51
|
Lim JJ, Han CY, Lee DR, Tsang BK. Ring Finger Protein 6 Mediates Androgen-Induced Granulosa Cell Proliferation and Follicle Growth via Modulation of Androgen Receptor Signaling. Endocrinology 2017; 158:993-1004. [PMID: 28324045 DOI: 10.1210/en.2016-1866] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
The destiny of the ovarian follicle (growth or atresia) is tightly regulated by the actions and interactions of endocrine, paracrine, and autocrine factors. Although androgens are known to be important in the regulation of folliculogenesis, whether they facilitate or suppress follicular growth has been controversial, and the mechanisms involved are not fully understood. Moreover, the role and regulation of androgen receptor (AR) in mediating androgen signaling during follicular development is not clear. Here, we report that the active androgen dihydrotestosterone upregulates the expression of AR and its E3 ligase ring finger protein 6 (RNF6), increasing site-specific AR polyubiquitination and AR transcriptional activity for soluble Kit ligand (sKit-L) expression in preantral follicle growth. RNF6 silencing suppressed dihydrotestosterone-induced AR ubiquitination (lysine residue 63) and proliferation and suppressed apoptosis in preantral granulosa cells, with these responses being overcome by the presence of exogenous sKit-L. Taken together, our findings support the notion that RNF6 plays an important role in androgen-induced, follicle-stage-dependent follicle growth and that it acts by facilitating AR-mediated granulosa cell sKit-L expression and proliferation. Our findings offer insights into the regulatory mechanism of androgen action in ovarian follicular growth.
Collapse
Affiliation(s)
- Jung Jin Lim
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| |
Collapse
|
52
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
53
|
Yamada M, De Chiara L, Seandel M. Spermatogonial Stem Cells: Implications for Genetic Disorders and Prevention. Stem Cells Dev 2016; 25:1483-1494. [PMID: 27596369 PMCID: PMC5035912 DOI: 10.1089/scd.2016.0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spermatogonial stem cells (SSCs) propagate mammalian spermatogenesis throughout male reproductive life by continuously self-renewing and differentiating, ultimately, into sperm. SSCs can be cultured for long periods and restore spermatogenesis upon transplantation back into the native microenvironment in vivo. Conventionally, SSC research has been focused mainly on male infertility and, to a lesser extent, on cell reprogramming. With the advent of genome-wide sequencing technology, however, human studies have uncovered a wide range of pathogenic alleles that arise in the male germ line. A subset of de novo point mutations was shown to originate in SSCs and cause congenital disorders in children. This review describes both monogenic diseases (eg, Apert syndrome) and complex disorders that are either known or suspected to be driven by mutations in SSCs. We propose that SSC culture is a suitable model for studying the origin and mechanisms of these diseases. Lastly, we discuss strategies for future clinical implementation of SSC-based technology, from detecting mutation burden by sperm screening to gene correction in vitro.
Collapse
Affiliation(s)
- Makiko Yamada
- Joan and Sanford I Weill Medical College of Cornell University, 12295, Surgery, New York, New York, United States ;
| | - Letizia De Chiara
- Joan and Sanford I Weill Medical College of Cornell University, 12295, Surgery, New York, New York, United States ;
| | - Marco Seandel
- Joan and Sanford I Weill Medical College of Cornell University, 12295, Surgery, New York, New York, United States ;
| |
Collapse
|
54
|
Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, van Pelt AMM. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update 2016; 22:561-73. [PMID: 27240817 PMCID: PMC5001497 DOI: 10.1093/humupd/dmw017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer treatment. Similarly, SSCT could be used to restore fertility in sterile adult cancer survivors. In vitro propagation of SSCs might also be employed to enhance spermatogenesis in oligozoospermic men and in azoospermic men who still have functional SSCs albeit in insufficient numbers. The combination of SSCT with genomic editing techniques could potentially rectify defects in spermatogenesis caused by genomic mutations or, more broadly, prevent transmission of genomic diseases to the offspring. In spite of the promising prospects, SSCT and germline genomic editing are not yet clinically applicable and both techniques require optimization at various levels. WIDER IMPLICATIONS SSCT with or without genomic editing could potentially be used to restore fertility in cancer survivors to treat couples with a severe male factor and to prevent the paternal transmission of diseases. This will potentially allow these couples to have their own biological children. Technical development is progressing rapidly, and ethical reflection and societal debate on the use of SSCT with or without genomic editing is pressing.
