51
|
Silva R, Fabry B, Boccaccini AR. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 2014; 35:6727-38. [DOI: 10.1016/j.biomaterials.2014.04.078] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/22/2014] [Indexed: 01/26/2023]
|
52
|
|
53
|
Harwood KR, Hanover JA. Nutrient-driven O-GlcNAc cycling - think globally but act locally. J Cell Sci 2014; 127:1857-67. [PMID: 24762810 DOI: 10.1242/jcs.113233] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Proper cellular functioning requires that cellular machinery behave in a spatiotemporally regulated manner in response to global changes in nutrient availability. Mounting evidence suggests that one way this is achieved is through the establishment of physically defined gradients of O-GlcNAcylation (O-linked addition of N-acetylglucosamine to serine and threonine residues) and O-GlcNAc turnover. Because O-GlcNAcylation levels are dependent on the nutrient-responsive hexosamine signaling pathway, this modification is uniquely poised to inform upon the nutritive state of an organism. The enzymes responsible for O-GlcNAc addition and removal are encoded by a single pair of genes: both the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA, also known as MGEA5) genes are alternatively spliced, producing protein variants that are targeted to discrete cellular locations where they must selectively recognize hundreds of protein substrates. Recent reports suggest that in addition to their catalytic functions, OGT and OGA use their multifunctional domains to anchor O-GlcNAc cycling to discrete intracellular sites, thus allowing them to establish gradients of deacetylase, kinase and phosphatase signaling activities. The localized signaling gradients established by targeted O-GlcNAc cycling influence many important cellular processes, including lipid droplet remodeling, mitochondrial functioning, epigenetic control of gene expression and proteostasis. As such, the tethering of the enzymes of O-GlcNAc cycling appears to play a role in ensuring proper spatiotemporal responses to global alterations in nutrient supply.
Collapse
Affiliation(s)
- Katryn R Harwood
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda MD 20892-0851, USA
| | | |
Collapse
|
54
|
Goto H, Inagaki M. New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 2014; 66:195-200. [PMID: 24659572 DOI: 10.1002/iub.1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Because of their insoluble nature, cellular IFs had been considered to be stable for a long time. The discovery that a purified protein kinase phosphorylated a purified IF protein and in turn induced the disassembly of IF structure in vitro led to the novel concept of dynamic IF regulation. Since then, a variety of protein kinases have been identified to phosphorylate IF proteins such as vimentin in a spatiotemporal regulated manner. A series of studies using cultured cells have demonstrated that preventing IF phosphorylation during mitosis inhibits cytokinesis by the retention of an IF bridge-like structure (IF-bridge) connecting the two daughter cells. Knock-in mice expressing phosphodeficient vimentin variants developed binucleation/aneuploidy in lens epithelial cells, which promoted microophthalmia and lens cataract. Therefore, mitotic phosphorylation of vimentin is of great importance in the completion of cytokinesis, the impairment of which promotes chromosomal instability and premature aging. © 2014 IUBMB Life, 66(3):195-200, 2014.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| |
Collapse
|
55
|
Robert A, Herrmann H, Davidson MW, Gelfand VI. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. FASEB J 2014; 28:2879-90. [PMID: 24652946 DOI: 10.1096/fj.14-250019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intermediate filaments (IFs) form a dense and dynamic network that is functionally associated with microtubules and actin filaments. We used the GFP-tagged vimentin mutant Y117L to study vimentin-cytoskeletal interactions and transport of vimentin filament precursors. This mutant preserves vimentin interaction with other components of the cytoskeleton, but its assembly is blocked at the unit-length filament (ULF) stage. ULFs are easy to track, and they allow a reliable and quantifiable analysis of movement. Our results show that in cultured human vimentin-negative SW13 cells, 2% of vimentin-ULFs move along microtubules bidirectionally, while the majority are stationary and tightly associated with actin filaments. Rapid motor-dependent transport of ULFs along microtubules is enhanced ≥ 5-fold by depolymerization of actin cytoskeleton with latrunculin B. The microtubule-dependent transport of vimentin ULFs is further regulated by Rho-kinase (ROCK) and p21-activated kinase (PAK): ROCK inhibits ULF transport, while PAK stimulates it. Both kinases act on microtubule transport independently of their effects on actin cytoskeleton. Our study demonstrates the importance of the actin cytoskeleton to restrict IF transport and reveals a new role for PAK and ROCK in the regulation of IF precursor transport.-Robert, A., Herrmann, H., Davidson, M. W., and Gelfand, V. I. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany; and
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
56
|
Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014; 15:163-77. [PMID: 24556839 PMCID: PMC4079540 DOI: 10.1038/nrm3753] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
57
|
Pink M, Verma N, Rettenmeier AW, Schmitz-Spanke S. Integrated proteomic and metabolomic analysis to assess the effects of pure and benzo[a]pyrene-loaded carbon black particles on energy metabolism and motility in the human endothelial cell line EA.hy926. Arch Toxicol 2014; 88:913-34. [DOI: 10.1007/s00204-014-1200-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/14/2014] [Indexed: 12/20/2022]
|
58
|
Goto H, Inagaki M. Method for the generation of antibodies specific for site and posttranslational modifications. Methods Mol Biol 2014; 1131:21-31. [PMID: 24515457 DOI: 10.1007/978-1-62703-992-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein phosphorylation plays critical roles in multiple aspects of cellular events. Site- and phosphorylation state-specific antibodies are indispensable to analyze spatially and temporally distribution of protein phosphorylation in cells. Such information provides some clues of its biological function. Here, we describe a strategy to design a phosphopeptide as an antigen for a site- and phosphorylation state-specific antibody. Importantly, this strategy is also applicable to the production of other types of antibodies, which specifically recognize the site-specific modification, such as acetylation, methylation, and proteolysis. This protocol also focuses on the screening for monoclonal version of a site- and phosphorylation state-specific antibody.
