria was documented in 81% and neurological involvement in 40% of patients. Serum C3 was reduced in 5 out of 14 patients (36%); Coombs test was negative in 7 out of 7 and elevated fibrin/fibrinogen degradation products were documented in 6 out of 8 patients. Pathogenic complement gene mutations were found in 7 out of 8 patients tested (C3, MCP, or MCP combined with CFB or clusterin). Twenty out of 24 patients recovered completely, but 3 died (12%). Ten of the surviving patients underwent plasma exchange (PLEX) therapy, 5 plasma infusions. Influenza-mediated HUS or TTP is rare. A sizable proportion of tested patients demonstrated mutations associated with alternative pathway of complement dysregulation that was uncovered by this infection. Further research is warranted targeting the roles of viral neuraminidase, enhanced virus-induced complement activation and/or ADAMTS13 antibodies, and rational treatment approaches.
Collapse
Affiliation(s)
- Martin Bitzan
- Division of Nephrology, The Montreal Children's Hospital, McGill University Health Centre, 1001, boul. Décarie-Room B RC.6651, Montréal, QC, H4A 3J1, Canada.
| | - Jakub Zieg
- 0000 0004 1937 116Xgrid.4491.8Department of Pediatric Nephrology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| |
Collapse
|