51
|
The immunomodulatory effects of the Enalapril in combination with Benznidazole during acute and chronic phases of the experimental infection with Trypanosoma cruzi. Acta Trop 2017; 174:136-145. [PMID: 28720491 DOI: 10.1016/j.actatropica.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Abstract
Trypanosoma cruzi infection triggers a chronic inflammatory process responsible for the alterations in the extracellular matrix and functionality of the heart. The angiotensin converting enzyme (ACE) inhibitors affects T. cruzi in vitro surveillance and modulates in vivo some inflammatory mediators. In this study, we investigated the treatment with an ACE inhibitor (Enalapril) and the Benznidazole (Bz) in a single and combination therapies (CT) in C57BL/6 mice infected with VL-10 strain of the T. cruzi. Animals were treated during 20days with different doses of Bz (100, 80, 60mg/kg), Enalapril (25, 20, 15mg/kg) and their CT (100+25; 80+20; 60+15mg/kg) and euthanized at 30° (acute) and at 120° (chronic) days post infection. The plasma and heart were processed for immunopathological investigations. Our data shown that Bz and Enalapril controlled, in part, the parasite replication and reduced plasma levels of TNF, CCL2 and CCL5 in the acute and in chronic phase of infection. However, the CT doses reduced in around 20% the inflammatory parameters obtained with the Bz therapy. The CT doses of 100+25 and 80+20mg/kg increased the IL-10 levels and reduced the cardiac inflammation while Bz inhibited the collagen neogenesis in the infection. In conclusion, we assume that the CT administrated in the initial stage of infection, presents a minor immunomodulatory effect when the VL-10 strain of T. cruzi is used. In contrast, Bz and Enalapril in monotherapies persist suggesting a potential protection against cardiac damages during experimental T. cruzi infection.
Collapse
|
52
|
Antinori S, Galimberti L, Bianco R, Grande R, Galli M, Corbellino M. Chagas disease in Europe: A review for the internist in the globalized world. Eur J Intern Med 2017; 43:6-15. [PMID: 28502864 DOI: 10.1016/j.ejim.2017.05.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Chagas disease (CD) or American trypanosomiasis identified in 1909 by Carlos Chagas, has become over the last 40years a global health concern due to the huge migration flows from Latin America to Europe, United States, Canada and Japan. In Europe, most migrants from CD-endemic areas are concentrated in Spain, Italy, France, United Kingdom and Switzerland. Pooled seroprevalence studies conducted in Europe show an overall 4.2% prevalence, with the highest infection rates observed among individuals from Bolivia (18.1%). However, in most European countries the disease is neglected with absence of screening programmes and low access to diagnosis and treatment. Physicians working in Europe should also be aware of the risk of autochthonous transmission of Trypanosoma cruzi to newborns by their infected mothers and to recipients of blood or transplanted organs from infected donors. Finally, physicians should be able to recognize and treat the most frequent and serious complications of chronic Chagas disease, namely cardiomyopathy, megacolon and megaesophagus. This review aims to highlights the problem of CD in Europe by reviewing papers published by European researchers on this argument, in order to raise the awareness of internists who are bound to increasingly encounter patients with the disease in their routine daily activities.
Collapse
Affiliation(s)
- Spinello Antinori
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milano, Italy.
| | - Laura Galimberti
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Roberto Bianco
- Department of Radiology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Romualdo Grande
- Clinical Microbiology, Virology and Bioemergence Diagnostics, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Mario Corbellino
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Milano, Italy
| |
Collapse
|
53
|
Abstract
Chagas disease is caused by infection with the insect-transmitted protozoan Trypanosoma cruzi, and is the most important parasitic infection in Latin America. The current drugs, benznidazole and nifurtimox, are characterized by limited efficacy and toxic side-effects, and treatment failures are frequently observed. The urgent need for new therapeutic approaches is being met by a combined effort from the academic and commercial sectors, together with major input from not-for-profit drug development consortia. With the disappointing outcomes of recent clinical trials against chronic Chagas disease, it has become clear that an incomplete understanding of parasite biology and disease pathogenesis is impacting negatively on the development of more effective drugs. In addition, technical issues, including difficulties in establishing parasitological cure in both human patients and animal models, have greatly complicated the assessment of drug efficacy. Here, we outline the major questions that need to be addressed and discuss technical innovations that can be exploited to accelerate the drug development pipeline.
Collapse
|
54
|
Irion CI, Paredes BD, Brasil GV, da Cunha ST, Paula LF, Carvalho AR, de Carvalho ACC, Carvalho AB, Goldenberg RCDS. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease. Mem Inst Oswaldo Cruz 2017; 112:551-560. [PMID: 28767980 PMCID: PMC5530547 DOI: 10.1590/0074-02760160526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.
Collapse
|
55
|
Tomasini N, Ragone PG, Gourbière S, Aparicio JP, Diosque P. Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans. PLoS Comput Biol 2017; 13:e1005532. [PMID: 28481887 PMCID: PMC5440054 DOI: 10.1371/journal.pcbi.1005532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/22/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023] Open
Abstract
People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008-0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1-3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Paula Gabriela Ragone
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Sébastien Gourbière
- UMR 228 ESPACE-DEV-IMAGES, ‘Institut de Modélisation et d'Analyses en Géo-Environnement et Santé’, Université de Perpignan Via Domitia, Perpignan, France
| | - Juan Pablo Aparicio
- Instituto de Investigaciones en Energía no Convencional, CONICET, Universidad Nacional de Salta, Salta, Argentina
| | - Patricio Diosque
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, CONICET, Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
56
|
Beghini M, de Araújo MF, Severino VO, Etchebehere RM, Rocha Rodrigues DB, de Lima Pereira SA. Evaluation of the immunohistochemical expression of Gal-1, Gal-3 and Gal-9 in the colon of chronic chagasic patients. Pathol Res Pract 2017; 213:1207-1214. [PMID: 28554765 DOI: 10.1016/j.prp.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE AND DESIGN The aim of the present study was to evaluate the immunohistochemical expression of Gal-1, Gal-3 and Gal-9 in the colon of chronic chagasic patients compared to biopsied non-chagasic patients. MATERIAL OR SUBJECTS Thirty-two colon fragments were selected from chagasic patients with megacolon (n=25) and nonchagasic patients without megacolon (n=7). METHODS Immunohistochemistry for Gal-1, Gal-3 and Gal-9 was performed using a common light microscope and the results were scored 0-3 according to labeling intensity. Data were analyzed statistically by the chi-square test. RESULTS Higher Gal-1, Gal-3 and Gal-9 expression was observed in the myenteric plexus ganglia of chagasic patients compared to non-chagasic patients, p=0.0487, p=0.0019 and p=0.0325, respectively, whereas no significant differences were observed between groups regarding the expression of Gal-1, Gal-3 and Gal-9 in the muscle layer. CONCLUSION Since Gal-1, Gal-3 and Gal-9 galectin expression was higher in the myenteric plexus ganglia of chagasic patients, we believe that these lectins may be associated with ganglionitis in the chagasic megacolon. However, since the present study was the first to report the participation of Gal-9 in Chagas disease, further investigations are needed to elucidate the role of galectin 9 in this disease.
