51
|
Lalzar M, Zeevi A, Frenkel O, Gamliel A, Abbo S, Iasur Kruh L. Seed-Derived Microbial Community of Wild Cicer Seedlings: Composition and Augmentation to Domesticated Cicer. Microbiol Spectr 2022; 10:e0278521. [PMID: 35638782 PMCID: PMC9241877 DOI: 10.1128/spectrum.02785-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
Seed-borne bacteria are a unique group of microorganisms capable of maintaining stable populations within plant tissues and seeds. These bacteria may benefit their host from germination to maturation and are of great interest for basic and applied plant-microbe interaction studies. Furthermore, many such beneficial bacteria present in wild plant species are missing in their respective congeneric domesticated forms. The objectives of this study were to explore the bacterial communities within the seeds of wild Cicer species and to select beneficial bacteria which could be used to improve production of domesticated chickpea (C. arietinum). We analyzed the composition of seed-borne bacteria of chickpea (Cicer spp.), comparing wild and domesticated species from different geographic locations. Subsequently, we isolated the dominant and prevalent seed-borne bacteria from wild Cicer judaicum and assessed their ability to colonize and affect the growth of domesticated chickpea and other legume crops. The composition and structure of seed-borne bacteria, determined by amplicon sequencing of the 16S rRNA gene, differed between wild and domesticated chickpea and varied among geographic locations. The genus Burkholderia dominated samples from domesticated chickpea at all examined sites, while Bacillus or Sphingomonas dominated cultures isolated from wild C. judaicum, dependent on geographic location. A particular Bacillus strain, Bacillus sp. CJ, representing the most prevalent bacterium in wild C. judaicum, was further isolated. Bacillus sp. CJ, applied by seed coating, successfully inhabited domesticated chickpea plants and improved plant growth parameters. These results demonstrate the potential for reconstructing the microbiota of crop plants using the wild microbiota reservoir. IMPORTANCE Chickpea (garbanzo bean, hummus, Cicer arietinum) representing the third legume crop produced globally. As is the case for many other domesticated crops, the adaptation and resistance of chickpea to biotic and abiotic stresses is inferior compared to that of their wild progenitors and relatives. Re-establishing desirable characteristics from wild to domesticated species may be achieved by reconstructing beneficial microbiota. In this study, we examined the seed-associated microbiota of both wild and domesticated chickpea and applied isolated beneficial bacteria originating from wild Cicer judaicum to domesticated chickpea by seed coating. This isolate, Bacillus sp. CJ, was successfully established in the crop and enhanced its growth, demonstrating effective and efficient manipulation of the chickpea microbiota as a potential model for future application in other crop plants.
Collapse
Affiliation(s)
- Maya Lalzar
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Adi Zeevi
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel, Israel
| | - Omer Frenkel
- Plant Protection, Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Israel
| | - Abraham Gamliel
- Agricultural Engineering, Growing, Production and Environmental Engineering, Agricultural Research Organization, Volcani Center, Israel
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lilach Iasur Kruh
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel, Israel
| |
Collapse
|
52
|
Tsakeng CUB, Tanekou TTM, Soffack SF, Tirados I, Noutchih C, Njiokou F, Bigoga JD, Wondji CS. Assessing the Tsetse Fly Microbiome Composition and the Potential Association of Some Bacteria Taxa with Trypanosome Establishment. Microorganisms 2022; 10:1141. [PMID: 35744659 PMCID: PMC9229743 DOI: 10.3390/microorganisms10061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Steve Feudjio Soffack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| | - Cedrique Noutchih
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Jude Daiga Bigoga
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
53
|
Heo AY, Koo YM, Choi HW. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. BIOLOGY 2022; 11:biology11040619. [PMID: 35453817 PMCID: PMC9028202 DOI: 10.3390/biology11040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Burkholderia contaminans belongs to B. cepacia complex (Bcc), those of which are found in various environmental conditions. In this study, a novel strain AY001 of B. contaminans (AY001) was identified from the rhizosphere soil sample. AY001 showed (i) various plant growth-promoting rhizobacteria (PGPR)-related traits, (ii) antagonistic activity against different plant pathogenic fungi, (iii) suppressive activity against tomato Fusarium wilt disease, (iv) induced systemic acquired resistance (ISR)-triggering activity, and (v) production of various antimicrobial and plant immune-inducing secondary metabolites. These results suggest that AY001 is, indeed, a successful PGPR, and it can be practically used in tomato cultivation to alleviate biotic and abiotic stresses. However, further safety studies on the use of AY001 will be needed to ensure its safe use in the Agricultural system. Abstract Plant growth promoting rhizobacteria (PGPR) is not only enhancing plant growth, but also inducing resistance against a broad range of pathogens, thus providing effective strategies to substitute chemical products. In this study, Burkholderia contaminans AY001 (AY001) is isolated based on its broad-spectrum antifungal activity. AY001 not only inhibited fungal pathogen growth in dual culture and culture filtrate assays, but also showed various PGPR traits, such as nitrogen fixation, phosphate solubilization, extracellular protease production, zinc solubilization and indole-3-acetic acid (IAA) biosynthesis activities. Indeed, AY001 treatment significantly enhanced growth of tomato plants and enhanced resistance against two distinct pathogens, F. oxysporum f.sp. lycopersici and Pseudomonas syringae pv. tomato. Real-time qPCR analyses revealed that AY001 treatment induced jasmonic acid/ethylene-dependent defense-related gene expression, suggesting its Induced Systemic Resistance (ISR)-eliciting activity. Gas chromatography–mass spectrometry (GC-MS) analysis of culture filtrate of AY001 revealed production of antimicrobial compounds, including di(2-ethylhexyl) phthalate and pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl). Taken together, our newly isolated AY001 showed promising PGPR and ISR activities in tomato plants, suggesting its potential use as a biofertilizer and biocontrol agent.
Collapse
Affiliation(s)
- A Yeong Heo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Seoul 02455, Korea
| | - Young Mo Koo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Correspondence: ; Tel.: +82-54-820-5509
| |
Collapse
|
54
|
Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, Schupp J, Martz M, Settles EW, Busch JD, Sidak-Loftis L, Thomas A, Kreutzer L, Georgi E, Schweizer HP, Warner JM, Keim P, Currie BJ, Wagner DM. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e0158321. [PMID: 34644162 PMCID: PMC8752149 DOI: 10.1128/aem.01583-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.
Collapse
Affiliation(s)
- Carina M. Hall
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anthony L. Baker
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Mirjam Kaestli
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Madison Martz
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lindsay Sidak-Loftis
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Astrid Thomas
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Lisa Kreutzer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey M. Warner
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J. Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
55
|
Metagenomic profile and nutrient concentrations in yellowing affected and healthy arecanut palm rhizosphere (Areca catechu L.). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
57
|
De Zutter N, Ameye M, Bekaert B, Verwaeren J, De Gelder L, Audenaert K. Uncovering New Insights and Misconceptions on the Effectiveness of Phosphate Solubilizing Rhizobacteria in Plants: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:858804. [PMID: 35310667 PMCID: PMC8924522 DOI: 10.3389/fpls.2022.858804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
As the awareness on the ecological impact of chemical phosphate fertilizers grows, research turns to sustainable alternatives such as the implementation of phosphate solubilizing bacteria (PSB), which make largely immobile phosphorous reserves in soils available for uptake by plants. In this review, we introduce the mechanisms by which plants facilitate P-uptake and illustrate how PSB improve the bioavailability of this nutrient. Next, the effectiveness of PSB on increasing plant biomass and P-uptake is assessed using a meta-analysis approach. Our review demonstrates that improved P-uptake does not always translate in improved plant height and biomass. We show that the effect of PSB on plants does not provide an added benefit when using bacterial consortia compared to single strains. Moreover, the commonly reported species for P-solubilization, Bacillus spp. and Pseudomonas spp., are outperformed by the scarcely implemented Burkholderia spp. Despite the similar responses to PSB in monocots and eudicots, species responsiveness to PSB varies within both clades. Remarkably, the meta-analysis challenges the common belief that PSB are less effective under field conditions compared to greenhouse conditions. This review provides innovative insights and identifies key questions for future research on PSB to promote their implementation in agriculture.
