51
|
Baker KA, Hagg T. Developmental and injury-induced expression of alpha1beta1 and alpha6beta1 integrins in the rat spinal cord. Brain Res 2006; 1130:54-66. [PMID: 17161391 PMCID: PMC1794000 DOI: 10.1016/j.brainres.2006.10.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 12/27/2022]
Abstract
Loss and damage to blood vessels are thought to contribute to secondary tissue loss after spinal cord injury. Integrins might be therapeutic targets to protect the vasculature and/or promote angiogenesis, as their activation can promote tubule formation and survival of endothelial cells in vitro. Here, we show that immunostaining with an antibody against the alpha1beta1 integrin heterodimer is present only in blood vessels from postnatal day 1 (P1) through adulthood in Sprague-Dawley rats. After a spinal cord contusion at T9 in adults, the area of alpha1beta1 integrin positive blood vessels increases within 11 mm from the injury site at 3 days post-injury and remains prominent within the injured core only at 7 days. Staining for the alpha6beta1 integrin heterodimer increases in blood vessels between P10 and adulthood and is present in preganglionic neurons of the intermediolateral cell column (IML) at all ages. The alpha6beta1 integrin is also expressed by motor neurons postnatally, and oligodendrocyte precursors (OPCs), as previously reported. After the contusion, the area of alpha6beta1-stained blood vessels is increased at 3 days and most prominently, 1 mm from the injury site, followed by a significant reduction at 7 days, when alpha6beta1 integrin staining is most prominent around the injured core. Staining is also present in a subset of microglia and/or macrophages. These results raise the possibility that alpha1beta1 and alpha6beta1 integrins in blood vessels might be targeted to reduce blood vessel loss and promote angiogenesis, which may promote tissue sparing after spinal cord injury.
Collapse
Affiliation(s)
- K Adam Baker
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, MDR Building, Room 616, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
52
|
Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 2006; 14:207-21. [PMID: 16301836 DOI: 10.1159/000088637] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/05/2005] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF or VEGF-A) and its receptors play essential roles in the formation of blood vessels during embryogenesis and in disease. Most biological effects of VEGF are mediated via two receptor tyrosine kinases, VEGFR1 and VEGFR2, but specific VEGF isoforms also bind neuropilins (NP) 1 and 2, non-tyrosine kinase receptors originally identified as receptors for semaphorins, polypeptides with essential roles in neuronal patterning. There is abundant evidence that VEGF-A has neurotrophic and neuroprotective effects on neuronal and glial cells in culture and in vivo, and can stimulate the proliferation and survival of neural stem cells. VEGFR2 and NP1 are the major VEGF receptors expressed on neuronal cells and, while the mechanisms mediating neuroprotective effects of VEGF are not fully understood, VEGF stimulates several signalling events in neuronal cell types, including activation of phospholipase C-gamma, Akt and ERK. Findings in diverse models of nerve damage and disease suggest that VEGF has therapeutic potential as a neuroprotective factor. VEGF is a key mediator of the angiogenic response to cerebral and peripheral ischaemia, and promotes nerve repair following traumatic spinal injury. Recent work has revealed a role for reduced VEGF expression in the pathogenesis of amyotrophic lateral sclerosis, a rare neurodegenerative disease caused by selective loss of motor neurons. In many instances, the neuroprotective effects of VEGF appear to result from a combination of the indirect consequences of increased angiogenesis, and the direct stimulation of neuronal function. However, more work is required to determine the specific functional role of direct neuronal effects of VEGF.
Collapse
Affiliation(s)
- Ian Zachary
- Centre for Cardiovascular Biology and Medicine, BHF Laboratories, Department of Medicine, The Rayne Institute, University College London, London, UK.
| |
Collapse
|
53
|
Sköld MK, Risling M, Holmin S. Inhibition of vascular endothelial growth factor receptor 2 activity in experimental brain contusions aggravates injury outcome and leads to early increased neuronal and glial degeneration. Eur J Neurosci 2006; 23:21-34. [PMID: 16420412 DOI: 10.1111/j.1460-9568.2005.04527.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Angiogenesis following traumatic brain injuries (TBIs) may be of importance for post-traumatic reparative processes and the development of secondary injuries. We have previously shown expression of vascular endothelial growth factor (VEGF), a major regulator of endothelial cell proliferation, angiogenesis and vascular permeability, and VEGF receptors (VEGFR1 and 2) after TBI in rat. In the present work we tried to further elucidate the role of VEGF after TBI by performing specific VEGFR2 activity inhibition. In rats subjected to VEGFR2 blockage we report an increased haemorrhagic area (P < 0.05), early increase in serum levels of neural injury marker neuron-specific enolase (P < 0.05) and glial injury marker S100beta (P < 0.05), and increased numbers of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labelling- (TUNEL-) and FluoroJade B- (P < 0.05) positive cells, all increases preceding the known VEGF/VEGFR vascular response in brain trauma. An increase in lesion area, as measured by decreased microtubuli-associated protein 2 expression (P < 0.05) and increased glial fibrillary acidic protein reactivity (P < 0.05), could also be demonstrated. In addition, vascular density, as measured by von Willebrandt factor-positive cells, was decreased (P < 0.05). No differences in post-traumatic inflammatory response, as measured by stainings for macrophages, granulocytes and intracellular adhesion molecules, were shown between the groups. Taken together, our findings point towards VEGF/VEGFR2 up-regulation after TBI as being an important endogenous cytoprotective mechanism in TBI. The possible importance of VEGF on the vascular, neuronal and glial compartments of the neurovascular unit after TBI is discussed.
Collapse
Affiliation(s)
- Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
54
|
Merrill MJ, Oldfield EH. A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 2005; 103:853-68. [PMID: 16304990 DOI: 10.3171/jns.2005.103.5.0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
✓ Overexpression of vascular endothelial growth factor (VEGF) is associated with several central nervous system (CNS) diseases and abnormalities, and is often postulated as a causative factor and promising therapeutic target in these settings. The authors' goal was to reassess the contribution of VEGF to the biology and pathology of the CNS.
The authors review the literature relating to the following aspects of VEGF: 1) the biology of VEGF in normal brain; 2) the involvement of VEGF in CNS disorders other than tumors (traumatic and ischemic injuries, arteriovenous malformations, inflammation); and 3) the role of VEGF in brain tumor biology (gliomas and the associated vasogenic edema, and hemangioblastomas).
The authors conclude the following: first, that VEGF overexpression contributes to the phenotype associated with many CNS disorders, but VEGF is a reactive rather than a causative factor in many cases; and second, that use of VEGF as a therapeutic agent or target is complicated by the effects of VEGF not only on the cerebral vasculature, but also on astrocytes, neurons, and inflammatory cells. In many cases, therapeutic interventions targeting the VEGF/VEGF receptor axis are likely to be ineffective or even detrimental. Clinical manipulation of VEGF levels in the CNS must be approached with caution.
Collapse
Affiliation(s)
- Marsha J Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | |
Collapse
|
55
|
Kaya D, Gürsoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T. VEGF protects brain against focal ischemia without increasing blood--brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 2005; 25:1111-8. [PMID: 15829918 DOI: 10.1038/sj.jcbfm.9600109] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Delayed administration of vascular endothelial growth factor (VEGF) promotes functional recovery after focal cerebral ischemia. However, early intravenous injection of VEGF increases blood-brain barrier (BBB) leakage, hemorrhagic transformation and infarct volume whereas its application to cortical surface is neuroprotective. We have investigated whether or not early intracerebroventricular administration of VEGF could replicate the neuroprotective effect observed with topical application and the mechanism of action of this protection. Mice were subjected to 90 mins middle cerebral artery (MCA) occlusion and 24 h of reperfusion. Vascular endothelial growth factor (8 ng, intracerebroventricular) was administered 1 or 3 h after reperfusion. Compared with the vehicle-treated (intracerebroventricular) group, VEGF decreased the infarct volume along with BBB leakage in both treatment groups. Neurologic disability scores improved in parallel to the changes in infarct volume. Independently of the decrease in infarct size, VEGF also reduced the number of TUNEL-positive apoptotic neurons. Phospo-Akt levels were significantly higher in ischemic hemispheres of the VEGF-treated mice. Contrary to intracerebroventricular route, intravenous administration of VEGF (15 microg/kg) enhanced the infarct volume as previously reported for the rat. In conclusion, single intracerebroventricular injection of VEGF protects brain against ischemia without adversely affecting BBB permeability, and has a relatively long therapeutic time window. This early neuroprotective action, observed well before recovery-promoting actions such as angiogenesis, possibly involves activation of the PI-3-Akt pathway.