Collapse
Affiliation(s)
- Hidemasa Goto
- Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | |
Collapse
|
59
|
Cell cycle: mechanisms of control and dysregulation in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
60
|
Bakke O, Progida C. Emerging regulators of endosomal dynamics during mitosis. Cell Cycle 2013; 13:349-50. [PMID: 24343117 DOI: 10.4161/cc.27547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Oddmund Bakke
- Department of Biosciences; Centre of Immune Regulation; University of Oslo; Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences; Centre of Immune Regulation; University of Oslo; Oslo, Norway
| |
Collapse
|
61
|
Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 2013; 288:35626-35. [PMID: 24142690 PMCID: PMC3861614 DOI: 10.1074/jbc.m113.514737] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.
Collapse
|
62
|
Chung BM, Rotty JD, Coulombe PA. Networking galore: intermediate filaments and cell migration. Curr Opin Cell Biol 2013; 25:600-12. [PMID: 23886476 PMCID: PMC3780586 DOI: 10.1016/j.ceb.2013.06.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Intermediate filaments (IFs) are assembled from a diverse group of evolutionarily conserved proteins and are specified in a tissue-dependent, cell type-dependent, and context-dependent fashion in the body. IFs are involved in multiple cellular processes that are crucial for the maintenance of cell and tissue integrity and the response and adaptation to various stresses, as conveyed by the broad array of crippling clinical disorders caused by inherited mutations in IF coding sequences. Accordingly, the expression, assembly, and organization of IFs are tightly regulated. Migration is a fitting example of a cell-based phenomenon in which IFs participate as both effectors and regulators. With a particular focus on vimentin and keratin, we here review how the contributions of IFs to the cell's mechanical properties, to cytoarchitecture and adhesion, and to regulatory pathways collectively exert a significant impact on cell migration.
Collapse
Affiliation(s)
- Byung-Min Chung
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy D. Rotty
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pierre A. Coulombe
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
63
|
Selicharová I, Kořínek M, Demianová Z, Chrudinová M, Mládková J, Jiráček J. Effects of hyperhomocysteinemia and betaine–homocysteine S-methyltransferase inhibition on hepatocyte metabolites and the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1596-606. [DOI: 10.1016/j.bbapap.2013.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
|
64
|
Bouameur JE, Schneider Y, Begré N, Hobbs RP, Lingasamy P, Fontao L, Green KJ, Favre B, Borradori L. Phosphorylation of serine 4,642 in the C-terminus of plectin by MNK2 and PKA modulates its interaction with intermediate filaments. J Cell Sci 2013; 126:4195-207. [PMID: 23843618 DOI: 10.1242/jcs.127779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.
Collapse
Affiliation(s)
- Jamal-Eddine Bouameur
- Department of Clinical Research-Dermatology, Inselspital Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP, and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology, we have examined hippocampal astrocytes in three mouse models of AxD, a transgenic line (GFAP(Tg)) in which the normal human GFAP is expressed in several copies, a knock-in line (Gfap(+/R236H)) in which one of the Gfap genes bears an R236H mutation, and a mouse derived from the mating of these two lines (GFAP(Tg); Gfap(+/R236H)). We report changes in astrocyte phenotype in all lines, with the most severe in the GFAP(Tg);Gfap(+/R236H), resulting in the conversion of protoplasmic astrocytes to cells that have lost their bushy-like morphology because of a reduction of distal fine processes, and become multinucleated and hypertrophic. Astrocytes activate the mTOR cascade, acquire CD44, and lose GLT-1. The altered astrocytes display a microheterogeneity in phenotypes, even neighboring cells. Astrocytes also show diminished glutamate transporter current, are significantly depolarized, and not coupled to adjacent astrocytes. Thus, the accumulation of GFAP in the AxD mouse astrocytes initiates a conversion of normal, protoplasmic astrocytes to astrocytes that display severely "reactive" characteristics, many of which may be detrimental to neighboring neurons and oligodendrocytes.
Collapse
|
66
|
Bargagna-Mohan P, Deokule SP, Thompson K, Wizeman J, Srinivasan C, Vooturi S, Kompella UB, Mohan R. Withaferin A effectively targets soluble vimentin in the glaucoma filtration surgical model of fibrosis. PLoS One 2013; 8:e63881. [PMID: 23667686 PMCID: PMC3648549 DOI: 10.1371/journal.pone.0063881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/09/2013] [Indexed: 01/23/2023] Open
Abstract
Withaferin A (WFA) is a natural product that binds to soluble forms of the type III intermediate filament (IF) vimentin. Currently, it is unknown under what pathophysiological contexts vimentin is druggable, as cytoskeltal vimentin-IFs are abundantly expressed. To investigate druggability of vimentin, we exploited rabbit Tenon's capsule fibroblast (RbTCF) cell cultures and the rabbit glaucoma filtration surgical (GFS) model of fibrosis. WFA potently caused G₀/G₁ cell cycle inhibition (IC₅₀ 25 nM) in RbTCFs, downregulating ubiquitin E3 ligase skp2 and inducing p27(Kip1) expression. Transforming growth factor (TGF)-ß-induced myofibroblast transformation caused development of cell spheroids with numerous elongated invadopodia, which WFA blocked potently by downregulating soluble vimentin and α-smooth muscle actin (SMA) expression. In the pilot proof-of-concept study using the GFS model, subconjunctival injections of a low WFA dose reduced skp2 expression in Tenon's capsule and increased p27(Kip1) expression without significant alteration to vimentin-IFs. This treatment maintains significant nanomolar WFA concentrations in anterior segment tissues that correspond to WFA's cell cycle targeting activity. A ten-fold higher WFA dose caused potent downregulation of soluble vimentin and skp2 expression, but as found in cell cultures, no further increase in p27(Kip1) expression was observed. Instead, this high WFA dose potently induced vimentin-IF disruption and downregulated α-SMA expression that mimicked WFA activity in TGF-ß-treated RbTCFs that blocked cell contractile activity at submicromolar concentrations. These findings illuminate that localized WFA injection to ocular tissues exerts pharmacological control over the skp2-p27(Kip1) pathway by targeting of soluble vimentin in a model of surgical fibrosis.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sunil P. Deokule
- Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyle Thompson
- Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - John Wizeman
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Cidambi Srinivasan
- Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sunil Vooturi
- Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Uday B. Kompella
- Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Royce Mohan
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
67
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
68
|
Cogli L, Progida C, Thomas CL, Spencer-Dene B, Donno C, Schiavo G, Bucci C. Charcot-Marie-Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathol 2013; 125:257-72. [PMID: 23179371 PMCID: PMC3549248 DOI: 10.1007/s00401-012-1063-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) is a peripheral ulcero-mutilating neuropathy caused by four missense mutations in the rab7a gene. CMT2B is clinically characterized by prominent sensory loss, distal muscle weakness leading to muscle atrophy, high frequency of foot ulcers and infections that often results in toe amputations. RAB7A is a ubiquitous small GTPase, which controls transport to late endocytic compartments. Although the biochemical and functional properties of disease-causing RAB7A mutant proteins have been investigated, it is not yet clear how the disease originates. To understand how mutations in a ubiquitous protein specifically affect peripheral neurons, we performed a two-hybrid screen using a dorsal root ganglia cDNA library with the purpose of identifying RAB7A interactors specific for these cells. We identified peripherin, an intermediate filament protein expressed primarily in peripheral neurons, as a putative RAB7A interacting protein. The interaction was confirmed by co-immunoprecipitation and pull-down experiments, and established that the interaction is direct using recombinant proteins. Silencing or overexpression of wild type RAB7A changed the soluble/insoluble rate of peripherin indicating that RAB7A is important for peripherin organization and function. In addition, disease-causing RAB7A mutant proteins bind more strongly to peripherin and their expression causes a significant increase in the amount of soluble peripherin. Since peripherin plays a role not only in neurite outgrowth during development but also in axonal regeneration after injury, these data suggest that the altered interaction between disease-causing RAB7A mutants and peripherin could play an important role in CMT2B neuropathy.
