51
|
Ojeda F, Midgley J, Pauw A, Lavola A, Casimiro-Soriguer R, Hattas D, Segarra-Moragues JG, Julkunen-Tiitto R. Flower colour divergence is associated with post-fire regeneration dimorphism in the fynbos heath Erica coccinea subsp. coccinea (Ericaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09985-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Fernández-Bedmar Z, Anter J, Alonso-Moraga A, Delgado de la Torre P, Luque de Castro MD, Millán-Ruiz Y, Sánchez-Frías M, Guil-Luna S. Red and White Wine Lees Show Inhibitory Effects on Liver Carcinogenesis. Mol Nutr Food Res 2019; 63:e1800864. [PMID: 30730089 DOI: 10.1002/mnfr.201800864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/21/2019] [Indexed: 11/08/2022]
Abstract
SCOPE Wine has shown anticarcinogenic benefits in hepatocarcinoma and polyphenols seem to be responsible for these effects. Wine lees are the sediments produced during fermentation and they endow wine with organoleptic and physicochemical properties. However, the anticarcinogenic role of these compounds is still unknown. Thus, the purpose of this work is to determine the phytochemical profiles of wine lees and then to analyze their anticarcinogenic effect and DNA methylation on a model of hepatocarcinogenesis. METHODS AND RESULTS The phytochemical composition of lees is determined by the Folin-Ciocalteu method and high-performance liquid chromatography. An in vivo study using a diethyl nitrosamine-hepatocarcinogenesis-induced model is performed to investigate the hepatoprotective properties of different doses of wine lees. For the DNA methylation analysis, a bisulfite-based method is used. Both types of lees mostly contain pyrogallol, gallic, and syringic acid with a high content of catechins in red lees. The carcinogen hypermethylates the Alu-M2 repetitive sequence and white lees decreases the hypermethylation at all tested concentrations. Low concentration of red and white lees and high concentration of white lees significantly improve the hepatocellular architecture and decrease the mitotic index in the murine model. CONCLUSION These findings suggest that wine lees are promising agents for chemoprevention of hepatocarcinoma.
Collapse
Affiliation(s)
| | - Jaouad Anter
- Department of Genetics, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | - Angeles Alonso-Moraga
- Department of Genetics, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | - Pilar Delgado de la Torre
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | | | - Yolanda Millán-Ruiz
- Department of Comparative Pathology, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Hospital Universitario Reina Sofía, Córdoba, 14005, Spain
| | - Silvia Guil-Luna
- Department of Comparative Pathology, Campus of Rabanales, University of Córdoba, Córdoba, 14014, Spain.,New Therapies in Cancer Group, Maimónides Institute for Biomedical Research of Córdoba, 14005, Spain
| |
Collapse
|
53
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
54
|
Tóth SZ, Lőrincz T, Szarka A. Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxid Redox Signal 2018; 29:1516-1533. [PMID: 28974112 DOI: 10.1089/ars.2017.7125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Ascorbate (Asc) is an essential compound both in animals and plants, mostly due to its reducing properties, thereby playing a role in scavenging reactive oxygen species (ROS) and acting as a cofactor in various enzymatic reactions. Recent Advances: Growing number of evidence shows that excessive Asc accumulation may have negative effects on cellular functions both in humans and plants; inter alia it may negatively affect signaling mechanisms, cellular redox status, and contribute to the production of ROS via the Fenton reaction. CRITICAL ISSUES Both plants and humans tightly control cellular Asc levels, possibly via biosynthesis, transport, and degradation, to maintain them in an optimum concentration range, which, among other factors, is essential to minimize the potentially harmful effects of Asc. On the contrary, the Fenton reaction induced by a high-dose Asc treatment in humans enables a potential cancer-selective cell death pathway. FUTURE DIRECTIONS The elucidation of Asc induced cancer selective cell death mechanisms may give us a tool to apply Asc in cancer therapy. On the contrary, the regulatory mechanisms controlling cellular Asc levels are also to be considered, for example, when aiming at generating crops with elevated Asc levels.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- 1 Institute of Plant Biology , Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Lőrincz
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| | - András Szarka
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| |
Collapse
|
55
|
Brassica yellows virus' movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Sci Rep 2018; 8:16273. [PMID: 30389981 PMCID: PMC6215002 DOI: 10.1038/s41598-018-34591-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022] Open
Abstract
Poleroviruses are widely distributed and often of great economic importance because they cause a variety of symptoms, such as the rolling of young leaves, leaf color changes, and plant decline, in infected plants. However, the molecular mechanism behind these viral-induced symptoms is still unknown. Here, we verified the pathogenicity of the polerovirus Brassica yellows virus (BrYV) by transforming its full-length amplicon into Arabidopsis thaliana, which resulted in many abnormal phenotypes. To better understand the interactions between BrYV and its host, global transcriptome profiles of the transgenic plants were compared with that of non-transgenic Arabidopsis plants. An association between the BrYV- induced purple leaf symptoms and the activation of anthocyanin biosynthesis was noted. Using the transgenic approach, we found that movement protein of BrYV was responsible for the induction of these coloration symptoms. Collectively, our findings demonstrate the BrYV’ pathogenicity and show that the BrYV-induced purple leaf symptom resulted from its movement protein stimulating anthocyanin accumulation.
Collapse
|
56
|
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 2018; 7:38194. [PMID: 30311601 PMCID: PMC6221545 DOI: 10.7554/elife.38194] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022] Open
Abstract
Thiol-dependent redox regulation controls central processes in plant cells including photosynthesis. Thioredoxins reductively activate, for example, Calvin-Benson cycle enzymes. However, the mechanism of oxidative inactivation is unknown despite its importance for efficient regulation. Here, the abundant 2-cysteine peroxiredoxin (2-CysPrx), but not its site-directed variants, mediates rapid inactivation of reductively activated fructose-1,6-bisphosphatase and NADPH-dependent malate dehydrogenase (MDH) in the presence of the proper thioredoxins. Deactivation of phosphoribulokinase (PRK) and MDH was compromised in 2cysprxAB mutant plants upon light/dark transition compared to wildtype. The decisive role of 2-CysPrx in regulating photosynthesis was evident from reoxidation kinetics of ferredoxin upon darkening of intact leaves since its half time decreased 3.5-times in 2cysprxAB. The disadvantage of inefficient deactivation turned into an advantage in fluctuating light. Physiological parameters like MDH and PRK inactivation, photosynthetic kinetics and response to fluctuating light fully recovered in 2cysprxAB mutants complemented with 2-CysPrxA underlining the significance of 2-CysPrx. The results show that the 2-CysPrx serves as electron sink in the thiol network important to oxidize reductively activated proteins and represents the missing link in the reversal of thioredoxin-dependent regulation.
Collapse
Affiliation(s)
- Mohamad-Javad Vaseghi
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Michael Florian Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Melanie Gerken
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Helena Schnitzer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Sara Mareike Mueller
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
57
|
Liu CC, Chi C, Jin LJ, Zhu J, Yu JQ, Zhou YH. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:1762-1775. [PMID: 29566255 DOI: 10.1111/pce.13171] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 05/19/2023]
Abstract
The production of anthocyanin is regulated by light and corresponding photoreceptors. In this study, we found that exposure to blue light and overexpression of CRY1a are associated with increased accumulation of anthocyanin in tomato (Solanum lycopersicum L.). These responses are the result of changes in mRNA and the protein levels of SlHY5, which is a transcription factor. In vitro and in vivo experiments using electrophoretic mobility shift assay and ChIP-qPCR assays revealed that SlHY5 could directly recognize and bind to the G-box and ACGT-containing element in the promoters of anthocyanin biosynthesis genes, such as chalcone synthase 1, chalcone synthase 2, and dihydroflavonol 4-reductase. Silencing of SlHY5 in OE-CRY1a lines decreased the accumulation of anthocyanin. The findings presented here not only deepened our understanding of how light controls anthocyanin biosynthesis and associated photoprotection in tomato leaves, but also allowed us to explore potential targets for improving pigment production.
