51
|
Habary A, Johansen JL, Nay TJ, Steffensen JF, Rummer JL. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming? GLOBAL CHANGE BIOLOGY 2017; 23:566-577. [PMID: 27593976 DOI: 10.1111/gcb.13488] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.
Collapse
Affiliation(s)
- Adam Habary
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jacob L Johansen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
52
|
McNeil PL, Nebot C, Cepeda A, Sloman KA. Environmental concentrations of prednisolone alter visually mediated responses during early life stages of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:981-987. [PMID: 27614910 DOI: 10.1016/j.envpol.2016.08.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
The development of the eye in vertebrates is dependent upon glucocorticoid signalling, however, specific components of the eye are sensitive to synthetic glucocorticoids. The presence of synthetic glucocorticoids within the aquatic environment may therefore have important consequences for fish, which are heavily reliant upon vision for mediating several key behaviours. The potential ethological impact of synthetic glucocorticoid oculotoxicity however has yet to be studied. Physiological and behavioural responses which are dependent upon vision were selected to investigate the possible toxicity of prednisolone, a commonly occurring synthetic glucocorticoid within the environment, during early life stages of zebrafish. Although exposure to prednisolone did not alter the morphology of the external eye, aggregation of melanin within the skin in response to increasing light levels was impeded and embryos exposed to prednisolone (10 μg/l) maintained a darkened phenotype. Exposure to prednisolone also increased the preference of embryos for a dark environment within a light dark box test in a concentration dependent manner. However the ability of embryos to detect motion appeared unaffected by prednisolone. Therefore, while significant effects were detected in several processes mediated by vision, changes occurred in a manner which suggest that vision was in itself unaffected by prednisolone. Neurological and endocrinological changes during early ontogeny are considered as likely candidates for future investigation.
Collapse
Affiliation(s)
- Paul L McNeil
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, UK.
| | - Carolina Nebot
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Katherine A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, UK
| |
Collapse
|
53
|
Polačik M, Blažek R, Reichard M. Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nat Protoc 2016; 11:1396-413. [DOI: 10.1038/nprot.2016.080] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
54
|
Rodríguez-Estrada J, Sobrino-Figueroa AS, Martínez-Jerónimo F. Effect of sublethal α-cypermethrin exposure on main macromolecules concentration, energy content, and malondialdehyde concentration in free-feeding Danio rerio larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:859-868. [PMID: 26687149 DOI: 10.1007/s10695-015-0180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
α-Cypermethrin (Cyp) is a synthetic insecticide used to control pests in agricultural crops and to protect human health against noxious insects; this toxic can reach aquatic systems through ground infiltration or by runoff and could affect the aquatic biota. The present study was aimed at evaluating the acute toxicity of Cyp on zebrafish (Danio rerio) exogenous feeding larvae of 10 and 20 days post-fertilization (dpf), and of sublethal concentrations on only 10-dpf larvae. Proteins, lipids, carbohydrates, glycogen concentration, and total energy contents, as well as malondialdehyde (MDA) quantification, through thiobarbituric acid reactive substances, as a lipid peroxidation biomarker, were assessed in free-feeding larvae exposed to sublethal Cyp concentrations. The LC50 for 10-dpf larvae was 1.94 µg L(-1), and these were more sensitive than 20-dpf larvae (3.56 µg L(-1)). The amount of protein, carbohydrates, and glycogen were not significantly affected (p > 0.05), but sublethal Cyp concentrations exposure caused decrement in lipids from 9.05 to 3.74 µg larva(-1), as well as a reduction in MDA and in the total energy content, which affected significantly the development of this fish. Although Cyp is considered an insecticide of reduced residual effect in the environment, the present study revealed that relatively low Cyp concentrations produced significant toxic effects on exogenous feeding fish larvae, a situation that could contribute to increase deaths during this already critical developmental stage in which high mortality is observed frequently.