Collapse
Affiliation(s)
- Laura Cogli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
69
|
Jeong HJ, Ohmuro-Matsuyama Y, Ohashi H, Ohsawa F, Tatsu Y, Inagaki M, Ueda H. Detection of vimentin serine phosphorylation by multicolor Quenchbodies. Biosens Bioelectron 2013; 40:17-23. [DOI: 10.1016/j.bios.2012.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/07/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
70
|
Kuga T, Kume H, Kawasaki N, Sato M, Adachi J, Shiromizu T, Hoshino I, Nishimori T, Matsubara H, Tomonaga T. A novel mechanism of keratin cytoskeleton organization through casein kinase Iα and FAM83H in colorectal cancer. J Cell Sci 2013; 126:4721-31. [DOI: 10.1242/jcs.129684] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Keratin filaments form cytoskeletal networks in epithelial cells. Dynamic rearrangement of keratin filament networks is required for epithelial cells to perform cellular processes such as cell migration and polarization; however, the mechanism governing keratin filament rearrangement remains unclear. Here, we found a novel mechanism of keratin cytoskeleton organization mediated by casein kinase Iα (CK-1α) and a newly identified keratin-associated protein, FAM83H. FAM83H knockdown induces keratin filament bundling, whereas FAM83H overexpression disassembles keratin filaments, suggesting that FAM83H regulates the filamentous state of keratins. Intriguingly, keratin filament bundling is concomitant with the dissociation of CK-1α from keratin filaments, while aberrant speckle-like localization of CK-1α is observed concomitantly with keratin filament disassembly. Furthermore, CK-1α inhibition, like FAM83H knockdown, causes keratin filament bundling and reverses keratin filament disassembly induced by FAM83H overexpression, suggesting that CK-1α mediates FAM83H-dependent reorganization of keratin filaments. Since the N-terminal region of FAM83H interacts with CK-1α, whereas the C-terminal region interacts with keratins, FAM83H might tether CK-1α to keratins. Colorectal cancer tissue also shows keratin filament disassembly accompanied with FAM83H overexpression and aberrant CK-1α localization, and FAM83H-overexpressing cancer cells exhibit loss or alteration of epithelial cell polarity. Importantly, FAM83H knockdown inhibits cell migration accompanied by keratin cytoskeleton rearrangement in colorectal cancer cells. These results suggest that keratin cytoskeleton organization is regulated by FAM83H-mediated recruitment of CK-1α to keratins, and that keratin filament disassembly caused by FAM83H overexpression and aberrant localization of CK-1α may contribute to the progression of colorectal cancer.
Collapse
|
71
|
Brouillard F, Fritsch J, Edelman A, Ollero M. Contribution of proteomics to the study of the role of cytokeratins in disease and physiopathology. Proteomics Clin Appl 2012; 2:264-85. [PMID: 21136830 DOI: 10.1002/prca.200780018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokeratins (CKs), the most abundant group of cytoskeletal intermediate filaments, and proteomics are strongly connected. On the one hand, proteomics has been extremely useful to uncover new features and functions of CKs, on the other, the highly abundant CKs serve as an exceptional tool to test new technological developments in proteomics. As a result, proteomics has contributed to finding valuable associations of CKs with diseases as diverse as cancer, cystic fibrosis, steatohepatitis, viral and bacterial infection, keratoconus, vitreoretinopathy, preeclampsia or the chronic fatigue syndrome, as well as to characterizing their participation in a number of physiopathological processes, including drug resistance, response to toxicants, inflammation, stem cell differentiation, embryo development, and tissue repair. In some cases, like in cystic fibrosis, CKs have been described as potential therapeutic targets. The development of a specific field of proteomics where CKs become the main subject of research aims and hypotheses is suggested.