Collapse
Affiliation(s)
- Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Environmental Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Noémie De Zutter,
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Boris Bekaert
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Research Unit Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
58
|
Zheng Y, Chiang TY, Huang CL, Feng XY, Yrjälä K, Gong X. The Predominance of Proteobacteria and Cyanobacteria in the Cycas dolichophylla Coralloid Roots Revealed by 16S rRNA Metabarcoding. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
59
|
Liang H, Cai R, Li C, Glendon OHM, Chengcheng H, Yan H. High-throughput sequencing of 16S rRNA gene analysis reveals novel taxonomic diversity among vaginal microbiota in healthy and affected sows with endometritis. Res Vet Sci 2021; 143:33-40. [PMID: 34971899 DOI: 10.1016/j.rvsc.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/24/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
In sows afflicted with endometritis, vaginal microbiota can provide valuable information regarding bacterial community diversity. Our aim was to compare the vaginal microbiotas between endometritis and healthy sows and characterize the vaginal microbiota of endometritis sows using high-throughput sequencing of the 16S rRNA gene. Vaginal swabs were collected from healthy (Healthy_A, n = 10; Healthy_B, n = 10) and diseased (Endometritis_A, n = 10; Endometritis_B, n = 10) sows from two swine farms located in Guangdong and Yunnan province, in Southern China. The results of V3-V4 region of the 16S rRNA gene showed that Corynebacterium_1, Clostridium_sensu_stricto_1, Porphyromonas, Anaerococcus, Streptococcus, and Bacteroides comprised the core microbiota in all healthy sows. Two type of endometritis microbiota patterns were presented in two farms: the first comprised mostly of Burkholderia in farm A and the second comprised of Parvimonas in farm B. In farm A, the percentages of Burkholderia, Serratia, and Enterobacter were higher in the endometritis group, while only Parvimonas was significantly increased in the endometritis group in farm B (p < 0.05). Interestingly, the genus Burkholderia and Serratia were found only in the endometritis sows from farm A. Burkholderia was the most dominant genus found in endometritis sows and was confirmed by full-length 16S rRNA analysis using PacBio sequencing.
Collapse
Affiliation(s)
- Huixian Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Rujian Cai
- Institute of Animal Health Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China; Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.
| | - Chunling Li
- Institute of Animal Health Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China; Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China; Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, China.
| | - Ong Hong Ming Glendon
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China; School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1.2, B3-15, 62 Nanyang Drive, 637459, Singapore
| | - Hu Chengcheng
- Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510000, China; Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, Singapore 138634
| | - He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
60
|
Gavioli EM, Guardado N, Haniff F, Deiab N, Vider E. Does Cefiderocol Have a Potential Role in Cystic Fibrosis Pulmonary Exacerbation Management? Microb Drug Resist 2021; 27:1726-1732. [PMID: 34077286 DOI: 10.1089/mdr.2020.0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cystic fibrosis (CF) is associated with frequent pulmonary exacerbations and the need for novel antibiotics against antimicrobial resistance. Cefiderocol is a newly approved therapeutic option active against a variety of multidrug resistant (MDR) bacteria such as gram-negative species commonly encountered by CF patients. This review describes the potential role of cefiderocol against Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cepacia complex. Cefiderocol is a potential therapeutic option for MDR pathogens with minimum inhibitory concentrations (MICs) of ≤4 mg/L. Due to the lack of in vivo evidence in the CF population, cefiderocol may be utilized in patients in which alternative options are lacking due to MDR organisms or rapid pulmonary decline.
Collapse
Affiliation(s)
| | - Nerli Guardado
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Farah Haniff
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Nouran Deiab
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Etty Vider
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| |
Collapse
|
61
|
Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol 2021; 24:357-369. [PMID: 34811865 DOI: 10.1111/1462-2920.15843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jeth G V Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
62
|
Das J, Kumar R, Yadav SK, Jha G. The alternative sigma factors, rpoN1 and rpoN2 are required for mycophagous activity of Burkholderia gladioli strain NGJ1. Environ Microbiol 2021; 24:2781-2796. [PMID: 34766435 DOI: 10.1111/1462-2920.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
63
|
Wallner A, Moulin L, Busset N, Rimbault I, Béna G. Genetic Diversity of Type 3 Secretion System in Burkholderia s.l. and Links With Plant Host Adaptation. Front Microbiol 2021; 12:761215. [PMID: 34745070 PMCID: PMC8565462 DOI: 10.3389/fmicb.2021.761215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato species are prominent for their diversity of hosts. The type 3 secretion system (T3SS) is a major mechanism impacting the interactions between bacteria and eukaryotic hosts. Besides the human pathogenic species Burkholderia pseudomallei and closely affiliated species, the T3SS has received little attention in this genus as in taxonomically and evolutionary close genera Paraburkholderia, Caballeronia, Trinickia, and Mycetohabitans. We proceeded to identify and characterize the diversity of T3SS types using the genomic data from a subset of 145 strains representative of the species diversity found in the Burkholderia s.l. group. Through an analysis of their phylogenetic distribution, we identified two new T3SS types with an atypical chromosomal organization and which we propose to name BCI (Burkholderia cepacia complex Injectisome) and PSI (Paraburkholderia Short Injectisome). BCI is the dominant T3SS type found in Burkholderia sensu stricto (s.s.) species and PSI is mostly restricted to the Paraburkholderia genus. By correlating their distribution with the ecology of their strains of origin, we propose a role in plant interaction for these T3SS types. Experimentally, we demonstrated that a BCI deficient B. vietnamiensis LMG10929 mutant was strongly affected in its rice colonization capacity.
Collapse
Affiliation(s)
- Adrian Wallner
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Lionel Moulin
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Nicolas Busset
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Isabelle Rimbault
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gilles Béna
- PHIM Plant Health Institute, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
64
|
Multiple Copies of flhDC in Paraburkholderia unamae Regulate Flagellar Gene Expression, Motility, and Biofilm Formation. J Bacteriol 2021; 203:e0029321. [PMID: 34543106 DOI: 10.1128/jb.00293-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.
Collapse
|
65
|
Schagen M, Bosch J, Johnson J, Duker R, Lebre P, Potts AJ, Cowan DA. The soil microbiomics of intact, degraded and partially-restored semi-arid succulent thicket (Albany Subtropical Thicket). PeerJ 2021; 9:e12176. [PMID: 34707927 PMCID: PMC8501999 DOI: 10.7717/peerj.12176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/29/2021] [Indexed: 01/04/2023] Open
Abstract
This study examines the soil bacterial diversity in the Portulacaria afra-dominated succulent thicket vegetation of the Albany Subtropical Thicket biome; this biome is endemic to South Africa. The aim of the study was to compare the soil microbiomes between intact and degraded zones in the succulent thicket and identify environmental factors which could explain the community compositions. Bacterial diversity, using 16S amplicon sequencing, and soil physicochemistry were compared across three zones: intact (undisturbed and vegetated), degraded (near complete removal of vegetation due to browsing) and restored (a previously degraded area which was replanted approximately 11 years before sampling). Amplicon Sequence Variant (ASV) richness was similar across the three zones, however, the bacterial community composition and soil physicochemistry differed across the intact and degraded zones. We identified, via correlation, the potential drivers of microbial community composition as soil density, pH and the ratio of Ca to Mg. The restored zone was intermediate between the intact and degraded zones. The differences in the microbial communities appeared to be driven by the presence of plants, with plant-associated taxa more common in the intact zone. The dominant taxa in the degraded zone were cosmopolitan organisms, that have been reported globally in a wide variety of habitats. This study provides baseline information on the changes of the soil bacterial community of a spatially restricted and threatened biome. It also provides a starting point for further studies on community composition and function concerning the restoration of degraded succulent thicket ecosystems.