Collapse
Affiliation(s)
- Jesús Rodríguez-Estrada
- Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340, Mexico, D. F., Mexico
- Experimental Hydrobiology Laboratory, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340, Mexico, D. F., Mexico
| | - Alma Socorro Sobrino-Figueroa
- Laboratory Alejandro Villalobos, Departamento de Hidrobiología, Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340, Mexico, D. F., Mexico
| | - Fernando Martínez-Jerónimo
- Experimental Hydrobiology Laboratory, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n, Col. Sto. Tomás, 11340, Mexico, D. F., Mexico.
| |
Collapse
|
55
|
Sakamoto K, Dew WA, Hecnar SJ, Pyle GG. Effects of Lampricide on Olfaction and Behavior in Young-of-the-Year Lake Sturgeon (Acipenser fulvescens). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3462-3468. [PMID: 27015540 DOI: 10.1021/acs.est.6b01051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), is a primary component to sea lamprey control in the Laurentian Great Lakes. Though the lethal effects of TFM are well-known, the sublethal effects on fishes are virtually unknown. Here we studied the effects of TFM on the olfactory capabilities and behavior of young-of-the-year (YOY) lake sturgeon (Acipenser fulvescens). At ecologically relevant concentrations of TFM there was reduced olfactory response to all three cues (l-alanine, taurocholic acid, food cue) tested, suggesting that TFM inhibits both olfactory sensory neurons tested. Sturgeon exposed to TFM also showed a reduced attraction to the scent of food and reduced consumption of food relative to unexposed fish. Exposed fish were more active than control fish, but with slower acceleration. Fish were able to detect the scent of TFM, but failed to avoid it in behavioral trials. The connection between neurophysiological and behavioral changes, and the commonality of habitats between sturgeon and lamprey ammocoetes, suggests that there may be effects at the ecosystem level in streams that undergo lamprey control treatments.
Collapse
Affiliation(s)
- Kathrine Sakamoto
- Department of Biology, Lakehead University , 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - William A Dew
- Department of Biological Sciences, University of Lethbridge , 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
- Department of Biology, Trent University , 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Stephen J Hecnar
- Department of Biology, Lakehead University , 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge , 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
56
|
Sopinka NM, Donaldson MR, O’Connor CM, Suski CD, Cooke SJ. Stress Indicators in Fish. FISH PHYSIOLOGY 2016. [DOI: 10.1016/b978-0-12-802728-8.00011-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
57
|
Gauthier PT, Norwood WP, Prepas EE, Pyle GG. Behavioural alterations from exposure to Cu, phenanthrene, and Cu-phenanthrene mixtures: linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:377-383. [PMID: 26596825 DOI: 10.1016/j.aquatox.2015.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Phenanthrene (PHE) and Cu are two contaminants commonly co-occurring in marine and freshwater environments. Mixtures of PHE and Cu have been reported to induce more-than-additive lethality in the amphipod, Hyalella azteca, a keystone aquatic invertebrate, yet little is understood regarding the interactive toxic mechanisms that mediate more-than-additive toxicity. Understanding the interactions among toxic mechanisms among Cu and PHE will allow for better predictive power in assessing the ecological risks of Cu-PHE mixtures in aquatic environments. Here we use behavioural impairment to help understand the toxic mechanisms of Cu, PHE, and Cu-PHE mixture toxicity in the aquatic amphipod crustacean, Hyalella azteca. Our principal objective was to link alterations in activity and ventilation with respiratory rates, oxidative stress, and neurotoxicity in adult H. azteca. Adult amphipods were used for all toxicity tests. Amphipods were tested at sublethal exposures of 91.8- and 195-μgL(-1) Cu and PHE, respectively, and a Cu-PHE mixture at the same concentrations for 24h. Neurotoxicity was measured as acetylcholinesterase (AChE) activity, where malathion was used as a positive control. Oxidative stress was measured as reactive oxygen species (ROS) production. Phenanthrene-exposed amphipods exhibited severe behavioural impairment, being hyperstimulated to the extent that they were incapable of coordinating muscle movements. In addition, respiration and AChE activity in PHE-exposed amphipods were increased and reduced by 51% and 23% respectively. However, ROS did not increase following exposure to phenanthrene. In contrast, Cu had no effect on amphipod behaviour, respiration or AChE activity, but did lead to an increase in ROS. However, co-exposure to Cu antagonized the PHE-induced reduction in ventilation and negated any increase in respiration. The results suggest that PHE acts like an organophosphate pesticide (e.g., malathion) in H. azteca following 24h sublethal exposures, and that AChE inhibition is the likely mechanism by which PHE alters H. azteca behaviour. However, interactive aspects of neurotoxicity do not account for the previously observed more-than-additive mortality in H. azteca following exposure to Cu-PHE mixtures.