Collapse
Affiliation(s)
- Chao-Chao Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212021, China
| | - Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Li-Juan Jin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212021, China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Zijingang Road 866, Hangzhou, 310058, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
58
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
59
|
Li KT, Zhang J, Kang YH, Chen MC, Song TT, Geng H, Tian J, Yao YC. McMYB10 Modulates the Expression of a Ubiquitin Ligase, McCOP1 During Leaf Coloration in Crabapple. FRONTIERS IN PLANT SCIENCE 2018; 9:704. [PMID: 29915606 PMCID: PMC5994411 DOI: 10.3389/fpls.2018.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/08/2018] [Indexed: 05/23/2023]
Abstract
In higher plants, anthocyanins are protective secondary metabolites, which contribute to the color of leaves, stems, flowers, and fruits, and have been found to have an antioxidant role in human health. In this study, we determined the expression of McMYB10 and its specific E3 ubiquitin ligase, McCOP1, in crabapple leaves during the course of a day and in five leaf development stages. Interestingly, the results showed that the transcription level of McCOP1 genes was higher in daylight than at night, and the transcripts of McMYB10 presented a positive correlation with the transcription of McCOP1-1 and McCOP1-2 and anthocyanin accumulation in a crabapple cultivar with red-colored leaves. Several MYB transcription factor (TF) binding sites of the MYBCORE type were found in the McCOP1-1 and McCOP1-2 promoters, and we deduced that there may be a relationship between McMYB10 and McCOP1-1 and McCOP1-2 at the transcriptional level. Yeast one hybrid (Y1H) and electrophoretic mobility shift assays (EMSA) demonstrated that the McMYB10 TF binds specifically to the promoter of McCOP1-1 and McCOP1-2. Furthermore, increased levels of McMYB10 promoted anthocyanin biosynthesis and the expression level of McCOP1-1 and McCOP1-2 in crabapple leaves during continuous light treatments, and overexpression or silencing of McMYB10 in crabapple leaves and apple fruits also result in an increase or decrease, respectively, in the expression of McCOP1-1 and McCOP1-2 and in anthocyanin biosynthesis. Our results reveal a new self-regulation mechanism in where McMYB10 modulates its own expression by activating McCOP1-1 and McCOP1-2 expression to promote ubiquitination of the McMYB10 protein by McCOP1.
Collapse
Affiliation(s)
- Ke-Ting Li
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Jie Zhang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yan-Hui Kang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Meng-Chen Chen
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ting-Ting Song
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Hui Geng
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ji Tian
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yun-Cong Yao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
60
|
Plumb W, Townsend AJ, Rasool B, Alomrani S, Razak N, Karpinska B, Ruban AV, Foyer CH. Ascorbate-mediated regulation of growth, photoprotection, and photoinhibition in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2823-2835. [PMID: 29726917 PMCID: PMC5961140 DOI: 10.1093/jxb/ery170] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
The requirements for ascorbate for growth and photosynthesis were assessed under low (LL; 250 µmol m-2 s-1) or high (HL; 1600 µmol m-2 s-1) irradiance in wild-type Arabidopsis thaliana and two ascorbate synthesis mutants (vtc2-1 and vtc2-4) that have 30% wild-type ascorbate levels. The low ascorbate mutants had the same numbers of leaves but lower rosette area and biomass than the wild type under LL. Wild-type plants experiencing HL had higher leaf ascorbate, anthocyanin, and xanthophyll pigments than under LL. In contrast, leaf ascorbate levels were not increased under HL in the mutant lines. While the degree of oxidation measured using an in vivo redox reporter in the nuclei and cytosol of the leaf epidermal and stomatal cells was similar under both irradiances in all lines, anthocyanin levels were significantly lower in the low ascorbate mutants than in the wild type under HL. Differences in the photosynthetic responses of vtc2-1 and vtc2-4 mutants were observed. Unlike vtc2-1, the vtc2-4 mutants had wild-type zeaxanthin contents. While both low ascorbate mutants had lower levels of non-photochemical quenching of chlorophyll a fluorescence (NPQ) than the wild type under HL, qPd values were greater only in vtc2-1 leaves. Ascorbate is therefore essential for growth but not for photoprotection.
Collapse
Affiliation(s)
- William Plumb
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alexandra J Townsend
- Department of Cell and Molecular Biology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Technical College of Applied Science, Sulaimani Polytechnic University, Sulaimani, Kurdistan, Iraq
| | - Sarah Alomrani
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nurhayati Razak
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Barbara Karpinska
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alexander V Ruban
- Department of Cell and Molecular Biology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Correspondence:
| |
Collapse
|
61
|
Pellegrini E, Campanella A, Cotrozzi L, Tonelli M, Nali C, Lorenzini G. What about the detoxification mechanisms underlying ozone sensitivity in Liriodendron tulipifera? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8148-8160. [PMID: 28357799 DOI: 10.1007/s11356-017-8818-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Liriodendron tulipifera (known as the tulip tree) is a woody species that has been previously classified as sensitive to ozone (O3) in terms of visible leaf injuries and photosynthetic primary reactions. The objective of this work is to give a thorough description of the detoxification mechanisms that are at the basis of O3 sensitivity. Biochemical and molecular markers were used to characterize the response of 1-year-old saplings exposed to O3 (120 ppb, 5 h day-1, for 45 consecutive days) under controlled conditions. O3 effects resulted in a less efficient metabolism of Halliwell-Asada cycle as confirmed by the diminished capacity to convert the oxidized forms of ascorbate and glutathione in the reduced ones (AsA and GSH, respectively). The reduced activity of AsA and GSH regenerating enzymes indicates that de novo AsA biosynthesis occurred. This compound could be a cofactor of several plant-specific enzymes that are involved in the early part of the phenylpropanoid and flavonoid biosynthesis pathway, as confirmed by the significant rise of PAL activity (+75%). The induction of the defence-related secondary metabolites (in particular, rutin and caffeic acid were about threefold higher) and the concomitant increase in transcript levels of PAL and CHS genes (+120 and 30%, respectively) suggest that L. tulipifera utilized this route in order to partially counteract the O3-induced oxidative damage.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Campanella
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
62
|
Su Q, Chen G, Mescher MC, Peng Z, Xie W, Wang S, Wu Q, Liu J, Li C, Wang W, Zhang Y. Whitefly aggregation on tomato is mediated by feeding‐induced changes in plant metabolites that influence the behaviour and performance of conspecifics. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Su
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Gong Chen
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
- College of Plant ProtectionHunan Agricultural University Changsha Hunan China
| | - Mark C. Mescher
- Department of Environmental Systems ScienceETH Zürich Zürich Switzerland
| | - Zhengke Peng
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Shaoli Wang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Qingjun Wu
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Jie Liu
- National Agro‐Technical, Extension and Service Centre Beijing China
| | - Chuanren Li
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
| | - Wenkai Wang
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
| | - Youjun Zhang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
63
|
Stevens RG, Baldet P, Bouchet JP, Causse M, Deborde C, Deschodt C, Faurobert M, Garchery C, Garcia V, Gautier H, Gouble B, Maucourt M, Moing A, Page D, Petit J, Poëssel JL, Truffault V, Rothan C. A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response. FRONTIERS IN PLANT SCIENCE 2018; 9:137. [PMID: 29491875 PMCID: PMC5817626 DOI: 10.3389/fpls.2018.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/24/2018] [Indexed: 05/03/2023]
Abstract
Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes-ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream.