Collapse
Affiliation(s)
- Marcela Beghini
- Human Pathology Division, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | | | | | | | - Denise Bertulucci Rocha Rodrigues
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Cefores, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Sanívia Aparecida de Lima Pereira
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Cefores, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
57
|
Ortega Zamora Y, Escamilla Rojas LJ, Villa Sandoval EM, Vela Porras JS, Cossio Contrera EY, Cubides Romero SS, Carreño Ramirez PD, Urriago Losada H, De los Rios C, Gomez Mahecha DA, Lovera Serrano KD, Barreto Montaña JC, Narvaez Caicedo VL, Gutierrez FRS. Chagas disease immunogenetics: elusive markers of disease progression. Expert Rev Cardiovasc Ther 2017; 15:367-376. [DOI: 10.1080/14779072.2017.1317591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
58
|
Cruz JS, Machado FS, Ropert C, Roman-Campos D. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: Role of TNF and TGF-β. Trends Cardiovasc Med 2017; 27:81-91. [DOI: 10.1016/j.tcm.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
59
|
Stempin CC, Rojas Marquez JD, Ana Y, Cerban FM. GRAIL and Otubain-1 are Related to T Cell Hyporesponsiveness during Trypanosoma cruzi Infection. PLoS Negl Trop Dis 2017; 11:e0005307. [PMID: 28114324 PMCID: PMC5289611 DOI: 10.1371/journal.pntd.0005307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 02/02/2017] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens and is characterized by decreased IL-2 synthesis. In addition, the acquisition of the anergic phenotype is correlated with upregulation of "gene related to anergy in lymphocytes" (GRAIL) protein in CD4 T cells. We therefore sought to examine the role of GRAIL in CD4 T cell proliferation during T. cruzi infection. METHODOLOGY/PRINCIPAL FINDINGS Balb/c mice were infected intraperitoneally with 500 blood-derived trypomastigotes of Tulahuen strain, and spleen cells from control non-infected or infected animals were obtained. CD4 T cell proliferation was assessed by CFSE staining, and the expression of GRAIL in splenic T cells was measured by real-time PCR, flow cytometry and Western blot. We found increased GRAIL expression at the early stages of infection, coinciding with the peak of parasitemia, with these findings correlating with impaired proliferation and poor IL-2 and IFN-γ secretion in response to plate-bound antibodies. In addition, we showed that the expression of GRAIL E3-ubiquitin ligase in CD4 T cells during the acute phase of infection was complemented by a high expression of inhibitory receptors such as PD-1 and CTLA-4. We demonstrated that GRAIL expression during infection was modulated by the mammalian target of the rapamycin (mTOR) pathway, since addition of IL-2 or CTLA-4 blockade in splenocytes from mice 21 days post infection led to a reduction in GRAIL expression. Furthermore, addition of IL-2 was able to activate the mTOR pathway, inducing Otubain-1 expression, which mediated GRAIL degradation and improved T cell proliferation. CONCLUSIONS We hypothesize that GRAIL expression induced by the parasite may be maintained by the increased expression of inhibitory molecules, which blocked mTOR activation and IL-2 secretion. Consequently, the GRAIL regulator Otubain-1 was not expressed and GRAIL maintained the brake on T cell proliferation. Our findings reveal a novel association between increased GRAIL expression and impaired CD4 T cell proliferation during Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Cinthia C. Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Jorge D. Rojas Marquez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Yamile Ana
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
| | - Fabio M. Cerban
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
60
|
Characterization and Diagnostic Application of Trypanosoma cruzi Trypomastigote Excreted-Secreted Antigens Shed in Extracellular Vesicles Released from Infected Mammalian Cells. J Clin Microbiol 2016; 55:744-758. [PMID: 27974541 DOI: 10.1128/jcm.01649-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, although endemic in many parts of Central and South America, is emerging as a global health threat through the potential contamination of blood supplies. Consequently, in the absence of a gold standard assay for the diagnosis of Chagas disease, additional antigens or strategies are needed. A proteomic analysis of the trypomastigote excreted-secreted antigens (TESA) associated with exosomal vesicles shed by T. cruzi identified ∼80 parasite proteins, with the majority being trans-sialidases. Mass spectrometry analysis of immunoprecipitation products performed using Chagas immune sera showed a marked enrichment in a subset of TESA proteins. Of particular relevance for diagnostic applications were the retrotransposon hot spot (RHS) proteins, which are absent in Leishmania spp., parasites that often confound diagnosis of Chagas disease. Interestingly, serological screens using recombinant RHS showed a robust immunoreactivity with sera from patients with clinical stages of Chagas ranging from asymptomatic to advance cardiomyopathy and this immunoreactivity was comparable to that of crude TESA. More importantly, no cross-reactivity with RHS was detected with sera from patients with malaria, leishmaniasis, toxoplasmosis, or African sleeping sickness, making this protein an attractive reagent for diagnosis of Chagas disease.
Collapse
|
61
|
Chatelain E. Chagas disease research and development: Is there light at the end of the tunnel? Comput Struct Biotechnol J 2016; 15:98-103. [PMID: 28066534 PMCID: PMC5196238 DOI: 10.1016/j.csbj.2016.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
Chagas disease, or American trypanosomiasis, is the result of infection by the parasite Trypanosoma cruzi. It is endemic in Latin America, and spreading around the globe due to human migration. Although it was first identified more than a century ago, only two old drugs are available for treatment and a lot of questions related to the disease progression, its pathologies, and not to mention the assessment of treatment efficacy, are subject to debate and remain to be answered. Indeed, the current status of evidence and data available does not allow any absolute statement related to treatment needs and outcome for Chagas patients to be made. Although there has been some new impetus in Research and Development for Chagas disease following recent new clinical trials, there is a scientific requirement to review and challenge the current status of evidence and define basic and clinical research priorities and next steps in the field. This should ensure that the best drugs for Chagas disease are developed, but will require a focused and collaborative effort of the entire Chagas disease research community.
Collapse
Affiliation(s)
- Eric Chatelain
- Drugs for Neglected Diseases initiative (DND i ), 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| |
Collapse
|
62
|
Lewis MD, Kelly JM. Putting Infection Dynamics at the Heart of Chagas Disease. Trends Parasitol 2016; 32:899-911. [PMID: 27612651 PMCID: PMC5086431 DOI: 10.1016/j.pt.2016.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In chronic Trypanosoma cruzi infections, parasite burden is controlled by effective, but nonsterilising immune responses. Infected cells are difficult to detect because they are scarce and focally distributed in multiple sites. However, advances in detection technologies have established a link between parasite persistence and the pathogenesis of Chagas heart disease. Long-term persistence likely involves episodic reinvasion as well as continuous infection, to an extent that varies between tissues. The primary reservoir sites in humans are not definitively known, but analysis of murine models has identified the gastrointestinal tract. Here, we highlight that quantitative, spatial, and temporal aspects of T. cruzi infection are central to a fuller understanding of the association between persistence, pathogenesis, and immunity, and for optimising treatment.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - John M Kelly
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
63
|
Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 2016; 18:1429-43. [PMID: 26918803 PMCID: PMC5031194 DOI: 10.1111/cmi.12584] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/21/2016] [Indexed: 12/15/2022]
Abstract
Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end-point frequency of heart-specific infections ranged from 0% in TcVI-CLBR-infected C57BL/6 to 88% in TcI-JR-infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, 20892, USA.
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
64
|
Matthews QL, Farrow AL, Rachakonda G, Gu L, Nde P, Krendelchtchikov A, Pratap S, Sakhare SS, Sabbaj S, Lima MF, Villalta F. Epitope Capsid-Incorporation: New Effective Approach for Vaccine Development for Chagas Disease. Pathog Immun 2016; 1:214-233. [PMID: 27709126 PMCID: PMC5046838 DOI: 10.20411/pai.v1i2.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Previously we reported that a hexon-modified adenovirus (Ad) vector containing the invasive neutralizing epitope of Trypanosoma cruzi (T. cruzi) trypomastigote gp83 (Ad5-gp83) provided immunoprotection against T. cruzi infection. The purpose of this work was to design an improved vaccine for T. cruzi using a novel epitope capsid incorporation strategy. Thus, we evaluated the immunoprotection raised by co-immunization with Ad5-gp83 and an Ad vector containing an epitope (ASP-M) of the T. cruzi amastigote surface protein 2. Methods: Protein IX (pIX)-modified Ad vector (Ad5-pIX-ASP-M) was generated, characterized, and validated. C3H/He mice were immunized with Ad5-pIX-ASP-M and Ad5-gp83 and the cell-mediated responses were evaluated by enzyme-linked immunospot (ELISPOT) assay and intracellular staining. Immunized mice were challenged with T. cruzi to evaluate the vaccine efficacy. Results: Our findings indicate that Ad5-pIX-ASP-M was viable. Specific CD8+ T-cell mediated responses prior to the challenge show an increase in IFNγ and TNFα production. A single immunization with Ad5-pIX-ASP-M provided protection from T. cruzi infection, but co-immunizations with Ad5-pIX-ASP-M and Ad5-gp83 provided a higher immunoprotection and increased survival rate of mice. Conclusions: Overall, these results suggest that the combination of gp83 and ASP-M specific epitopes onto the capsid-incorporated adenoviruses would provide superior protection against Chagas disease as compared with Ad5-gp83 alone.
Collapse
Affiliation(s)
- Qiana L Matthews
- Department of Biological Sciences, Alabama State University, Montgomery, AL; Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, AL
| | - Anitra L Farrow
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, AL
| | - Girish Rachakonda
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN
| | - Linlin Gu
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Pius Nde
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN
| | | | - Siddharth Pratap
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN
| | - Shruti S Sakhare
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN
| | - Steffanie Sabbaj
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, AL
| | - Maria F Lima
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN
| | - Fernando Villalta
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN
| |
Collapse
|
65
|
Santos FM, Mazzeti AL, Caldas S, Gonçalves KR, Lima WG, Torres RM, Bahia MT. Chagas cardiomyopathy: The potential effect of benznidazole treatment on diastolic dysfunction and cardiac damage in dogs chronically infected with Trypanosoma cruzi. Acta Trop 2016; 161:44-54. [PMID: 27215760 DOI: 10.1016/j.actatropica.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
Abstract
Cardiac involvement represents the main cause of mortality among patients with Chagas disease, and the relevance of trypanocidal treatment to improving diastolic dysfunction is still doubtful. In the present study, we used a canine model infected with the benznidazole-sensitive Berenice-78 Trypanosoma cruzi strain to verify the efficacy of an etiologic treatment in reducing the parasite load and ameliorating cardiac muscle tissue damage and left ventricular diastolic dysfunction in the chronic phase of the infection. The effect of the treatment on reducing the parasite load was monitored by blood PCR and blood culture assays, and the effect of the treatment on the outcome of heart tissue damage and on diastolic function was evaluated by histopathology and echo Doppler cardiogram. The benefit of the benznidazole-treatment in reducing the parasite burden was demonstrated by a marked decrease in positive blood culture and PCR assay results until 30days post-treatment. At this time, the PCR and blood culture assays yielded negative results for 82% of the treated animals, compared with only 36% of the untreated dogs. However, a progressive increase in the parasite load could be detected in the peripheral blood for one year post-treatment, as evidenced by a progressive increase in positive results for both the PCR and the blood culture assays at follow-up. The parasite load reduction induced by treatment was compatible with the lower degree of tissue damage among animals euthanized in the first month after treatment and with the increased cardiac damage after this period, reaching levels similar to those in untreated animals at the one-year follow-up. The two infected groups also presented similar, significantly smaller values for early tissue septal velocity (E' SIV) than the non-infected dogs did at this later time. Moreover, in the treated animals, an increase in the E/E' septal tissue filling pressure ratio was observed when compared with basal values as well as with values in non-infected dogs. These findings strongly suggest that the temporary reduction in the parasite load that was induced by benznidazole treatment was not able to prevent myocardial lesions and diastolic dysfunction for long after treatment.