Collapse
Affiliation(s)
- Micaela Schagen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jenny Johnson
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Robbert Duker
- Botany Department, South Campus, Nelson Mandela University, Port Elizabeth, Eastern Cape, South Africa
| | - Pedro Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Alastair J Potts
- Botany Department, South Campus, Nelson Mandela University, Port Elizabeth, Eastern Cape, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
66
|
Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of Bacterial Symbionts With and Without Genome Erosion Between a Beetle Host and the Plant Environment. Front Microbiol 2021; 12:715601. [PMID: 34630349 PMCID: PMC8493222 DOI: 10.3389/fmicb.2021.715601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Many phytophagous insects harbor symbiotic bacteria that can be transmitted vertically from parents to offspring, or acquired horizontally from unrelated hosts or the environment. In the latter case, plants are a potential route for symbiont transfer and can thus foster a tripartite interaction between microbe, insect, and plant. Here, we focus on two bacterial symbionts of the darkling beetle Lagria villosa that belong to the genus Burkholderia; the culturable strain B. gladioli Lv-StA and the reduced-genome strain Burkholderia Lv-StB. The strains can be transmitted vertically and confer protection to the beetle’s eggs, but Lv-StA can also proliferate in plants, and both symbiont strains have presumably evolved from plant pathogens. Notably, little is known about the role of the environment for the transmission dynamics and the maintenance of the symbionts. Through manipulative assays, we demonstrate the transfer of the symbionts from the beetle to wheat, rice and soybean plants, as well as leaf litter. In addition, we confirm that aposymbiotic larvae can pick up Lv-StA from dry leaves and the symbiont can successfully establish in the beetle’s symbiotic organs. Also, we show that the presence of plants and soil in the environment improves symbiont maintenance. These results indicate that the symbionts of L. villosa beetles are still capable of interacting with plants despite signatures of genome erosion and suggest that a mixed-mode of bacterial transmission is likely key for the persistence of the symbiosis.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Paul Gaube
- Molecular Biodiversity Research Group, Center for Computational and Theoretical Biology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Dagmar Klebsch
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.,Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
67
|
Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proc Natl Acad Sci U S A 2021; 118:2100150118. [PMID: 34620708 PMCID: PMC8521660 DOI: 10.1073/pnas.2100150118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
The role of flowers as environmental filters for bacterial communities and the provenance of bacteria in the phyllosphere are currently poorly understood. We experimentally tested the effect of induced variation in soil communities on the microbiota of plant organs. We identified soil-derived bacteria in the phyllosphere and show a strong convergence of floral communities with an enrichment of members of the Burkholderiaceae family. This finding highlights a potential role of the flower in shaping the interaction between plants and a bacterial family known to harbor both plant pathogens and growth-promoting strains. Because the flower involves host–symbiont feedback, the selection of specific bacteria by the reproductive organs of angiosperms could be relevant for the modulation of fruit and seed production. Leaves and flowers are colonized by diverse bacteria that impact plant fitness and evolution. Although the structure of these microbial communities is becoming well-characterized, various aspects of their environmental origin and selection by plants remain uncertain, such as the relative proportion of soilborne bacteria in phyllosphere communities. Here, to address this issue and to provide experimental support for bacteria being filtered by flowers, we conducted common-garden experiments outside and under gnotobiotic conditions. We grew Arabidopsis thaliana in a soil substitute and added two microbial communities from natural soils. We estimated that at least 25% of the phyllosphere bacteria collected from the plants grown in the open environment were also detected in the controlled conditions, in which bacteria could reach leaves and flowers only from the soil. These taxa represented more than 40% of the communities based on amplicon sequencing. Unsupervised hierarchical clustering approaches supported the convergence of all floral microbiota, and 24 of the 28 bacteria responsible for this pattern belonged to the Burkholderiaceae family, which includes known plant pathogens and plant growth-promoting members. We anticipate that our study will foster future investigations regarding the routes used by soil microbes to reach leaves and flowers, the ubiquity of the environmental filtering of Burkholderiaceae across plant species and environments, and the potential functional effects of the accumulation of these bacteria in the reproductive organs of flowering plants.
Collapse
|
68
|
Priyadarshini P, Choudhury S, Tilgam J, Bharati A, Sreeshma N. Nitrogen fixing cereal: A rising hero towards meeting food security. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:912-920. [PMID: 34547550 DOI: 10.1016/j.plaphy.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen serves as one of the primary components of major biomolecules and thus extends a significant contribution to crop growth and yield. But the inability of plants to utilize freely available atmospheric N2 makes the whole agricultural system dependent on chemical fertilizers, which incur significant input cost to supplement required quantities of nitrogen to crops. Only bacteria and archaea have been gifted with the power of drawing free N2 from air to convert them into NH3, which is one of the two utilizable forms of nitrogen taken up by plants. Legumes, the only family of crops, can engage themselves in symbiotic nitrogen fixation where they establish a mutualistic relationship with nitrogen-fixing bacteria and in turn, can waive off the necessity of adding nitrogen fertilizers. Sincere effort, therefore, has been undertaken to incorporate this capability of nitrogen-fixation into non-legume crops, especially cereals which make up a vital portion in the food basket. Biotechnological interventions have also played important role in providing nitrogen fixing trait to non-legumes. This review takes up an effort to look into and accumulate all the important updates to date regarding nitrogen-fixing non-legumes with a special focus on cereals, which is one of the most important future goals in the field of science in the present era.
Collapse
Affiliation(s)
- Parichita Priyadarshini
- ICAR-Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, U.P., 284003, India
| | - Sharani Choudhury
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyotsana Tilgam
- ICAR- National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, U.P., 274103, India.
| | - Alka Bharati
- ICAR-Central Agroforestry Research Institute, Jhansi, U.P., 284003, India
| | - N Sreeshma
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
69
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
70
|
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, Covarrubias SA, Vera-Núñez JA, Délano-Frier JP. Metabolic Footprints of Burkholderia Sensu Lato Rhizosphere Bacteria Active against Maize Fusarium Pathogens. Microorganisms 2021; 9:microorganisms9102061. [PMID: 34683382 PMCID: PMC8538949 DOI: 10.3390/microorganisms9102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3-55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis.
Collapse
Affiliation(s)
- Guadalupe C. Barrera-Galicia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Héctor A. Peniche-Pavía
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Sergio A. Covarrubias
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - José A. Vera-Núñez
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
- Correspondence: ; Tel.: +52-462-623-9600
| |
Collapse
|
71
|
Schellenberger R, Crouzet J, Nickzad A, Shu LJ, Kutschera A, Gerster T, Borie N, Dawid C, Cloutier M, Villaume S, Dhondt-Cordelier S, Hubert J, Cordelier S, Mazeyrat-Gourbeyre F, Schmid C, Ongena M, Renault JH, Haudrechy A, Hofmann T, Baillieul F, Clément C, Zipfel C, Gauthier C, Déziel E, Ranf S, Dorey S. Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2101366118. [PMID: 34561304 PMCID: PMC8488661 DOI: 10.1073/pnas.2101366118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Plant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from l-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial surface motility, biofilm development, and thus successful colonization of hosts. Here, we show that the lipidic secretome from the opportunistic pathogen Pseudomonas aeruginosa, mainly comprising RLs and HAAs, stimulates Arabidopsis immunity. We demonstrate that HAAs are sensed by the bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29), which also mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) perception, in the plant Arabidopsis thaliana HAA sensing induces canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, although abolishing sensing by LORE, do not impair their ability to trigger plant defense. Moreover, our results show that the immune response triggered by RLs is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.