Collapse
Affiliation(s)
- Rebecca G. Stevens
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Pierre Baldet
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Paul Bouchet
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Mathilde Causse
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Catherine Deborde
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, Centre Institut National de la Recherche Agronomique de Bordeaux, Villenave d'Ornon, France
| | - Claire Deschodt
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Mireille Faurobert
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Cécile Garchery
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Virginie Garcia
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Hélène Gautier
- Institut National de la Recherche Agronomique, UR1115, Plantes et Systèmes de culture Horticoles, Avignon, France
| | - Barbara Gouble
- Institut National de la Recherche Agronomique, Université d'Avignon et des Pays du Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
| | - Mickaël Maucourt
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, Centre Institut National de la Recherche Agronomique de Bordeaux, Villenave d'Ornon, France
| | - Annick Moing
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, Centre Institut National de la Recherche Agronomique de Bordeaux, Villenave d'Ornon, France
| | - David Page
- Institut National de la Recherche Agronomique, Université d'Avignon et des Pays du Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
| | - Johann Petit
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Luc Poëssel
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Vincent Truffault
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
64
|
Soubeyrand E, Colombié S, Beauvoit B, Dai Z, Cluzet S, Hilbert G, Renaud C, Maneta-Peyret L, Dieuaide-Noubhani M, Mérillon JM, Gibon Y, Delrot S, Gomès E. Constraint-Based Modeling Highlights Cell Energy, Redox Status and α-Ketoglutarate Availability as Metabolic Drivers for Anthocyanin Accumulation in Grape Cells Under Nitrogen Limitation. FRONTIERS IN PLANT SCIENCE 2018; 9:421. [PMID: 29868039 PMCID: PMC5966944 DOI: 10.3389/fpls.2018.00421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/16/2018] [Indexed: 05/18/2023]
Abstract
Anthocyanin biosynthesis is regulated by environmental factors (such as light, temperature, and water availability) and nutrient status (such as carbon, nitrogen, and phosphate nutrition). Previous reports show that low nitrogen availability strongly enhances anthocyanin accumulation in non carbon-limited plant organs or cell suspensions. It has been hypothesized that high carbon-to-nitrogen ratio would lead to an energy excess in plant cells, and that an increase in flavonoid pathway metabolic fluxes would act as an "energy escape valve," helping plant cells to cope with energy and carbon excess. However, this hypothesis has never been tested directly. To this end, we used the grapevine Vitis vinifera L. cultivar Gamay Teinturier (syn. Gamay Freaux or Freaux Tintorier, VIVC #4382) cell suspension line as a model system to study the regulation of anthocyanin accumulation in response to nitrogen supply. The cells were sub-cultured in the presence of either control (25 mM) or low (5 mM) nitrate concentration. Targeted metabolomics and enzyme activity determinations were used to parametrize a constraint-based model describing both the central carbon and nitrogen metabolisms and the flavonoid (phenylpropanoid) pathway connected by the energy (ATP) and reducing power equivalents (NADPH and NADH) cofactors. The flux analysis (2 flux maps generated, for control and low nitrogen in culture medium) clearly showed that in low nitrogen-fed cells all the metabolic fluxes of central metabolism were decreased, whereas fluxes that consume energy and reducing power, were either increased (upper part of glycolysis, shikimate, and flavonoid pathway) or maintained (pentose phosphate pathway). Also, fluxes of flavanone 3β-hydroxylase, flavonol synthase, and anthocyanidin synthase were strongly increased, advocating for a regulation of the flavonoid pathway by alpha-ketoglutarate levels. These results strongly support the hypothesis of anthocyanin biosynthesis acting as an energy escape valve in plant cells, and they open new possibilities to manipulate flavonoid production in plant cells. They do not, however, support a role of anthocyanins as an effective mechanism for coping with carbon excess in high carbon to nitrogen ratio situations in grape cells. Instead, constraint-based modeling output and biomass analysis indicate that carbon excess is dealt with by vacuolar storage of soluble sugars.
Collapse
Affiliation(s)
- Eric Soubeyrand
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Sophie Colombié
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Bordeaux, IBVM, Bordeaux, France
| | - Bertrand Beauvoit
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Bordeaux, IBVM, Bordeaux, France
| | - Zhanwu Dai
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRA-Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Stéphanie Cluzet
- EA 3675 GESVAB, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Ghislaine Hilbert
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRA-Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Christel Renaud
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRA-Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Lilly Maneta-Peyret
- UMR 5200 Laboratoire de Biogenèse Membranaire, Université de Bordeaux, Bordeaux, France
| | | | - Jean-Michel Mérillon
- EA 3675 GESVAB, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Bordeaux, IBVM, Bordeaux, France
| | - Serge Delrot
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
| | - Eric Gomès
- UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Bordeaux, France
- *Correspondence: Eric Gomès,
| |
Collapse
|
65
|
de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana. Antioxid Redox Signal 2017; 27:1505-1519. [PMID: 28457165 PMCID: PMC5678362 DOI: 10.1089/ars.2016.6959] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
Collapse
Affiliation(s)
- Ambra de Simone
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Rachel Hubbard
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Natanael Viñegra de la Torre
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Yazhini Velappan
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia
| | - Michael Wilson
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Michael J Considine
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia .,5 The UWA Institute of Agriculture, The University of Western Australia , Perth, Australia .,6 The Department of Agriculture and Food Western Australia, South Perth, Australia
| | - Wim J J Soppe
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany .,7 Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn , Bonn, Germany
| | - Christine H Foyer
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia
| |
Collapse
|
66
|
iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta. Sci Rep 2017; 7:5670. [PMID: 28720800 PMCID: PMC5515984 DOI: 10.1038/s41598-017-06074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/02/2017] [Indexed: 11/10/2022] Open
Abstract
Actinidia arguta ‘Tianyuanhong’ is a new kiwifruit variety with an all-red pericarp and pulp, in contrast to the all-green pulp of A. arguta ‘Yongfengyihao’. Transcriptome profile analysis of fruit color has been reported, however, the metabolic mechanisms producing red flesh remain unknown, and it is unclear why the pulp of ‘Tianyuanhong’ is red rather than green. Herein, we identified differences between the proteomes of two A. arguta cultivars with different fruit color by using iTRAQ-based quantitative proteomic methods during the stage of color change. In total, 2310 differentially abundant proteins were detected between the two cultivars at 70 and 100 days after flowering, and the protein functions were analyzed based on KEGG and GO. The largest group of differentially expressed proteins were related to photosynthesis, glyoxylate metabolism, N metabolism, and anthocyanin biosynthesis. Finally, to verify the iTRAQ data, 12 representative genes encoding differentially expressed proteins were analyzed via quantitative real-time PCR, and these genes differed in transcriptional and translational expression levels. Our proteomic study contributes to understanding the metabolic pathways and biological processes involved in fruit color changes in different cultivars of A. arguta. These data and analyses will provide new insight into the development of kiwifruit flesh color.