Collapse
|
66
|
Leon Rodriguez DA, Carmona FD, González CI, Martin J. Evaluation of VDR gene polymorphisms in Trypanosoma cruzi infection and chronic Chagasic cardiomyopathy. Sci Rep 2016; 6:31263. [PMID: 27502545 PMCID: PMC4977507 DOI: 10.1038/srep31263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Vitamin D is an important modulator of the immune response. It acts over several immune cell types where the Vitamin D receptor (VDR) is expressed. Due to the high relevance of this signaling pathway, several studies have investigated the possible influence of genes involved in the metabolism of Vitamin D and its receptor in different human diseases. Here, we analyzed whether four single-nucleotide polymorphisms of the VDR gene (rs731236, rs7975232, rs1544410 and rs2228570) are involved in the susceptibility to infection by Trypanosoma cruzi and/or to chronic Chagas cardiomyopathy (CCC) in a Colombian endemic population for this parasite. Our results showed that the rs2228570*A allele is associated with CCC development (P = 4.46E-03, OR = 1.51). In summary, the data presented in this report suggest that variation within the VDR gene may affect the immune response against T. cruzi, increasing the probability of cardiac complications in infected individuals.
Collapse
Affiliation(s)
| | - F David Carmona
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, P.T.S, Granada, Spain
| | - Clara Isabel González
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, P.T.S, Granada, Spain
| |
Collapse
|
67
|
Wen JJ, Wan X, Thacker J, Garg NJ. Chemotherapeutic efficacy of phosphodiesterase inhibitors in chagasic cardiomyopathy. JACC Basic Transl Sci 2016; 1:235-250. [PMID: 27747306 PMCID: PMC5065248 DOI: 10.1016/j.jacbts.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular mechanisms of Trypanosoma cruzi (Tc)-induced Chagasic cardiomyopathy (CCM) are not well understood. The NO-cGMP-PKG1α pathway maintains cardiac homeostasis and inotropy and may be disturbed due to phosphodiesterase (PDE5)-mediated cGMP catabolism in CCM. To test this, C57BL/6 mice were infected with T. cruzi, and after the control of acute parasitemia (∼45 days post-infection), given sildenafil (SIL) (1 mg/kg) treatment for 3 weeks that ended long before the chronic disease phase (∼150 days post-infection). The PDE5 was increased and cGMP/PKG activity was decreased in chagasic myocardium. Transthoracic echocardiography revealed left ventricular (LV) systolic function, that is, stroke volume, cardiac output, and ejection fraction, was significantly decreased in chagasic mice. SIL treatment resulted in normal levels of PDE5 and cGMP/PKG activity and preserved the LV function. The cardioprotective effects of SIL were provided through inhibition of cardiac collagenosis and chronic inflammation that otherwise were pronounced in CCM. Further, SIL treatment restored the mitochondrial DNA–encoded gene expression, complex I–dependent (but not complex II–dependent) ADP-coupled respiration, and oxidant/antioxidant balance in chagasic myocardium. In vitro studies in cardiomyocytes verified that SIL conserved the redox metabolic state and cellular health via maintaining the antioxidant status that otherwise was compromised in response to T. cruzi infection. We conclude that SIL therapy was useful in controlling the LV dysfunction and chronic pathology in CCM. Mice infected with T. cruzi control acute parasitemia but develop chronic chagasic cardiomyopathy. Treatment with SIL (a phosphodiesterase inhibitor) during a therapeutic window of indeterminate phase provided powerful cardioprotective effects against chronic development of cardiomyopathy and LV dysfunction. SIL normalized the cGMP-dependent protein kinase activity and mitochondrial oxidative metabolism, and established the oxidant/antioxidant balance in chagasic myocardium. SIL prevented the oxidative/inflammatory adducts that precipitate cardiomyocytes death and cardiac remodeling in CCM.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - John Thacker
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas; Department of Pathology, UTMB, Galveston, TX; Institute for Human Infections and Immunity, UTMB, Galveston, TX
| |
Collapse
|
68
|
Morrot A, Villar SR, González FB, Pérez AR. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease? Front Microbiol 2016; 7:704. [PMID: 27242726 PMCID: PMC4876113 DOI: 10.3389/fmicb.2016.00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Silvina R Villar
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Florencia B González
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| |
Collapse
|
69
|
Leon Rodriguez DA, González CI, Martin J. Analysis of association of FOXO3 gene with Trypanosoma cruzi infection and chronic Chagasic cardiomyopathy. HLA 2016; 87:449-52. [PMID: 27125259 DOI: 10.1111/tan.12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
FOXO3, a member of the Forkhead family of proteins, plays a role in controlling immune response. FOXO3 gene variant rs12212067 has been associated to differential severity of infectious diseases like malaria. In this study, we assessed whether this FOXO3 gene polymorphism is related to susceptibility to infection by Trypanosoma cruzi and/or chronic Chagasic cardiomyopathy. A total of 1171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n = 595), seropositive asymptomatic (n = 175) and chronic Chagasic cardiomyopathy (n = 401) were genotyped for the FOXO3 rs12212067 using TaqMan allelic discrimination. Our results showed no statistically significantly differences between allelic and genotypic frequencies of rs12212067 in seronegative individuals compared with seropositive individuals. Similarly, we observed no evidence of association when asymptomatic individuals were compared with chronic Chagasic cardiomyopathy patients. Our data suggest that the FOXO3 genetic variant rs12212067 do not play an important role in Chagas disease.
Collapse
Affiliation(s)
- D A Leon Rodriguez
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| | - C I González
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - J Martin
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, Spain
| |
Collapse
|
70
|
Guedes PMM, de Andrade CM, Nunes DF, de Sena Pereira N, Queiroga TBD, Machado-Coelho GLL, Nascimento MSL, Do-Valle-Matta MA, da Câmara ACJ, Chiari E, Galvão LMDC. Inflammation Enhances the Risks of Stroke and Death in Chronic Chagas Disease Patients. PLoS Negl Trop Dis 2016; 10:e0004669. [PMID: 27115869 PMCID: PMC4846156 DOI: 10.1371/journal.pntd.0004669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
Ischemic strokes have been implicated as a cause of death in Chagas disease patients. Inflammation has been recognized as a key component in all ischemic processes, including the intravascular events triggered by vessel interruption, brain damage and repair. In this study, we evaluated the association between inflammatory markers and the death risk (DR) and stroke risk (SR) of patients with different clinical forms of chronic Chagas disease. The mRNA expression levels of cytokines, transcription factors expressed in the adaptive immune response (Th1, Th2, Th9, Th17, Th22 and regulatory T cell), and iNOS were analyzed by real-time PCR in peripheral blood mononuclear cells of chagasic patients who exhibited the indeterminate, cardiac, digestive and cardiodigestive clinical forms of the disease, and the levels of these transcripts were correlated with the DR and SR. Cardiac patients exhibited lower mRNA expression levels of GATA-3, FoxP3, AHR, IL-4, IL-9, IL-10 and IL-22 but exhibited higher expression of IFN-γ and TNF-α compared with indeterminate patients. Digestive patients showed similar levels of GATA-3, IL-4 and IL-10 than indeterminate patients. Cardiodigestive patients exhibited higher levels of TNF-α compared with indeterminate and digestive patients. Furthermore, we demonstrated that patients with high DR and SR exhibited lower GATA-3, FoxP3, and IL-10 expression and higher IFN-γ, TNF-α and iNOS mRNA expression than patients with low DR and SR. A negative correlation was observed between Foxp3 and IL-10 mRNA expression and the DR and SR. Moreover, TNF-α and iNOS expression was positively correlated with DR and SR. Our data suggest that an inflammatory imbalance in chronic Chagas disease patients is associated with a high DR and SR. This study provides a better understanding of the stroke pathobiology in the general population and might aid the development of therapeutic strategies for controlling the morbidity and mortality of Chagas disease.