Collapse
Affiliation(s)
- Romain Schellenberger
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arvin Nickzad
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Lin-Jie Shu
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Alexander Kutschera
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Tim Gerster
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Nicolas Borie
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Sandra Villaume
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Jane Hubert
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Sylvain Cordelier
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Florence Mazeyrat-Gourbeyre
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christian Schmid
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Jean-Hugues Renault
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Arnaud Haudrechy
- Université de Reims Champagne-Ardenne, CNRS, Institut de Chimie Moléculaire, Unité Mixte de Recherche 7312, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Fabienne Baillieul
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada;
| | - Stefanie Ranf
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany;
| | - Stéphan Dorey
- Université de Reims Champagne-Ardenne, Unité de Recherche Résistance Induite et Bioprotection des Plantes, Unité d'accueil 4707, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité sous contrat 1488, Structure Fédérative de Recherche Condorcet, CNRS, Fédération de Recherche 3417, 51687 Reims, France;
| |
Collapse
|
72
|
Jia J, Ford E, Baird SM, Lu SE. Complete Genome Sequence Resource for the Endophytic Burkholderia sp. Strain MS389 Isolated from a Healthy Soybean Growing Adjacent to Charcoal Rot Disease Patch. PLANT DISEASE 2021; 105:2704-2707. [PMID: 33876648 DOI: 10.1094/pdis-02-21-0377-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Burkholderia sp. strain MS389, an endophytic bacterium, was isolated from a healthy soybean plant growing adjacent to a patch of plants affected by charcoal rot disease, caused by the fungal pathogen Macrophomina phaseolina. Preliminary studies demonstrated that strain MS389 possesses antimicrobial activities against multiple plant pathogens. Burkholderia sp. strain MS389 was found to have three circular chromosomes of 3,563,380 bp, 3,002,449 bp, and 1,180,421 bp in size, respectively. The 7,746,250-bp genome, with 66.73% G+C content, harbors 6,756 protein coding genes in the predicted 6,985 genes. In total, 18 rRNAs, 68 tRNAs, and four ncRNAs were identified and 139 pseudogenes were annotated as well. The findings of this study will provide valuable data to explore the antimicrobial mechanisms of the endophytic bacterial strain.
Collapse
Affiliation(s)
- Jiayuan Jia
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Emerald Ford
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sonya M Baird
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
73
|
Hwang HH, Chien PR, Huang FC, Hung SH, Kuo CH, Deng WL, Chiang EPI, Huang CC. A Plant Endophytic Bacterium, Burkholderia seminalis Strain 869T2, Promotes Plant Growth in Arabidopsis, Pak Choi, Chinese Amaranth, Lettuces, and Other Vegetables. Microorganisms 2021; 9:microorganisms9081703. [PMID: 34442782 PMCID: PMC8401003 DOI: 10.3390/microorganisms9081703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Plant endophytic bacteria live inside host plants, can be isolated from surface-sterilized plant tissues, and are non-pathogenic. These bacteria can assist host plants in obtaining more nutrients and can improve plant growth via multiple mechanisms. Certain Gram-negative Burkholderia species, including rhizobacteria, bioremediators, and biocontrol strains, have been recognized for their plant-growth-promoting abilities, while other isolates have been identified as opportunistic plant or human pathogens. In this study, we observed the auxin production, siderophore synthesis, and phosphate solubilization abilities of B. seminalis strain 869T2. Our results demonstrated that strain 869T2 promoted growth in Arabidopsis, ching chiang pak choi, pak choi, loose-leaf lettuce, romaine lettuce, red leaf lettuce, and Chinese amaranth. Leafy vegetables inoculated with strain 869T2 were larger, heavier, and had more and larger leaves and longer and heavier roots than mock-inoculated plants. Furthermore, inoculations of strain 869T2 into hot pepper caused increased flower and fruit production, and a higher percentage of fruits turned red. Inoculation of strain 869T2 into okra plants resulted in earlier flowering and increased fruit weight. In conclusion, the plant endophytic bacterium Burkholderia seminalis 869T2 exerted positive effects on growth and production in several plant species.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (H.-H.H.); (C.-C.H.); Tel.: +886-4-2284-0416-412 (H.-H.H.); +886-4-2284-0416-402 (C.-C.H.); Fax: +886-4-2287-4740 (H.-H.H. & C.-C.H.)
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
| | - Shih-Hsun Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan;
| | - Wen-Ling Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan;
| | - En-Pei Isabel Chiang
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (P.-R.C.); (F.-C.H.); (S.-H.H.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan;
- Correspondence: (H.-H.H.); (C.-C.H.); Tel.: +886-4-2284-0416-412 (H.-H.H.); +886-4-2284-0416-402 (C.-C.H.); Fax: +886-4-2287-4740 (H.-H.H. & C.-C.H.)
| |
Collapse
|
74
|
Biofilm formation by strains of Burkholderia cenocepacia lineages IIIA and IIIB and B. gladioli pv. alliicola associated with onion bacterial scale rot. Braz J Microbiol 2021; 52:1665-1675. [PMID: 34351603 DOI: 10.1007/s42770-021-00564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/27/2021] [Indexed: 10/20/2022] Open
Abstract
The Burkholderia genus has high ecological and nutritional versatility, having species capable of causing diseases in animals, humans, and plants. During chronic infections in humans, biofilm formation is a characteristic often associated with strains from different species of this genus. However, there is still no information on the formation of biofilms by plant pathogenic strains of B. cenocepacia (Bce) lineages IIIA and IIIB and B. gladioli pv. alliicola (Bga), which are associated with onion bacterial scale rot in the semi-arid region of northeast Brazil. In this study, we performed an in vitro characterization of biofilm formation ability in different culture media by the phytopathogenic strains of Bce and Bga and investigated its relationship with swarming motility. Our results indicated the existence of an intraspecific variation in biofilm formation capacity in vitro by these bacteria and the existence of a negative correlation between swarming motility and biofilm formation for strains of Bce lineage IIIB. In addition, histopathological analyses performed using optical microscopy and scanning electron microscopy revealed the formation of biofilm in vivo by Bce strains in onion tissues.
Collapse
|
75
|
Kim S, Jo S, Kim MS, Shin DH. A study of inhibitors of d- glycero-β-d- manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei as a potential antibiotic target. J Enzyme Inhib Med Chem 2021; 36:776-784. [PMID: 33733972 PMCID: PMC7993394 DOI: 10.1080/14756366.2021.1900166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
d-Glycero-β-d-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei (BpHldC) is the fourth enzyme in the ADP‐l‐glycero‐β‐d‐manno‐heptose biosynthesis pathway producing a lipopolysaccharide core. Therefore, BpHldC is an anti-melioidosis target. Three ChemBridge compounds purchased from ChemBridge Corporation (San Diego, CA) were found to have an effective inhibitory activity on BpHldC. Interestingly, ChemBridge 7929959 was the most effective compound due to the presence of the terminal benzyl group. The enzyme kinetic study revealed that most of them show mixed type inhibitory modes against ATP and βG1P. The induced-fit docking indicated that the medium affinity of ChemBridge 7929959 is originated from its benzyl group occupying the substrate-binding pocket of BpHldC. The inhibitory role of terminal aromatic groups was proven with ChemBridge 7570508. Combined with the previous study, ChemBridge 7929959 is found to work as a dual inhibitor against both HldC and HddC. Therefore, three ChemBridge compounds can be developed as a potent anti-melioidosis agent with a novel inhibitory concept.