Collapse
Affiliation(s)
- Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Yi Zheng
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sabrina Z Jan
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Robert B Struijk
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
55
|
Patel H, Bhartiya D. Testicular Stem Cells Express Follicle-Stimulating Hormone Receptors and Are Directly Modulated by FSH. Reprod Sci 2016; 23:1493-1508. [PMID: 27189070 DOI: 10.1177/1933719116643593] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular spermatogonial stem cells (SSCs) are a heterogeneous population of stem cells, and definitive marker for the most primitive subset that undergoes asymmetric cell division remains to be identified. A novel subpopulation of pluripotent, very small embryonic-like stem cells (VSELs) has been reported in both human and mouse testes. Follicle-stimulating hormone (FSH) receptors (FSHRs) are expressed on Sertoli cells in testis and on granulosa cells in ovary, but recently FSHRs are reported on VSELs in ovaries, bone marrow, and cord blood. The present study was aimed to investigate whether FSHRs are also expressed on testicular stem cells (VSELs and SSCs) and their possible modulation by FSH using intact and chemoablated (25 mg/kg busulfan) mice. Chemoablated testis was a better model to study stem cell biology since quiescent stem cells survive along with the Sertoli cells in the tubules. Proliferating cell nuclear antigen-positive, small-sized cells presumed to be VSELs were clearly visualized, and flow cytometry analysis revealed an increase in LIN-/CD45-/SCA-1+ VSELs from 0.045±0.008% to 0.1±0.03% of total cells in chemoablated testis after FSH treatment. Very small embryonic-like stem cells expressing nuclear octamer-binding transcription factor 4 (OCT-4) and SSCs with cytoplasmic OCT-4 were detected. Very small embryonic-like stem cells (Oct-4A, Sca-1, Nanog), SSCs (Oct-4), and proliferation (Pcna) specific transcripts were upregulated on FSH treatment. Stem cells expressed FSHR and were stimulated by FSH, and Fshr3 was the predominant transcript maximally modulated by FSH. Nuclear OCT-4 and SCA-1 (stem cell antigen 1) positive VSELs are the most primitive stem cells in testis, and FSH stimulates them to undergo asymmetric cell division including self-renewal and give rise to SSCs, which in turn proliferate rapidly and undergo clonal expansion and further differentiation.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
56
|
Abdul Wahab AY, Md. Isa ML, Ramli R. Spermatogonial Stem Cells Protein Identification in In Vitro Culture from Non-Obstructive Azoospermia Patient. Malays J Med Sci 2016; 23:40-48. [PMID: 27418868 PMCID: PMC4934717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/22/2016] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are classifiedas a unique adult stem cells that have capability to propagate, differentiate, and transmit genetic information to the next generation. Studies on human SSCs may help resolve male infertility problems, especially in azoospermia patients. Therefore, this study aims to propagate SSCs in-vitro with a presence of growth factor and detect SSC-specific protein cell surface markers. METHODS The sample was derived from non-obstructive azoospermic (NOA) patient. The disassociation of SSCs was done using trypsin. Specific cultures in serum-free media with added basic fibroblast growth factor (bFGF) were developed to support self-renewal division. This undifferentiated protocol was performed for 49 days. Cells were analysed on days 1, 7, 14, 21, and 49. RESULTS Human SSCs began to aggregate and form colonies after 14 to 21 days in specific culture. Then, the cells were successful expanded and remained stable for a duration of 49 days. Four specifics markers were identified using immunofluorescence in SSCs on day 49: ITGα6, ITGβ CD9, and GFRα1. CONCLUSION This approach of using in vitro culture with additional growth factor is able to propagate SSCs from non-obstructive azoospermia patient via detection of protein cell surface markers.
Collapse
Affiliation(s)
- Azantee Yazmie Abdul Wahab
- Department of Obstetrics & Gyanecology (O&G), Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Jalan Hospital Campus, 25150 Kuantan, Pahang, Malaysia
| | - Muhammad Lokman Md. Isa
- Department of Basic Medical Science of Nursing, Kulliyyah of Nursing, International Islamic University Malaysia (IIUM) Jalan Hospital Campus, 25150 Kuantan, Pahang, Malaysia
| | - Roszaman Ramli
- IIUM Fertility Centre, International Islamic University Malaysia (IIUM) Jalan Hospital Campus, 25150 Kuantan, Pahang, Malaysia
| |
Collapse
|
57
|
Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl 2015; 17:972-80. [PMID: 26067870 PMCID: PMC4814948 DOI: 10.4103/1008-682x.154994] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/26/2014] [Accepted: 03/04/2015] [Indexed: 12/19/2022] Open
Abstract
In vitro culture of spermatogonial stem cells (SSCs) has generally been performed using two-dimensional (2D) culture systems; however, such cultures have not led to the development of complete spermatogenesis. It seems that 2D systems do not replicate optimal conditions of the seminiferous tubules (including those generated by the SSC niche) and necessary for spermatogenesis. Recently, one of our laboratories has been able to induce proliferation and differentiation of mouse testicular germ cells to meiotic and postmeiotic stages including generation of sperm in a 3D soft agar culture system (SACS) and a 3D methylcellulose culture system (MCS). It was suggested that SACS and MCS form a special 3D microenvironment that mimics germ cell niche formation in the seminiferous tubules, and thus permits mouse spermatogenesis in vitro. In this review, we (1) provide a brief overview of the differences in spermatogenesis in rodents and primates, (2) summarize data related to attempts to generate sperm in vitro, (3) report for the first time formation of colonies/clusters of cells and differentiation of meiotic (expression of CREM-1) and postmeiotic (expression of acrosin) germ cells from undifferentiated spermatogonia isolated from the testis of prepubertal rhesus monkeys and cultured in SACS and MCS, and (4) indicate research needed to optimize 3D systems for in vitro primate spermatogenesis and for possible future application to man.
Collapse
Affiliation(s)
- Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Seyedmehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
58
|
Baert Y, Braye A, Struijk RB, van Pelt AMM, Goossens E. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril 2015; 104:1244-52.e1-4. [PMID: 26260199 DOI: 10.1016/j.fertnstert.2015.07.1134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Testicular tissue with normal spermatogenesis was obtained from six donors. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture. RESULT(S) Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA(+)/UCHL1(+)) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA(-)/UCHL1(+) cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period. CONCLUSION(S) Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed.