Collapse
Affiliation(s)
- Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil
| | - Cléber Mesquita de Andrade
- Department of Biomedical Sciences, University of Rio Grande do Norte State, Rio Grande do Norte, Mossoró, Brazil
| | - Daniela Ferreira Nunes
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Nathalie de Sena Pereira
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Natal, Brazil
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Egler Chiari
- Department of Parasitology, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
71
|
Ogata H, Teixeira MM, Sousa RCD, Silva MVD, Correia D, Rodrigues Junior V, Levy BD, Rogério ADP. Effects of aspirin-triggered resolvin D1 on peripheral blood mononuclear cells from patients with Chagas' heart disease. Eur J Pharmacol 2016; 777:26-32. [PMID: 26927755 DOI: 10.1016/j.ejphar.2016.02.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
Chagas disease is caused by Trypanosoma cruzi (T. cruzi). In some patients with Chagas disease, symptoms progress to chronic chagasic cardiomyopathy. Endogenously, inflammation is resolved in the presence of lipid mediators such as aspirin-triggered RvD1 (AT-RvD1) which has anti-inflammatory and pro-resolution effects. Here, we demonstrated, for the first time, the effects of AT-RvD1 on T. cruzi antigen-stimulated peripheral blood mononuclear cells (PBMCs) from patients with Chagas heart disease. The levels of IFN-γ, TNF-α, IL-10, and IL-13 increased in PBMCs from cardiac-form Chagas patients in stage B1 (patients with fewer heart abnormalities) stimulated with T. cruzi antigen compared to those in non-stimulated PBMCs. AT-RvD1 reduced the IFN-γ concentrations in PBMCs from patients with Chagas disease stimulated with T. cruzi antigen compared to stimulated with T. cruzi antigen cells. AT-RvD1 treatment resulted in no observable changes in TNF-α, IL-10, and IL-13 levels. AT-RvD1 significantly decreased the percentage of necrotic cells and caused a significant reduction in the proliferation rate of T. cruzi antigen-stimulated PBMCs from patients with Chagas disease. These findings demonstrate that AT-RvD1 modulates the immune response in Chagas disease patients and might have potential to be used as an alternative approach for slowing the development of further heart damage.
Collapse
Affiliation(s)
- Haline Ogata
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Rua Vigário Carlos 162, Uberaba, Minas Gerais 38025-350, Brazil.
| | - Maxelle Martins Teixeira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Rua Vigário Carlos 162, Uberaba, Minas Gerais 38025-350, Brazil.
| | - Rodrigo Cunha de Sousa
- Infectious Disease Division, Internal Medicine Department, Federal University of Triangulo Mineiro, Rua Frei Paulino, 30, Uberaba, Minas Gerais 38025-180, Brazil.
| | - Marcos Vinícius da Silva
- Infectious Disease Division, Internal Medicine Department, Federal University of Triangulo Mineiro, Rua Frei Paulino, 30, Uberaba, Minas Gerais 38025-180, Brazil.
| | - Dalmo Correia
- Infectious Disease Division, Internal Medicine Department, Federal University of Triangulo Mineiro, Rua Frei Paulino, 30, Uberaba, Minas Gerais 38025-180, Brazil.
| | - Virmondes Rodrigues Junior
- Infectious Disease Division, Internal Medicine Department, Federal University of Triangulo Mineiro, Rua Frei Paulino, 30, Uberaba, Minas Gerais 38025-180, Brazil.
| | - Bruce David Levy
- Brigham and Women's Hospital, 77 Ave. Louis Pasteur, HIM 807, Boston, MA 02115, United States.
| | - Alexandre de Paula Rogério
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Rua Vigário Carlos 162, Uberaba, Minas Gerais 38025-350, Brazil.
| |
Collapse
|
72
|
Cardoso MS, Reis-Cunha JL, Bartholomeu DC. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front Immunol 2016; 6:659. [PMID: 26834737 PMCID: PMC4716143 DOI: 10.3389/fimmu.2015.00659] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host's immune system, using strategies that can be traced to the parasite's life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8(+) immune response focused on the parasite's immunodominant epitopes controls parasitemia and tissue infection, but fails to completely eliminate the parasite. This outcome is not detrimental to the parasite, as it reduces host mortality and maintains the parasite infectivity toward the insect vectors.
Collapse
Affiliation(s)
- Mariana S Cardoso
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais, Brazil
| |
Collapse
|
73
|
Genetic Susceptibility to Cardiac and Digestive Clinical Forms of Chronic Chagas Disease: Involvement of the CCR5 59029 A/G Polymorphism. PLoS One 2015; 10:e0141847. [PMID: 26599761 PMCID: PMC4657911 DOI: 10.1371/journal.pone.0141847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022] Open
Abstract
The clinical manifestations of chronic Chagas disease include the cardiac form of the disease and the digestive form. Not all the factors that act in the variable clinical course of this disease are known. This study investigated whether the CCR5Δ32 (rs333) and CCR5 59029 A/G (promoter region--rs1799987) polymorphisms of the CCR5 gene are associated with different clinical forms of chronic Chagas disease and with the severity of left ventricular systolic dysfunction in patients with chronic Chagas heart disease (CCHD). The antibodies anti-T. cruzi were identified by ELISA. PCR and PCR-RFLP were used to identify the CCR5Δ32 and CCR5 59029 A/G polymorphisms. The chi-square test was used to compare variables between groups. There was a higher frequency of the AA genotype in patients with CCHD compared with patients with the digestive form of the disease and the control group. The results also showed a high frequency of the AG genotype in patients with the digestive form of the disease compared to the other groups. The results of this study show that the CCR5Δ32 polymorphism does not seem to influence the different clinical manifestations of Chagas disease but there is involvement of the CCR5 59029 A/G polymorphism in susceptibility to the different forms of chronic Chagas disease. Besides, these polymorphisms do not influence left ventricular systolic dysfunction in patients with CCHD.
Collapse
|
74
|
Brazão V, Colato RP, Santello FH, Filipin MDV, Toldo MPA, do Vale GT, Tirapelli CR, do Prado Júnior JC. Interleukin-17, oxidative stress, and inflammation: role of melatonin during Trypanosoma cruzi infection. J Pineal Res 2015; 59:488-96. [PMID: 26432539 DOI: 10.1111/jpi.12280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
Although the exact etiology of Chagas' disease remains unknown, the inflammatory process and oxidative stress are believed to be the main contributors to the dysfunction and pathogenesis during chronic Trypanosoma cruzi infection. Our hypothesis is that melatonin administered for 2 months daily could modulate the oxidative stress and the inflammatory response during the chronic infection. Flow cytometric analysis of macrophages and antigen-presenting cells (APC), expression of RT1B as well as LFA-1 and MCP-1 in CD4(+) and CD8(+) T cells and levels of interleukin-17A were assessed. The oxidative stress was evaluated through lipid peroxidation (LPO) analysis on the plasma of thiobarbituric acid-reactive substances (TBARS) and nitric oxide production. Decreased concentrations of nitrite and TBARS were found in infected and melatonin-treated animals, as well as a rising trend in the production of IL-17A as compared to infected and untreated counterparts. A significant decrease was found in the percentages of CD4(+) and CD8(+) T lymphocytes MCP-1 producers for infected and melatonin-treated rats. Reduced percentage of CD8(+) T cells producing LFA-1 was observed in control and melatonin-treated animals as compared to untreated rats. The cellular response of peritoneal APC cells and macrophages significantly dropped in infected and treated animals. As an endpoint, the use of antioxidant compounds such as melatonin emerges as a new and promising approach to control the oxidative stress during the chronic Chagas' disease partially mediated through the abrogation of LPO and the prevention of the inflammatory response and can be used for further investigation on treatment trials for other infectious diseases.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marina Del Vecchio Filipin
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Míriam Paula Alonso Toldo
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Tavares do Vale
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - José Clóvis do Prado Júnior
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
75
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
76
|
Barreto-de-Albuquerque J, Silva-dos-Santos D, Pérez AR, Berbert LR, de Santana-van-Vliet E, Farias-de-Oliveira DA, Moreira OC, Roggero E, de Carvalho-Pinto CE, Jurberg J, Cotta-de-Almeida V, Bottasso O, Savino W, de Meis J. Trypanosoma cruzi Infection through the Oral Route Promotes a Severe Infection in Mice: New Disease Form from an Old Infection? PLoS Negl Trop Dis 2015; 9:e0003849. [PMID: 26090667 PMCID: PMC4474863 DOI: 10.1371/journal.pntd.0003849] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022] Open
Abstract
Oral transmission of Chagas disease has been documented in Latin American countries. Nevertheless, significant studies on the pathophysiology of this form of infection are largely lacking. The few studies investigating oral route infection disregard that inoculation in the oral cavity (Oral infection, OI) or by gavage (Gastrointestinal infection, GI) represent different infection routes, yet both show clear-cut parasitemia and heart parasitism during the acute infection. Herein, BALB/c mice were subjected to acute OI or GI infection using 5x104 culture-derived Trypanosoma cruzi trypomastigotes. OI mice displayed higher parasitemia and mortality rates than their GI counterparts. Heart histopathology showed larger areas of infiltration in the GI mice, whereas liver lesions were more severe in the OI animals, accompanied by higher Alanine Transaminase and Aspartate Transaminase serum contents. A differential cytokine pattern was also observed because OI mice presented higher pro-inflammatory cytokine (IFN-γ, TNF) serum levels than GI animals. Real-time PCR confirmed a higher TNF, IFN-γ, as well as IL-10 expression in the cardiac tissue from the OI group compared with GI. Conversely, TGF-β and IL-17 serum levels were greater in the GI animals. Immunolabeling revealed macrophages as the main tissue source of TNF in infected mice. The high mortality rate observed in the OI mice paralleled the TNF serum rise, with its inhibition by an anti-TNF treatment. Moreover, differences in susceptibility between GIversusOI mice were more clearly related to the host response than to the effect of gastric pH on parasites, since infection in magnesium hydroxide-treated mice showed similar results. Overall, the present study provides conclusive evidence that the initial site of parasite entrance critically affects host immune response and disease outcome. In light of the occurrence of oral Chagas disease outbreaks, our results raise important implications in terms of the current view of the natural disease course and host-parasite relationship. Chagas disease caused by the protozoan Trypanosoma cruzi is endemic in Latin America and a neglected tropical disease, which affects 6–7 million people worldwide. Currently, oral transmission is the most frequent pathway of infection in Brazil but also occurs in other endemic countries. This important infection route is underestimated and understudied. Here, we demonstrate that the site of parasite entrance, in the oral cavity (OI), as observed in natural infection, or directly to the gastrointestinal tract (GI), differentially affects the host-immune response and mortality. OI promotes a severe acute disease, elevated parasitemia and TNF mediated mortality. OI showed intense hepatitis and mild heart damage. Interestingly, GI mice presented mild disease, along with less circulating TNF and higher TGF-β and IL-17 serum contents. GI animals showed mild liver damage and intense heart inflammation. Our study is a pioneer work that analyzes the features of two distinct routes of oral infection. In addition, it provides new clues for Chagas pathology and stimulates background for the elucidation of disease features in orally exposed populations.