Collapse
Affiliation(s)
- Suwon Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Seri Jo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Mi-Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| |
Collapse
|
76
|
Paulitsch F, Dos Reis FB, Hungria M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch Microbiol 2021; 203:4785-4803. [PMID: 34245357 DOI: 10.1007/s00203-021-02466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that β-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of β-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, Brasília, Distrito Federal, 70040-020, Brazil
| | | | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná, 86001-970, Brazil. .,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
77
|
Endophytic Microbiome Responses to Sulfur Availability in Beta vulgaris (L.). Int J Mol Sci 2021; 22:ijms22137184. [PMID: 34281236 PMCID: PMC8269133 DOI: 10.3390/ijms22137184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Sulfur is an essential plant macronutrient, and its adequate supply allows an efficient root storage and sugar extractability in sugar beets (Beta vulgaris L.). In this study, we investigated the effect of changes in sulfur availability on the endophytic community structure of sugar beets. Plants were hydroponically grown in a complete nutrient solution (S-supplied), a nutrient solution without MgSO4 (S-deprived), and a nutrient solution without MgSO4 for six days and resupplied with 100 μM MgSO4 for 48 h (S-resupplied). The sulfur status was monitored by inductively coupled plasma ICP–OES, and combustion analysis together with the evaluation of microRNA395 as a biomarker for sulfate status. Metabarcoding of the bacterial 16S rRNA gene was carried out in order to determine leaf endophytic community structure. The Shannon diversity index significantly differed (p < 0.05) between sulfate-supplied and sulfate-deprived seedlings. Validation by Real-Time PCR showed a significant increase (p < 0.05) of Burkholderia spp. in sulfate-deprived plants as compared to sulfate-supplied ones. The study sheds new light on the effects of nutrient deficiency on the microbiome of sugar beet plants.
Collapse
|
78
|
Li R, Shi H, Zhao X, Liu X, Duan Q, Song C, Chen H, Zheng W, Shen Q, Wang M, Wang X, Gong K, Yin J, Zhang Y, Li A, Fu J. Development and application of an efficient recombineering system for Burkholderia glumae and Burkholderia plantarii. Microb Biotechnol 2021; 14:1809-1826. [PMID: 34191386 PMCID: PMC8313284 DOI: 10.1111/1751-7915.13840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
The lambda phage Red proteins Redα/Redβ/Redγ and Rac prophage RecE/RecT proteins are powerful tools for precise and efficient genetic manipulation but have been limited to only a few prokaryotes. Here, we report the development and application of a new recombineering system for Burkholderia glumae and Burkholderia plantarii based on three Rac bacteriophage RecET-like operons, RecETheBDU8 , RecEThTJI49 and RecETh1h2eYI23 , which were obtained from three different Burkholderia species. Recombineering experiments indicated that RecEThTJI49 and RecETh1h2eYI23 showed higher recombination efficiency compared to RecETheBDU8 in Burkholderia glumae PG1. Furthermore, all of the proteins currently categorized as hypothetical proteins in RecETh1h2eYI23, RecEThTJI49 and RecETheBDU8 may have a positive effect on recombination in B. glumae PG1 except for the h2 protein in RecETh1h2eYI23 . Additionally, RecETYI23 combined with exonuclease inhibitors Pluγ or Redγ exhibited equivalent recombination efficiency compared to Redγβα in Escherichia coli, providing potential opportunity of recombineering in other Gram-negative bacteria for its loose host specificity. Using recombinase-assisted in situ insertion of promoters, we successfully activated three cryptic non-ribosomal peptide synthetase biosynthetic gene clusters in Burkholderia strains, resulting in the generation of a series of lipopeptides that were further purified and characterized. Compound 7 exhibited significant potential anti-inflammatory activity by inhibiting lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages. This recombineering system may greatly enhance functional genome research and the mining of novel natural products in the other species of the genus Burkholderia after optimization of a protocol.
Collapse
Affiliation(s)
- Ruijuan Li
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Hongbo Shi
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Xiaoyu Zhao
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Xianqi Liu
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Qiong Duan
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Chaoyi Song
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Hanna Chen
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Wentao Zheng
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Qiyao Shen
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Maoqin Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Xue Wang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Kai Gong
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and RegulationCollege of Life SciencesHunan Normal UniversityChangshaHunan410081China
| | - Youming Zhang
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Aiying Li
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| | - Jun Fu
- Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237People’s Republic of China
| |
Collapse
|
79
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|
80
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
81
|
An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia Spp. Metabolites 2021; 11:metabo11050321. [PMID: 34067834 PMCID: PMC8156019 DOI: 10.3390/metabo11050321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different phytopathogens for diverse crops. In particular, Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the following aspects: discovering, classification, distribution, plant growth promoting effect, and antimicrobial activity of different species of Burkholderia, shedding light on the most important secondary metabolites, their pathogenic effects, and biochemical characterization of some important species of Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and B. gladioli.
Collapse
|
82
|
Functional Analysis of Phenazine Biosynthesis Genes in Burkholderia spp. Appl Environ Microbiol 2021; 87:AEM.02348-20. [PMID: 33741619 DOI: 10.1128/aem.02348-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Burkholderia encompasses a group of ubiquitous Gram-negative bacteria that includes numerous saprophytes as well as species that cause infections in animals, immunocompromised patients, and plants. Some species of Burkholderia produce colored, redox-active secondary metabolites called phenazines. Phenazines contribute to competitiveness, biofilm formation, and virulence in the opportunistic pathogen Pseudomonas aeruginosa, but knowledge of their diversity, biosynthesis, and biological functions in Burkholderia is lacking. In this study, we screened publicly accessible genome sequence databases and identified phenazine biosynthesis genes in multiple strains of the Burkholderia cepacia complex, some isolates of the B. pseudomallei clade, and the plant pathogen B. glumae We then focused on B. lata ATCC 17760 to reveal the organization and function of genes involved in the production of dimethyl 4,9-dihydroxy-1,6-phenazinedicarboxylate. Using a combination of isogenic mutants and plasmids carrying different segments of the phz locus, we characterized three novel genes involved in the modification of the phenazine tricycle. Our functional studies revealed a connection between the presence and amount of phenazines and the dynamics of biofilm growth in flow cell and static experimental systems but at the same time failed to link the production of phenazines with the capacity of Burkholderia to kill fruit flies and rot onions.IMPORTANCE Although the production of phenazines in Burkholderia was first reported almost 70 years ago, the role these metabolites play in the biology of these economically important microorganisms remains poorly understood. Our results revealed that the phenazine biosynthetic pathway in Burkholderia has a complex evolutionary history, which likely involved horizontal gene transfers among several distantly related groups of organisms. The contribution of phenazines to the formation of biofilms suggests that Burkholderia, like fluorescent pseudomonads, may benefit from the unique redox-cycling properties of these versatile secondary metabolites.