Collapse
Affiliation(s)
- Yoni Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Aude Braye
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin B Struijk
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
59
|
Genome editing in mouse spermatogonial stem/progenitor cells using engineered nucleases. PLoS One 2014; 9:e112652. [PMID: 25409432 PMCID: PMC4237364 DOI: 10.1371/journal.pone.0112652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 01/09/2023] Open
Abstract
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse "GS" (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.
Collapse
|
60
|
Zheng Y, Thomas A, Schmidt CM, Dann CT. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod 2014; 29:2497-511. [PMID: 25267789 DOI: 10.1093/humrep/deu232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? SUMMARY ANSWER Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1-2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. WHAT IS KNOWN ALREADY The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. STUDY DESIGN, SIZE, DURATION Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1-2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). MAIN RESULTS AND THE ROLE OF CHANCE UTF1, FGFR3, DAZL and ZBTB16 qRT-PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in early primary testicular cell cultures (1-2 weeks), their expression steadily declined over time in vitro. After 6 weeks in culture only somatic cells were detected. LIMITATIONS, REASONS FOR CAUTION Different groups attempting SSC culture have utilized different sources of human testes and minor differences in the preparation and maintenance of the testicular cell cultures. Differences in outcome may be explained by genetic background of the source tissue or technical differences. WIDER IMPLICATIONS OF THE FINDINGS The ability to propagate human SSCs in vitro is a prerequisite for proposed autologous transplantation therapy aimed at restoring fertility to men who have been treated for childhood cancer. By applying the assays validated here it will be possible to quantitatively compare human SSC culture conditions. The eventual development of conditions for long-term propagation of human SSCs in vitro will greatly facilitate learning about the basic biology of these cells and in turn the ability to use human SSCs in therapy. STUDY FUNDING/COMPETING INTERESTS The experiments presented in this manuscript were funded by a Project Development Team within the ICTSI NIH/NCRR Grant Number TR000006. The authors declare no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Y Zheng
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - A Thomas
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - C M Schmidt
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| | - C T Dann
- Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405-7102, USA
| |
Collapse
|
61
|
Spermatogonial stem cell enrichment using simple grafting of testis and in vitro cultivation. Sci Rep 2014; 4:5923. [PMID: 25080919 PMCID: PMC4118148 DOI: 10.1038/srep05923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/15/2014] [Indexed: 01/15/2023] Open
Abstract
Enrichment of spermatogonial stem cells (SSCs) from the mammalian adult testis faces several limitations owing to their relatively low numbers among many types of advanced germ cells and somatic cells. The aim of the present study was to improve the isolation efficiency of SSCs using a simple tissue grafting method to eliminate the existing advanced germ cells. Sliced testis parenchyma obtained from adult ICR or EGFP-expressing transgenic mice were grafted heterotropically under the dorsal skin of nude mice. The most advanced germ cells disappeared in the grafted tissues after 2–4 weeks. Grafted tissues were dissociated enzymatically and plated in culture dishes. During in vitro culture, significantly more SSCs were obtained from the grafted testes than from non-grafted controls, and the isolated SSCs had proliferative potential and were successfully maintained. Additionally, EGFP-expressing SSCs derived from graft parenchyma were transplanted into bulsufan-treated recipient mice testes. Finally, we obtained EGFP-expressing pups after in vitro fertilization using spermatozoa derived from transplanted SSCs. These results suggest that subcutaneous grafting of testis parenchyma and the subsequent culture methods provide a simple and efficient isolation method to enrich for SSCs in adult testis without specific cell sorting methods and may be useful tools for clinical applications.
Collapse
|
62
|
Three-step method for proliferation and differentiation of human embryonic stem cell (hESC)-derived male germ cells. PLoS One 2014; 9:e90454. [PMID: 24690677 PMCID: PMC3972183 DOI: 10.1371/journal.pone.0090454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/03/2014] [Indexed: 12/26/2022] Open
Abstract
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells.
Collapse
|
63
|
Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture. BIOMED RESEARCH INTERNATIONAL 2014; 2014:138350. [PMID: 24738045 PMCID: PMC3971551 DOI: 10.1155/2014/138350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/19/2013] [Indexed: 01/15/2023]
Abstract
This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen(-)/laminin(+) matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the "spermatogonial" gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.
Collapse
|
64
|
Pluripotent Very Small Embryonic-like Stem Cells in Adult Mammalian Gonads. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-1001-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Guo Y, Hai Y, Gong Y, Li Z, He Z. Characterization, Isolation, and Culture of Mouse and Human Spermatogonial Stem Cells. J Cell Physiol 2013; 229:407-13. [PMID: 24114612 DOI: 10.1002/jcp.24471] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Guo
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanan Hai
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuehua Gong
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zheng Li
- Department of Urology; Shanghai Human Sperm Bank; Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zuping He
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
- Shanghai Key Laboratory of Reproductive Medicine; Shanghai China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai China
| |
Collapse
|
66
|
Wang P, Suo LJ, Wang YF, Shang H, Li GX, Hu JH, Li QW. Effects of GDNF and LIF on mouse spermatogonial stem cells proliferation in vitro. Cytotechnology 2013; 66:309-16. [PMID: 23896701 DOI: 10.1007/s10616-013-9574-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 04/19/2013] [Indexed: 01/01/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the only type of cells that transmit genes to the subsequent generations. The proliferation, cultivation and identification of SSCs in vitro are critical to understanding of male infertility, genetic resources and conservation of endangered species. To investigate the effects of glial cell-derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) on the proliferation of mouse SSCs in vitro, supplement of GDNF and/or LIF were designed to culture SSCs. The testes of 6-8 d mouse were harvested and digested by two-step enzyme digestion method. The SSCs and Sertoli cells were separated by differential plating. Then the SSCs were identified by alkaline phosphatase staining, RT-PCR and indirect immunofluorescence cell analysis. The cellular proliferation capacity was measured by methyl thiazolyl tetrazolium assay. The results showed that addition of 20 and 40 ng/ml of GDNF could strongly promote growth of mouse SSCs (p < 0.05). There was no significant difference between LIF treatment groups and the control group in promoting proliferation of the mouse SSCs (p > 0.05). However, the combination of 20 ng/ml GDNF and 1,000 U/ml LIF could significantly enhance the invitro proliferation of mouse SSCs (p < 0.05), and the OD490 value was 0.696 at day 5 of culture when the density of SSCs was 5-10 × 10(4) cells/ml.