Collapse
Affiliation(s)
| | - Danielle Silva-dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | - Luiz Ricardo Berbert
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Otacilio C. Moreira
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eduardo Roggero
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | | | - José Jurberg
- National and International Laboratory on Triatomine Taxonomy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Oscar Bottasso
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
77
|
Albareda MC, Laucella SA. Modulation of Trypanosoma cruzi-specific T-cell responses after chemotherapy for chronic Chagas disease. Mem Inst Oswaldo Cruz 2015; 110:414-21. [PMID: 25993507 PMCID: PMC4489479 DOI: 10.1590/0074-02760140386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The aim of this review is to describe the contributions of the knowledge of T-cell responses to the understanding of the physiopathology and the responsiveness to etiological treatment during the chronic phase of Chagas disease. T-helper (Th)1 and interleukin (IL)-10 Trypanosoma cruzi-specific T-cells have been linked to the asymptomatic phase or to severe clinical forms of the disease, respectively or vice versa, depending on the T. cruzi antigen source, the patient's location and the performed immunological assays. Parasite-specific T-cell responses are modulated after benznidazole (BZ) treatment in chronically T. cruzi-infected subjects in association with a significant decrease in T. cruzi-specific antibodies. Accumulating evidence has indicated that treatment efficacy during experimental infection with T. cruzi results from the combined action of BZ and the activation of appropriate immune responses in the host. However, strong support of this interaction in T. cruzi-infected humans remains lacking. Overall, the quality of T-cell responses might be a key factor in not only disease evolution, but also chemotherapy responsiveness. Immunological parameters are potential indicators of treatment response regardless of achievement of cure. Providing tools to monitor and provide early predictions of treatment success will allow the development of new therapeutic options.
Collapse
|
78
|
Brazão V, Filipin MDV, Santello FH, Azevedo AP, Toldo MPA, de Morais FR, do Prado JC. Immunomodulatory properties and anti-apoptotic effects of zinc and melatonin in an experimental model of chronic Chagas disease. Immunobiology 2015; 220:626-33. [DOI: 10.1016/j.imbio.2014.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 11/17/2022]
|
79
|
Bonney KM, Engman DM. Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1537-47. [PMID: 25857229 DOI: 10.1016/j.ajpath.2014.12.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of individuals infected with the protozoan parasite Trypanosoma cruzi. Since the discovery of T. cruzi by Carlos Chagas >100 years ago, much has been learned about Chagas disease pathogenesis; however, the outcome of T. cruzi infection is highly variable and difficult to predict. Many mechanisms have been proposed to promote tissue inflammation, but the determinants and the relative importance of each have yet to be fully elucidated. The notion that some factor other than the parasite significantly contributes to the development of myocarditis was hypothesized by the first physician-scientists who noted the conspicuous absence of parasites in the hearts of those who succumbed to Chagas disease. One of these factors-autoimmunity-has been extensively studied for more than half a century. Although questions regarding the functional role of autoimmunity in the pathogenesis of Chagas disease remain unanswered, the development of autoimmune responses during infection clearly occurs in some individuals, and the implications that this autoimmunity may be pathogenic are significant. In this review, we summarize what is known about the pathogenesis of Chagas heart disease and conclude with a view of the future of Chagas disease diagnosis, pathogenesis, therapy, and prevention, emphasizing recent advances in these areas that aid in the management of Chagas disease.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois
| | - David M Engman
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois; Department of Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois.
| |
Collapse
|
80
|
Stahl P, Schwarz RT, Debierre-Grockiego F, Meyer T. Trypanosoma cruzi parasites fight for control of the JAK-STAT pathway by disarming their host. JAKSTAT 2015; 3:e1012964. [PMID: 26413423 DOI: 10.1080/21623996.2015.1012964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
The zoonotic Chagas' disease is caused by infections with the hemoflagellate Trypanosoma cruzi (T. cruzi) which is endemic in Latin America. Despite recent advances in our understanding of the pathogenesis of the disease, the underlying molecular processes involved in host-parasite interactions are only poorly understood. In particular, the mechanisms for parasite persistence in host cells remain largely unknown. Cytokine-driven transcription factors from the family of STAT (signal transducer and activator of transcription) proteins appear to play a central role in the fight against T. cruzi infection. However, amastigotes proliferating in the cytoplasm of infected host cells develop effective strategies to circumvent the attack executed by STAT proteins. This review highlights the interactions between T. cruzi parasites and human host cells in terms of cytokine signaling and, in particular, discusses the impact of STATs on the balance between parasite invasion and clearance.
Collapse
Affiliation(s)
- Philipp Stahl
- Institute of Virology; Parasitology Unit; University of Marburg ; Marburg, Germany
| | - Ralph T Schwarz
- Institute of Virology; Parasitology Unit; University of Marburg ; Marburg, Germany ; Laboratory for Structural and Functional Glycobiology; University of Lille 1 for Sciences and Technologies ; Lille, France
| | - Françoise Debierre-Grockiego
- Mixed Research Unit 1282; François Rabelais University of Tours-INRA; Infectious Diseases and Public Health ; Tours, France
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy; University of Göttingen ; Göttingen, Germany ; German Center for Cardiovascular Research ; Göttingen, Germany
| |
Collapse
|
81
|
Urbina JA. Recent clinical trials for the etiological treatment of chronic chagas disease: advances, challenges and perspectives. J Eukaryot Microbiol 2014; 62:149-56. [PMID: 25284065 DOI: 10.1111/jeu.12184] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023]
Abstract
Chagas disease, a chronic systemic parasitosis caused by the Kinetoplastid protozoon Trypanosoma cruzi, is the first cause of cardiac morbidity and mortality in poor rural and suburban areas of Latin America and the largest parasitic disease burden in the continent, now spreading worldwide due to international migrations. A recent change in the scientific paradigm on the pathogenesis of chronic Chagas disease has led to a consensus that all T. cruzi-seropositive patients should receive etiological treatment. This important scientific advance has spurred the rigorous evaluation of the safety and efficacy of currently available drugs (benznidazole and nifurtimox) as well as novel anti-T. cruzi drug candidates in chronic patients, who were previously excluded from such treatment. The first results indicate that benznidazole is effective in inducing a marked and sustained reduction in the circulating parasites' level in the majority of these patients, but adverse effects can lead to treatment discontinuation in 10-20% of cases. Ergosterol biosynthesis inhibitors, such as posaconazole and ravuconazole, are better tolerated but their efficacy at the doses and treatment duration used in the initial studies was significantly lower; such results are probably related to suboptimal exposure and/or treatment duration. Combination therapies are a promising perspective but the lack of validated biomarkers of response to etiological treatment and eventual parasitological cures in chronic patients remains a serious challenge.