Collapse
Affiliation(s)
- Franck Brouillard
- INSERM, Unité 845, Paris, France; Faculté de Médecine René Descartes, Université Paris-Descartes, Plateau Protéomes IFR94, Paris, France
| | | | | | | |
Collapse
|
72
|
Iizuka M, Kimura K, Wang S, Kato K, Amano M, Kaibuchi K, Mizoguchi A. Distinct distribution and localization of Rho-kinase in mouse epithelial, muscle and neural tissues. Cell Struct Funct 2012; 37:155-75. [PMID: 22986902 DOI: 10.1247/csf.12018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTP-binding protein Rho plays a crucial role in a wide variety of cellular functions through various effector proteins. Rho-kinase is a key effector protein of Rho, which is composed of two isoforms, ROCK1 and ROCK2. To clarify the site of action of ROCK1 and ROCK2, we performed immunofluorescence and immunoelectron microscopic analyses using isoform-specific antibodies in mouse tissues. In the large and small intestines, ROCK1 immunoreactivity was predominantly identified in epithelial cells, and ROCK2 immunoreactivity was negligible. In these epithelial cells, ROCK1 immunoreactivity was distributed on plasma membranes, while ROCK1 immunogold signals were localized at cell-cell contacts and cell adhesion sites, especially at the adherens junctions at the ultrastructural level. In the bladder epithelium, however, ROCK1 and ROCK2 signals were identified at intermediate filaments, and ROCK2 signals were also observed in nuclei. In the three types of muscular cells-smooth, cardiac, and skeletal muscle cells-ROCK1 and ROCK2 also showed differential distribution. ROCK1 signals were localized at actin filaments, plasma membranes, and vesicles near plasma membranes in smooth muscle cells; at the lysosomes in skeletal muscle cells; and were undetectable in cardiac muscle cells. ROCK2 signals were localized at actin filaments and centrosomes in smooth muscle cells, at intercalated discs in cardiac muscle cells, and at Z-discs and sarcoplasmic reticulum in skeletal muscle cells. In the brain, ROCK1 immunoreactivity was distributed in glia, whereas ROCK2 immunoreactivity was observed in neurons. These results indicate that the two isoforms of Rho-kinase distribute differentially to accomplish their specific functions.
Collapse
Affiliation(s)
- Michiro Iizuka
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Komura K, Ise H, Akaike T. Dynamic behaviors of vimentin induced by interaction with GlcNAc molecules. Glycobiology 2012; 22:1741-59. [PMID: 22846177 DOI: 10.1093/glycob/cws118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton protein vimentin is dramatically altered following pathological events such as fibrosis and tumorigenesis. Vimentin binds to multivalent N-acetylglucosamine (GlcNAc) molecules at the cell surface and interacts with O-linked β-GlcNAc proteins. Moreover, dying cells can be engulfed by neighboring cells through surface interactions between vimentin and many O-GlcNAc proteins in cell debris. Here, we show that vimentin was altered by its interaction with GlcNAc-bearing molecules such as GlcNAc-bearing polymers. The interaction with GlcNAc-bearing polymers promoted the cell surface recruitment of vimentin followed by the phosphorylation of vimentin serine 71 and the increase in tetrameric vimentin disassembled from vimentin filaments in HeLa cells. Moreover, it was found that GlcNAc-bearing polymers and O-GlcNAc proteins from dying cells promoted vimentin expression and cell migration in the Madin-Darby canine kidney and Michigan Cancer Foundation-7 cells. These results suggest that interactions between surface vimentin and GlcNAc molecules, including the O-GlcNAc proteins from dying cells, may play a pivotal role in vimentin expression and the migration of cancer cells. We propose new mechanisms of vimentin expression in cancer cells.
Collapse
Affiliation(s)
- Kenta Komura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
74
|
Grin B, Mahammad S, Wedig T, Cleland MM, Tsai L, Herrmann H, Goldman RD. Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One 2012; 7:e39065. [PMID: 22720028 PMCID: PMC3376126 DOI: 10.1371/journal.pone.0039065] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 01/09/2023] Open
Abstract
Withaferin A (WFA) is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF) into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.
Collapse
Affiliation(s)
- Boris Grin
- Department of Cell and Molecular Biology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | |
Collapse
|
75
|
Lee KY, Liu L, Jin Y, Fu SB, Rosales JL. Cdk5 mediates vimentin Ser56 phosphorylation during GTP-induced secretion by neutrophils. J Cell Physiol 2012; 227:739-50. [PMID: 21465480 DOI: 10.1002/jcp.22782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Secretion by neutrophils contributes to acute inflammation following injury or infection. Vimentin has been shown to be important for secretion by neutrophils but little is known about its dynamics during secretion, which is regulated by cyclin-dependent kinase 5 (Cdk5). In this study, we sought to examine the vimentin dynamics and its potential regulation by Cdk5 during neutrophil secretion. We show that vimentin is a Cdk5 substrate that is specifically phosphorylated at Ser56. In response to neutrophil stimulation with GTP, vimentin Ser56 was phosphorylated and colocalized with Cdk5 in the cytoplasmic compartment. Vimentin pSer56 and Cdk5 colocalization was consistent with coimmunoprecipitation from stimulated cells. Vimentin Ser56 phosphorylation occurred immediately after stimulation, and a remarkable increase in phosphorylation was noted later in the secretory process. Decreased GTP-induced vimentin Ser56 phosphorylation and secretion resulted from inhibition of Cdk5 activity by roscovitine or olomoucine or by depletion of Cdk5 by siRNA, suggesting that GTP-induced Cdk5-mediated vimentin Ser56 phosphorylation may be related to GTP-induced Cdk5-mediated secretion by neutrophils. Indeed, inhibition of vimentin Ser56 phosphorylation led to a corresponding inhibition of GTP-induced secretion, indicating a link between these two events. While fMLP also induced vimentin Ser56 phosphorylation, such phosphorylation was unaffected by roscovitine, which nonetheless, inhibited secretion, suggesting that Cdk5 regulates fMLP-induced secretion via a mechanism independent of Cdk5-mediated vimentin Ser56 phosphorylation. These findings demonstrate the distinct involvement of Cdk5 in GTP- and fMLP-induced secretion by neutrophils, and support the notion that specific targeting of Cdk5 may serve to inhibit the neutrophil secretory process.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
76
|
Windoffer R, Beil M, Magin TM, Leube RE. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. ACTA ACUST UNITED AC 2012; 194:669-78. [PMID: 21893596 PMCID: PMC3171125 DOI: 10.1083/jcb.201008095] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
77
|
Harbaum L, Pollheimer MJ, Kornprat P, Lindtner RA, Schlemmer A, Rehak P, Langner C. Keratin 7 expression in colorectal cancer--freak of nature or significant finding? Histopathology 2012; 59:225-34. [PMID: 21884201 DOI: 10.1111/j.1365-2559.2011.03694.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS To assess the prevalence of keratin 7 (K7) expression in colorectal cancer and to correlate findings with clinicopathological parameters and patients' outcome. METHOD AND RESULTS A total of 370 patients were evaluated for K7 expression by immunohistochemistry using a tissue microarray technique. K7 expression was scored semiquantitatively as either focal (<10%), moderate (10-50%) or extensive (>50%). In all, 32 (9%) tumours were immunoreactive for K7, with five cases showing extensive, four moderate and 23 focal expression, respectively. K7 expression was associated with poor tumour differentiation (P = 0.005) and the extent of tumour budding (P = 0.02). In whole sections, K7 immunoreactivity prevailed in single cells and small clusters of cells at the invasion front. Analysis of serial sections showed that K7-positive cells colocalized with keratin 20, whereas they lacked immunoreactivity for E-cadherin, MUC2 and MIB-1. Disease progression occurred in 52% of patients with K7-positive tumours and 41% with K7-negative tumours (P = 0.19); 48% of patients with K7-positive tumours but only 33% with K7-negative tumours died of disease (P = 0.06). CONCLUSIONS Aberrant expression of K7 in budding cancer cells represents a modification of the epithelial phenotype ('epithelial-epithelial transition': EET) which may be linked to gains in motility and invasive potential.