Collapse
Affiliation(s)
- Peng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
67
|
Zheng Y, Tian X, Zhang Y, Qin J, An J, Zeng W. In vitro propagation of male germline stem cells from piglets. J Assist Reprod Genet 2013; 30:945-52. [PMID: 23779100 DOI: 10.1007/s10815-013-0031-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/11/2013] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To study the effects of serum and growth factors on propagation of porcine male germline stem cells (MGSCs) in vitro and develop a culture system for these stem cells. METHODS Fresh testicular cells from neonatal piglets were obtained by mechanical dissociation and collagenase-trypsin digestion. After differential plating, non-adhering cells were cultured in media supplemented with different concentrations of serum (0, 1 %, 2 %, 5 %, 10 %). After 10 days of primary culture, the cells were maintained in media supplemented with different concentrations of growth factors (basic fibroblast growth factor and epidermal growth factor at 1, 5, 10 ng/ml). The number of MGSC-derived colonies with different sizes was determined in each treatment to assess the effects of serum concentrations and growth factors. RESULTS The number of MGSC-derived colonies was significantly higher in the presence of 1 % rather than 10 % fetal bovine serum (FBS). Basic fibroblast growth factor (bFGF) at 1, 5 ng/ml and epidermal growth factor (EGF) at 5, 10 ng/ml significantly promoted colony formation. Immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and xenotransplantation assays demonstrated the presence of functional stem cells in cultured cell population. CONCLUSIONS In vitro propagation of porcine MGSCs could be maintained in the presence of 1 % FBS and supplementation of growth factors for 1 month.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, 22 Xi-nong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
68
|
Differentiation of spermatogonial stem cell-like cells from murine testicular tissue into haploid male germ cells in vitro. Cytotechnology 2013; 66:365-72. [PMID: 23728854 DOI: 10.1007/s10616-013-9584-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/08/2013] [Indexed: 10/26/2022] Open
Abstract
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6-8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10(-7) mol l(-1) of RA effectively induced the SSCs into haploid male germ cells in vitro.
Collapse
|
69
|
Effects of testicular interstitial fluid on the proliferation of the mouse spermatogonial stem cells in vitro. ZYGOTE 2013; 22:395-403. [PMID: 23673083 DOI: 10.1017/s0967199413000142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spermatogenesis is a process in adult male mammals supported by spermatogonial stem cells (SSCs). The cultivation of SSCs has potential value, for example for the treatment of male infertility or spermatogonial transplantation. Testicular interstitial fluid was added to culture medium to a final concentration of 5, 10, 20, 30 or 40%, in order to investigate its effects on proliferation of mouse SSCs in vitro, Alkaline phosphatase (AKP) assay, reverse transcription polymerase chain reaction (RT-PCR) analysis and indirect immunofluorescence of cells were performed to identify SSCs, and the proliferation rate and diameters of the SSCs colonies were measured. The results showed that the optimal addition of testicular interstitial fluid to culture medium was 30%. When medium supplemented with 30% testicular interstitial fluid was used to culture mouse SSCs, the optimum proliferation rate and diameter of the cell colonies were 72.53% and 249 μm, respectively, after 8 days in culture, values that were significant higher than those found for other groups (P < 0.05). In conclusion, proliferation of mouse SSCs could be promoted significantly by supplementation of the culture medium with 30% testicular interstitial fluid. More research is needed to evaluate and understand the precise physiological role of testicular interstitial fluid during cultivation of SSCs.
Collapse
|
70
|
Mahmoud H. Concise review: Spermatogenesis in an artificial three-dimensional system. Stem Cells 2013; 30:2355-60. [PMID: 22997006 DOI: 10.1002/stem.1238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Culture of spermatogonial stem cells has been performed under a variety of conditions. Most featured two-dimensional systems, with different types of sera, conditioned media, feeder layers, and growth factors. Some have used three-dimensional (3D) matrices produced from gelatin, collagen, or other material. In spite of their increasingly sophisticated composition, however, complete spermatogenesis in vitro has not yet been achieved. In the seminiferous tubules, spermatogenesis occurs in an environment where cells are embedded in a 3D structure with specific niches regulating each stage of germ cell maturation mediated by hormones and paracrine/autocrine factors. We have recently reported achievement of complete in vitro spermatogenesis of mouse testicular germ cells in a 3D culture system featuring a soft agar matrix. This review discusses the advantages of the 3D culture system for studying the spermatogenic process in its entirety. Also discussed are the steps necessary to expand the applicability of the 3D culture system to human germ cell development and determine the functionality of culture-produced spermatozoa for generating offspring.