Collapse
Affiliation(s)
- Dilaver Kaya
- Department of Neurology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
56
|
Galoyan AA, Sarkissian JS, Chavushyan VA, Sulkhanyan RM, Avakyan ZE, Avetisyan ZA, Grigorian YK, Abrahamyan DO. Neuroprotective action of hypothalamic peptide PRP-1 at various time survivals following spinal cord hemisection. Neurochem Res 2005; 30:507-25. [PMID: 16076021 DOI: 10.1007/s11064-005-2686-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to evaluate the neuroprotective action of proline-rich peptide-1 (PRP-1) produced by hypothalamic nuclei cells (nuclei paraventricularis and supraopticus) following lateral hemisection of spinal cord (SC). The dynamics of rehabilitative shifts were investigated at various periods of postoperative survival (1-2, 3, and 4 weeks), both with administration of PRP-1 and without it (control). We registered evoked spike flow activity in both interneurons and motoneurons of the same segment of transected and symmetric intact sides of SC and below it on the stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius) and extensor (n. peroneus communis) nerves. In the control group (administration of 0.9% saline as placebo), no significant decrease of post-stimulus activity of neurons was observed on the transected side by the 2nd week. This activity strongly decreased by week 3 postaxotomy, with some increase on the intact side, possibly of compensatory origin. No shifts occurred by the 4th week. Regardless of the period of administration, PRP-1 increased neuronal activity on the transected side, with the same activation levels on both SC sides. These data were confirmed by histochemical investigation. PRP-1 administration, both daily and every other day, for a period of 2-3 weeks led to prevention of scar formation and promotion of the re-growth of white matter nerve fibers in the damaged area. It also resulted in prevention of neuroglial elements degeneration and reduction in gliosis expression in the lesion supporting neuronal survival. Thus, PRP-1 achieved protection against "tissue stress", which was also confirmed by the registration of activity on the level of transection and restoration of the motor activity on the injured side. The obtained data propose the possibility of PRP-1 application in clinical practice for prevention of neurodegeneration of traumatic origin.
Collapse
Affiliation(s)
- Armen A Galoyan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Republic of Armenia.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Sköld MK, von Gertten C, Sandberg-Nordqvist AC, Mathiesen T, Holmin S. VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 2005; 22:353-67. [PMID: 15785231 DOI: 10.1089/neu.2005.22.353] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis following traumatic brain injury (TBI) may be of importance not only for post-traumatic reparative processes but also for the development of secondary injuries. Vascular endothelial growth factor (VEGF) is a major regulator of endothelial cell proliferation, angiogenesis, and vascular permeability, though its possible involvement in secondary injuries after TBI is largely unknown. This study was undertaken to analyze the expression of VEGF and the VEGF receptors in experimental brain contusion in rat. Twenty-three adult female Sprague-Dawley rats were subjected to a focal cerebral contusion injury by use of a weight-drop model. Four additional rats underwent craniotomy only. The animals were sacrificed 6 h, or 1, 2, 4, 6, 8, or 16 days post-injury. Expression of VEGF and the VEGF receptors VEGFR1 (Flt-1) and VEGFR2 (Flk-1) were studied by in situ hybridization and immunohistochemistry. VEGF messenger (m)RNA and protein expression were detected in astrocytes, neutrophils, and macrophages in or adjacent to the injury from 1 day after injury, with a peak expression after 4-6 days. Flt-1 and Flk-1 mRNA and protein were detected in vessels adjacent to the lesion from 1 day after injury throughout day 6 after injury. It was also noted that Flt-1/Flk-1 and VEGF-positive vessels often were negative for SMI-71, a marker for vessels in areas with blood-brain barrier (BBB). In conclusion, we have demonstrated that TBI leads to an upregulation of VEGF, Flt-1, and Flk-1 mRNA and protein in and around the lesion. The data provide a foundation for future pharmacological intervention studies focusing on posttraumatic angiogenesis and possible injury repair effects of the VEGF system in TBI.
Collapse
Affiliation(s)
- Mattias K Sköld
- Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
58
|
Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 2005; 62:279-87. [PMID: 15850934 DOI: 10.1016/j.ijrobp.2005.01.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Robert A Nordal
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario Canada
| | | |
Collapse
|
59
|
Kim JH, Chung YG, Kim CY, Kim HK, Lee HK. Upregulation of VEGF and FGF2 in normal rat brain after experimental intraoperative radiation therapy. J Korean Med Sci 2004; 19:879-86. [PMID: 15608402 PMCID: PMC2816293 DOI: 10.3346/jkms.2004.19.6.879] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)2 in the irradiated brain was examined to test how a single high dose radiation, similar to that used for intraoperative radiation therapy given to the normal cerebrum, can affect the vascular endothelium. After a burr hole trephination in the rat skull, the cerebral hemisphere was exposed to a single 10 Gy dose of gamma rays, and the radiation effect was assessed at 1, 2, 4, 6, and 8 weeks after irradiation. Histological changes, such as reactive gliosis, inflammation, vascular proliferation and necrosis, were correlated with the duration after irradiation. Significant VEGF and FGF2 expression in the 2- and 8-week were detected by enzyme-linked immunosorbent assay quantification in the radiation group. Immunohistochemical study for VEGF was done and the number of positive cells gradually increased over time, compared with the sham operation group. In conclusion, the radiation injuries consisted of radiation necrosis associated with the expression of VEGF and FGF2. These findings indicate that VEGF and FGF2 may play a role in the radiation injuries after intraoperative single high-dose irradiation.
Collapse
Affiliation(s)
- Joo Han Kim
- Department of Neurosurgery, Medical College, Korea University, Seoul, Korea
| | - Yong Gu Chung
- Department of Neurosurgery, Medical College, Korea University, Seoul, Korea
| | - Chul Young Kim
- Department of Radiation Oncology, Medical College, Korea University, Seoul, Korea
| | - Han Kyeom Kim
- Department of Pathology, Medical College, Korea University, Seoul, Korea
| | - Hoon Kap Lee
- Department of Neurosurgery, Medical College, Korea University, Seoul, Korea
| |
Collapse
|
60
|
Brockington A, Lewis C, Wharton S, Shaw PJ. Vascular endothelial growth factor and the nervous system. Neuropathol Appl Neurobiol 2004; 30:427-46. [PMID: 15488020 DOI: 10.1111/j.1365-2990.2004.00600.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic factor essential for the formation of new blood vessels during embryogenesis and in many pathological conditions. A new role for VEGF as a neurotrophic factor has recently emerged. In the developing nervous system, VEGF plays a pivotal role not only in vascularization, but also in neuronal proliferation, and the growth of coordinated vascular and neuronal networks. After injury to the nervous system, activation of VEGF and its receptors may restore blood supply and promote neuronal survival and repair. There is a growing body of evidence that VEGF is essential for motor neurone survival, and that aberrant regulation of VEGF may play a role in the degeneration of neurones in diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- A Brockington
- Academic Neurology Unit, University of Sheffield, Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
61
|
Sköld MK, Marti HH, Lindholm T, Lindå H, Hammarberg H, Risling M, Cullheim S. Induction of HIF1alpha but not HIF2alpha in motoneurons after ventral funiculus axotomy-implication in neuronal survival strategies. Exp Neurol 2004; 188:20-32. [PMID: 15191799 DOI: 10.1016/j.expneurol.2004.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 02/05/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Spinal cord injury is frequently associated with local tissue hypoxia. As neuronal cells are susceptible to damage caused by low oxygen levels, hypoxia-induced activation of tissue-protective factors could represent an endogenous mechanism for neuron survival following injury. We studied in vivo, in a rat model of intraspinal axotomy of motoneurons, the cell- and time-dependent regulation of the hypoxia-inducible transcription factors (HIFs), HIF1alpha and HIF2alpha, as well as one of their target genes, vascular endothelial growth factor (VEGF). VEGF is a potent hypoxia-regulated angiogenic growth factor with recently discovered neuroprotective and neurotrophic activities. While neither HIF1alpha, HIF2alpha, nor VEGF mRNA were detected in noninjured motoneurons, we found a strong induction of HIF1alpha, but not HIF2alpha mRNA in axotomized motoneurons. HIF1alpha expression peaked at about 7 days after injury. Moreover, we found increased VEGF mRNA and protein expression around and within the scar but also within motoneurons, peaking around 3 days after axotomy. In addition, increased survival of cultured motoneurons after treatment with VEGF could also be shown. We conclude that axotomized motoneurons in this model respond to injury by specific induction of HIF1alpha and VEGF expression that may provide an endogenous mechanism with the potential to promote motoneuron survival after injury.