Collapse
Affiliation(s)
- Julio A Urbina
- Venezuelan Institute for Scientific Research, Caracas, Venezuela
| |
Collapse
|
82
|
Lepletier A, de Almeida L, Santos L, da Silva Sampaio L, Paredes B, González FB, Freire-de-Lima CG, Beloscar J, Bottasso O, Einicker-Lamas M, Pérez AR, Savino W, Morrot A. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease. PLoS Negl Trop Dis 2014; 8:e3203. [PMID: 25330249 PMCID: PMC4199546 DOI: 10.1371/journal.pntd.0003203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironmental and lymphoid compartments. Acute infection results in severe atrophy of the organ and early release of immature thymocytes into the periphery. To date, the pathophysiological effects of thymic changes promoted by parasite-inducing premature release of thymocytes to the periphery has remained elusive. Herein, we show that sphingosine-1-phosphate (S1P), a potent mediator of T cell chemotaxis, plays a role in the exit of immature double-negative thymocytes in experimental Chagas disease. In thymuses from T. cruzi-infected mice we detected reduced transcription of the S1P kinase 1 and 2 genes related to S1P biosynthesis, together with increased transcription of the SGPL1 sphingosine-1-lyase gene, whose product inactivates S1P. These changes were associated with reduced intrathymic levels of S1P kinase activity. Interestingly, double-negative thymocytes from infected animals expressed high levels of the S1P receptor during infection, and migrated to lower levels of S1P. Moreover, during T. cruzi infection, this thymocyte subset expresses high levels of IL-17 and TNF-α cytokines upon polyclonal stimulation. In vivo treatment with the S1P receptor antagonist FTY720 resulted in recovery the numbers of double-negative thymocytes in infected thymuses to physiological levels. Finally, we showed increased numbers of double-negative T cells in the peripheral blood in severe cardiac forms of human Chagas disease. The formation of mature lineage-committed T cells requires the specialized environment of the thymus, a central organ of the immune system supporting the development of self-tolerant T cells. Key events of intrathymic T-cell development include lineage commitment, selection events and thymic emigration. This organ undergoes physiological involution during aging. However, acute thymic atrophy can occur in the presence autoimmune diseases, malignant tumors and infections caused by intracellular pathogens. The present study shows that the protozoan parasite Trypanosoma cruzi changes the thymic microenvironmental and lymphoid compartments, resulting in premature release of very immature CD4−CD8− double-negative thymocytes, TCRneg/low, which bear a pro-inflammatory activation profile. Strikingly, we also found elevated levels of these undifferentiated T lymphocytes in the peripheral blood of patients in severe cardiac forms of chronic Chagas disease. Importantly, we provided evidence that migration of CD4−CD8− T cells from infected mouse thymus is due to sphingosine-1-phosphate receptor-1-dependent chemotaxis. These findings point to an important role for bioactive signaling sphingolipids in the thymic escape of immature thymocytes to the periphery in Chagas disease.
Collapse
Affiliation(s)
- Ailin Lepletier
- Laboratory on Thymus Research, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Liliane de Almeida
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Santos
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia da Silva Sampaio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Paredes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Juan Beloscar
- Servicio de Clínica Médica, Hospital J.B. Iturraspe, Santa Fe, Argentina
| | - Oscar Bottasso
- Servicio de Clínica Médica, Hospital J.B. Iturraspe, Santa Fe, Argentina
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Institute of Immunology, National University of Rosario, Rosario, Argentina
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
83
|
Lewis MD, Francisco AF, Taylor MC, Kelly JM. A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. ACTA ACUST UNITED AC 2014; 20:36-43. [PMID: 25296657 PMCID: PMC4361455 DOI: 10.1177/1087057114552623] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, one of the world’s major neglected infections. Although development of improved antiparasitic drugs is considered a priority, there have been no significant treatment advances in the past 40 years. Factors that have limited progress include an incomplete understanding of pathogenesis, tissue tropism, and disease progression. In addition, in vivo models, which allow parasite burdens to be tracked throughout the chronic stage of infection, have been lacking. To address these issues, we have developed a highly sensitive in vivo imaging system based on bioluminescent T. cruzi, which express a red-shifted luciferase that emits light in the tissue-penetrating orange-red region of the spectrum. The exquisite sensitivity of this noninvasive murine model has been exploited to monitor parasite burden in real time throughout the chronic stage, has allowed the identification of the gastrointestinal tract as the major niche of long-term infection, and has demonstrated that chagasic heart disease can develop in the absence of locally persistent parasites. Here, we review the parameters of the imaging system and describe how this experimental model can be incorporated into drug development programs as a valuable tool for assessing efficacy against both acute and chronic T. cruzi infections.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
84
|
de Moura Braz SC, de Melo AS, da Glória Aureliano de Melo Cavalca M, Martins SM, de Oliveira W, da Silva ED, Ferreira AGP, de Lorena VMB, de Miranda Gomes Y. Increase in the Expression of CD4 + CD25+ Lymphocytic T Cells in the Indeterminate Clinical Form of Human Chagas Disease After Stimulation With Recombinant Antigens of Trypanosoma cruzi. J Clin Immunol 2014; 34:991-8. [DOI: 10.1007/s10875-014-0092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 08/26/2014] [Indexed: 12/22/2022]
|
85
|
Ferreira LRP, Frade AF, Baron MA, Navarro IC, Kalil J, Chevillard C, Cunha-Neto E. Interferon-γ and other inflammatory mediators in cardiomyocyte signaling during Chagas disease cardiomyopathy. World J Cardiol 2014; 6:782-790. [PMID: 25228957 PMCID: PMC4163707 DOI: 10.4330/wjc.v6.i8.782] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/29/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease cardiomyopathy (CCC), the main consequence of Trypanosoma cruzi (T.cruzi) infection, is an inflammatory cardiomyopathy that develops in up to 30% of infected individuals. The heart inflammation in CCC patients is characterized by a Th1 T cell-rich myocarditis with increased production of interferon (IFN)-γ, produced by the CCC myocardial infiltrate and detected at high levels in the periphery. IFN-γ has a central role in the cardiomyocyte signaling during both acute and chronic phases of T.cruzi infection. In this review, we have chosen to focus in its pleiotropic mode of action during CCC, which may ultimately be the strongest driver towards pathological remodeling and heart failure. We describe here the antiparasitic protective and pathogenic dual role of IFN-γ in Chagas disease.
Collapse
|
86
|
Effects of cholinergic stimulation with pyridostigmine bromide on chronic chagasic cardiomyopathic mice. Mediators Inflamm 2014; 2014:475946. [PMID: 25221388 PMCID: PMC4158292 DOI: 10.1155/2014/475946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to assess the effects of an anticholinesterase agent, pyridostigmine bromide (Pyrido), on experimental chronic Chagas heart disease in mice. To this end, male C57BL/6J mice noninfected (control:Con) or chronically infected (5 months) with Trypanosoma cruzi (chagasic:Chg) were treated or not (NT) with Pyrido for one month. At the end of this period, electrocardiogram (ECG); cardiac autonomic function; heart histopathology; serum cytokines; and the presence of blood and tissue parasites by means of immunohistochemistry and PCR were assessed. In NT-Chg mice, significant changes in the electrocardiographic, autonomic, and cardiac histopathological profiles were observed confirming a chronic inflammatory response. Treatment with Pyrido in Chagasic mice caused a significant reduction of myocardial inflammatory infiltration, fibrosis, and hypertrophy, which was accompanied by a decrease in serum levels of IFNγ with no change in IL-10 levels, suggesting a shift of immune response toward an anti-inflammatory profile. Lower nondifferent numbers of parasite DNA copies were observed in both treated and nontreated chagasic mice. In conclusion, our findings confirm the marked neuroimmunomodulatory role played by the parasympathetic autonomic nervous system in the evolution of the inflammatory-immune response to T. cruzi during experimental chronic Chagas heart disease in mice.
Collapse
|
87
|
Tc52 amino-terminal-domain DNA carried by attenuated Salmonella enterica serovar Typhimurium induces protection against a Trypanosoma cruzi lethal challenge. Infect Immun 2014; 82:4265-75. [PMID: 25069980 DOI: 10.1128/iai.02190-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this work we immunized mice with DNA encoding full-length Tc52 or its amino- or carboxy-terminal (N- and C-term, respectively) domain carried by attenuated Salmonella as a DNA delivery system. As expected, Salmonella-mediated DNA delivery resulted in low antibody titers and a predominantly Th1 response, as shown by the ratio of IgG2a/IgG1-specific antibodies. Despite modest expression of Tc52 in trypomastigotes, the antibodies elicited by vaccination were able to mediate lysis of the trypomastigotes in the presence of complement and inhibit their invasion of mammal cells in vitro. The strongest functional activity was observed with sera from mice immunized with Salmonella carrying the N-term domain (SN-term), followed by Tc52 (STc52), and the C-term domain (SC-term). All immunized groups developed strong cellular responses, with predominant activation of Th1 cells. However, mice immunized with SN-term showed higher levels of interleukin-10 (IL-10), counterbalancing the inflammatory reaction, and also strong activation of Tc52-specific gamma interferon-positive (IFN-γ(+)) CD8(+) T cells. In agreement with this, although all prototypes conferred protection against infection, immunization with SN-term promoted greater protection than that with SC-term for all parameters tested and slightly better protection than that with STc52, especially in the acute stage of infection. We conclude that the N-terminal domain of Tc52 is the section of the protein that confers maximal protection against infection and propose it as a promising candidate for vaccine development.