Collapse
Affiliation(s)
- Huleihel Mahmoud
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
71
|
Chuykin I, Stauske M, Guan K. Spermatogonial Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
72
|
In vitro culture-induced pluripotency of human spermatogonial stem cells. BIOMED RESEARCH INTERNATIONAL 2012; 2013:143028. [PMID: 23484080 PMCID: PMC3591227 DOI: 10.1155/2013/143028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/29/2012] [Indexed: 12/23/2022]
Abstract
Unipotent spermatogonial stem cells (SSCs) can be transformed into ESC-like cells that exhibit pluripotency in vitro. However, except for mouse models, their characterization and their origins have remained controversies in other models including humans. This controversy has arisen primarily from the lack of the direct induction of ESC-like cells from well-characterized SSCs. Thus, the aim of the present study was to find and characterize pluripotent human SSCs in in vitro cultures of characterized SSCs. Human testicular tissues were dissociated and plated onto gelatin/laminin-coated dishes to isolate SSCs. In the presence of growth factors SSCs formed multicellular clumps after 2–4 weeks of culture. At passages 1 and 5, the clumps were dissociated and were then analyzed using markers of pluripotent cells. The number of SSEA-4-positive cells was extremely low but increased gradually up to ~ 10% in the SSC clumps during culture. Most of the SSEA-4-negative cells expressed markers for SSCs, and some cells coexpressed markers of both pluripotent and germ cells. The pluripotent cells formed embryoid bodies and teratomas that contained derivatives of the three germ layers in SCID mice. These results suggest that the pluripotent cells present within the clumps were derived directly from SSCs during in vitro culture.
Collapse
|
73
|
Koruji M, Shahverdi A, Janan A, Piryaei A, Lakpour MR, Gilani Sedighi MA. Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet 2012; 29:957-67. [PMID: 22735929 DOI: 10.1007/s10815-012-9817-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study aims to proliferate spermatogonial stem cells (SSCs) and compare the in-vitro effects of laminin and growth factors on the proliferation of adult human SSC. METHODS Isolated testicular cells were cultured in DMEM supplemented with 5 % fetal calf serum (FCS). During the culture, enriched spermatogonial cells were treated with a combination of glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and mouse leukemia inhibitory factor (LIF) in the presence or absence of human placental laminin-coated dishes. Cluster assay was performed during culture. Presence of spermatogonia was determined by an ultrastructural study of the cell clusters, reverse transcription polymerase chain reaction (RT-PCR) for spermatogonial markers and xenotransplantation to the testes of busulfan-treated recipient mice. Statistical significance between mean values was determined using statistical ANOVA tests. RESULTS The findings indicated that the addition of GDNF, bFGF, EGF and LIF on laminin-coated dishes significantly increased in-vitro spermatogonial cell cluster formation in comparison with the control group (p ≤ 0.001). The expression of spermatogonial markers was maintained throughout the culture period. Furthermore, a transplantation experiment showed the presence of SSC among the cultured cells. In addition, a transmission electron microscopy (TEM) study suggested the presence of spermatogonial cells of typical morphology among the cluster cells. CONCLUSIONS It can be concluded that human SSCs obtained from non-obstructive azoospermic (NOA) patients had the ability to self-renew in the culture system. This system can be used for the propagation of a small number of these cells from small biopsies.
Collapse
Affiliation(s)
- Morteza Koruji
- Cellular and Molecular Research Center and Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
74
|
Eildermann K, Gromoll J, Behr R. Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture. Hum Reprod 2012; 27:1754-67. [PMID: 22442249 PMCID: PMC3357197 DOI: 10.1093/humrep/des091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several studies have reported the generation of spermatogonia-derived pluripotent stem cells from human testes. The initial aim of the present study was the derivation of equivalent stem cells from an established and experimentally accessible non-human primate model, the common marmoset monkey (Callithrix jacchus). However, an essential prerequisite in the absence of transgenic reporters in primates and man is the availability of validated endogenous markers for the identification of specific cell types in vitro. METHODS AND RESULTS We cultured marmoset testicular cells in a similar way to that described for human testis-derived pluripotent cells and set out to characterize these cultures under different conditions and in differentiation assays applying established marker panels. Importantly, the cells emerged as testicular multipotent stromal cells (TMSCs) instead of (pluripotent) germ cell-derived cells. TMSCs expressed many markers such as GFR-α, GPR125, THY-1 (CD90), ITGA6, SSEA4 and TRA-1-81, which were considered as spermatogonia specific and were previously used for the enrichment or characterization of spermatogonia. Proliferation of TMSCs was highly dependent on basic fibroblast growth factor, a growth factor routinely present in germ cell culture media. As reliable markers for the distinction between spermatogonia and TMSCs, we established VASA, in combination with the spermatogonia-expressed factors, MAGEA4, PLZF and SALL4. CONCLUSIONS Marmoset monkey TMSCs and spermatogonia exhibit an overlap of markers, which may cause erroneous interpretations of experiments with testis-derived stem cells in vitro. We provide a marker panel for the unequivocal identification of spermatogonia providing a better basis for future studies on primate, including human, testis-derived stem cells.