Collapse
Affiliation(s)
- Mattias K Sköld
- Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
62
|
López-Vales R, García-Alías G, Forés J, Navarro X, Verdú E. Increased Expression of Cyclo-Oxygenase 2 and Vascular Endothelial Growth Factor in Lesioned Spinal Cord by Transplanted Olfactory Ensheathing Cells. J Neurotrauma 2004; 21:1031-43. [PMID: 15319002 DOI: 10.1089/0897715041651105] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Olfactory ensheathing cells (OECs) were transplanted in adult rats after photochemical injury of the spinal cord. Rats received either 180,000 OECs suspended in DMEM or DMEM alone. Locomotor ability scored by the BBB-scale, pain sensibility, and motor and somatosensory evoked potentials were evaluated during the first 14 days post-surgery. At 3, 7, and 14 days, 5 rats per day of both groups were perfused and transverse sections from proximal, lesioned and distal spinal cord blocks were stained for COX-2, VEGF, GFAP and lectin. The BBB-score and the amplitude of motor and somatosensory evoked potentials were significantly higher in OEC- than in DMEM-injected animals throughout follow-up, whereas the withdrawal latency to heat noxious stimulus was lower in OEC- than in DMEM-injected rats. The area of preserved spinal cord and the levels of COX-2 and VEGF staining were significantly higher in OEC- than in DMEM-injected rats. GFAP- but no LEC-positive cells expressed COX-2 staining in OEC-transplanted rats. The density of blood vessels was also significantly increased in OEC- with respect to DMEM-injected rats. Our results show that OECs promote functional and morphological preservation of the spinal cord after photochemical injury, increasing neoangiogenesis and up-regulation of COX-2 and VEGF expression in astrocytes.
Collapse
Affiliation(s)
- Rubén López-Vales
- Neuroplasticity and Regeneration Group, Institute of Neuroscience and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
63
|
Nordal RA, Wong CS. Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol 2004; 63:474-83. [PMID: 15198126 DOI: 10.1093/jnen/63.5.474] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Central nervous system (CNS) injury is a major dose-limiting toxicity that limits the effectiveness of radiation therapy. Blood-brain barrier (BBB) disruption and white matter necrosis are prominent features. Increased expression of intercellular adhesion molecule-1 (ICAM-1) accompanies and is believed to be important in BBB disruption in other CNS injuries. Our aim was to assess the expression of ICAM-1 and its relationship to regions of blood-spinal cord barrier (BSCB) disruption in the irradiated rat spinal cord. ICAM-1 protein was detected by immunohistochemistry and quantified by digital image analysis. Cells expressing ICAM-1 were identified. BSCB disruption was assessed by immunohistochemical detection of serum albumin. ICAM-1 expression localized predominantly to vascular endothelium and increased in white matter but not in grey matter at 24 hours and 17 to 20 weeks after 22 Gy. A dose response was observed from 16 to 20 Gy. ICAM-1 expression colocalized with regions of BSCB disruption. ICAM-1 expression was also observed in glia, a majority of which were astrocytes. The parallel dose response, time course, and spatial distribution of ICAM-1 expression and albumin leakage suggest a role for ICAM-1 in late BSCB disruption after radiation.
Collapse
Affiliation(s)
- Robert A Nordal
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
64
|
Akiyama C, Yuguchi T, Nishio M, Tomishima T, Fujinaka T, Taniguchi M, Nakajima Y, Kohmura E, Yoshimine T. Src Family Kinase Inhibitor PP1 Reduces Secondary Damage after Spinal Cord Compression in Rats. J Neurotrauma 2004; 21:923-31. [PMID: 15307904 DOI: 10.1089/0897715041526230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The synthetic pyrazolopyrimidine, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) is a novel, potent, and selective inhibitor of Src family tyrosine kinases. Vascular permeability appears to be mediated by vascular endothelial growth factor (VEGF), which requires the activation of downstream Src family kinases to exert its function. This study investigates the effects of PP1 on vascular permeability and inflammatory response in a rat spinal cord compression model. Ten minutes after compression, PP1 (PP1 group) or the vehicle only (control group) was administered. On days 1, 3, and 7 after compression, the spinal cords were removed and examined histopathologically to determine the expression of VEGF and the extent of edema and inflammation. The dryweight method was used to measure the water content of the spinal cords. The mRNA levels of tumor necrosis factor a (TNFalpha) and interleukin 1beta (IL-1beta), which is related to inflammatory responses, were measured with a real-time polymerase chain reaction (RT-PCR) system 6 h after compression. Although VEGF expression was similar in both groups, the extent of contusional lesion in the PP1 group was reduced by approximately 35% on day 3. Moreover, the water content on days 1, 3, and 7 was significantly reduced and macrophage infiltration on days 3 and 7 was dramatically reduced in the PP1 group. TNF and IL-1beta mRNA expression in the PP1 group were also significantly reduced. These results indicate that PP1 reduces secondary damage after spinal cord injury.
Collapse
Affiliation(s)
- Chihiro Akiyama
- Department of Neurosurgery, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Benton RL, Whittemore SR. VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 2004; 28:1693-703. [PMID: 14584823 DOI: 10.1023/a:1026013106016] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) demonstrates potent and well-characterized effects on endothelial cytoprotection and angiogenesis. In an attempt to preserve spinal microvasculature and prolong the endogenous neovascular response observed transiently following experimental spinal cord injury (SCI), exogenous recombinant human VEGF (rhVEGF165) was injected into the injured rat spinal cord. Adult female Fischer 344 rats were subjected to moderate SCI (12.5 g-cm) using the NYU impactor. At 72 h after injury, animals were randomly assigned to three experimental groups receiving no microinjection or injection of saline or saline containing 2 microg of rhVEGF165. Acutely, VEGF injection resulted in significant microvascular permeability and infiltration of leukocytes into spinal cord parenchyma. 6 weeks postinjection, no significant differences were observed in most measures of microvascular architecture following VEGF treatment, but analysis of histopathology in spinal cord tissue revealed profound exacerbation of lesion volume. These results support the idea that intraparenchymal application of the proangiogenic factor VEGF may exacerbate SCI, likely through its effect on vessel permeability.