Collapse
|
83
|
Chai YN, Ge Y, Stoerger V, Schachtman DP. High-resolution phenotyping of sorghum genotypic and phenotypic responses to low nitrogen and synthetic microbial communities. PLANT, CELL & ENVIRONMENT 2021; 44:1611-1626. [PMID: 33495990 DOI: 10.1111/pce.14004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 05/12/2023]
Abstract
Much effort has been placed on developing microbial inoculants to replace or supplement fertilizers to improve crop productivity and environmental sustainability. However, many studies ignore the dynamics of plant-microbe interactions and the genotypic specificity of the host plant on the outcome of microbial inoculation. Thus, it is important to study temporal plant responses to inoculation in multiple genotypes within a single species. With the implementation of high-throughput phenotyping, the dynamics of biomass and nitrogen (N) accumulation of four sorghum genotypes with contrasting N-use efficiency were monitored upon the inoculation with synthetic microbial communities (SynComs) under high and low-N. Five SynComs comprising bacteria isolated from field grown sorghum were designed based on the overall phylar composition of bacteria and the enriched host compartment determined from a field-based culture independent study of the sorghum microbiome. We demonstrated that the growth response of sorghum to SynCom inoculation is genotype-specific and dependent on plant N status. The sorghum genotypes that were N-use inefficient were more susceptible to the colonization from a diverse set of inoculated bacteria as compared to the N-use efficient lines especially under low-N. By integrating high-throughput phenotyping with sequencing data, our findings highlight the roles of host genotype and plant nutritional status in determining colonization by bacterial synthetic communities.
Collapse
Affiliation(s)
- Yen Ning Chai
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yufeng Ge
- Department of Biological Systems Engineering, L.W. Chase Hall 203, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Vincent Stoerger
- Agricultural Research Division, Greenhouse Innovation Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
84
|
Sarli DA, Sánchez LA, Delgado OD. Burkholderia gladioli MB39 an Antarctic Strain as a Biocontrol Agent. Curr Microbiol 2021; 78:2332-2344. [PMID: 33904974 DOI: 10.1007/s00284-021-02492-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
Bioprospecting sub-explored environments such as Antarctic locations leads to finding out diverse activities, reducing harmful chemical usage that affects both human health and the environment. In this study, ~ 7000 cold-adapted bacterial strains were isolated from samples around Melchior Antarctic Base at 5 °C and more than 13,000 at 15 °C. Out of them, 900 different colony morphotypes were evaluated for antimicrobial production, and 13 isolates demonstrated antibacterial and antifungal activities. One isolate, closely related to Burkholderia gladioli according to 16S rDNA (99.8%), gyrB (99.6%) and Cpn60 (99.4%) gene sequence analysis, showed a consistent, broad antimicrobial spectrum against both pathogenic and phytopathogenic bacteria. Its potent antifungal activity inhibits the growth of various plant pathogenic fungi, whereas it was mainly studied against Penicillium digitatum and Macrophomina phaseolina, the causal agents of blue mould in postharvest fruits and charcoal rot in soybean crops, respectively. The antibacterial compound exhibited low molecular weight (< 6000 Da), resistance to lytic enzymes and stability in a broad range of temperature and pHs. Observations of the B. gladioli MB39 antifungal effects over M. phaseolina mycelia by scanning electron microscopy showed alterations in hyphal structures, reduced hyphal extension, and severe cell morphology changes such as cytoplasmic leakage, flattened and empty mycelia. Here we report the isolation and identification of a cold-adapted B. gladioli strain. The results describe the effectiveness of the antarctic strain for bacterial and fungal phytopathogens biocontrol and its potential for crop protection plans.
Collapse
Affiliation(s)
- Dinorah A Sarli
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, 4000, San Miguel de Tucumán, Argentina
| | - Leandro A Sánchez
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, 4000, San Miguel de Tucumán, Argentina
| | - Osvaldo D Delgado
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, 4000, San Miguel de Tucumán, Argentina. .,Fac. de Ciencias Exactas y Nat. (FACEN), Centro de Biología Molecular y Biotecnología (CEBIOTEC), Universidad Nacional de Catamarca (UNCa), Av. Belgrano 300, 4700, Catamarca, Argentina.
| |
Collapse
|
85
|
Priming Effects of Cover Cropping on Bacterial Community in a Tea Plantation. SUSTAINABILITY 2021. [DOI: 10.3390/su13084345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The acidic nature of red soil commonly found in tea plantations provides unique niches for bacterial growth. These bacteria as well as soil properties are dynamic and vary with agricultural management practices. However, less is known about the influence of manipulation such as cover cropping on bacterial communities in tea plantations. In this study a field trial was conducted to address the short-term effects of soybean intercropping on a bacterial community. Diversity, metabolic potential and structure of the bacterial community were determined through community level physiological profiling and amplicon sequencing approaches. Cover cropping was observed to increase soil EC, available P, K, and microelements Fe, Mn, Cu, and Zn after three months of cultivation. Bacterial functional diversity and metabolic potential toward six carbon source categories also increased in response to cover cropping. Distinct bacterial communities among treatments were revealed, and the most effective biomarkers, such as Acidobacteriaceae, Burkholderiaceae, Rhodanobacteraceae, and Sphingomonadaceae, were identified in cover cropping. Members belonging to these families are considered as organic matter decomposers and/or plant growth promoting bacteria. We provided the first evidence that cover cropping boosted both copiotrophs (Proteobacteria) and oligotrophs (Acidobacteria), with potentially increased functional stability, facilitated nutrient cycling, and prospective benefits to plants in the tea plantation.
Collapse
|
86
|
Prasad JK, Pandey P, Anand R, Raghuwanshi R. Drought Exposed Burkholderia seminalis JRBHU6 Exhibits Antimicrobial Potential Through Pyrazine-1,4-Dione Derivatives Targeting Multiple Bacterial and Fungal Proteins. Front Microbiol 2021; 12:633036. [PMID: 33935993 PMCID: PMC8079638 DOI: 10.3389/fmicb.2021.633036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to explore the antimicrobial potentials of soil bacteria and identify the bioactive compounds and their likely targets through in silico studies. A total 53 bacterial isolates were screened for their antimicrobial potential of which the strain JRBHU6 showing highest antimicrobial activity was identified as Burkholderia seminalis (GenBank accession no. MK500868) based on 16S ribosomal RNA (rRNA) gene sequencing and phylogenetic analysis. B. seminalis JRBHU6 also produced hydrolytic enzymes chitinases and cellulase of significance in accrediting its antimicrobial nature. The bioactive metabolites produced by the isolate were extracted in different organic solvents among which methanolic extract showed best growth-suppressing activities toward multidrug resistant Staphylococcus aureus and fungal strains, viz Fusarium oxysporum, Aspergillus niger, Microsporum gypseum, Trichophyton mentagrophytes, and Trichoderma harzianum. The antimicrobial compounds were purified using silica gel thin layer chromatography and high-performance liquid chromatography (HPLC). On the basis of spectroscopic analysis, the bioactive metabolites were identified as pyrrolo(1,2-a)pyrazine-1,4-dione,hexahydro (PPDH) and pyrrolo(1,2-a)pyrazine-1,4-dione, hexahydro-3(2-methylpropyl) (PPDHMP). In silico molecular docking studies showed the bioactive compounds targeting fungal and bacterial proteins, among which PPDHMP was multitargeting in nature as reported for the first time through this study.