Collapse
|
88
|
Immunopathological aspects of experimental Trypanosoma cruzi reinfections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648715. [PMID: 25050370 PMCID: PMC4094717 DOI: 10.1155/2014/648715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/12/2014] [Accepted: 05/25/2014] [Indexed: 01/28/2023]
Abstract
Chagas disease is caused by Trypanosoma cruzi infection. Besides the host-related factors, such as immune response and genetic background, the parasite, strain, and occurrences of reinfection episodes, may influence disease outcome. Our results demonstrate that both the primary infection and the reinfection with the Colombiana strain are connected with lower survival rate of the mice. After reinfection, parasitaemia is approximately ten times lower than in primary infected animals. Only Colombiana, Colombiana/Colombiana, and Y/Colombiana groups presented amastigote nests in cardiac tissue. Moreover, the mice infected and/or reinfected with the Colombiana strain had more T. cruzi nests, more intense inflammatory infiltrate, and higher in situ expression of TNF-α and IFN-γ than Y strain. Antigen-stimulated spleen cells from infected and/or reinfected animals produced higher levels of TNF-α, IFN-γ, and IL-10. Our results reinforce the idea that Chagas disease outcome is influenced by the strain of the infective parasite, being differentially modulated during reinfection episodes. It highlights the need of control strategies involving parasite strain characterization in endemic areas for Chagas disease.
Collapse
|
89
|
Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 2014; 16:1285-300. [PMID: 24712539 PMCID: PMC4190689 DOI: 10.1111/cmi.12297] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
Summary Chronic Trypanosoma cruzi infections lead to cardiomyopathy in 20–30% of cases. A causal link between cardiac infection and pathology has been difficult to establish because of a lack of robust methods to detect scarce, focally distributed parasites within tissues. We developed a highly sensitive bioluminescence imaging system based on T. cruzi expressing a novel luciferase that emits tissue-penetrating orange-red light. This enabled long-term serial evaluation of parasite burdens in individual mice with an in vivo limit of detection of significantly less than 1000 parasites. Parasite distributions during chronic infections were highly focal and spatiotemporally dynamic, but did not localize to the heart. End-point ex vivo bioluminescence imaging allowed tissue-specific quantification of parasite loads with minimal sampling bias. During chronic infections, the gastro-intestinal tract, specifically the colon and stomach, was the only site where T. cruzi infection was consistently observed. Quantitative PCR-inferred parasite loads correlated with ex vivo bioluminescence and confirmed the gut as the parasite reservoir. Chronically infected mice developed myocarditis and cardiac fibrosis, despite the absence of locally persistent parasites. These data identify the gut as a permissive niche for long-term T. cruzi infection and show that canonical features of Chagas disease can occur without continual myocardium-specific infection.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | | | | | | | |
Collapse
|
90
|
Requena-Méndez A, López MC, Angheben A, Izquierdo L, Ribeiro I, Pinazo MJ, Gascon J, Muñoz J. Evaluating Chagas disease progression and cure through blood-derived biomarkers: a systematic review. Expert Rev Anti Infect Ther 2014; 11:957-76. [DOI: 10.1586/14787210.2013.824718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
91
|
Morrot A. The Role of Sialic Acid-Binding Receptors (Siglecs) in the Immunomodulatory Effects of Trypanosoma cruzi Sialoglycoproteins on the Protective Immunity of the Host. SCIENTIFICA 2013; 2013:965856. [PMID: 24455435 PMCID: PMC3885277 DOI: 10.1155/2013/965856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is an important endemic infection in Latin America. Lately, it has also become a health concern in the United States and Europe. Most of the immunomodulatory mechanisms associated with this parasitic infection have been attributed to mucin-like molecules on the T. cruzi surface. Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities in both normal and pathological conditions. In Trypanosoma cruzi infection, the parasite-derived mucins are the main acceptors of sialic acid and it has been suggested that they play a role in various host-parasite interactions during the course of Chagas disease. Recently, we have presented evidence that sialylation of the mucins is required for the inhibitory effects on CD4(+) T cells. In what follows we propose that signaling via sialic acid-binding Ig-like lectin receptors for these highly sialylated structures on host cells contributes to the arrest of cell cycle progression in the G1 phase and may allow the parasite to modulate the immune system of the host.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, CCS, Sala D1-035, Avenida Carlos Chagas Filho 373, Cidade Universitária, Ilha do Fundão, 21.941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
92
|
Oliveira LGR, Kuehn CC, dos Santos CD, Miranda MA, da Costa CMB, Mendonça VJ, do Prado JC. Protective actions of melatonin against heart damage during chronic Chagas disease. Acta Trop 2013; 128:652-8. [PMID: 24055715 DOI: 10.1016/j.actatropica.2013.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 01/05/2023]
Abstract
Chronic cardiomyopathy is the most important clinical form of Chagas disease, and it is characterised by myocarditis that is associated with fibrosis and organ dysfunction. Alternative treatment options are important tools to modulate host immune responses. The main goal of this work was to evaluate the anti-inflammatory actions of melatonin during the chronic phase of Chagas disease. TNF-α, IL-10 and nitrite concentrations were evaluated as predictive factors of immune modulation. Creatine phosphokinase-MB (CK-MB), cardiac inflammatory foci and heart weight were assessed to evaluate the efficacy of the melatonin treatment. Male Wistar rats were infected with 1×10(5) blood trypomastigotes of the Y strain of Trypanosoma cruzi and kept untreated for 60 days to mimic chronic infection. After this period, the rats were orally treated with melatonin 50mg/kg/day, and the experiments were performed 90, 120, and 180 days post-infection. Melatonin treatment significantly increased the concentration of IL-10 and reduced the concentrations of NO and TNF-α produced by cardiomyocytes. Furthermore, it led to decreased heart weight, serum CK-MB levels and inflammatory foci when compared to the untreated and infected control groups. We conclude that melatonin therapy is effective at protecting animals against the harmful cardiac inflammatory response that is characteristic of chronic T. cruzi infection.
Collapse
|
93
|
Viotti R, Alarcón de Noya B, Araujo-Jorge T, Grijalva MJ, Guhl F, López MC, Ramsey JM, Ribeiro I, Schijman AG, Sosa-Estani S, Torrico F, Gascon J. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother 2013; 58:635-9. [PMID: 24247135 PMCID: PMC3910900 DOI: 10.1128/aac.01662-13] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment for Chagas disease with currently available medications is recommended universally only for acute cases (all ages) and for children up to 14 years old. The World Health Organization, however, also recommends specific antiparasite treatment for all chronic-phase Trypanosoma cruzi-infected individuals, even though in current medical practice this remains controversial, and most physicians only prescribe palliative treatment for adult Chagas patients with dilated cardiomyopathy. The present opinion, prepared by members of the NHEPACHA network (Nuevas Herramientas para el Diagnóstico y la Evaluación del Paciente con Enfermedad de Chagas/New Tools for the Diagnosis and Evaluation of Chagas Disease Patients), reviews the paradigm shift based on clinical and immunological evidence and argues in favor of antiparasitic treatment for all chronic patients. We review the tools needed to monitor therapeutic efficacy and the potential criteria for evaluation of treatment efficacy beyond parasitological cure. Etiological treatment should now be mandatory for all adult chronic Chagas disease patients.