Collapse
|
67
|
Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM. Photosynthesis-dependent H 2O 2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 2017; 8:49. [PMID: 28663550 PMCID: PMC5491514 DOI: 10.1038/s41467-017-00074-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H2O2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.
Collapse
Affiliation(s)
- Marino Exposito-Rodriguez
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
68
|
Vidal-Meireles A, Neupert J, Zsigmond L, Rosado-Souza L, Kovács L, Nagy V, Galambos A, Fernie AR, Bock R, Tóth SZ. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase. THE NEW PHYTOLOGIST 2017; 214:668-681. [PMID: 28112386 DOI: 10.1111/nph.14425] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and 1 O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.
Collapse
Affiliation(s)
- André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Anikó Galambos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
69
|
Tohge T, Fernie AR. Leveraging Natural Variance towards Enhanced Understanding of Phytochemical Sunscreens. TRENDS IN PLANT SCIENCE 2017; 22:308-315. [PMID: 28173981 DOI: 10.1016/j.tplants.2017.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 05/28/2023]
Abstract
The dependency of plants on sunlight renders exposure to UV a constant hazard. Light of this wavelength is damaging to proteins, RNA, and DNA, with damage to the latter resulting in a high mutagenic potential. To acclimate to environmental changes in light wavelengths and intensity, plants accumulate the production of UV-B-protectant phytochemicals, such as flavonoids and vitamins. Here, we review current and emerging knowledge concerning the biochemical response of plants to UV-B exposure. We additionally outline our opinion that the adoption of broad natural variance represents a powerful strategy by which to identify both novel UV-B-relevant metabolites and the genes regulating their abundance. Finally, we discuss how such information may guide future metabolic engineering strategies aimed at producing stress-tolerant plants.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
70
|
Lee WJ, Jeong CY, Kwon J, Van Kien V, Lee D, Hong SW, Lee H. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana. PLANT CELL REPORTS 2016; 35:2369-2379. [PMID: 27562381 DOI: 10.1007/s00299-016-2040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/10/2016] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE : pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress. Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
Collapse
Affiliation(s)
- Won Je Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 136-713, Republic of Korea
| | - Chan Young Jeong
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 136-713, Republic of Korea
| | - Jaeyoung Kwon
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Vu Van Kien
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Center, Chonnam National University, Gwangju, Republic of Korea.
| | - Hojoung Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
71
|
Zhu H, Zhang TJ, Zhang P, Peng CL. Pigment patterns and photoprotection of anthocyanins in the young leaves of four dominant subtropical forest tree species in two successional stages under contrasting light conditions. TREE PHYSIOLOGY 2016; 36:1092-1104. [PMID: 27255467 DOI: 10.1093/treephys/tpw047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Light-driven subtropical forest succession is a dynamic process in which mesophytic climax communities replace heliophytic ones. Juvenile leaves (particularly mesophytic ones) are sensitive to high irradiances. To determine the photoprotection strategy that juvenile leaves use during subtropical forest succession, anthocyanin accumulation patterns were investigated in the young leaves of two mid-successional dominant trees (i.e., Schima superba and Castanopsis fissa) and two late-successional dominant trees (i.e., Cryptocarya concinna and Acmena acuminatissima) grown in 100% (FL) and 25% (LL) of full sunlight. All four tree species produced anthocyanins in their juvenile leaves when <50% of chlorophylls and carotenoids had developed. Higher anthocyanin concentrations accumulated in the young leaves grown in FL than in those grown in LL and in late-successional than in mid-successional trees. The juvenile leaves of late-successional trees were subjected to higher light-induced photoinhibition than those of mid-successional trees, despite of the fact that the leaves of late-successional trees showed greater non-photochemical quenching than those of mid-successional trees. Under LL conditions, photosystem II excitation pressure (1 - qP) was significantly higher in the juvenile leaves of late-successional trees than those of mid-successional trees. Under either FL or LL conditions, anthocyanin concentrations in juvenile leaves were negatively related to the light compensation point in mature leaves across species. However, anthocyanin concentrations were positively related to the antioxidant capacity of juvenile leaves. These results indicate that anthocyanin accumulation in the juvenile leaves of subtropical dominant trees during forest community succession is a flexible photoprotective response to ambient irradiances according to leaf sensitivity to light.
Collapse
Affiliation(s)
- H Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China School of Life Science & Food Technology, Hanshan Normal University, Chaozhou 521041, PR China
| | - T J Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China
| | - P Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China
| | - C L Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China
| |
Collapse
|
72
|
Petridis A, Döll S, Nichelmann L, Bilger W, Mock HP. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. THE NEW PHYTOLOGIST 2016; 211:912-25. [PMID: 27125220 DOI: 10.1111/nph.13986] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain.
Collapse
Affiliation(s)
- Antonios Petridis
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Stefanie Döll
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Lars Nichelmann
- Botanical Institute, University of Kiel, D-24098, Kiel, Germany
| | - Wolfgang Bilger
- Botanical Institute, University of Kiel, D-24098, Kiel, Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| |
Collapse
|
73
|
Chen L, Huang Y, Xu M, Cheng Z, Zhang D, Zheng J. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. PLoS One 2016; 11:e0159238. [PMID: 27415428 PMCID: PMC4944901 DOI: 10.1371/journal.pone.0159238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. RESULTS The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. CONCLUSIONS Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
Collapse
Affiliation(s)
- Linghua Chen
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Yining Huang
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Department of Food and Biology Engineering, Zhangzhou Institute of Technology, Zhangzhou Fujian, China
| | - Ming Xu
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Zuxin Cheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory for Plant Functional Genomics and Resources, Shanghai, China
| | - Jingui Zheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| |
Collapse
|
74
|
Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 2016; 6:29164. [PMID: 27404993 PMCID: PMC4941517 DOI: 10.1038/srep29164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 01/19/2023] Open
Abstract
The cross talk among hydrogen peroxide (H2O2), nitric oxide (NO) and UV RESISTANCE LOCUS8 (UVR8) in UV-B-induced anthocyanin accumulation in the hypocotyls of radish sprouts was investigated. The results showed that UV-B irradiation significantly increased the anthocyanin accumulation and the expression of UVR8, and a similar trend appeared in radish sprouts subjected to cadmium, chilling and salt stresses regardless of light source. However, these responses disappeared under dark exposure. These results suggest that abiotic stress-induced anthocyanin accumulation and UVR8 expression were light-dependent. Moreover, abiotic stresses all enhanced the production of H2O2 and exogenous H2O2 addition significantly increased the anthocyanin concentration and UVR8 transcription, while these increases were severely inhibited by addition of dimethylthiourea (DMTU, a chemical trap for H2O2). It seems to suggest that H2O2 played an important role in the anthocyanin biosynthesis. Furthermore, addition of 0.5 mM sodium nitroprusside (SNP, a NO-releasing compound) substantially induced the anthocyanin accumulation, and H2O2-induced anthocyanin accumulation and UVR8 expression were significantly suppressed by co-treatment with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO, a NO scavenger), which was parallel with the expression of anthocyanin biosynthesis-related transcription factors and structural genes. All these results demonstrate that both H2O2 and NO are involved in UV-B-induced anthocyanin accumulation, and there is a crosstalk between them as well as a classical UVR8 pathway.