Collapse
Affiliation(s)
- Jay Kishor Prasad
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Richa Anand
- Department of Applied Science, Indian Institute of Information Technology-Allahabad, Prayagraj, India
| | - Richa Raghuwanshi
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
87
|
Fracchia F, Mangeot-Peter L, Jacquot L, Martin F, Veneault-Fourrey C, Deveau A. Colonization of Naive Roots from Populus tremula × alba Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Appl Environ Microbiol 2021; 87:e02541-20. [PMID: 33452025 PMCID: PMC8105020 DOI: 10.1128/aem.02541-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Through their roots, trees interact with a highly complex community of microorganisms belonging to various trophic guilds and contributing to tree nutrition, development, and protection against stresses. Tree roots select for specific microbial species from the bulk soil communities. The root microbiome formation is a dynamic process, but little is known on how the different microorganisms colonize the roots and how the selection occurs. To decipher whether the final composition of the root microbiome is the product of several waves of colonization by different guilds of microorganisms, we planted sterile rooted cuttings of gray poplar obtained from plantlets propagated in axenic conditions in natural poplar stand soil. We analyzed the root microbiome at different time points between 2 and 50 days of culture by combining high-throughput Illumina MiSeq sequencing of the fungal ribosomal DNA internal transcribed spacer and bacterial 16S rRNA amplicons with confocal laser scanning microscopy observations. The microbial colonization of poplar roots took place in three stages, but bacteria and fungi had different dynamics. Root bacterial communities were clearly different from those in the soil after 2 days of culture. In contrast, if fungi were also already colonizing roots after 2 days, the initial communities were very close to that in the soil and were dominated by saprotrophs. They were slowly replaced by endophytes and ectomycorhizal fungi. The replacement of the most abundant fungal and bacterial community members observed in poplar roots over time suggest potential competition effect between microorganisms and/or a selection by the host.IMPORTANCE The tree root microbiome is composed of a very diverse set of bacterial and fungal communities. These microorganisms have a profound impact on tree growth, development, and protection against different types of stress. They mainly originate from the bulk soil and colonize the root system, which provides a unique nutrient-rich environment for a diverse assemblage of microbial communities. In order to better understand how the tree root microbiome is shaped over time, we observed the composition of root-associated microbial communities of naive plantlets of poplar transferred in natural soil. The composition of the final root microbiome relies on a series of colonization stages characterized by the dominance of different fungal guilds and bacterial community members over time. Our observations suggest an early stabilization of bacterial communities, whereas fungal communities are established following a more gradual pattern.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - L Jacquot
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - F Martin
- Université de Lorraine, INRAE, IAM, Nancy, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, China
| | | | - A Deveau
- Université de Lorraine, INRAE, IAM, Nancy, France
| |
Collapse
|
88
|
Pacífico C, Petri RM, Ricci S, Mickdam E, Wetzels SU, Neubauer V, Zebeli Q. Unveiling the Bovine Epimural Microbiota Composition and Putative Function. Microorganisms 2021; 9:microorganisms9020342. [PMID: 33572291 PMCID: PMC7915655 DOI: 10.3390/microorganisms9020342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have used the 16S rRNA gene target in an attempt to characterize the structure and composition of the epimural microbiota in cattle. However, comparisons between studies are challenging, as the results show large variations associated with experimental protocols and bioinformatics methodologies. Here, we present a meta-analysis of the rumen epimural microbiota from 11 publicly available amplicon studies to assess key technical and biological sources of variation between experiments. Using the QIIME2 pipeline, 332 rumen epithelial microbiota samples were analyzed to investigate community structure, composition, and functional potential. Despite having a significant impact on microbial abundance, country of origin, farm, hypervariable region, primer set, animal variability, and biopsy location did not obscure the identification of a core microbiota. The bacterial genera Campylobacter, Christensenellaceae R-7 group, Defluviitaleaceae UCG-011, Lachnospiraceae UCG-010, Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Succiniclasticum, Desulfobulbus, and Comamonas spp. were found in nearly all epithelium samples (>90%). Predictive analysis (PICRUSt) was used to assess the potential functions of the epithelial microbiota. Regularized canonical correlation analysis identified several pathways associated with the biosynthesis of precursor metabolites in Campylobacter, Comamonas, Desulfobulbus, and Ruminococcaceae NK4A214, highlighting key metabolic functions of these microbes within the epithelium.
Collapse
Affiliation(s)
- Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria; (S.R.); (Q.Z.)
- Correspondence:
| | - Renée Maxine Petri
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M1Z7, Canada;
| | - Sara Ricci
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria; (S.R.); (Q.Z.)
| | - Elsayed Mickdam
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Stefanie Urimare Wetzels
- Unit for Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (S.U.W.); (V.N.)
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, 3430 Tulln, Austria
| | - Viktoria Neubauer
- Unit for Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (S.U.W.); (V.N.)
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, 3430 Tulln, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria; (S.R.); (Q.Z.)
| |
Collapse
|
89
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
90
|
Xu Z, Wang M, Du J, Huang T, Liu J, Dong T, Chen Y. Isolation of Burkholderia sp. HQB-1, A Promising Biocontrol Bacteria to Protect Banana Against Fusarium Wilt Through Phenazine-1-Carboxylic Acid Secretion. Front Microbiol 2020; 11:605152. [PMID: 33362750 PMCID: PMC7758292 DOI: 10.3389/fmicb.2020.605152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt is a devastating soil-borne fungal disease caused by Fusarium oxysporum f.sp. cubense (Foc). In recent years, some antifungal bacteria have been applied for the prevention and biocontrol of pathogenic fungi. In our study, a bacterial strain HQB-1, isolated from banana rhizosphere soil, was cultured for investigation. It showed broad-spectrum antifungal activities against representative phytopathogenic fungi including Fusarium oxysporum, Colletotrichum gloeosporioides, Botrytis cinerea, and Curvularia fallax. The strain HQB-1 was identified as Burkholderia sp. by morphological, physiological, and biochemical examinations, confirmed by 16S rRNA gene sequence analysis. Among the metabolites produced by the strain, we identified an antifungal compound which was identified phenazine-1-carboxylic acid (PCA) (C13H8N2O2) through ultraviolet, liquid chromatography quadrupole-time of flight mass spectrometer, and nuclear magnetic response. Furthermore, PCA exhibited the lowest minimum inhibitory concentration (MIC) against F. oxysporum (1.56 μg/ml) and yielded the highest MIC against C. gloeosporioides. Pot experiments showed that application of 5 μg/ml or more of PCA efficiently controlled banana wilt and promoted the growth of banana plants. These results suggested that Burkholderia sp. HQB-1, as an important microbial resource of PCA, could be a promising biological agent against wilt diseases and promoting banana growth.
Collapse
Affiliation(s)
- Zhizhou Xu
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mingyuan Wang
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Jinpeng Du
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Ting Huang
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Jianfu Liu
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yinglong Chen
- UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
91
|
Esmaeel Q, Jacquard C, Sanchez L, Clément C, Ait Barka E. The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Sci Rep 2020; 10:19393. [PMID: 33173115 PMCID: PMC7655954 DOI: 10.1038/s41598-020-76483-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Plant-associated Burkholderia spp. have been shown to offer a promising alternative method that may address concerns with ecological issue associated with pesticide overuse in agriculture. However to date, little work has studied the role of Burkholderia species as biocontrol agents for grapevine pathogens. To this end, two Burkholderia strains, BE17 and BE24 isolated from the maize rhizosphere in France, were investigated to determine their biocontrol potential and their ability to induce systemic resistance against grey mould disease in grapevine. Results showed the capacity of both strains to inhibit spore germination and mycelium growth of Botrytis cinerea. Experimental inoculation with BE17 and BE24 showed a significant protection of bacterized-plantlets against grey mould compared to the non-bacterized control. BE17 and BE24-bacterized plants accumulated more reactive oxygen species and an increased callose deposition was observed in leaves of bacterized plantlets compared to the control plantlets. In bacterized plants, gene expression analysis subsequent to B. cinerea challenge showed that strains BE17 and BE24 significantly increased the relative transcript level of pathogenesis-related (PR) proteins PR5 and PR10, two markers involved in the Salicylic acid (SA)-signaling pathway. Furthermore, in silico analysis of strains revealed the presence of genes involved in plant growth promotion and biocontrol highlighting the attractiveness of these strains for sustainable agricultural applications.