Collapse
Affiliation(s)
- K Eildermann
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, Germany
| | | | | |
Collapse
|
75
|
Vlajković S, Cukuranović R, Bjelaković MD, Stefanović V. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. ScientificWorldJournal 2012; 2012:374151. [PMID: 22536138 PMCID: PMC3317611 DOI: 10.1100/2012/374151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
Development of germ cells is a process starting in fetus and completed only in puberty. Spermatogonial stem cells maintain spermatogenesis throughout the reproductive life of mammals. They are undifferentiated cells defined by their ability to both self-renew and differentiate into mature spermatozoa. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression as well as the extrinsic gene signals from the local tissue microenvironment. The human testis is prone to damage, either for therapeutic reasons or because of toxic agents from the environment. For preservation of fertility, patients who will undergo radiotherapy and/or chemotherapy have an attractive possibility to keep in store and afterwards make a transfer of spermatogonial stem cells. Germ cell transplantation is not yet ready for the human fertility clinic, but it may be reasonable for young cancer patients, with no other options to preserve their fertility. Whereas this technique has become an important research tool in rodents, a clinical application must still be regarded as experimental, and many aspects of the procedure need to be optimized prior to a clinical application in men. In future, a range of options for the preservation of male fertility will get a new significance.
Collapse
|
76
|
Kolasa A, Misiakiewicz K, Marchlewicz M, Wiszniewska B. The generation of spermatogonial stem cells and spermatogonia in mammals. Reprod Biol 2012; 12:5-23. [DOI: 10.1016/s1642-431x(12)60074-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
77
|
Potential stemness of frozen-thawed testicular biopsies without sperm in infertile men included into the in vitro fertilization programme. J Biomed Biotechnol 2012; 2012:291038. [PMID: 22431916 PMCID: PMC3303891 DOI: 10.1155/2012/291038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 01/15/2023] Open
Abstract
We describe the potential stemness of a small amount of frozen-thawed testicular tissue without sperm obtained by biopsy from six patients undergoing assisted reproductive treatment. The patients were diagnosed with Sertoli Cell-Only Syndrome alone or combined with maturation arrest. Trying to provide the natural stem cell niche for cultured stem cells, all isolated cells from enzymatically degraded biopsies where cultured together in different culture media and the presence of putative mesenchymal and putative pluripotent ES-like stem cells was indicated using different methods. High throughput real-time quantitative PCR followed by multivariate analysis revealed the formation of distinct cell clusters reflecting high degree of similarity and some of these cell clusters expressed the genes characteristic for pluripotent stem cells. In the presence of the follicular fluid, prepared as serum, putative testicular stem cells showed a certain degree of plasticity, and spontaneously differentiated into adipose-like and neuronal-like cells. Additionally, using differentiation protocols putative testicular stem cells were differentiated into neuronal- and pancreatic-like cells. This study shows that in assisted reproduction programmes, testicular tissue with no sperm might be an important source of stem cells, although it is discarded in daily medical practice; this requires further research.
Collapse
|
78
|
Guan K, Cheng IF, Baazm M. Human spermatagonial stem cells: a novel therapeutic hope for cardiac regeneration and repair? Future Cardiol 2012; 8:39-51. [DOI: 10.2217/fca.11.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the identification and characterization of human spermatogonial stem cells was reported nearly 50 years ago, great progress has been made only in the last few years. Spermatogonial stem cells attract a great deal of researchers’ attention because of their unique characteristics, including the ability to be converted spontaneously into pluripotent germline stem cells with embryonic stem cell-like properties. Pluripotent stem cells are able to differentiate into any desired cell type in the body; therefore, they are the most promising cell source for organ regeneration. The advantages of pluripotent germline stem cells over other stem cells are that they maintain a high degree of DNA integrity and can resolve some ethical and immunological problems related to human embryonic stem cells. In this article we address the origin, characteristics and pluripotency of spermatogonial stem cells. Their contribution to stem cell-based organ regeneration therapy with special emphasis on cardiac regeneration and repair in the future is also discussed.
Collapse
Affiliation(s)
| | - I-Fen Cheng
- Department of Cardiology & Pneumology, Robert-Koch-Str. 40, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Maryam Baazm
- Department of Cardiology & Pneumology, Robert-Koch-Str. 40, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
79
|
Liu S, Tang Z, Xiong T, Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol 2011; 9:141. [PMID: 22018465 PMCID: PMC3235066 DOI: 10.1186/1477-7827-9-141] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 10/24/2011] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. METHODS The disassociation of spermatogonial stem cells (SSCs) were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4)-positive SSC cells were further identified using immunofluorescence staining and flow cytometry technques. The purity of the human SSCs was also determined, and a co-culture system for SSCs and Sertoli cells was established. RESULTS The cell viability was 91.07% for the suspension of human spermatogonial stem cells dissociated using a two-step enzymatic digestion process. The cells isolated from Percoll density gradient coupled with differential surface-attachement purification were OCT4 positive, indicating the cells were human spermatogonial stem cells. The purity of isolated human spermatogonial stem cells was 86.7% as assessed by flow cytometry. The isolated SSCs were shown to form stable human spermatogonial stem cell colonies on the feeder layer of the Sertoli cells. CONCLUSIONS The two-step enzyme digestion (by type I collagenase and trypsin) process is an economical, simple and reproducible technique for isolating human spermatogonial stem cells. With little contamination and less cell damage, this method facilitates isolated human spermatogonial stem cells to form a stable cell colony on the supporting cell layer.