Collapse
|
75
|
Nagy V, Vidal-Meireles A, Tengölics R, Rákhely G, Garab G, Kovács L, Tóth SZ. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2016; 39:1460-72. [PMID: 26714836 DOI: 10.1111/pce.12701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/10/2023]
Abstract
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Roland Tengölics
- Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
76
|
Wang S, Pan D, Lv X, Song X, Qiu Z, Huang C, Huang R, Chen W. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato. J Proteomics 2016; 143:298-305. [PMID: 26957144 DOI: 10.1016/j.jprot.2016.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED A comparative proteomic approach was carried out to investigate anthocyanin biosynthesis in the tuberous roots of yellow sweet potato (YSP) and purple sweet potato (PSP) cultivars. More than 800 proteins were reproducibly detected through two-dimensional electrophoresis (2-DE), of which 50 proteins with 39 more and 11 less accumulated in PSP were identified through matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Most of the analyzed proteins are annotated to be involved in starch metabolism and glycolysis. The more abundant starch phosphorylase (SP) and phosphoglucomutase (PGM) in PSP promoted the synthesis of precursors for anthocyanin synthesis. The results implied that starch degradation provided abundant substrates for anthocyanin biosynthesis in tuberous roots of PSP. 24kDa vacuolar protein (VP24) is related to anthocyanin transport and accumulation in vacuoles. Vacuole-associated annexin protein, VCaB42, is correlated with tonoplast biogenesis. Synergistic action of the two proteins is probably involved in the microautophagy and the intravacuolar trapping of anthocyanins. Interestingly, both VCaB42 and VP24 were more accumulated in PSP, suggesting that anthocyanins generated in the cytosol were transported into and became stored in the vacuoles of PSP. The present study provides new insights into the mechanism of tuberous root-specific anthocyanin accumulation in PSP. BIOLOGICAL SIGNIFICANCE Sweet potato ranks as the seventh most important crop worldwide. Purple sweet potato, a special sweet potato cultivar, has been extensively investigated because large amounts of anthocyanin accumulate in its tuberous roots. Anthocyanin is well known for its free radical-scavenging activity and beneficial effects on human health. Its biosynthetic pathway has been well characterized in model plants. Although large-scale systematic studies have been performed to identify the proteins present in sweet potato, information on the regulation of anthocyanin synthesis in sweet potato is insufficient. Our proteome study demonstrated that starch degradation may contribute to anthocyanin accumulation in purple sweet potato. To our knowledge, this study is the first to propose that starch degradation may provide precursors of anthocyanin biosynthesis in sweet potato.
Collapse
Affiliation(s)
- Shaoqing Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dezhuo Pan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaojie Lv
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaomin Song
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhimin Qiu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chunmei Huang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ronghui Huang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Wei Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
77
|
Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:870-7. [PMID: 26927949 DOI: 10.1080/09168451.2015.1135042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.
Collapse
Affiliation(s)
- Masahiro Noshi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Risa Hatanaka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Noriaki Tanabe
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | - Yusuke Terai
- b Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Takanori Maruta
- b Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| | - Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| |
Collapse
|
78
|
He Q, Zhang Z, Zhang L. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:132-45. [PMID: 26709726 DOI: 10.1021/acs.jafc.5b04674] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution.
Collapse
Affiliation(s)
- Qiong He
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Zhanfeng Zhang
- College of Plant Protection, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Lugang Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University , 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
79
|
Bielczynski LW, Schansker G, Croce R. Effect of Light Acclimation on the Organization of Photosystem II Super- and Sub-Complexes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:105. [PMID: 26925068 PMCID: PMC4756287 DOI: 10.3389/fpls.2016.00105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/20/2016] [Indexed: 05/18/2023]
Abstract
To survive under highly variable environmental conditions, higher plants have acquired a large variety of acclimation responses. Different strategies are used to cope with changes in light intensity with the common goal of modulating the functional antenna size of Photosystem II (PSII). Here we use a combination of biochemical and biophysical methods to study these changes in response to acclimation to high light (HL). After 2 h of exposure, a decrease in the amount of the large PSII supercomplexes is observed indicating that plants are already acclimating to HL at this stage. It is also shown that in HL the relative amount of antenna proteins decreases but this decrease is far less than the observed decrease of the functional antenna size, suggesting that part of the antenna present in the membranes in HL does not transfer energy efficiently to the reaction center. Finally, we observed LHCII monomers in all conditions. As the solubilization conditions used do not lead to monomerization of purified LHCII trimers, we should conclude that a population of LHCII monomers exists in the membrane. The relative amount of LHCII monomers strongly increases in plants acclimated to HL, while no changes in the trimer to monomer ratio are observed upon short exposure to stress.
Collapse
|
80
|
Lim B, Smirnoff N, Cobbett CS, Golz JF. Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1025. [PMID: 27468291 PMCID: PMC4943039 DOI: 10.3389/fpls.2016.01025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 05/09/2023]
Abstract
In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis - VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20-30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70-80% decrease in ascorbate levels that has been assumed in past studies.
Collapse
Affiliation(s)
- Benson Lim
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | | | - John F. Golz
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
- *Correspondence: John F. Golz, orcid.org/0000-0001-9478-5459
| |
Collapse
|
81
|
Chyau CC, Chu CC, Chen SY, Duh PD. Djulis (Chenopodiun formosaneum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
82
|
Gene Expression Profiling of Development and Anthocyanin Accumulation in Kiwifruit (Actinidia chinensis) Based on Transcriptome Sequencing. PLoS One 2015; 10:e0136439. [PMID: 26301713 PMCID: PMC4547809 DOI: 10.1371/journal.pone.0136439] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/03/2015] [Indexed: 12/03/2022] Open
Abstract
Red-fleshed kiwifruit (Actinidia chinensis Planch. ‘Hongyang’) is a promising commercial cultivar due to its nutritious value and unique flesh color, derived from vitamin C and anthocyanins. In this study, we obtained transcriptome data of ‘Hongyang’ from seven developmental stages using Illumina sequencing. We mapped 39–54 million reads to the recently sequenced kiwifruit genome and other databases to define gene structure, to analyze alternative splicing, and to quantify gene transcript abundance at different developmental stages. The transcript profiles throughout red kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as phytohormones, sugars, starch and L-ascorbic acid, which are indispensable for the development and formation of quality fruit. Candidate genes for these pathways were identified through MapMan and phylogenetic analysis. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of L-ascorbic acid was very active, primarily through the L-galactose pathway. The genes responsible for the accumulation of anthocyanin in red kiwifruit were identified, and their expression levels were investigated during kiwifruit development. This survey of gene expression during kiwifruit development paves the way for further investigation of the development of this uniquely colored and nutritious fruit and reveals which factors are needed for high quality fruit formation. This transcriptome data and its analysis will be useful for improving kiwifruit genome annotation, for basic fruit molecular biology research, and for kiwifruit breeding and improvement.