Collapse
Affiliation(s)
- Richard L Benton
- The Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
66
|
Affiliation(s)
- Lisa D Urness
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
67
|
Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 2003; 120:951-60. [PMID: 12927201 DOI: 10.1016/s0306-4522(03)00399-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal cord injury leads to acute local ischemia, which may contribute to secondary degeneration. Hypoxia stimulates angiogenesis through a cascade of events, involving angiogenesis stimulatory substances, such as vascular endothelial growth factor (VEGF). To test the importance of angiogenesis for functional outcome and wound healing in spinal cord injury VEGF165 (proangiogenic), Ringer's (control) or angiostatin (antiangiogenic) were delivered locally immediately after a contusion injury produced using the NYU impactor and a 25 mm weight-drop. Rats treated with VEGF showed significantly improved behavior up to 6 weeks after injury compared with control animals, while angiostatin treatment lead to no statistically significant changes in behavior outcome. Furthermore, VEGF-treated animals had an increased amount of spared tissue in the lesion center and a higher blood vessel density in parts of the wound area compared with controls. These effects were unlikely to be due to increased cell proliferation as determined by bromo-deoxy-uridine-labeling. Moreover, VEGF treatment led to decreased levels of apoptosis, as revealed by TUNEL assays. In situ hybridization demonstrated presence of mRNA for VEGF receptors Flt-1, fetal liver kinase-1, neuropilin-1 and -2 in several important cellular compartments of the spinal cord. The different experiments indicate that beneficial effects seen by acute VEGF delivery was attributable to protection/repair of blood vessels, decreased apoptosis and possibly also by other additional effects on glial cells or certain neuron populations.
Collapse
Affiliation(s)
- J Widenfalk
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, B2,IV, S-171 77, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
68
|
Ribatti D, Conconi MT, Nico B, Baiguera S, Corsi P, Parnigotto PP, Nussdorfer GG. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane. Brain Res 2003; 989:9-15. [PMID: 14519506 DOI: 10.1016/s0006-8993(03)03225-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The repair and regeneration of injured tissues and organs depend on the re-establishment of the blood flow needed for cellular infiltration and metabolic support. Among the various materials used in tissue reconstruction, acellular scaffolds have recently been utilized. In this study, we investigated the angiogenic response induced by acellular brain scaffolds implanted in vivo onto the chick embryo chorioallantoic membrane (CAM), a useful model for such investigations. The results show that acellular brain scaffolds are able to induce a strong angiogenic response, comparable to that of fibroblast growth factor-2 (FGF-2), a well known angiogenic cytokine. The response may be considered dependent on a direct angiogenic effect exerted by the scaffold, because no inflammatory infiltrate was detectable in CAM's mesenchyme beneath the implant. Acellular brain scaffolds might induce the release of endogenous angiogenic factors, such as FGF-2 and vascular endothelial growth factor (VEGF) released from the extracellular matrix of the developing CAM. In addition, the angiogenic response may depend, in part, also on the presence in the acellular matrix of transforming growth factor beta 1 (TGFbeta1).
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Policlinico, Piazza Giulio Cesare 11, I-70124, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
69
|
Emanueli C, Schratzberger P, Kirchmair R, Madeddu P. Paracrine control of vascularization and neurogenesis by neurotrophins. Br J Pharmacol 2003; 140:614-9. [PMID: 12970083 PMCID: PMC1574063 DOI: 10.1038/sj.bjp.0705458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The neuronal system plays a fundamental role in the maturation of primitive embryonic vascular network by providing a paracrine template for blood vessel branching and arterial differentiation. Furthermore, postnatal vascular and neural regeneration cooperate in the healing of damaged tissue. Neurogenesis continues in adulthood although confined to specific brain regions. Following ischaemic insult, neural staminal cells contribute towards the healing process through the stimulation of neurogenesis and vasculogenesis. Evidence indicates that nerves and blood vessels exert a reciprocal control of their own growth by paracrine mechanisms. For instance, guidance factors, including vascular endothelial growth factor A (VEGF-A) and semaphorins, which share the ability of binding neuropilin receptors, play a pivotal role in the tridimensional growth pattern of arterial vessels and nerves. Animal models and clinical studies have demonstrated a role of VEGF-A in the pathogenesis of ischaemic and diabetic neuropathies. Further, supplementation with VEGF-A ameliorates neuronal recovery by exerting protective effects on nerves and stimulating reparative neovascularization. Human tissue kallikrein, a recently discovered angiogenic and arteriogenic factor, accelerates neuronal recovery by stimulating the growth of vasa nervorum. Conversely, the neurotrophin nerve growth factor, known to regulate neuronal survival and differentiation, is now regarded as a stimulator of angiogenesis and arteriogenesis. These results indicate that angiogenesis and neurogenesis are paracrinally regulated by growth factors released by endothelial cells and neurons. Supplementation of these growth factors, alone or in combination, could benefit the treatment of ischaemic diseases and neuropathies.
Collapse
Affiliation(s)
- Costanza Emanueli
- INBB Experimental Medicine and Gene Therapy (EMGT) Unit, Osilo and Alghero, Italy
- INBB Biotechnology and Molecular Medicine (BMM) Unit, Technological Park of Sardinia, Pula, Italy
- AngioProgen, Porto Conte Technological Park, Alghero, Italy
| | - Peter Schratzberger
- Department of Internal Medicine, Division of General Internal Medicine, University Hospital Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Division of General Internal Medicine, University Hospital Innsbruck, Austria
| | - Paolo Madeddu
- INBB Experimental Medicine and Gene Therapy (EMGT) Unit, Osilo and Alghero, Italy
- AngioProgen, Porto Conte Technological Park, Alghero, Italy
- Department of Internal Medicine, University of Sassari, Sassari, Italy
- Author for correspondence:
| |
Collapse
|
70
|
Affiliation(s)
- Hugo H Marti
- Max-Planck-Institute for Physiological and Clinical Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany
| |
Collapse
|
71
|
Krum JM, Khaibullina A. Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 2003; 181:241-57. [PMID: 12781997 DOI: 10.1016/s0014-4886(03)00039-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vascular endothelial growth factor (VEGF) is upregulated following injury to the CNS. Our previous work has shown that exogenous application of VEGF promotes angiogenesis, blood-brain barrier permeability, and astroglial mitogenicity in the traumatized brain. To develop a model that could link endogenously secreted VEGF to brain tissue repair, a specific neutralizing antibody to VEGF was infused by osmotic minipump directly into the neocortex and striatum for up to 1 week. Tissues adjacent to the infusion/wound site were analyzed for specific vascular and astroglial protein markers and proliferation, necrosis/apoptosis (via TUNEL staining), VEGF, the VEGF receptors flt-1 and flk-1, and bFGF expression using immunohistochemistry and semi-quantitative RT-PCR. Neutralization of native VEGF caused significant decreases in angiogenic activity, astroglial proliferation, and nestin immunoexpression, while vascular and astroglial degeneration was substantially increased, resulting in much larger wound cavities when compared to controls. The hindrance of brain tissue repair occurred despite an increase in bFGF expression at the wound sites. VEGF appears to be an integral factor in CNS wound healing that is essential for vascular endothelial proliferation and survival and may also be necessary for astroglial proliferation and maintenance during the repair of brain injury.