Collapse
Affiliation(s)
- Lars Harbaum
- Institute of Pathology, Medical University of Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
78
|
Goldman RD, Cleland MM, Murthy SNP, Mahammad S, Kuczmarski ER. Inroads into the structure and function of intermediate filament networks. J Struct Biol 2011; 177:14-23. [PMID: 22120848 DOI: 10.1016/j.jsb.2011.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022]
Abstract
Although intermediate filaments are one of three major cytoskeletal systems of vertebrate cells, they remain the least understood with respect to their structure and function. This is due in part to the fact that they are encoded by a large gene family which is developmentally regulated in a cell and tissue type specific fashion. This article is in honor of Ueli Aebi. It highlights the studies on IF that have been carried out by our laboratory for more than 40 years. Many of our advances in understanding IF are based on conversations with Ueli which have taken place during adventurous and sometimes dangerous hiking and biking trips throughout the world.
Collapse
Affiliation(s)
- Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
79
|
Pan X, Kane LA, Van Eyk JE, Coulombe PA. Type I keratin 17 protein is phosphorylated on serine 44 by p90 ribosomal protein S6 kinase 1 (RSK1) in a growth- and stress-dependent fashion. J Biol Chem 2011; 286:42403-42413. [PMID: 22006917 DOI: 10.1074/jbc.m111.302042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratin 17 (K17) is a type I intermediate filament protein that is constitutively expressed in ectoderm-derived epithelial appendages and robustly induced in epidermis following injury, during inflammation, and in chronic diseases such as psoriasis and cancer. Mutations within K17 are responsible for two rare diseases related to ectodermal dysplasias. Studies in K17-null mice uncovered several roles for K17, including structural support, resistance to TNFα-induced apoptosis, regulation of protein synthesis, and modulation of cytokine expression. Yet, little is known about the regulation of K17 protein via post-translational modification. Here, we report that serine 44 in the N-terminal head domain of K17 (K17-Ser(44)) is phosphorylated in response to extracellular stimuli (serum, EGF, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate) that alter skin keratinocyte growth, and to cellular stresses (sorbitol-induced hyperosmotic shock, UV irradiation, and hydrogen peroxide-induced oxidative stress). It also occurs in basaloid skin tumors in situ. Upon its stimulation in skin keratinocytes, K17-Ser(44) phosphorylation is induced rapidly but stays on transiently. The majority of the phosphorylated K17-Ser(44) pool is polymer-bound and is not obviously related to a change in filament organization. The amino acid sequence surrounding K17-Ser(44) matches the consensus for the AGC family of basophilic kinases. We show that p90 RSK1, an AGC kinase involved in the regulation of cell survival and proliferation, phosphorylates K17-Ser(44) in skin keratinocytes. These findings confirm and expand the tight link that has emerged between K17 up-regulation and growth and stress responses in the skin epithelium.
Collapse
Affiliation(s)
- Xiaoou Pan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Lesley A Kane
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Johns Hopkins Bayview Proteomic Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jennifer E Van Eyk
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Johns Hopkins Bayview Proteomic Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.
| |
Collapse
|
80
|
Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat Neurosci 2011; 14:324-30. [PMID: 21278733 PMCID: PMC3069133 DOI: 10.1038/nn.2747] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 01/14/2023]
Abstract
Positive and negative regulation of neurotransmitter receptor aggregation on the postsynaptic membrane is a critical event during synapse formation. Acetylcholine (ACh) and agrin are two opposing signals that regulate ACh receptor (AChR) clustering during neuromuscular junction (NMJ) development. ACh induces dispersion of AChR clusters that are not stabilized by agrin via a cyclin-dependent kinase 5 (Cdk5)-mediated mechanism, but regulation of Cdk5 activation is poorly understood. Here we show that the intermediate filament protein nestin physically interacts with Cdk5 and is required for ACh-induced association of p35, the co-activator of Cdk5, with the muscle membrane. Blockade of nestin-dependent signaling inhibits ACh-induced Cdk5 activation and the dispersion of AChR clusters in cultured myotubes. Similar to the effects of Cdk5 gene inactivation, knockdown of nestin in agrin-deficient embryos significantly restores AChR clusters. These results suggest that nestin is required for ACh-induced, Cdk5-dependent dispersion of AChR clusters during NMJ development.