Collapse
|
83
|
Tian J, Han ZY, Zhang J, Hu Y, Song T, Yao Y. The Balance of Expression of Dihydroflavonol 4-reductase and Flavonol Synthase Regulates Flavonoid Biosynthesis and Red Foliage Coloration in Crabapples. Sci Rep 2015; 5:12228. [PMID: 26192267 PMCID: PMC4507444 DOI: 10.1038/srep12228] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/22/2015] [Indexed: 11/09/2022] Open
Abstract
Red leaf color is an attractive trait of Malus families, including crabapple (Malus spp.); however, little is known about the molecular mechanisms that regulate the coloration. Dihydroflavonols are intermediates in the production of both colored anthocyanins and colorless flavonols, and this current study focused on the gene expression balance involved in the relative accumulation of these compounds in crabapple leaves. Levels of anthocyanins and the transcript abundances of the anthocyanin biosynthetic gene, dihydroflavonol 4-reductase (McDFR) and the flavonol biosynthetic gene, flavonol synthase (McFLS), were assessed during the leaf development in two crabapple cultivars, 'Royalty' and 'Flame'. The concentrations of anthocyanins and flavonols correlated with leaf color and we propose that the expression of McDFR and McFLS influences their accumulation. Further studies showed that overexpression of McDFR, or silencing of McFLS, increased anthocyanin production, resulting in red-leaf and red fruit peel phenotypes. Conversely, elevated flavonol production and green phenotypes in crabapple leaves and apple peel were observed when McFLS was overexpressed or McDFR was silenced. These results suggest that the relative activities of McDFR and McFLS are important determinants of the red color of crabapple leaves, via the regulation of the metabolic fate of substrates that these enzymes have in common.
Collapse
Affiliation(s)
- Ji Tian
- 1] Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China [2] Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| | - Zhen-yun Han
- 1] Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China [2] Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- 1] Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China [2] Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| | - YuJing Hu
- 1] Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China [2] Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| | - Tingting Song
- 1] Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China [2] Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- 1] Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China [2] Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
84
|
Ye J, Hu T, Yang C, Li H, Yang M, Ijaz R, Ye Z, Zhang Y. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis. PLoS One 2015; 10:e0130885. [PMID: 26133783 PMCID: PMC4489915 DOI: 10.1371/journal.pone.0130885] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tixu Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Congmei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mingze Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Raina Ijaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
85
|
Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JAP, Myburg AA, Grima-Pettenati J. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. THE NEW PHYTOLOGIST 2015; 206:1364-77. [PMID: 25250741 DOI: 10.1111/nph.13039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 05/19/2023]
Abstract
The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.
Collapse
Affiliation(s)
- Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Eduardo Leal Oliveira Camargo
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Victor Carocha
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles A Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jorge A Pinto Paiva
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
- Instituto de Investigaçao Científica e Tropical (IICT/MNE) Palacio Burnay - Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
86
|
Yao Y, You J, Ou Y, Ma J, Wu X, Xu G. Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 90:23-31. [PMID: 25749732 DOI: 10.1016/j.plaphy.2015.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/26/2015] [Indexed: 05/21/2023]
Abstract
Ascorbate and tocopherol are important hydrophilic or lipophilic antioxidants in plants, while their crucial roles in the antioxidant defense system under ultraviolet B radiation were not well understood. The mutants of Arabidopsis thaliana deficient in ascorbate (vtc1 and vtc2) or tocopherol (vte1) were used to analyze their physiological, biochemical and metabolic change in responses to Ultraviolet B radiation. Results showed that loss of either ascorbate or tocopherol caused reduction in phenylpropanoid and flavonol glycosides compounds, as well as reduction in superoxide dismutase activity and total cellular antioxidant capacity. This ultimately led to higher oxidative stress as well as lower levels of photosynthetic pigments (carotenoid and chlorophyll) and CO2 assimilation rate in the vtc1, vtc2, and vte1 mutants than the wild type under UV-B radiation, besides unstable early light-induced protein (ELIP1) in those mutants. On the other hand, the loss of tocopherol in vte1 mutants was compensated by the increase of zeaxanthin and anthocyanin contents, which armed vte1 mutants with higher heat dissipation capacity in PS II and higher antioxidative capacity than vtc mutants. Consequently the tolerance to UV-B radiation were much higher in vte1 mutant than in vtc mutants, furthermore, PS II function and light harvesting protein (LHCb1) abundance were reduced only in ascorbate-deficient mutant relative to wild type. Our results suggested that the ascorbate and tocopherol provided not only direct protective function against UV-B radiation but also indirect effects by influencing other protective system, in particular by affecting the stability of various carotenoid and phenylpropanoid compounds.
Collapse
Affiliation(s)
- Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; China Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China.
| | - Jingjing You
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yongbin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinbiao Ma
- China Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| | - Xiuli Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gang Xu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
87
|
Zhang J, Niu J, Duan Y, Zhang M, Liu J, Li P, Ma F. Photoprotection mechanism in the 'Fuji' apple peel at different levels of photooxidative sunburn. PHYSIOLOGIA PLANTARUM 2015; 154:54-65. [PMID: 25185895 DOI: 10.1111/ppl.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 05/06/2023]
Abstract
The xanthophyll cycle, flavonoid metabolism, the antioxidant system and the production of active oxygen species were analyzed in the peel of 'Fuji' apples re-exposed to sunlight after extended periods of fruit bagging treatment, resulting in different levels of photooxidative sunburn. After re-exposing bagged fruits to sunlight, the production of active oxygen species and the photoprotective capacity in apple peels were both significantly enhanced. As sunburn severity increased, the concentration of hydrogen peroxide increased, while xanthophyll cycle pool size decreased. For the key genes involved in flavonoid synthesis, expressions of MdMYB10 and MdPAL were upregulated, whereas the expressions of MdCHS, MdANS, MdFLS and MdUFGT were downregulated in sunburnt fruit peel. Correspondingly, concentrations of both quercetin-3-glycoside and cyanidin-3-galactoside decreased. Total ascorbate concentrations decreased as sunburn severity increased, with the decrease being faster for oxidized than for reduced ascorbate. Transcription levels of MdGMP, MdGME, MdGGP, MdGPP, MdGalDH and MdGalLDH, the genes involved in ascorbate synthesis, were similar in non-sunburnt and sunburnt fruit peels, whereas activities of l-galactose dehydrogenase and l-galactono-1,4-lactone dehydrogenase decreased in severely sunburnt peel. Although activities of superoxide dismutase and ascorbate peroxidase increased, the activities of monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase decreased as sunburn severity increased. In summary, the occurrence of photooxidative sunburn in 'Fuji' apple peel is closely associated with a relatively lower xanthophyll cycle pool size, reduced levels of ascorbate reduction and synthesis and reduced flavonoid synthesis. Our data are consistent with the idea that ascorbate plays a key role in protecting apple fruit from photooxidative sunburn.
Collapse
Affiliation(s)
- Jiangli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
88
|
Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ. 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. PLANT PHYSIOLOGY 2015; 167:1592-603. [PMID: 25667319 PMCID: PMC4378167 DOI: 10.1104/pp.114.255356] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX.
Collapse
Affiliation(s)
- Jasmin Awad
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Henrik U Stotz
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Agnes Fekete
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Markus Krischke
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Cornelia Engert
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Michel Havaux
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Susanne Berger
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| | - Martin J Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany (J.A., H.U.S., A.F., M.K., C.E., S.B., M.J.M.); andBiologie Végétale et Microbiologie Environnementales, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Aix Marseille University, 13108 Saint-Paul-lez-Durance, France (M.H.)
| |
Collapse
|
89
|
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. TRENDS IN PLANT SCIENCE 2015; 20:176-85. [PMID: 25577424 DOI: 10.1016/j.tplants.2014.12.001] [Citation(s) in RCA: 1013] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely known for the colors they confer to plant tissues, their contribution to plant fitness and health benefits, and impact on food quality. As convenient biological markers, flavonoids have been instrumental in major genetic and epigenetic discoveries. We review recent advances in the characterization of the underlying regulatory mechanisms of flavonoid biosynthesis, with a special focus on the MBW (MYB-bHLH-WDR) protein complexes. These proteins are well conserved in higher plants. They participate in different types of controls ranging from fine-tuned transcriptional regulation by environmental factors to the initiation of the flavonoid biosynthesis pathway by positive regulatory feedback. The MBW protein complexes provide interesting models for investigating developmentally or environmentally controlled transcriptional regulatory networks.