Collapse
Affiliation(s)
- Janette M Krum
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA.
| | | |
Collapse
|
72
|
De Winter F, Holtmaat AJGD, Verhaagen J. Neuropilin and class 3 semaphorins in nervous system regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 515:115-39. [PMID: 12613548 DOI: 10.1007/978-1-4615-0119-0_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Injury to the mature mammalian central nervous system (CNS) is often accompanied by permanent loss of function of the damaged neural circuits. The failure of injured CNS axons to regenerate is thought to be caused, in part, by neurite outgrowth inhibitory factors expressed in and around the lesion. These include several myelin associated inhibitors, proteoglycans, and tenascin-R. Recent studies have documented the presence of class 3 semaphorins in fibroblast-like meningeal cells present in the core of the neural scar formed following CNS injury. Class 3 semaphorins display neurite growth-inhibitory effects on growing axons during embryonic development. The induction of the expression of class 3 semaphorins in the neural scar and the persistent expression of their receptors, the neuropilins and plexins, by injured CNS neurons suggest that they contribute to the regenerative failure of CNS neurons. Neuropilins are also expressed in the neural scar in a subpopulation of meningeal fibroblast and in neurons in the vicinity of the scar. Semaphorin/neuropilin signaling might therefore also be important for cell migration, angiogenis and neuronal cell death in or around neural scars. In contrast to neurons in the CNS, neuropilin/plexin positive neurons in the PNS do display long distance regeneration following injury. Injured PNS neurons do not encounter a semaphorin positive neural scar. Furthermore, Semaphorin 3A is downregulated in the regenerating spinal motor neurons themselves. This was accompanied by a transient upregulation of Semaphorin 3A in the target muscle. These observations suggest that the injury induced regulation of Semaphorin 3A in the PNS contributes to successful regeneration and target reinnervation. Future studies in genetically modified mice should provide more insight into the mechanisms by which neuropilins and semaphorins influence nervous system regeneration and degeneration.
Collapse
Affiliation(s)
- Fred De Winter
- Graduate School for Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
73
|
Mueller CA, Schluesener HJ, Conrad S, Meyermann R, Schwab JM. Lesional expression of a proinflammatory and antiangiogenic cytokine EMAP II confined to endothelium and microglia/macrophages during secondary damage following experimental traumatic brain injury. J Neuroimmunol 2003; 135:1-9. [PMID: 12576219 DOI: 10.1016/s0165-5728(02)00427-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We analyzed expression of Endothelial Monocyte-Activating Polypeptide II (EMAP II), a proinflammatory, antiangiogenic cytokine in rat brains after stab wound injury and observed a highly significant (p<0.0001) lesional accumulation confined to microglia/macrophages. Maximum numbers were seen at day 5 declining until 21 days after injury. Further, EMAP II(+) microglia/macrophages formed clusters in perivascular Virchow-Robin spaces. Prolonged accumulation of EMAP II(+), ED1(+) microglia/macrophages and increased lesional numbers of EMAP II(+) endothelial/smooth muscle cells during the acute postinjury period might indicate that EMAP II enrich the proinflammatory and antiangiogenic repertoire of effector molecules expressed by activated microglia/macrophages during secondary damage.
Collapse
Affiliation(s)
- Christian-Andreas Mueller
- Institute of Brain Research, Medical School, Eberhard-Karls University of Tuebingen, Calwerstr.3, D-72076, Tüebingen, Germany.
| | | | | | | | | |
Collapse
|
74
|
Facchiano F, Fernandez E, Mancarella S, Maira G, Miscusi M, D'Arcangelo D, Cimino-Reale G, Falchetti ML, Capogrossi MC, Pallini R. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 2002; 97:161-8. [PMID: 12134907 DOI: 10.3171/jns.2002.97.1.0161] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT After spinal cord transection in adult rats, the axons of the corticospinal tract (CST) degenerate retrogradely and do not regenerate. This phenomenon is thought to be related to either secondary ischemia or deficiency of growth factors. To overcome the deficiency of both blood flow and growth factors, the authors added exogenous vascular endothelial growth factor (VEGF165) to the transected spinal cord either as recombinant protein alone or combined with an adenovirus coding for VEGF165. Because most growth factors are rapidly inactivated in the extracellular environment, the authors used an adenovirus coding for VEGF165 to maintain its activity for several days. METHODS In adult rats, the dorsal two thirds of the spinal cord were transected at the T-8 level. In experimental rats, either human recombinant VEGF165 or a combination of this factor and a replication-defective adenovirus coding for VEGF165 (Ad.CMV.VEGF165) was applied at the lesion site. Both recombinant VEGF165 alone and combined with Ad.CMV.VEGF165 were mixed with Matrigel, which is a reconstituted membrane basement protein extract. Control rats received Matrigel alone or Matrigel plus an adenoviral vector containing the LACZ gene (Ad.CMV.LACZ). Thirty days after spinal cord injury, the number of newly formed blood vessels was assessed in the injured area. In addition, the sensorimotor cortex was injected with anterogradely transported horseradish peroxidase (HRP) to label the CST axons in the spinal cord and to evaluate the extent of retrograde axonal degeneration and regeneration. Gene transfer was assessed using semiquantitative reverse transcription-polymerase chain reaction analysis, enzyme-linked immunosorbent assay for human VEGF and beta-galactosidase expression in injured rats treated with Matrigel plus Ad.CMV.LACZ, Matrigel plus Ad.CMV.VEGF165, and untreated injured rats. A strong gene transfer in the spinal cord tissue of adenovirus-treated rats was found from Day 3 to Day 10 postinjury, confirming infection. In the injured spinal cord area, a significant increase of blood vessels (300% over control, p < 0.005) occurred both in rats treated with recombinant VEGF165 alone and in those treated with the combination of recombinant VEGF165 and Ad.CMV.VEGF165. Also, in both of these groups of animals the retrograde degeneration of CST axons was significantly reduced compared with rats treated with Matrigel alone or Matrigel plus Ad.CMV.LACZ. Furthermore, in rats treated with recombinant VEGF165 alone or combined with Ad.CMV.VEGF165, a few HRP-labeled CST axons, which were not detectable in control rats, were seen distal to the spinal cord injury, indicating some regeneration across the injured area. CONCLUSIONS These results indicate that locally applied VEGF exerts angiogenic as well as neurotrophic effects in the injured spinal cord of rats.
Collapse
Affiliation(s)
- Francesco Facchiano
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Lagord C, Berry M, Logan A. Expression of TGFbeta2 but not TGFbeta1 correlates with the deposition of scar tissue in the lesioned spinal cord. Mol Cell Neurosci 2002; 20:69-92. [PMID: 12056841 DOI: 10.1006/mcne.2002.1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transforming growth factor-betas (TGFbetas) are implicated in fibrotic pathologies. TGFbeta1 and -beta2 expression is increased around the glial/fibrotic scar in the injured brain. Moreover, local injection of TGFbeta antagonists into cerebral wounds reduces glial scarring. Here, we monitored expression of TGFbeta1 and -beta2 mRNA and protein in the spinal cord after transection of the dorsal funiculi. Levels of TGFbeta1 mRNA were most elevated over the acute inflammatory phase, while TGFbeta2 mRNA levels were raised locally about the wound, particularly in astrocytes and neovascular endothelial cells, over the subacute period of scarring. TGFbeta protein production also increased after injury. Both TGFbeta1 and TGFbeta2 were found in hematogenous inflammatory cells, while TGFbeta1 was also neuron-associated, and high levels of TGFbeta2 were localized to multiple cell types in the wound, including reactive astrocytes, during the period of glial/collagen scar formation. The cellular localization and temporal pattern of expression of TGFbeta after spinal cord injury suggest that TGFbeta1 modulates the inflammatory and neuronal responses, while TGFbeta2 regulates glial/collagen scarring.
Collapse
Affiliation(s)
- C Lagord
- Department of Medicine, Wolfson Research Laboratories, Queen Elizabeth Medical Centre, University of Birmingham, Edgbaston, United Kingdom
| | | | | |
Collapse
|
76
|
Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 2002; 13:39-53. [PMID: 11969370 DOI: 10.1006/scdb.2001.0290] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular endothelial growth factor (VEGF) was originally discovered as an endothelial-specific growth factor. While the predominant role of this growth factor in the formation of new blood vessels (angiogenesis) is unquestioned, recent observations indicate that VEGF also has direct effects on neurons and glial cells, and stimulates their growth, survival and axonal outgrowth. Because of these pleiotropic effects, VEGF has now been implicated in several neurological disorders both in the preterm infant (leukomalacia) and the adult (stroke, neurodegeneration, cerebral and spinal trauma, ischemic and diabetic neuropathy, nerve regeneration). A challenge for the future is to unravel to what extent the effect of VEGF in these disorders relates to its angiogenic activity or direct neurotrophic effect.