Collapse
Affiliation(s)
- Patrick T Gauthier
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Warren P Norwood
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario L7R 4A6, Canada
| | - Ellie E Prepas
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
58
|
Parker MO. Adult vertebrate behavioural aquatic toxicology: Reliability and validity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:323-329. [PMID: 26358137 DOI: 10.1016/j.aquatox.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Current advances in the ability to assay adult aquatic vertebrate behaviour are potentially very useful to aquatic toxicologists wishing to characterise the effects of pollutants on behaviour, cognition or neurodevelopment. This review considers two specific challenges faced by researchers wishing to exploit these technologies: maximising reliability and validity. It will suggest two behavioural procedures, with the potential for automation and high-throughput implementation, which can be used to measure social cohesion and anxiety, two areas of interest in behavioural aquatic toxicology. In addition, the review will make recommendations about how these procedures (and others) could be carried out to maximise reliability and validity.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
59
|
Gonzalez ST, Remick D, Creton R, Colwill RM. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish. Neurotoxicology 2015; 53:93-101. [PMID: 26748073 DOI: 10.1016/j.neuro.2015.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/14/2022]
Abstract
The zebrafish (Danio rerio) is an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effects of sub-chronic embryonic exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant, on anxiety-related behaviors. We found that exposure to the PCB mixture, Aroclor (A) 1254, from 2 to 26h post-fertilization (hpf) induced two statistically significant behavioral defects in larvae at 7 days post-fertilization (dpf). First, during 135min of free swimming, larvae that had been exposed to 2ppm, 5ppm or 10ppm A1254 exhibited enhanced thigmotaxis (edge preference) relative to control larvae. Second, during the immediately ensuing 15-min visual startle assay, the 5ppm and 10ppm PCB-exposed larvae reacted differently to a visual threat, a red 'bouncing' disk, relative to control larvae. These results are consistent with the anxiogenic and attention-disrupting effects of PCB exposure documented in children, monkeys and rodents and merit further investigation.
Collapse
Affiliation(s)
- Sarah T Gonzalez
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Dylan Remick
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Ruth M Colwill
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States.
| |
Collapse
|
60
|
Di Paolo C, Groh KJ, Zennegg M, Vermeirssen ELM, Murk AJ, Eggen RIL, Hollert H, Werner I, Schirmer K. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:168-178. [PMID: 26551687 DOI: 10.1016/j.aquatox.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in two experiments). Interestingly, the patterns of delayed mortality and delayed effects on growth and development were similar between sole and zebrafish. This indicates the comparability of critical developmental stages across divergent fish species such as a cold water marine flatfish and a tropical freshwater cyprinid. Additionally, sublethal effects in early embryo-larval stages were found promising for predicting delayed lethal and sublethal effects of PCB126. Therefore, the proposed method with zebrafish is expected to provide valuable information on delayed mortality and delayed sublethal effects of chemicals and environmental samples that may be extrapolated to other species.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, 8600, Dübendorf, Switzerland; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Markus Zennegg
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, 8600, Dübendorf, Switzerland.
| | | | - Albertinka J Murk
- Wageningen University, Marine Animal Ecology Group, 6708WD, Wageningen, The Netherlands; IMARES, Institute for Marine Resources and Ecosystem Studies, Wageningen UR, 1780 AB, Den Helder, The Netherlands.
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany.
| | - Inge Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, 8600, Dübendorf, Switzerland.
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland.
| |
Collapse
|
61
|
Renick VC, Anderson TW, Morgan SG, Cherr GN. Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:391-400. [PMID: 25421633 DOI: 10.1007/s10646-014-1388-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Coastal development has generated multiple stressors in marine and estuarine ecosystems, including habitat degradation and pollutant exposure, but the effects of these stressors on the ecology of fishes remain poorly understood. We studied the separate and combined effects of an acute 4 h sublethal exposure of the pyrethroid pesticide esfenvalerate and structural habitat complexity on behavior and predation risk of larval topsmelt (Atherinops affinis). Larvae were exposed to four nominal esfenvalerate concentrations (control, 0.12, 0.59, 1.18 μg/L), before placement into 12 L mesocosms with a three-spine stickleback (Gasterosteus aculeatus) predator. Five treatments of artificial eelgrass included a (1) uniform and (2) patchy distribution of eelgrass at a low density (500 shoots per m(2)), a (3) uniform and (4) patchy distribution of eelgrass at a high density (1,000 shoots per m(2)), and (5) the absence of eelgrass. The capture success of predators and aggregative behavior of prey were observed in each mesocosm for 10 min of each trial, and mortality of prey was recorded after 60 min. Exposure to esfenvalerate increased the proportion of larvae with swimming abnormalities. Surprisingly, prey mortality did not increase linearly with pesticide exposure but increased with habitat structure (density of eelgrass), which may have been a consequence of compensating predator behavior. The degree of prey aggregation decreased with both habitat structure and pesticide exposure, suggesting that anti-predator behaviors by prey may have been hampered by the interactive effects of both of these factors.