Collapse
|
81
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
82
|
Helfand BT, Mendez MG, Murthy SNP, Shumaker DK, Grin B, Mahammad S, Aebi U, Wedig T, Wu YI, Hahn KM, Inagaki M, Herrmann H, Goldman RD. Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 2011; 22:1274-89. [PMID: 21346197 PMCID: PMC3078081 DOI: 10.1091/mbc.e10-08-0699] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The disassembly and withdrawal of vimentin intermediate filaments (VIF) from the plasma membrane induces membrane ruffling and the formation of a lamellipodium. Conversely, lamellipodium formation is inhibited when VIF are present. Vimentin intermediate filaments (VIF) extend throughout the rear and perinuclear regions of migrating fibroblasts, but only nonfilamentous vimentin particles are present in lamellipodial regions. In contrast, VIF networks extend to the entire cell periphery in serum-starved or nonmotile fibroblasts. Upon serum addition or activation of Rac1, VIF are rapidly phosphorylated at Ser-38, a p21-activated kinase phosphorylation site. This phosphorylation of vimentin is coincident with VIF disassembly at and retraction from the cell surface where lamellipodia form. Furthermore, local induction of photoactivatable Rac1 or the microinjection of a vimentin mimetic peptide (2B2) disassemble VIF at sites where lamellipodia subsequently form. When vimentin organization is disrupted by a dominant-negative mutant or by silencing, there is a loss of polarity, as evidenced by the formation of lamellipodia encircling the entire cell, as well as reduced cell motility. These findings demonstrate an antagonistic relationship between VIF and the formation of lamellipodia.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Ibi M, Zou P, Inoko A, Shiromizu T, Matsuyama M, Hayashi Y, Enomoto M, Mori D, Hirotsune S, Kiyono T, Tsukita S, Goto H, Inagaki M. Trichoplein controls microtubule anchoring at the centrosome by binding to Odf2 and ninein. J Cell Sci 2011; 124:857-64. [PMID: 21325031 DOI: 10.1242/jcs.075705] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.
Collapse
Affiliation(s)
- Miho Ibi
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys 2010; 508:123-37. [PMID: 21176769 DOI: 10.1016/j.abb.2010.12.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.
Collapse
|
85
|
Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 2010; 67:545-54. [PMID: 20803696 PMCID: PMC3038199 DOI: 10.1002/cm.20472] [Citation(s) in RCA: 751] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rho-associated kinase (Rho-kinase/ROCK/ROK) is an effector of the small GTPase Rho and belongs to the AGC family of kinases. Rho-kinase has pleiotropic functions including the regulation of cellular contraction, motility, morphology, polarity, cell division, and gene expression. Pharmacological analyses have revealed that Rho-kinase is involved in a wide range of diseases such as vasospasm, pulmonary hypertension, nerve injury, and glaucoma, and is therefore considered to be a potential therapeutic target. This review focuses on the structure, function, and modes of activation and action of Rho-kinase.
Collapse
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Nagoya University, Showa-ku, Japan
| | | | | |
Collapse
|
86
|
Metskas LA, Kulp M, Scordilis SP. Gender dimorphism in the exercise-naïve murine skeletal muscle proteome. Cell Mol Biol Lett 2010; 15:507-16. [PMID: 20563704 PMCID: PMC6275651 DOI: 10.2478/s11658-010-0020-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/09/2010] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle is a plastic tissue with known gender dimorphism, especially at the metabolic level. A proteomic comparison of male and female murine biceps brachii was undertaken, resolving an average of 600 protein spots of MW 15-150 kDa and pI 5-8. Twenty-six unique full-length proteins spanning 11 KOG groups demonstrated statistically significant (p<0.05) abundance differences between genders; the majority of these proteins have metabolic functions. Identified glycolytic enzymes demonstrated decreased abundance in females, while abundance differences in identified oxidative phosphorylation enzymes were specific to the proteins rather than to the functional group as a whole. Certain cytoskeletal and stress proteins showed specific expression differences, and all three phosphorylation states of creatine kinase showed significant decreased abundance in females. Expression differences were significant but many were subtle (< or = 2-fold), and known hormonally-regulated proteins were not identified. We conclude that while gender dimorphism is present in non-exercised murine skeletal muscle, the proteome comparison of male and female biceps brachii in exercise-naive mice indicates subtle differences rather than a large or obviously hormonal dimorphism.
Collapse
Affiliation(s)
| | - Mohini Kulp
- Center for Proteomics, Smith College, Northampton, MA USA
| | - Stylianos P. Scordilis
- Biological Sciences, Smith College, Northampton, MA USA
- Center for Proteomics, Smith College, Northampton, MA USA
- Biochemistry, Smith College, Northampton, MA USA
| |
Collapse
|
87
|
McIntosh PB, Laskey P, Sullivan K, Davy C, Wang Q, Jackson DJ, Griffin HM, Doorbar J. E1--E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium. J Cell Sci 2010; 123:2810-22. [PMID: 20663917 DOI: 10.1242/jcs.061978] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The keratin IF network of epidermal keratinocytes provides a protective barrier against mechanical insult, it is also a major player in absorbing stress in these cells. The human papilloma virus (HPV) type 16 E1--E4 protein accumulates in the upper layers of HPV16-infected epithelium and is known to associate with and reorganise the keratin IF network in cells in culture. Here, we show that this function is conserved amongst a number of HPV alpha-group E1--E4 proteins and that the differentiation-dependent keratins are also targeted. Using time-lapse microscopy, HPV16 E1--E4 was found to effect a dramatic cessation of keratin IF network dynamics by associating with both soluble and insoluble keratin. Network disruption was accompanied by keratin hyperphosphorylation at several sites, including K8 S73, which is typically phosphorylated in response to stress stimuli. Keratin immunoprecipitated from E1--E4-expressing cells was also found to be ubiquitylated, indicating that it is targeted for proteasomal degradation. Interestingly, the accumulation of hyperphosphorylated, ubiquitylated E1--E4-keratin structures was found to result in an impairment of proteasomal function. These observations shed new light on the mechanism of keratin IF network reorganisation mediated by HPV16 E1--E4 and provide an insight into the depletion of keratin co-incident with E1--E4 accumulation observed in HPV-infected epithelium.