Collapse
Affiliation(s)
- Peter Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium.
| | | |
Collapse
|
77
|
Zurita M, Vaquero J, Oya S, Morales C. Effects of dexamethasone on apoptosis-related cell death after spinal cord injury. J Neurosurg 2002; 96:83-9. [PMID: 11795719 DOI: 10.3171/spi.2002.96.1.0083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to analyze the expression of F7-26 (Apostain) in injured spinal cord tissue, and the modifying effects of dexamethasone administration. METHODS A total of 56 adult female Wistar rats were subjected to traumatic spinal cord injury (SCI) to induce complete paraplegia. These rats were divided into two groups according to whether they received dexamethasone (doses of 1 mg/kg daily) post-SCI. Injured spinal cord tissue was studied by means of conventional histological techniques, and Apostain expression was determined by immunohistochemical analysis at 1, 4, 8, 24, and 72 hours, and at 1 and 2 weeks after SCI in all the animals. Apostain-positive cells, mainly neurons and glial cells, were detected 1 hour after injury, peaking at 8 hours, after which the number decreased. One week after injury, apoptosis was limited to a few glial cells, mainly oligodendrocytes, and 2 weeks after injury there was no evidence of Apostain-positive cells. In the group of paraplegic rats receiving post-SCI intraperitoneal dexamethasone, there was a significant decrease in the number of Apostain-positive cells. CONCLUSIONS Analysis of the results indicated that apoptosis plays a role in the early period after SCI and that administration of dexamethasone decreases apoptosis-related cell death in the injured spinal cord tissue.
Collapse
Affiliation(s)
- Mercedes Zurita
- Neuroscience Research Unit, Mapfre-Medicine Foundation and Neurosurgical Service, Puerta de Hierro Clinic, Autonomous University, Madrid, Spain
| | | | | | | |
Collapse
|
78
|
Bouton CM, Hossain MA, Frelin LP, Laterra J, Pevsner J. Microarray analysis of differential gene expression in lead-exposed astrocytes. Toxicol Appl Pharmacol 2001; 176:34-53. [PMID: 11578147 DOI: 10.1006/taap.2001.9274] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The toxic metal lead is a widespread environmental health hazard that can adversely affect human health. In an effort to better understand the cellular and molecular consequences of lead exposure, we have employed cDNA microarrays to analyze the effects of acute lead exposure on large-scale gene expression patterns in immortalized rat astrocytes. Our studies identified many genes previously reported to be differentially regulated by lead exposure. Additionally, we have identified novel putative targets of lead-mediated toxicity, including members of the family of calcium/phospholipid binding annexins, the angiogenesis-inducing thrombospondins, collagens, and tRNA synthetases. We demonstrate the ability to distinguish lead-exposed samples from control or sodium samples solely on the basis of large-scale gene expression patterns using two complementary clustering methods. We have confirmed the altered expression of candidate genes and their encoded proteins by RT-PCR and Western blotting, respectively. Finally, we show that the calcium-dependent phospholipid binding protein annexin A5, initially identified as a differentially regulated gene by our microarray analysis, is directly bound and activated by nanomolar concentrations of lead. We conclude that microarray technology is an effective tool for the identification of lead-induced patterns of gene expression and molecular targets of lead.
Collapse
Affiliation(s)
- C M Bouton
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
79
|
Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci U S A 2001; 98:4160-5. [PMID: 11259645 PMCID: PMC31196 DOI: 10.1073/pnas.051626998] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2000] [Indexed: 12/12/2022] Open
Abstract
In postnatal tissues, angiogenesis occurs in nontumoral conditions on appropriate stimuli. In the nervous tissue, hypoxia, neural graft, increased neural function, and synaptic activity are associated with neoangiogenesis. We have investigated the occurrence of neoangiogenesis in the superior cervical ganglia (scg) of newborn rats treated for 8--21 days with 6-hydroxy-dopamine (6-OHDA), nerve growth factor (NGF), or 6-OHDA + NGF. The two latter treatments induced a significant increase in scg size. However, the increase after combined treatment far exceeded that of NGF alone. Similarly, histological and histochemical analysis revealed neuronal hypertrophy and endothelial cell hyperplasia associated with stromal hypertrophy (as described by laminin immunostaining) and increased vascular bed (as revealed by platelet/endothelial cell adhesion molecule-1 immunostaining) in 6-OHDA + NGF-treated pups. NGF, either alone or associated with 6-OHDA, also induced a significant up-regulation of NADPH diaphorase, neuronal nitric oxide synthase, and vascular endothelial growth factor expression in scg neurons. The present investigation suggests that the increase of scg size induced by NGF and 6-OHDA + NGF is associated with neoangiogenesis, and that the induction of vasoactive and angiogenic factors in neurons represents a further and previously undisclosed effect of NGF.
Collapse
Affiliation(s)
- L Calza
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | | | | | | | | |
Collapse
|
80
|
Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M. Vascular endothelial growth factor rescues hippocampal neurons from glutamate‐induced toxicity: signal transduction cascades. FASEB J 2001. [DOI: 10.1096/fj.00-0495fje] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hideo Matsuzaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine Osaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- CREST JST (Japan Science and Technology) 4-1-8 Hon-machi Kawaguchi Saitama 332-0012 Japan
| | - Michio Tamatani
- Department of Anatomy and Neuroscience, Graduate School of Medicine Osaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- CREST JST (Japan Science and Technology) 4-1-8 Hon-machi Kawaguchi Saitama 332-0012 Japan
| | - Atsushi Yamaguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine Osaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- CREST JST (Japan Science and Technology) 4-1-8 Hon-machi Kawaguchi Saitama 332-0012 Japan
| | - Kazuhiko Namikawa
- Department of Anatomy Asahikawa Medical College 4-5-3-11, Nishikagura Asahikawa Hokkaido 078-8510 Japan
| | - Hiroshi Kiyama
- Department of Anatomy Asahikawa Medical College 4-5-3-11, Nishikagura Asahikawa Hokkaido 078-8510 Japan
- CREST JST (Japan Science and Technology) 4-1-8 Hon-machi Kawaguchi Saitama 332-0012 Japan
| | - Michael P. Vitek
- Department of Neurology Duke University Medical Center Durham NC 27710
| | - Noriaki Mitsuda
- Department of Anatomy and Neuroscience, Graduate School of Medicine Osaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- CREST JST (Japan Science and Technology) 4-1-8 Hon-machi Kawaguchi Saitama 332-0012 Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine Osaka University 2-2 Yamadaoka Suita Osaka 565-0871 Japan
- CREST JST (Japan Science and Technology) 4-1-8 Hon-machi Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
81
|
Pasterkamp RJ, Anderson PN, Verhaagen J. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur J Neurosci 2001; 13:457-71. [PMID: 11168552 DOI: 10.1046/j.0953-816x.2000.01398.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the hypothesis that the chemorepellent Semaphorin3A may be involved in the failure of axonal regeneration after injury to the ascending dorsal columns of adult rats. Following transection of the thoracic dorsal columns, fibroblasts in the dorsolateral parts of the lesion site showed robust expression of Semaphorin3A mRNA. In addition, dorsal root ganglion (DRG) neurons with projections through the dorsal columns to the injury site persistently expressed both Semaphorin3A receptor components, neuropilin-1 and plexin-A1. These ascending DRG collaterals failed to invade scar regions occupied by Semaphorin3A-positive fibroblasts, even in animals which had received conditioning lesions of the sciatic nerve to enhance regeneration. Other axon populations in the dorsal spinal cord were similarly unable to penetrate Semaphorin3A-positive scar tissue. These data suggest that Semaphorin3A may create an exclusion zone for regenerating dorsal column fibres and that enhancing the intrinsic regenerative response of DRG neurons has only limited effects on axonal regrowth. Tenascin-C and chondroitin sulphate proteoglycans were also detected at the injury site, which was largely devoid of central nervous system (CNS) myelin, showing that several classes of inhibitory factors, including semaphorins, with only partially overlapping spatial and temporal patterns of expression are in a position to participate in preventing regenerative axonal growth in the injured dorsal columns. Interestingly, conditioning nerve injuries enabled numerous ascending DRG axons to regrow across areas of strong tenascin-C and chondroitin sulphate proteoglycan expression, while areas containing Semaphorin3A and CNS myelin were selectively avoided by (pre)primed axonal sprouts.