Collapse
Affiliation(s)
- R. Viotti
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Sección Chagas, Servicio de Cardiología, Buenos Aires, Argentina
| | - B. Alarcón de Noya
- Instituto de Medicina Tropical, Universidad Central de Venezuela (IMT-UCV), Caracas, Venezuela
| | - T. Araujo-Jorge
- Fundação Oswaldo Cruz—Instituto Oswaldo Cruz (FIOCRUZ-IOC), Programa Integrado de Doença de Chagas, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Río de Janeiro, Brazil
| | - M. J. Grijalva
- Centro de Investigación de Enfermedades Infecciosas de la Pontificia Universidad Católica del Ecuador (CIEI-PUCE), Quito, Ecuador, and Tropical Disease Institute, Ohio University (TDI-OU), Athens, Ohio, USA
| | - F. Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes (UA-CIMPAT), Bogotá, Colombia
| | - M. C. López
- Instituto de Parasitología y Biomedicina Lopez-Neyra-Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - J. M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública (CRISP-INSP), Tapachula, Chiapas, Mexico
| | - I. Ribeiro
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - A. G. Schijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - S. Sosa-Estani
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben (INP)-ANLIS Dr. Carlos G. Malbran, Buenos Aires, Argentina
| | - F. Torrico
- Universidad Mayor de San Simón (UMSS), Cochabamba, Bolivia
| | - J. Gascon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| |
Collapse
|
94
|
Nunes MP, Fortes B, Silva-Filho JL, Terra-Granado E, Santos L, Conde L, de Araújo Oliveira I, Freire-de-Lima L, Martins MV, Pinheiro AAS, Takyia CM, Freire-de-Lima CG, Todeschini AR, DosReis GA, Morrot A. Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T cells are associated with increased susceptibility to infection. PLoS One 2013; 8:e77568. [PMID: 24204874 PMCID: PMC3810146 DOI: 10.1371/journal.pone.0077568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/03/2013] [Indexed: 01/16/2023] Open
Abstract
Background The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc) has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues. Methodology/Principal Findings In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4+ T cells. Our data show that cross-linking of CD3 on naïve CD4+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls. Conclusions/Significance Our results indicate that Tc Muc mediates inhibitory efects on CD4+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs) on CD4+ T cells, which may allow the parasite to modulate the immune system.
Collapse
Affiliation(s)
| | - Bárbara Fortes
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Isadora de Araújo Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Acacia Sá Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takyia
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriane Regina Todeschini
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Alexandre DosReis
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (MPN); (AM)
| |
Collapse
|
95
|
Gutierrez FRS, Pavanelli WR, Medina TS, Silva GK, Mariano FS, Guedes PMM, Mineo TWP, Rossi MA, Cunha FQ, Silva JS. Haeme oxygenase activity protects the host against excessive cardiac inflammation during experimental Trypanosoma cruzi infection. Microbes Infect 2013; 16:28-39. [PMID: 24140555 DOI: 10.1016/j.micinf.2013.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 08/25/2013] [Accepted: 10/04/2013] [Indexed: 01/07/2023]
Abstract
The infection with Trypanosoma cruzi induces a robust cardiac inflammation that plays a pathogenic role in the development of Chagas heart disease. In this study, we aimed at investigating the effects of Haem Oxygenase (HO) during experimental infection by T. cruzi in BALB/c and C57BL/6 mice. HO has recently emerged as a key factor modulating the immune response in diverse models of inflammatory diseases. In mice with two different genetic backgrounds, the pharmacologic inhibition of HO activity with zinc-protoporphyrin IX (ZnPPIX) induced enhanced myocarditis and reduced parasitaemia, which was accompanied by an amplified production of nitric oxide and increased influx of CD4(+), CD8(+) and IFN-γ(+) cells to the myocardium in comparison with the control group. Conversely, treatment with haemin (an activator of HO) lead to a decreased number of intracardiac CD4(+) (but not CD8(+)) cells compared to the control group. The mechanism involved in these observations is a modulation of the induction of regulatory T cells, because the stimulation or inhibition of HO was parallelled by an enhanced or reduced frequency of regulatory T cells, respectively. Hence, HO may be involved in the regulation of heart tissue inflammation and could be a potential target in conceiving future therapeutic approaches for Chagas disease.
Collapse
Affiliation(s)
- Fredy R S Gutierrez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| | - Wander R Pavanelli
- Centro de Ciências Biológicas, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Brazil; Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Tiago S Medina
- Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Grace K Silva
- Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Flávia S Mariano
- Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Paulo M M Guedes
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Tiago W P Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil; Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Marcos A Rossi
- Department of Pathology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - João S Silva
- Department of Biochemistry-Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| |
Collapse
|
96
|
Roman-Campos D, Sales-Junior P, Duarte HL, Gomes ER, Lara A, Campos P, Rocha NN, Resende RR, Ferreira A, Guatimosim S, Gazzinelli RT, Ropert C, Cruz JS. Novel insights into the development of chagasic cardiomyopathy: Role of PI3Kinase/NO axis. Int J Cardiol 2013; 167:3011-20. [DOI: 10.1016/j.ijcard.2012.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 08/10/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
97
|
Carabarin-Lima A, González-Vázquez MC, Rodríguez-Morales O, Baylón-Pacheco L, Rosales-Encina JL, Reyes-López PA, Arce-Fonseca M. Chagas disease (American trypanosomiasis) in Mexico: an update. Acta Trop 2013; 127:126-35. [PMID: 23643518 DOI: 10.1016/j.actatropica.2013.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022]
Abstract
Chagas disease is a parasitic infection caused by the protozoan Trypanosoma cruzi, a flagellated organism that is transmitted mainly to humans through the infected feces of triatomine kissing bugs (vector transmission in endemic areas) or by transfusion of infected blood, donations of infected organ, or transmission from an infected mother to her child at birth. Chagas disease was first described in 1909 by the Brazilian physician Carlos Chagas, and due to the parasite's distribution throughout North, Central and South America, the disease is commonly known as American trypanosomiasis. However, this disease is now present in non-endemic countries such as Canada, the United States of America, and several countries in Europe (principally Spain). Moreover, Chagas disease was recently designated by the World Health Organization as one of the main neglected tropical diseases. The aim of this review is to summarize the research efforts recently described in studies conducted in Mexico on Chagas disease. In this country, there are no existing vector control programs. In addition, there is no consensus on the diagnostic methods for acute and chronic Chagas disease in maternity wards and blood banks, and trypanocidal therapy is not administered to chronic patients. The actual prevalence of the disease is unknown because no official reporting of cases is performed. Therefore, the number of people infected by different routes of transmission (vector, congenital, blood transfusion, organ transplantation, or oral) is unknown. We believe that by promoting education about Chagas disease in schools starting at the basic elementary level and including reinforcement at higher education levels will ensure that the Mexican population would be aware of this health problem and that the control measures adopted will have more acceptance and success. We hope that this review sensitizes the relevant authorities and that the appropriate measures to reduce the risk of infection by T. cruzi are undertaken to provide the Mexican people a better quality of life.
Collapse
Affiliation(s)
- Alejandro Carabarin-Lima
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | | | | | | | | | | | |
Collapse
|
98
|
Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 2013; 14:514-22. [PMID: 23563688 PMCID: PMC3631452 DOI: 10.1038/ni.2569] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022]
Abstract
We identified B cells as a major source for rapid, innate-like interleukin 17 (IL-17) production in vivo in response to Trypanosoma cruzi infection. IL-17+ B cells exhibited a plasmablast phenotype, outnumbered TH17 cells and were required for optimal response to this pathogen. Using both murine and human primary B cells, we demonstrate that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell surface mucin, CD45, leading to Btk-dependent signaling and IL-17A or IL-17F production via an ROR-γt and AHR-independent transcriptional program. Our combined data suggest that generation of IL-17+ B cells may be an unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.
Collapse
|
99
|
Castro-Sesquen YE, Gilman RH, Paico H, Yauri V, Angulo N, Ccopa F, Bern C. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi. PLoS Negl Trop Dis 2013; 7:e1996. [PMID: 23409197 PMCID: PMC3566988 DOI: 10.1371/journal.pntd.0001996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/21/2012] [Indexed: 01/19/2023] Open
Abstract
We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection. Chronic Chagas heart disease (CHHD) caused by the infection with the parasite Trypanosoma cruzi is the most important infectious heart disease in the world. The typical manifestations are dilated cardiomyopathy and congestive heart failure; they result from death of cardiomyocytes and their replacement by collagen. Knowing the mechanisms of cardiomyocyte death is important for the development of therapies that prevent them. The contribution of apoptosis in cardiomyocyte death was evaluated in the guinea pig model of T. cruzi infection, and the detection of serum levels of collagen precursors were evaluated as biomarkers of cardiac fibrosis. We observed apoptosis of lymphocytes, cardiomyocytes, endothelial cells and epicardial adipose tissue in cardiac tissue of infected guinea pigs. The increase of serum levels of collagen precursors PICP and PIIINP were associated with cardiac fibrosis. Areas of inflammation and apoptosis of epicardial adipose tissue were associated with cardiac pathology, which suggests the importance of epicardial adipose tissue in CCHD. These results show that apoptosis is an important characteristic of cardiac cell death during CCHD and serum levels of PICP and PIIINP could be used as biomarkers of cardiac fibrosis.
Collapse
Affiliation(s)
- Yagahira E. Castro-Sesquen
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica PRISMA, Lima, Peru
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins University, Bloomberg School of Hygiene and Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Henry Paico
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Verónica Yauri
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Noelia Angulo
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fredy Ccopa
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Caryn Bern
- Global Health Sciences and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
100
|
Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 2013; 13:108-17. [PMID: 23332160 DOI: 10.1016/j.chom.2012.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/08/2012] [Accepted: 11/12/2012] [Indexed: 11/15/2022]
Abstract
Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas' disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite's replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection.
Collapse
Affiliation(s)
- Kacey L Caradonna
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Building I, Room 817, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|