Collapse
Affiliation(s)
- Pauline B McIntosh
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Kim H, Nakamura F, Lee W, Hong C, Pérez-Sala D, McCulloch CA. Regulation of cell adhesion to collagen via β1 integrins is dependent on interactions of filamin A with vimentin and protein kinase C epsilon. Exp Cell Res 2010; 316:1829-44. [DOI: 10.1016/j.yexcr.2010.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/06/2010] [Accepted: 02/08/2010] [Indexed: 12/16/2022]
|
89
|
Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, Lev D. Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 2010; 5:e10105. [PMID: 20419128 PMCID: PMC2855704 DOI: 10.1371/journal.pone.0010105] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 03/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vimentin is a ubiquitous mesenchymal intermediate filament supporting mechano-structural integrity of quiescent cells while participating in adhesion, migration, survival, and cell signaling processes via dynamic assembly/disassembly in activated cells. Soft tissue sarcomas and some epithelial cancers exhibiting "epithelial to mesenchymal transition" phenotypes express vimentin. Withaferin-A, a naturally derived bioactive compound, may molecularly target vimentin, so we sought to evaluate its effects on tumor growth in vitro and in vivo thereby elucidating the role of vimentin in drug-induced responses. METHODS AND FINDINGS Withaferin-A elicited marked apoptosis and vimentin cleavage in vimentin-expressing tumor cells but significantly less in normal mesenchymal cells. This proapoptotic response was abrogated after vimentin knockdown or by blockade of caspase-induced vimentin degradation via caspase inhibitors or overexpression of mutated caspase-resistant vimentin. Pronounced anti-angiogenic effects of Withaferin-A were demonstrated, with only minimal effects seen in non-proliferating endothelial cells. Moreover, Withaferin-A significantly blocked soft tissue sarcoma growth, local recurrence, and metastasis in a panel of soft tissue sarcoma xenograft experiments. Apoptosis, decreased angiogenesis, and vimentin degradation were all seen in Withaferin-A treated specimens. CONCLUSIONS In light of these findings, evaluation of Withaferin-A, its analogs, or other anti-vimentin therapeutic approaches in soft tissue sarcoma and "epithelial to mesenchymal transition" clinical contexts is warranted.
Collapse
Affiliation(s)
- Guy Lahat
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Quan-Sheng Zhu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kai-Lieh Huang
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Suizhao Wang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Svetlana Bolshakov
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffery Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Keila Torres
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert R. Langley
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Alexander J. Lazar
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mien Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dina Lev
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
90
|
Vimentin-mediated signalling is required for IbeA+ E. coli K1 invasion of human brain microvascular endothelial cells. Biochem J 2010; 427:79-90. [PMID: 20088823 DOI: 10.1042/bj20091097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IbeA in meningitic Escherichia coli K1 strains has been described previously for its role in invasion of BMECs (brain microvascular endothelial cells). Vimentin was identified as an IbeA-binding protein on the surface of HBMECs (human BMECs). In the present study, we demonstrated that vimentin is a primary receptor required for IbeA+ E. coli K1-induced signalling and invasion of HBMECs, on the basis of the following observations. First, E44 (IbeA+ E. coli K1 strain) invasion was blocked by vimentin inhibitors (withaferin A and acrylamide), a recombinant protein containing the vimentin head domain and an antibody against the head domain respectively. Secondly, overexpression of GFP (green fluorescent protein)-vimentin and GFP-VDM (vimentin head domain deletion mutant) significantly increased and decreased bacterial invasion respectively. Thirdly, bacterial invasion was positively correlated with phosphorylation of vimentin at Ser82 by CaMKII (Ca2+/calmodulin-dependent protein kinase II) and IbeA+ E. coli-induced phosphorylation of ERK (extracellular-signal-regulated kinase). Blockage of CaMKII by KN93 and inhibition of ERK1/2 phosphorylation by PD098059 resulted in reduced IbeA+ E. coli invasion. Fourthly, IbeA+ E. coli and IbeA-coated beads induced the clustering of vimentin that was correlated with increased entry of bacteria and beads. Lastly, IbeA+ E. coli K1 invasion was inhibited by lipid-raft-disrupting agents (filipin and nystatin) and caveolin-1 siRNA (small interfering RNA), suggesting that caveolae/lipid rafts are signalling platforms for inducing IbeA-vimentin-mediated E. coli invasion of HBMECs. Taken together, the present studies suggest that a dynamic and function-related interaction between IbeA and its primary receptor vimentin at HBMEC membrane rafts leads to vimentin phosphorylation and ERK-mediated signalling, which modulate meningitic E. coli K1 invasion.
Collapse
|
91
|
Rouse JG, Van Dyke ME. A Review of Keratin-Based Biomaterials for Biomedical Applications. MATERIALS 2010. [PMCID: PMC5513517 DOI: 10.3390/ma3020999] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in the extraction, purification, and characterization of keratin proteins from hair and wool fibers over the past century have led to the development of a keratin-based biomaterials platform. Like many naturally-derived biomolecules, keratins have intrinsic biological activity and biocompatibility. In addition, extracted keratins are capable of forming self-assembled structures that regulate cellular recognition and behavior. These qualities have led to the development of keratin biomaterials with applications in wound healing, drug delivery, tissue engineering, trauma and medical devices. This review discusses the history of keratin research and the advancement of keratin biomaterials for biomedical applications.
Collapse
Affiliation(s)
| | - Mark E. Van Dyke
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-336-713-7266; Fax: +1-336-713-7290
| |
Collapse
|
92
|
Özlü N, Monigatti F, Renard BY, Field CM, Steen H, Mitchison TJ, Steen JJ. Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Mol Cell Proteomics 2010; 9:336-50. [PMID: 19786723 PMCID: PMC2830844 DOI: 10.1074/mcp.m900308-mcp200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/25/2009] [Indexed: 01/14/2023] Open
Abstract
The cytoskeleton globally reorganizes between mitosis (M phase) and cytokinesis (C phase), which presumably requires extensive regulatory changes. To reveal these changes, we undertook a comparative proteomics analysis of cells tightly drug-synchronized in each phase. We identified 25 proteins that bind selectively to microtubules in C phase and identified several novel binding partners including nucleolar and spindle-associated protein. C phase-selective microtubule binding of many of these proteins depended on activity of Aurora kinases as assayed by treatment with the drug VX680. Aurora-B binding partners switched dramatically between M phase to C phase, and we identified several novel C phase-selective Aurora-B binding partners including PRC1, KIF4, and anaphase-promoting complex/cyclosome. Our approach can be extended to other cellular compartments and cell states, and our data provide the first broad biochemical framework for understanding C phase. Concretely, we report a central role for Aurora-B in regulating the C phase cytoskeleton.