Collapse
Affiliation(s)
- R J Pasterkamp
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | |
Collapse
|
82
|
Sköld M, Cullheim S, Hammarberg H, Piehl F, Suneson A, Lake S, Sjögren A, Walum E, Risling M. Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 2000; 12:3675-86. [PMID: 11029637 DOI: 10.1046/j.1460-9568.2000.00263.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenetic factor that promotes endothelial cell proliferation during development and after injury to various types of tissue, including the central nervous system (CNS). Using immunohistochemical and in situ hybridization methods we have here demonstrated that VEGF and its receptors Flk-1, Flt-1 and Neuropilin-1 mRNAs and proteins are induced after incisions in the rat spinal cord. The inducible enzyme for prostaglandin synthesis cyclooxygenase-2 (COX-2) is known to be upregulated after spinal injury, cerebral ischemia and to stimulate angiogenesis. To test the hypothesis that prostaglandins may be involved in the VEGF response after lesion we investigated whether intraspinal microinjections of prostaglandin F2alpha (PGF2alpha) alters VEGF expression in the spinal cord. Such treatment was followed by a strong upregulation of VEGF mRNA and protein in the injection area. Finally, by use of an in vitro model with cell cultures of meningeal fibroblast and astrocyte origin, resembling the lesion area cellular content after spinal cord injury but devoid of inflammatory cells, we showed that VEGF is expressed in this in vitro model cell system after treatment with PGF2alpha and prostaglandin E2 (PGE2). These data suggest that cells within a lesion area in the spinal cord are capable of expressing VEGF and its receptors in response to mechanical injury and that prostaglandins may induce VEGF expression in such cells, even in the absence of inflammatory cells.
Collapse
Affiliation(s)
- M Sköld
- Department of Neuroscience, Nobels väg 12a, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Hossain MA, Bouton CM, Pevsner J, Laterra J. Induction of vascular endothelial growth factor in human astrocytes by lead. Involvement of a protein kinase C/activator protein-1 complex-dependent and hypoxia-inducible factor 1-independent signaling pathway. J Biol Chem 2000; 275:27874-82. [PMID: 10882716 DOI: 10.1074/jbc.m002185200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism(s) underlying lead neurotoxicity are not fully elucidated. cDNA expression microarray analysis identified lead-sensitive genes in immortalized human fetal astrocytes (SV-FHA). Of the represented genes expressed, vascular endothelial growth factor (VEGF) was one of the most sensitive. Lead induced VEGF mRNA 3-fold and VEGF protein approximately 2-fold with maximum mRNA induction following incubation with 10 micrometer lead acetate for 24 h. Phorbol 12-myristate 13-acetate (PMA), a potent protein kinase C (PKC) activator, increased VEGF mRNA 2-fold and PKC inhibition by GF-109203 completely blocked VEGF induction by lead. Expression of dominant-negative PKC-epsilon, but not PKC-alpha, completely inhibited VEGF mRNA induction by lead. Lead activated the transcription factor AP-1 and increased AP-1-dependent luciferase expression >2-fold. Transfection of cells with a c-jun dominant-negative effectively inhibited both AP-1 activation and VEGF mRNA induction by lead. Hypoxia-inducible factor 1 (HIF-1) activity in SV-FHAs was moderately increased by lead (86%) and PMA (96%). Pretreatment with GF-109203 completely inhibited these effects of lead and PMA. However, lead did not alter HIF-1-dependent luciferase expression and a HIF-1alpha dominant-negative had no effects on the induction of VEGF mRNA by lead. These findings indicate that lead induces VEGF expression in SV-FHAs via a PKC/AP-1-dependent and HIF-1-independent signaling pathway.
Collapse
Affiliation(s)
- M A Hossain
- Departments of Neurology, Neuroscience, and Oncology, The Johns Hopkins University School of Medicine and The Kennedy Krieger Research Institute, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
84
|
|
85
|
Abstract
To investigate the relationship between angiogenic growth factors and endothelial enzyme activity in capillaries after injury of rat cardiomyocytes caused by X irradiation, 7-week-old male Wistar rats were anesthetized with pentobarbitone and their hearts irradiated (X rays, 20 Gy) through a hole in the lead casing in which they were enclosed. The hearts were excised at 1 h, 1 week and 3 weeks after irradiation. Left ventricular cross sections were stained for capillary enzymes by double staining for two endothelial enzymes, alkaline phosphatase (AP) and dipeptidylpeptidase IV (DPP), immunohistochemically stained for basic fibroblast growth factor (Fgf, also known as bFgf) and vascular endothelial growth factor (Vegf), and stained for nick end-labeling of DNA by the TUNEL method. Staining for distribution of AP in the arteriolar portion was reduced at both 1 and 3 weeks after irradiation with 20 Gy, but staining for DPP in the venular portion was unchanged, suggesting a close relationship between growth factors and injury of the arteriolar capillary portion. Fgf and Vegf proteins were present within the cytoplasm of the cardiomyocytes, or around capillaries, 1 h, 1 week and 3 weeks after irradiation. Many TUNEL-stained cardiomyocyte nuclei were observed at 1 h, but they had decreased markedly at 1 week and had almost disappeared by 3 weeks after irradiation. Thus Fgf and Vegf were induced concomitantly with the decrease in the staining for endothelial AP by 20 Gy X irradiation, which also caused microeffects as indicated by TUNEL staining of many nuclei at 1 h postirradiation.
Collapse
Affiliation(s)
- M Gao
- Department of Radiology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
86
|
Ridet JL, Pencalet P, Belcram M, Giraudeau B, Chastang C, Philippon J, Mallet J, Privat A, Schwartz L. Effects of spinal cord X-irradiation on the recovery of paraplegic rats. Exp Neurol 2000; 161:1-14. [PMID: 10683269 DOI: 10.1006/exnr.1999.7206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axonal regrowth is limited in the adult CNS, especially in the spinal cord, one of the major sites of traumatic lesions. Pathophysiological changes occurring after spinal cord injury include complex acute, subacute, and late processes. In this study, we assessed whether X-irradiation interferes with the acute/subacute phases, thereby improving the functional recovery of paraplegic animals. Two days after acute compression of adult rat spinal cords, various doses (0, 2, 5, 10, 20 Gy) of X-rays were administered as one single dose to the compression site. The animals were functionally evaluated over the course of 1 month after injury, using the Tarlov scale and the Rivlin and Tator scale. We also designed a "physiological" scale, including an assessment of urinary function and infection, appropriate for the evaluation of spinal-cord-lesioned animals. Behavioral analysis suggested that the high doses, 20 Gy and, to a lesser extent, 5 and 10 Gy, were toxic, as shown by morbidity rate and "physiological" score. The 2-Gy group showed better motor performances than the lesioned nonirradiated (LNI) animals and the 5- and 20-Gy groups. Motor performance in the 5-, 10-, and 20-Gy groups was poorer than that seen in the LNI group. Gliosis was reduced in the 2-Gy group compared to LNI animals, and there was high levels of gliosis in the highly (>/=5 Gy) irradiated animals. There was a 23% less lesion-induced syringomyelia in the 2-Gy group than in the other groups (LNI and 5-20 Gy). Thus, low doses of X-rays may interfere with the formation of syringomyelia and glial scar, thereby facilitating the recovery of paraplegic animals. These findings suggest that low-dose irradiation of the lesion site, in association with other therapies, is a potentially promising treatment for improving recovery after spinal cord injury.