Collapse
Affiliation(s)
- Violet Compton Renick
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA,
| | | | | | | |
Collapse
|
62
|
Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. CHEMOSPHERE 2015; 120:778-792. [PMID: 25456049 DOI: 10.1016/j.chemosphere.2014.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Raquel N Carvalho
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, 21027 Ispra, Italy
| | | | - Nancy D Denslow
- University of Florida, Department of Physiological Sciences, Center for Environmental and Human Toxicology and Genetics Institute, 32611 Gainesville, FL, USA
| | - Marlies Halder
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Cheryl A Murphy
- Michigan State University, Fisheries and Wildlife, Lyman Briggs College, 48824 East Lansing, MI, USA
| | - Dick Roelofs
- VU University, Institute of Ecological Science, 1081 HV Amsterdam, The Netherlands
| | - Alexandra Rolaki
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Karen H Watanabe
- Oregon Health & Science University, Institute of Environmental Health, Division of Environmental and Biomolecular Systems, 97239-3098 Portland, OR, USA
| |
Collapse
|
63
|
Barbee NC, Ganio K, Swearer SE. Integrating multiple bioassays to detect and assess impacts of sublethal exposure to metal mixtures in an estuarine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:244-255. [PMID: 24794343 DOI: 10.1016/j.aquatox.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Estuaries are natural sinks for a wide range of urban, industrial and agricultural contaminants that accumulate at potentially toxic but non-lethal concentrations, yet we know relatively little about the long-term impacts of toxicants at these levels on aquatic organisms. In this study, we present an integrated, multi-pronged approach to detect and assess the impacts to estuarine fish of exposure to sublethal concentrations of metal mixtures. Our aims were to (1) examine the effects of sublethal metal exposure on the embryonic development of Galaxias maculatus, an estuarine spawning fish native to southeastern Australia, (2) determine whether sublethal exposure during development has knock-on effects on larval behaviour, and (3) establish whether a signature of metal exposure during embryogenesis can be detected in larval otoliths ("ear bones"). G. maculatus eggs are fertilised in water but develop aerially, in direct contact with estuarine sediments. We were thus also able to explore the relative importance of two exposure pathways, water and sediment. Embryos were exposed to two concentrations of a metal mixture containing Cu, Zn and Pb in water (during fertilisation) and on spiked sediments (during development), using a fully crossed experimental design. Overall, we found that exposure to the metal mixture reduced embryo survival and slowed embryonic development, resulting in poorer quality larvae that exhibited a reduced phototactic response. Differences in exposure to metals between treatment and control embryos were also permanently recorded in the developing otoliths. Combined these three approaches have the potential to be a powerful novel bioassessment tool as they provide a means of identifying a history of metal exposure during the embryonic period and linking it to suboptimal early growth and performance traits which could have long term fitness consequences.
Collapse
Affiliation(s)
- Nicole C Barbee
- Centre for Aquatic Pollution Identification and Management (CAPIM), Department of Zoology, University of Melbourne, Parkville 3010, VIC, Australia.
| | - Katherine Ganio
- Centre for Aquatic Pollution Identification and Management (CAPIM), Department of Zoology, University of Melbourne, Parkville 3010, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville 3010, VIC, Australia
| | - Stephen E Swearer
- Centre for Aquatic Pollution Identification and Management (CAPIM), Department of Zoology, University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
64
|
Manciocco A, Calamandrei G, Alleva E. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach. CHEMOSPHERE 2014; 100:1-7. [PMID: 24480426 DOI: 10.1016/j.chemosphere.2013.12.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 05/28/2023]
Abstract
Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions.