Collapse
Affiliation(s)
- Nurhan Özlü
- From the ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
| | - Flavio Monigatti
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- ‖Pathology, Harvard Medical School and Children's Hospital Boston, Boston, Massachusetts 02115, and
| | - Bernhard Y. Renard
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- **Interdisciplinary Center for Scientific Computing, University of Heidelberg, D-069120 Heidelberg, Germany
| | - Christine M. Field
- From the ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Hanno Steen
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- ‖Pathology, Harvard Medical School and Children's Hospital Boston, Boston, Massachusetts 02115, and
| | - Timothy J. Mitchison
- From the ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Judith J. Steen
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- Departments of ‡‡Neurobiology and
| |
Collapse
|
93
|
Ruan L, Wang GL, Chen Y, Yi H, Tang CE, Zhang PF, Li MY, Li C, Peng F, Li JL, Chen ZC, Xiao ZQ. Identification of tyrosine phosphoproteins in signaling pathway triggered TGF-a by using functional proteomics technology. Med Oncol 2010; 27:1407-14. [DOI: 10.1007/s12032-009-9394-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/14/2009] [Indexed: 01/03/2023]
|
94
|
Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20:79-91. [PMID: 20045331 DOI: 10.1016/j.tcb.2009.11.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022]
Abstract
Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multimember families that share several features, including protein abundance, significant upregulation in response to a variety of stresses, cytoprotective functions, and the phenocopying of several human diseases after IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress, whereas HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. In this report, we review data that corroborate the view that IFs function as highly specialized cytoskeletal stress proteins that promote cellular organization and homeostasis.
Collapse
|
95
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Dimova N, Trucchi B, Srinivasan C, Elliott GI, Zhan CG, Lau DL, Zhu H, Kasahara K, Inagaki M, Cambi F, Mohan R. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. J Biol Chem 2010; 285:7657-69. [PMID: 20048155 DOI: 10.1074/jbc.m109.093765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G(0)/G(1) arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Departmentsof Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
|
97
|
Rai P, Kota V, Sundaram CS, Deendayal M, Shivaji S. Proteome of human endometrium: Identification of differentially expressed proteins in proliferative and secretory phase endometrium. Proteomics Clin Appl 2009; 4:48-59. [DOI: 10.1002/prca.200900094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 12/26/2022]
|
98
|
Kim H, Nakamura F, Lee W, Shifrin Y, Arora P, McCulloch CA. Filamin A is required for vimentin-mediated cell adhesion and spreading. Am J Physiol Cell Physiol 2009; 298:C221-36. [PMID: 19776392 DOI: 10.1152/ajpcell.00323.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell adhesion and spreading are regulated by complex interactions involving the cytoskeleton and extracellular matrix proteins. We examined the interaction of the intermediate filament protein vimentin with the actin cross-linking protein filamin A in regulation of spreading in HEK-293 and 3T3 cells. Filamin A and vimentin-expressing cells were well spread on collagen and exhibited numerous cell extensions enriched with filamin A and vimentin. By contrast, cells treated with small interfering RNA (siRNA) to knock down filamin A or vimentin were poorly spread; both of these cell populations exhibited >50% reductions of cell adhesion, cell surface beta1 integrin expression, and beta1 integrin activation. Knockdown of filamin A reduced vimentin phosphorylation and blocked recruitment of vimentin to cell extensions, whereas knockdown of filamin and/or vimentin inhibited the formation of cell extensions. Reduced vimentin phosphorylation, cell spreading, and beta1 integrin surface expression, and activation were phenocopied in cells treated with the protein kinase C inhibitor bisindolylmaleimide; cell spreading was also reduced by siRNA knockdown of protein kinase C-epsilon. By immunoprecipitation of cell lysates and by pull-down assays using purified proteins, we found an association between filamin A and vimentin. Filamin A also associated with protein kinase C-epsilon, which was enriched in cell extensions. These data indicate that filamin A associates with vimentin and to protein kinase C-epsilon, thereby enabling vimentin phosphorylation, which is important for beta1 integrin activation and cell spreading on collagen.
Collapse
Affiliation(s)
- Hugh Kim
- Canadian Institutes of Health Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, M5S 3E2, Canada.
| | | | | | | | | | | |
Collapse
|
99
|
Lee CH, Coulombe PA. Self-organization of keratin intermediate filaments into cross-linked networks. ACTA ACUST UNITED AC 2009; 186:409-21. [PMID: 19651890 PMCID: PMC2728393 DOI: 10.1083/jcb.200810196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Keratins, the largest subgroup of intermediate filament (IF) proteins, form a network of 10-nm filaments built from type I/II heterodimers in epithelial cells. A major function of keratin IFs is to protect epithelial cells from mechanical stress. Like filamentous actin, keratin IFs must be cross-linked in vitro to achieve the high level of mechanical resilience characteristic of live cells. Keratins 5 and 14 (K5 and K14), the main pairing occurring in the basal progenitor layer of epidermis and related epithelia, can readily self-organize into large filament bundles in vitro and in vivo. Here, we show that filament self-organization is mediated by multivalent interactions involving distinct regions in K5 and K14 proteins. Self-organization is determined independently of polymerization into 10-nm filaments, but involves specific type I–type II keratin complementarity. We propose that self-organization is a key determinant of the structural support function of keratin IFs in vivo.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
100
|
Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in intracellular organelle distribution. BIOCHEMISTRY (MOSCOW) 2009; 73:1453-66. [PMID: 19216711 DOI: 10.1134/s0006297908130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central alpha-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.
Collapse
Affiliation(s)
- A A Minin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|