Collapse
Affiliation(s)
- J L Ridet
- CNRS UMR 9923, Hôpital Pitié-Salpêtrière, Paris.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999. [PMID: 10493720 DOI: 10.1523/jneurosci.19-19-08182.1999] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic cystic cavitation, in which the size and severity of a CNS injury progress from a small area of direct trauma to a greatly enlarged secondary injury surrounded by glial scar tissue, is a poorly understood complication of damage to the brain and spinal cord. Using minimally invasive techniques to avoid primary physical injury, this study demonstrates in vivo that inflammatory processes alone initiate a cascade of secondary tissue damage, progressive cavitation, and glial scarring in the CNS. An in vitro model allowed us to test the hypothesis that specific molecules that stimulate macrophage inflammatory activation are an important step in initiating secondary neuropathology. Time-lapse video analyses of inflammation-induced cavitation in our in vitro model revealed that this process occurs primarily via a previously undescribed cellular mechanism involving dramatic astrocyte morphological changes and rapid migration. The physical process of cavitation leads to astrocyte abandonment of neuronal processes, neurite stretching, and secondary injury. The macrophage mannose receptor and the complement receptor type 3 beta2-integrin are implicated in the cascade that induces cavity and scar formation. We also demonstrate that anti-inflammatory agents modulating transcription via the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma may be therapeutic in preventing progressive cavitation by limiting inflammation and subsequent secondary damage after CNS injury.
Collapse
|
88
|
Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 1999; 11:3648-58. [PMID: 10564372 DOI: 10.1046/j.1460-9568.1999.00792.x] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lesion-induced inflammatory responses in both brain and spinal cord have recently become a topic of active investigation. Using C57BL/6J mice, we compared the tissue reaction in these two central nervous system (CNS) compartments with mechanical lesions of similar size involving both grey and white matter. This evaluation included the quantitative assessment of neutrophils, lymphocytes and activated macrophages/microglia, as well as astrocyte activation, upregulation of vascular cell adhesion molecules (ICAM-1, VCAM-1, PECAM) and the extent of blood-brain barrier (BBB) breakdown. Time points analysed post-lesioning included 1, 2, 4 and 7 days (as well as 10 and 14 days for the BBB). We found clear evidence that the acute inflammatory response to traumatic injury is significantly greater in the spinal cord than in the cerebral cortex. The numbers of both neutrophils and macrophages recruited to the lesion site were significantly higher in the spinal cord than in the brain, and the recruitment of these cells into the surrounding parenchyma was also more widespread in the cord. The area of BBB breakdown was substantially larger in the spinal cord and vascular damage persisted for a longer period. In the brain, as in spinal cord, the area to which neutrophils were recruited correlated well with the area of BBB breakdown. It will be of interest to determine the extent to which the infiltration of inflammatory cells contributes, either directly or indirectly, to the vascular permeability and secondary tissue damage or, conversely, to local tissue repair in the brain and the spinal cord.
Collapse
Affiliation(s)
- L Schnell
- Brain Research Institute, University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
89
|
Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 1999. [PMID: 10407014 DOI: 10.1523/jneurosci.19-14-05731.1999] [Citation(s) in RCA: 556] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a mitogen for endothelial cells, and it promotes angiogenesis in vivo. Here we report that VEGF(165) has neurotrophic actions on cultured adult mouse superior cervical ganglia (SCG) and dorsal root ganglia (DRG), measured as axonal outgrowth. Maximal effect was observed at 10-50 ng/ml for SCG and 100 ng/ml for DRG. VEGF-induced axonal outgrowth was inhibited by the mitogen-activated protein kinase kinase inhibitor PD 98059 but not by the protein kinase inhibitor K252a. VEGF also increased survival of both neurons and satellite cells and the number of proliferating Schwann cells. Immunocytochemistry and immunoblotting revealed that VEGF was expressed in virtually all nerve cells in the SCG but only in a population of small-diameter (<35 micrometers) neurons representing approximately 30% of the neurons in DRG. Immunostaining showed that the VEGF receptor fetal liver kinase receptor (flk-1) was found on nerve cell bodies in DRG and to a lesser extent on neurons in SCG. Growth cones of regenerating axons from both types of ganglia exhibited flk-1 immunoreactivity, as did Schwann cells. We conclude that VEGF has both neurotrophic and mitogenic activity on cells in the peripheral nervous system.
Collapse
|
90
|
Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999; 262:159-62. [PMID: 10218880 DOI: 10.1016/s0304-3940(99)00064-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vascular alterations of peripheral nerves occuring after mechanical injury or in metabolic disorders are well described. It is thought that vascular endothelial growth factor (VEGF), a potent growth factor for angiogenesis, also plays an important role for regeneration of nervous tissue. We used a rat model of type I diabetes (streptozotozin-induced) with sensory neuropathy and with chronic hyperglycemia over 12 weeks. A monoclonal antibody to VEGF was used for immunohistochemistry of sciatic nerves and dorsal root ganglia (DRG). Intense VEGF staining was detected in cell bodies and nerve fibers of animals with chronic diabetes. Healthy control groups expressed no or very little VEGF and animals treated with insulin to prevent neuropathy and severe hyperglycemia showed significantly lower immunostaining for VEGF. After application of nerve growth factor (NGF), which is known to improve axonal and Schwann cell regeneration, a markedly decreased expression of VEGF was seen in diabetic animals. In contrast, enhanced VEGF staining was noted in NGF-treated healthy controls of the same age and body weight as the diabetic rats. Similar findings were made in diabetic animals treated with both, insulin and NGF. We conclude that functional alteration of peripheral nerves causes up-regulation of VEGF in Schwann cells and neurons. With functional restitution of nervous tissue, i.e. under insulin and/or NGF treatment VEGF expression decreases significantly. Additionally, NGF may stimulate VEGF in normal controls. The production of VEGF may play a role in complete nerve regeneration and its regulation may reflect the functional state of peripheral nerves.
Collapse
Affiliation(s)
- A Samii
- Department of Anatomy, University of Munich, Germany.
| | | | | |
Collapse
|
91
|
Pasterkamp RJ, Giger RJ, Ruitenberg MJ, Holtmaat AJ, De Wit J, De Winter F, Verhaagen J. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 1999; 13:143-66. [PMID: 10192772 DOI: 10.1006/mcne.1999.0738] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the expression of the chemorepellent semaphorin III (D)/collapsin-1 (sema III) following lesions to the rat CNS. Scar tissue, formed after penetrating injuries to the lateral olfactory tract (LOT), cortex, perforant pathway, and spinal cord, contained numerous spindle-shaped cells expressing high levels of sema III mRNA. The properties of these cells were investigated in detail in the lesioned LOT. Most sema III mRNA-positive cells were located in the core of the scar and expressed proteins characteristic for fibroblast-like cells. Neuropilin-1, a sema III receptor, was expressed in injured neurons with projections to the lesion site, in a subpopulation of scar-associated cells and in blood vessels around the scar. In contrast to lesions made in the mature CNS, LOT transection in neonates did not induce sema III mRNA expression within cells in the lesion and was followed by vigorous axonal regeneration. The concomitant expression of sema III and its receptor neuropilin-1 in the scar suggests that sema III/neuropilin-1-mediated mechanisms are involved in CNS scar formation. The expression of the secreted chemorepellent sema III following CNS injury provides the first evidence that chemorepulsive semaphorins may contribute to the inhibitory effects exerted by scars on the outgrowth of injured CNS neurites. The vigorous regrowth of injured axons in the absence of sema III following early neonatal lesions is consistent with this notion. The inactivation of sema III in scar tissue by either antibody perturbation or by genetic or pharmacological intervention could be a powerful means to promote long-distance regeneration in the adult CNS.
Collapse
Affiliation(s)
- R J Pasterkamp
- Graduate School for Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, Amsterdam, ZO 1105 AZ, The Netherlands
| | | | | | | | | | | | | |
Collapse
|