Collapse
Affiliation(s)
- Wenjia Xu
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Christian Dubos
- INRA and Centre National de la Recherche Scientifique (CNRS) SupAgro-M, Université Montpellier 2 (UM2), Biochimie et Physiologie Moléculaire des Plantes, 2 place Viala, 34060 Montpellier CEDEX 1, France.
| | - Loïc Lepiniec
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| |
Collapse
|
90
|
Cao H, Wang J, Dong X, Han Y, Ma Q, Ding Y, Zhao F, Zhang J, Chen H, Xu Q, Xu J, Deng X. Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC PLANT BIOLOGY 2015; 15:27. [PMID: 25644332 PMCID: PMC4323224 DOI: 10.1186/s12870-015-0426-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/15/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Carotenoids are indispensable plant secondary metabolites that are involved in photosynthesis, antioxidation, and phytohormone biosynthesis. Carotenoids are likely involved in other biological functions that have yet to be discovered. In this study, we integrated genomic, biochemical, and cellular studies to gain deep insight into carotenoid-related biological processes in citrus calli overexpressing CrtB (phytoene synthase from Pantoea agglomerans). Fortunella hindsii Swingle (a citrus relative) and Malus hupehensis (a wild apple) calli were also utilized as supporting systems to investigate the effect of altered carotenoid accumulation on carotenoid-related biological processes. RESULTS Transcriptomic analysis provided deep insight into the carotenoid-related biological processes of redox status, starch metabolism, and flavonoid/anthocyanin accumulation. By applying biochemical and cytological analyses, we determined that the altered redox status was associated with variations in O2 (-) and H2O2 levels. We also ascertained a decline in starch accumulation in carotenoid-rich calli. Furthermore, via an extensive cellular investigation of the newly constructed CrtB overexpressing Fortunella hindsii Swingle, we demonstrated that starch level reducation occurred in parallel with significant carotenoid accumulation. Moreover, studying anthocyanin-rich Malus hupehensis calli showed a negative effect of carotenoids on anthocyanin accumulation. CONCLUSIONS In citrus, altered carotenoid accumulation resulted in dramatic effects on metabolic processes involved in redox modification, starch degradation, and flavonoid/anthocyanin biosynthesis. These findings provided new perspectives to understand the biological importance of carotenogenesis and of the developmental processes associated with the nutritional and sensory qualities of agricultural products that accumulate carotenoids.
Collapse
Affiliation(s)
- Hongbo Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Jiangbo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: College of Plant Science, Tarim University, 843300, Alar, China.
| | - Xintian Dong
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Yan Han
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Fei Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Jiancheng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Present address: Shanxi Agricultural University, 030801, Taigu, Shanxi, China.
| | - Haijiang Chen
- College of Horticulture, Agricultural University of Hebei, 071001, Baoding, Hebei, China.
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
91
|
Sultana N, Florance HV, Johns A, Smirnoff N. Ascorbate deficiency influences the leaf cell wall glycoproteome in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:375-84. [PMID: 24393051 DOI: 10.1111/pce.12267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 05/10/2023]
Abstract
The cell wall forms the first line of interaction between the plant and the external environment. Based on the observation that ascorbate-deficient vtc mutants of Arabidopsis thaliana have increased cell wall peroxidase activity, the cell wall glycoproteome of vtc2-2 was investigated. Glycoproteins were purified from fully expanded leaves by Concanavalin A affinity chromatography and analysed by liquid chromatography quadrupole time-of-flight mass spectrometry. This procedure identified 63 proteins with predicted glycosylation sites and cell wall localization. Of these, 11 proteins were differentially expressed between vtc2-2 and wild type. In particular, PRX33/34 were identified as contributing to increased peroxidase activity in response to ascorbate deficiency. This is the same peroxidase previously shown to contribute to hydrogen peroxide generation and pathogen resistance. Three fasciclin-like arabinogalactan proteins (FLA1, 2 and 8) had lower abundance in vtc2-2. Inspection of published microarray data shows that these also have lower gene expression in vtc1 and vtc2-1 and are decreased in expression by pathogen challenge and oxidative stresses. Ascorbate deficiency therefore impacts expression of cell wall proteins involved in pathogen responses and these presumably contribute to the increased resistance of vtc mutants to biotrophic pathogens.
Collapse
Affiliation(s)
- Nighat Sultana
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | | | | | | |
Collapse
|
92
|
Tanaka H, Maruta T, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: the partial involvement of GENOMES UNCOUPLED 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:20-9. [PMID: 25575988 DOI: 10.1016/j.plantsci.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 05/08/2023]
Abstract
Previous findings have suggested that light and plastid-derived signals are involved in the regulation of biosynthetic pathways for l-ascorbic acid (AsA) and tocopherols (Toc). Photosynthetic electron transport (PET) activity, plastid gene expression (PGE), and the tetrapyrrole metabolism have been identified as signals that regulate nuclear gene expression through the GENOMES UNCOUPLED 1 (GUN1) protein. Here, we examined the effects of disrupting GUN1 on these pathways. The expression of vitamin C defective 2 (VTC2) and tocopherol cyclase (TC) genes, which encode key enzymes in the AsA and Toc biosynthetic pathways, respectively, was affected by illumination and darkness in parallel with the levels of both these antioxidants. However, the GUN1 disruption had no effect on these biosynthetic pathways under light-dark conditions. All treatments that inhibited PET, PGE, and the tetrapyrrole metabolism interrupted both biosynthetic pathways; however, this was partially mitigated by the GUN1 disruption. The expression patterns of VTC2 and TC reflected the levels of both antioxidants under most of the conditions examined. Our results suggest that the transcriptional control of VTC2 and TC by light and plastid-derived signals is important for the regulation of the biosynthetic pathways, and that GUN1 is at least partially involved in the plastid-derived signals-dependent regulation.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yukinori Yabuta
- School of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori 680-8550, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
93
|
MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. THE NEW PHYTOLOGIST 2015; 205:642-52. [PMID: 25412428 DOI: 10.1111/nph.13090] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 05/21/2023]
Abstract
Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy. Here we show that, in Arabidopsis, low temperatures during seed maturation result in an increase in phenylpropanoid gene expression in seeds and that this correlates with higher concentrations of seed coat procyanidins. Lower maturation temperatures cause differences in coat permeability to tetrazolium, and mutants with increased seed coat permeability and/or low procyanidin concentrations are less able to enter strongly dormant states after exposure to low temperatures during seed maturation. Our data show that maternal temperature signalling regulates seed coat properties, and this is an important pathway through which the environmental signals control primary dormancy depth.