Collapse
Affiliation(s)
- Shixue Liu
- Department of Urology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Tang
- West China Medical College, Sichuan University, Chengdu 610041, China
| | - Tao Xiong
- Department of Urology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Department of Urology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
80
|
Hermann BP, Sukhwani M, Salati J, Sheng Y, Chu T, Orwig KE. Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod 2011; 26:3222-31. [PMID: 22016413 DOI: 10.1093/humrep/der343] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chemotherapy and radiation treatments for cancer and other diseases can cause male infertility. There are currently no options to preserve the fertility of prepubertal boys who are not yet making sperm. Cryopreservation of spermatogonial stem cells (SSCs, obtained via testicular biopsy) followed by autologous transplantation back into the testes at a later date may restore fertility in these patients. However, this approach carries an inherent risk of reintroducing cancer. METHODS To address this aspect of SSC transplantation safety, prepubertal non-human primate testis cell suspensions were inoculated with MOLT4 T-lymphoblastic leukemia cells and subsequently sorted for cell surface markers CD90 (THY-1) and CD45. RESULTS Cancer cells segregated to the CD90-/CD45+ fraction and produced tumors in nude mice. Nearly all sorted DEAD box polypeptide 4-positive (VASA+) spermatogonia segregated to the CD90+/CD45- fraction. In a preliminary experiment, a purity check of the sorted putative stem cell fraction (CD90+/CD45-) revealed 0.1% contamination with cancer cells, which was sufficient to produce tumors in nude mice. We hypothesized that the contamination resulted from mis-sorting due to cell clumping and employed singlet discrimination (SD) in four subsequent experiments. Purity checks revealed no cancer cell contamination in the CD90+/CD45- fraction from three of the four SD replicates and these fractions produced no tumors when transplanted into nude mouse testes. CONCLUSIONS We conclude that spermatogonia can be separated from contaminating malignant cells by fluorescence-activated cell sorting prior to SSC transplantation and that post-sorting purity checks are required to confirm elimination of malignant cells.
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
81
|
Nowroozi MR, Ahmadi H, Rafiian S, Mirzapour T, Movahedin M. In vitro colonization of human spermatogonia stem cells: effect of patient's clinical characteristics and testicular histologic findings. Urology 2011; 78:1075-81. [PMID: 21908023 DOI: 10.1016/j.urology.2011.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 06/05/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate the effect of the demographic/clinical characteristics of patients and testicular histologic findings on the in vitro colonization of human spermatogonial stem cells (SSCs). In vitro isolation and proliferation of human SSCs has emerged as a suitable method for the enrichment of spermatogonia germ cells. METHODS SSCs were isolated from the testicular biopsies of 47 infertile men with nonobstructive azoospermia and co-cultured with a Sertoli cell monolayer. Age, infertility duration, medical/surgical history, testicular size, and testicular histologic findings were recorded. The patients were divided into 2 groups according to the growth/no growth of human SSC colonies in culture. As the main outcome measure, the number and diameter of germ cell-derived colonies were compared between 2 groups in days 8, 13, and 18 after cultivation with respect to the recorded parameters. RESULTS No difference was found between the 2 groups regarding the demographic/clinical parameters. Maturation arrest at the premeiotic spermatogonia stage was present in a considerably greater proportion in the group with growth of human SSC colonies compared with the group without growth of human SSC colonies (14 [45.1%] of 31 versus 3 [18.7%] of 16; P < .001) on days 8, 13, and 18 after culture. Maturation arrest at premeiotic SSCs was associated with a greater number and larger diameter of germ cell colonies compared with the maturation arrest at primary spermatocyte and secondary spermatocyte/spermatid stages (P < .001). CONCLUSION Infertile men with testicular histologic findings of maturation arrest at the premeiotic spermatogonia stage were seemingly the most appropriate candidates for testicular biopsy and in vitro propagation of human SSCs, regardless of their demographic/clinical characteristics.
Collapse
Affiliation(s)
- Mohammad Reza Nowroozi
- Department of Urology, Imam Khomeini General Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
82
|
Zhang S, Sun J, Pan S, Zhu H, Wang L, Hu Y, Wang J, Wang F, Cao H, Yan X, Hua J. Retinol (vitamin A) maintains self-renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis. J Cell Biochem 2011; 112:1009-21. [PMID: 21308744 DOI: 10.1002/jcb.23029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have shown that male germline stem cells (mGSCs), which are responsible for maintaining spermatogenesis in the male, could be obtained from mouse and human testis. However, the traditional cultural methods were mostly dependent on serum and feeder, and the initial mGSCs were either obtained from neonatal mice or the detailed description of its potency and origin was not provided. Here we reported a novel (retinol (RE) serum-free and feeder-free) system for the successful culture of adult germline stem cells from adult Kunming mice (8-24 weeks) testis. The isolated mGSCs cultured in RE serum-free and feeder-free medium maintained the typical morphology of undifferentiated embryonic stem cells (ESCs), and they proliferated well in RE medium analyzed by proliferation assay, RT-PCR, microarray, and Western blotting. These cells also showed typical properties of ESCs (alkaline phosphatase (AP) positive, expressions of Oct4, Sox2, Nanog, and SSEA1, with the capacity to form teratomas and differentiate into various types of cells within three germ layers). Taken together, we conclude that RE promotes the self-renewal of mGSCs and maintains the pluripotency of mGSCs, the RE serum-free and feeder-free system may be useful for the culture of pluripotent stem cell lines from adult testis tissues, which provides a new resource for tissue engineering and therapy for infertility.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kim S, Izpisua Belmonte JC. Pluripotency of male germline stem cells. Mol Cells 2011; 32:113-21. [PMID: 21448589 PMCID: PMC3887674 DOI: 10.1007/s10059-011-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/22/2022] Open
Abstract
The ethical issues and public concerns regarding the use of embryonic stem (ES) cells in human therapy have motivated considerable research into the generation of pluripotent stem cell lines from non-embryonic sources. Numerous reports have shown that pluripotent cells can be generated and derived from germline stem cells (GSCs) in mouse and human testes during in vitro cultivation. The gene expression patterns of these cells are similar to those of ES cells and show the typical self-renewal and differentiation patterns of pluripotent cells in vivo and in vitro. However, the mechanisms underlying the spontaneous dedifferentiation of GSCs remain to be elucidated. Studies to identify master regulators in this reprogramming process are of critical importance for understanding the gene regulatory networks that sustain the cellular status of these cells. The results of such studies would provide a theoretical background for the practical use of these cells in regenerative medicine. Such studies would also help elucidate the molecular mechanisms underlying certain diseases, such as testicular germ cell tumors.