Collapse
Affiliation(s)
- Arianna Manciocco
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Via Ulisse Aldrovandi 16/b, 00197 Rome, Italy.
| | - Gemma Calamandrei
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Enrico Alleva
- Behavioural Neuroscience Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
65
|
Chollett D, Perez KE, King-Heiden TC. Embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs prey capture by zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:784-790. [PMID: 24812677 DOI: 10.1002/etc.2477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a ubiquitous, persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has the potential to cause lethal deformities in larval fishes. Few studies have examined its impacts on larval growth and craniofacial development in conjunction with feeding capability. The authors used morphological and behavioral assessments to demonstrate that feeding capability of larvae is impaired even when craniofacial structures are not grossly malformed. Zebrafish embryos were exposed to 25 pg TCDD/mL, 50 pg TCDD/mL, or 100 pg TCDD/mL or <0.1% dimethyl sulfoxide for 1 h at 4 h postfertilization and then raised in clean water for 21 d or 90 d to assess craniofacial morphology, feeding capability, and long-term survival. The lower jaw was 5% smaller in 21-d larvae exposed to ≥ 50 pg TCDD/mL, and those larvae caught 10% fewer prey items; survival was reduced by 13% to 23%. The direct cause of TCDD's impacts on feeding capability is not known, but feeding success was correlated with growth, length of lower jaw, and survival. Since low larval mortality rates are key for recruitment, this suggests that exposure to concentrations of TCDD during embryonic development that do not initially cause mortality still has the potential to impact the recruitment success of feral fish. Furthermore, the present work provides additional evidence that behavioral end points are often more sensitive than morphological ones and should be included when assessing the sublethal toxicity of environmental contaminants.
Collapse
|
66
|
Melvin SD, Wilson SP. The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. CHEMOSPHERE 2013; 93:2217-2223. [PMID: 23958442 DOI: 10.1016/j.chemosphere.2013.07.036] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Behavioral responses have been applied for decades as tools for aquatic toxicity testing, but have received far less attention than studies assessing lethality, development or reproduction. With improved visual and non-visual assessment tools and increased knowledge of the importance of behavior for organism health and fitness, interest in behavioral analysis has increased in recent years. However, to our knowledge there has never been a quantitative assessment of the available techniques for organismal toxicity testing, so it is not clear whether behavioral studies represent valuable additions to environmental monitoring. We performed a meta-analysis comparing the relative sensitivities and average durations of behavioral studies to those assessing acute lethality, development and reproduction. Results demonstrate that the average duration of behavioral studies is consistently less than developmental or reproductive studies, and that behavioral endpoints are generally more sensitive than those assessing development or reproduction. We found effect sizes to be lower but power to be higher in behavioral and reproductive studies compared to studies assessing development, which likely relates to low sample sizes commonly used in developmental studies. Overall, we conclude that behavioral studies are comparatively fast and sensitive, and therefore warrant further attention as tools for assessing the toxicological effects of environmental contaminants. We suggest that research aimed at developing and optimizing techniques for behavioral analysis could prove extremely useful to the field of toxicology, but that future work must be directed at determining what specific behaviors are most sensitive to various classes of contaminants, and at understanding the relevance of changes to discrete behaviors for influencing organismal and population-level health and fitness.
Collapse
Affiliation(s)
- Steven D Melvin
- Central Queensland University, Centre for Environmental Management, Gladstone, Queensland 4680, Australia.
| | | |
Collapse
|
67
|
Maunder RJ, Buckley J, Val AL, Sloman KA. A toxic diet: transfer of contaminants to offspring through a parental care mechanism. J Exp Biol 2013; 216:3587-90. [DOI: 10.1242/jeb.089102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The transfer of maternal contaminants to offspring during oogenesis and gestation is documented in many animals and in mammals contaminants may pass from mother to offspring during lactation. Although other non-mammalian vertebrates provide parental care in the form of nutritive secretions for offspring to feed from, the potential for toxicant transfer during non-mammalian parental care is rarely considered. The discus fish, Symphysodon sp., employs an unusual parental care strategy where fry feed on parental epidermal mucus for several weeks after hatch. This strategy has the potential to act as a method of contaminant transfer. In discus adults, both waterborne and dietary toxicants are sequestered and secreted into their epidermal mucus, the food on which fry depend. To determine whether parents could channel these contaminants directly to offspring, we exposed parents to aqueous cadmium and recorded the subsequent feeding behaviour and cadmium content of fry. Fry continued to feed normally from contaminated mucus and accumulated significant tissue concentrations of cadmium. In conclusion, this parental care mechanism of the discus fish can expose offspring to harmful contaminants during the sensitive early stages of life and highlights that parent to offspring contaminant transfer after birth may be more widespread than previously thought.
Collapse
|