Collapse
Affiliation(s)
- Dana R MacGregor
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK; Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Ln, Norwich, Norfolk, NR4, 7UH, UK
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proc Natl Acad Sci U S A 2014; 111:18787-92. [PMID: 25516986 DOI: 10.1073/pnas.1412274111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seasonal behavior is important for fitness in temperate environments but it is unclear how progeny gain their initial seasonal entrainment. Plants use temperature signals to measure time of year, and changes to life histories are therefore an important consequence of climate change. Here we show that in Arabidopsis the current and prior temperature experience of the mother plant is used to control germination of progeny seeds, via the activation of the florigen Flowering Locus T (FT) in fruit tissues. We demonstrate that maternal past and current temperature experience are transduced to the FT locus in silique phloem. In turn, FT controls seed dormancy through inhibition of proanthocyanidin synthesis in fruits, resulting in altered seed coat tannin content. Our data reveal that maternal temperature history is integrated through FT in the fruit to generate a metabolic signal that entrains the behavior of progeny seeds according to time of year.
Collapse
|
95
|
Zhang J, Chen C, Zhang D, Li H, Li P, Ma F. Reactive oxygen species produced via plasma membrane NADPH oxidase regulate anthocyanin synthesis in apple peel. PLANTA 2014; 240:1023-35. [PMID: 25000919 DOI: 10.1007/s00425-014-2120-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/02/2014] [Indexed: 05/12/2023]
Abstract
Solar ultraviolet irradiation regulates anthocyanin synthesis in apple peel by modulating the production of reactive oxygen species via plasma membrane NADPH oxidase instead of other pathways. The synthesis of anthocyanin in apple peels is dependent upon solar irradiation. Using 3-mm commercial glass to attenuate solar UV-A and UV-B light, we confirmed that solar UV irradiation regulated anthocyanin synthesis in apple peels after exposing previously bagged fruit to sunlight. During sunlight exposure, UV attenuation did not affect the expression of MdHY5, MdCOP1, or MdCRY2, but significantly lowered plasma membrane NADPH oxidase activity and superoxide anion concentrations. UV attenuation also reduced the expression levels of MdMYB10, MdPAL, MdCHS, MdF3H, MdDFR, MdANS and MdUFGT1, UDP-glycose:flavonoid 3-O-glycosyltransferase (UFGT) activity, and local concentrations of anthocyanin and quercetin-3-glycoside. In contrast, exogenous application of hydrogen peroxide could enhance anthocyanin and quercetin-3-glycoside synthesis. Xanthophyll cycle pool size on a chlorophyll basis was higher but its de-epoxidation was lower under direct sunlight irradiation than that under UV-attenuating conditions. This suggests that reactive oxygen species (ROS) produced in chloroplast are not major contributors to anthocyanin synthesis regulation. Inhibition of plasma membrane NADPH oxidase activity lowered the production of ROS through this mechanism, significantly inhibited the synthesis of anthocyanin, and increased the total production of ROS in apple peel under direct sunlight irradiation, suggesting that ROS produced via plasma membrane NADPH oxidase regulates anthocyanin synthesis. In summary, solar UV irradiation regulated anthocyanin synthesis in apple peels by modulating the production of ROS via plasma membrane NADPH oxidase.
Collapse
Affiliation(s)
- Jiangli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Taicheng Rd. No. 3, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
96
|
Li X, Uddin MR, Park WT, Kim YB, Seo JM, Kim SJ, Nou IS, Lee J, Kim H, Park SU. Accumulation of anthocyanin and related genes expression during the development of cabbage seedlings. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
97
|
Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJ, Dicke M. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2203-17. [PMID: 24619996 PMCID: PMC3991749 DOI: 10.1093/jxb/eru096] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.
Collapse
Affiliation(s)
- Nawaporn Onkokesung
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straβe 8, D-07745 Jena, Germany
| | - Arjen van Doorn
- Keygene NV, Agro Business Park 90, 6708OW, Wageningen, The Netherlands
| | - Robert C. Schuurink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Joop J.A. van Loon
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700EH Wageningen, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
98
|
Maruta T, Noshi M, Nakamura M, Matsuda S, Tamoi M, Ishikawa T, Shigeoka S. Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:61-8. [PMID: 24576765 DOI: 10.1016/j.plantsci.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/03/2023]
Abstract
Anthocyanins are important for preventing photoinhibition and photodamage. By comprehensive reverse genetic analysis of chloroplast-produced H2O2-responsive genes, we isolated here an anthocyanin-deficient mutant under photooxidative stress, which lacked ferulate 5-hydroxylase 1 (FAH1) involved in the phenylpropanoid pathway. Interestingly, the expression of anthocyanin biosynthesis-associated genes was also inhibited in this mutant. These findings suggest that FAH1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Furthermore, we found that estrogen-inducible silencing of thylakoid membrane-bound ascorbate peroxidase, which is a major H2O2-scavenging enzyme in chloroplasts, enhances the expression of FAH1 and anthocyanin biosynthesis-associated genes and accumulation of anthocyanin without any application of stress. Thus, it is likely that chloroplastic H2O2 activates FAH1 expression to induce anthocyanin accumulation for protecting cells from photooxidative stress.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan; Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Masahiro Noshi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Maki Nakamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shun Matsuda
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
99
|
Schulz P, Jansseune K, Degenkolbe T, Méret M, Claeys H, Skirycz A, Teige M, Willmitzer L, Hannah MA. Poly(ADP-ribose)polymerase activity controls plant growth by promoting leaf cell number. PLoS One 2014; 9:e90322. [PMID: 24587323 PMCID: PMC3938684 DOI: 10.1371/journal.pone.0090322] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/28/2014] [Indexed: 12/22/2022] Open
Abstract
A changing global environment, rising population and increasing demand for biofuels are challenging agriculture and creating a need for technologies to increase biomass production. Here we demonstrate that the inhibition of poly (ADP-ribose) polymerase activity is a promising technology to achieve this under non-stress conditions. Furthermore, we investigate the basis of this growth enhancement via leaf series and kinematic cell analysis as well as single leaf transcriptomics and plant metabolomics under non-stress conditions. These data indicate a regulatory function of PARP within cell growth and potentially development. PARP inhibition enhances growth of Arabidopsis thaliana by enhancing the cell number. Time course single leaf transcriptomics shows that PARP inhibition regulates a small subset of genes which are related to growth promotion, cell cycle and the control of metabolism. This is supported by metabolite analysis showing overall changes in primary and particularly secondary metabolism. Taken together the results indicate a versatile function of PARP beyond its previously reported roles in controlling plant stress tolerance and thus can be a useful target for enhancing biomass production.
Collapse
Affiliation(s)
- Philipp Schulz
- Bayer CropScience NV, Innovation Center, Zwijnaarde, Belgium
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria
| | - Karel Jansseune
- Bayer CropScience NV, Innovation Center, Zwijnaarde, Belgium
| | - Thomas Degenkolbe
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Michaël Méret
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hannes Claeys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Skirycz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Markus Teige
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria
| | - Lothar Willmitzer
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Matthew A. Hannah
- Bayer CropScience NV, Innovation Center, Zwijnaarde, Belgium
- * E-mail:
| |
Collapse
|
100
|
Espley RV, Butts CA, Laing WA, Martell S, Smith H, McGhie TK, Zhang J, Paturi G, Hedderley D, Bovy A, Schouten HJ, Putterill J, Allan AC, Hellens RP. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 2014; 144:146-54. [PMID: 24353343 DOI: 10.3945/jn.113.182659] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P < 0.05). In trial 2, the inflammation marker prostaglandin E(2) (PGE(2)) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice.
Collapse
Affiliation(s)
- Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|