Collapse
Affiliation(s)
- Sungtae Kim
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, Barcelona, Spain
| |
Collapse
|
84
|
Spermatogonial stem cells and in vitro spermatogenesis. Reprod Med Biol 2011; 10:175-178. [PMID: 29699092 DOI: 10.1007/s12522-011-0084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the basis for the life-long production of enormous numbers of sperm. The nature of these mysterious cells is being clarified. Although they were regarded to be mostly dormant, dividing rarely and remaining static in a niche, their rather dynamic behavior in the seminiferous tubules has been disclosed. The territories of each colony of SSCs can also quickly change in size. The development of a culture method for SSCs also shed light on their stable, but at the same time, fragile characteristics. In addition, an in vitro system for spermatogenesis was developed which can produce functional sperm from SSCs. These new developments will contribute to reproductive medicine.
Collapse
|
85
|
Fagoonee S, Pellicano R, Silengo L, Altruda F. Potential applications of germline cell-derived pluripotent stem cells in organ regeneration. Organogenesis 2011; 7:116-122. [PMID: 21593601 PMCID: PMC3142448 DOI: 10.4161/org.7.2.16284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/24/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023] Open
Abstract
Impressive progress has been made since the turn of the century in the field of stem cells. Different types of stem cells have now been isolated from different types of tissues. Pluripotent stem cells are the most promising cell source for organ regeneration. One such cell type is the germline cell-derived pluripotent cell, which is derived from adult spermatogonial stem cells. The germline cell-derived pluripotent stem cells have been obtained from both human and mouse and, importantly, are adult stem cells with embryonic stem cell-like properties that do not require specific manipulations for pluripotency acquisition, hence bypassing problems related to induced pluripotent stem cells and embryonic stem cells. The germline cell-derived pluripotent stem cells have been induced to differentiate into cells deriving from the three germ layers and shown to be functional in vitro. This review will discuss the plasticity of the germline cell-derived pluripotent stem cells and their potential applications in human organ regeneration, with special emphasis on liver regeneration. Potential problems related to their use are also highlighted.
Collapse
|
86
|
Kokkinaki M, Djourabtchi A, Golestaneh N. Long-term Culture of Human SSEA-4 Positive Spermatogonial Stem Cells (SSCs). ACTA ACUST UNITED AC 2011; 2. [PMID: 24466499 DOI: 10.4172/2157-7633.s2-003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently we and two other groups have shown that human spermatogonial stem cells (SSCs) have the potential to become pluripotent in vitro in defined culture conditions and to differentiate into cells of the three embryonic germ layers. This discovery could open new avenues for autologous cell-based therapy in degenerative diseases, bypassing the ethical and immunological problems related to the human embryonic stem cells. In addition, human SSCs could be used to treat infertility in cancer survival children. However, in order to reprogram SSCs into pluripotency, or to preserve them for repopulation of infertile testes, the first and limiting step is to have access to a highly purified human SSC population that could be multiplied and efficiently cultured in vitro maintaining their molecular and cellular characteristics. Although various studies have attempted to identify molecular markers of human SSCs, to date there is still limited information related to the specific markers that could be used for their isolation and optimized purification that allows long-term in vitro culture of isolated human SSCs. Here using SSEA-4 as an optimal marker for isolation of a subpopulation of SSCs, we show that SSEA-4 positive cells express the highest level of SSC genes compared to other subpopulations isolated with different markers, and can be maintained in culture for over 14 passages which we were unable to obtain with other SSCs markers including GPR125 and ITGA6. In addition, we have established a new technology for cell sorting and long-term culture of human SSC-SSEA-4 positive cells that maximizes the purity and viability of the sorted cells. Our findings are crucial and could be used for the most efficient isolation, purification and long-term culture of SSCs for clinical applications in regenerative medicine, or for preparation of human SSCs for autologous treatment of infertility in cancer survival children.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| | - Ardalan Djourabtchi
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology
| | - Nady Golestaneh
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| |
Collapse
|
87
|
Yoo JK, Lim JJ, Ko JJ, Lee DR, Kim JK. Expression profile of genes identified in human spermatogonial stem cell-like cells using suppression subtractive hybridization. J Cell Biochem 2010; 110:752-62. [DOI: 10.1002/jcb.22588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|