Collapse
Affiliation(s)
- Qassim Esmaeel
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France.
| | - Cédric Jacquard
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France
| | - Essaid Ait Barka
- Unité de Résistance Induite et Bioprotection des Plantes EA 4707, SFR Condorcet FR CNRS 3417, University of Reims-Champagne-Ardenne, Reims, France.
| |
Collapse
|
92
|
Arce-Rodríguez A, Puente-Sánchez F, Avendaño R, Libby E, Mora-Amador R, Rojas-Jimenez K, Martínez M, Pieper DH, Chavarría M. Microbial Community Structure Along a Horizontal Oxygen Gradient in a Costa Rican Volcanic Influenced Acid Rock Drainage System. MICROBIAL ECOLOGY 2020; 80:793-808. [PMID: 32572534 DOI: 10.1007/s00248-020-01530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
We describe the geochemistry and microbial diversity of a pristine environment that resembles an acid rock drainage (ARD) but it is actually the result of hydrothermal and volcanic influences. We designate this environment, and other comparable sites, as volcanic influenced acid rock drainage (VARD) systems. The metal content and sulfuric acid in this ecosystem stem from the volcanic milieu and not from the product of pyrite oxidation. Based on the analysis of 16S rRNA gene amplicons, we report the microbial community structure in the pristine San Cayetano Costa Rican VARD environment (pH = 2.94-3.06, sulfate ~ 0.87-1.19 g L-1, iron ~ 35-61 mg L-1 (waters), and ~ 8-293 g kg-1 (sediments)). San Cayetano was found to be dominated by microorganisms involved in the geochemical cycling of iron, sulfur, and nitrogen; however, the identity and abundance of the species changed with the oxygen content (0.40-6.06 mg L-1) along the river course. The hypoxic source of San Cayetano is dominated by a putative anaerobic sulfate-reducing Deltaproteobacterium. Sulfur-oxidizing bacteria such as Acidithiobacillus or Sulfobacillus are found in smaller proportions with respect to typical ARD. In the oxic downstream, we identified aerobic iron-oxidizers (Leptospirillum, Acidithrix, Ferrovum) and heterotrophic bacteria (Burkholderiaceae bacterium, Trichococcus, Acidocella). Thermoplasmatales archaea closely related to environmental phylotypes found in other ARD niches were also observed throughout the entire ecosystem. Overall, our study shows the differences and similarities in the diversity and distribution of the microbial communities between an ARD and a VARD system at the source and along the oxygen gradient that establishes on the course of the river.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Fernando Puente-Sánchez
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica
| | - Eduardo Libby
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Raúl Mora-Amador
- Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, San José, 11501-2060, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - María Martínez
- Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (OVSICORI-UNA), Heredia, 2386-3000, Costa Rica
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, 1174-1200, Costa Rica.
- Escuela de Química, Universidad de Costa Rica, San José, 11501-2060, Costa Rica.
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, Sede Central, San Pedro de Montes de Oca, San José, 11501-2060, Costa Rica.
| |
Collapse
|
93
|
Thapa SS, Grove A. Impaired purine homeostasis plays a primary role in trimethoprim-mediated induction of virulence genes in Burkholderia thailandensis. Mol Microbiol 2020; 115:610-622. [PMID: 33053234 DOI: 10.1111/mmi.14626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
One of the most commonly prescribed antibiotics against Burkholderia infections is co-trimoxazole, a cocktail of trimethoprim and sulfamethoxazole. Trimethoprim elicits an upregulation of the mal gene cluster, which encodes proteins involved in synthesis of the cytotoxic polyketide malleilactone; trimethoprim does so by increasing expression of the malR gene, which encodes the activator MalR. We report that B. thailandensis grown on trimethoprim exhibited increased virulence against Caenorhabditis elegans. This enhanced virulence correlated with an increase in expression of the mal gene cluster. Notably, inhibition of xanthine dehydrogenase by addition of allopurinol led to similar upregulation of malA and malR, with addition of trimethoprim or allopurinol also resulting in an equivalent intracellular accumulation of xanthine. Xanthine is a ligand for the transcription factor MftR that leads to attenuated DNA binding, and we show using chromatin immunoprecipitation that MftR binds directly to malR. Our gene expression data suggest that malR expression is repressed by both MftR and by a separate transcription factor, which also responds to a metabolite that accumulates on exposure to trimethoprim. Since allopurinol elicits a similar increase in malR/malA expression as trimethoprim, we suggest that impaired purine homeostasis plays a primary role in trimethoprim-mediated induction of malR and in turn malA.
Collapse
Affiliation(s)
- Sudarshan S Thapa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
94
|
Bacosa HP, Steichen J, Kamalanathan M, Windham R, Lubguban A, Labonté JM, Kaiser K, Hala D, Santschi PH, Quigg A. Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34987-34999. [PMID: 32588304 DOI: 10.1007/s11356-020-09754-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/15/2020] [Indexed: 05/14/2023]
Abstract
Hurricane Harvey was the wettest hurricane in US history bringing record rainfall and widespread flooding in Houston, TX. The resulting storm- and floodwaters largely emptied into the Galveston Bay. Surface water was collected from 10 stations during five cruises to investigate the concentrations and sources of 16 priority polycyclic aromatic hydrocarbons (PAHs), and relative abundances of PAH-degrading bacteria. Highest PAH levels (102-167 ng/L) were detected during the first sampling event, decreasing to 36-69 ng/L within a week. Four sites had elevated concentrations of carcinogenic benzo[a]pyrene that exceeded the Texas Standard for Surface Water threshold. The highest relative abundances of known PAH-degrading bacteria Burkholderiaceae, Comamonadaceae, and Sphingomonadales were detected during the first and second sampling events. PAH origins were about 60% pyrogenic, 2% petrogenic, and the remainder of mixed sources. This study improves our understanding on the fate, source, and distributions of PAHs in Galveston Bay after an extreme flooding event.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA.
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, 77553, USA.
| | - Jamie Steichen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Rachel Windham
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Arnold Lubguban
- Department of Chemical Engineering & Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Lanao del Norte, Philippines
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Karl Kaiser
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, 77553, USA
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Peter H Santschi
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, 77553, USA
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
95
|
Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW. Comprehensive genome analysis of a pangolin-associated Paraburkholderia fungorum provides new insights into its secretion systems and virulence. PeerJ 2020; 8:e9733. [PMID: 32953261 PMCID: PMC7474880 DOI: 10.7717/peerj.9733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support. Methodology The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium’s response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion. Conclusion This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.
Collapse
Affiliation(s)
- Ka Yun Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: The Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia.,Current affiliation: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), High Impact Research Building, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rofina Y Othman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management & Innovation Complex, Universiti Malaya, Copenhagen, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
96
|
Effect of soil chemical fertilization on the diversity and composition of the tomato endophytic diazotrophic community at different stages of growth. Braz J Microbiol 2020; 51:1965-1975. [PMID: 32895888 DOI: 10.1007/s42770-020-00373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022] Open
Abstract
The aim of this work was to gain a more comprehensive and perspicacious view of the endophytic diazotrophic community (EDC) of tomato plant bacteria and assess the effects of chemical fertilization and the plant phenologic stage on the status of those microbes. When the EDC of stem and roots from tomato plants grown in a greenhouse with and without exogenous chemical fertilization was examined by pyrosequencing the nifH gene during the growth cycle, a high taxonomic and phylogenetic diversity was observed. The abundant taxa were related to ubiquitous endophytes such as Rhizobium or Burkholderia but also involved anaerobic members usually restricted to flooded plant tissues, such as Clostridium, Geobacter, and Desulfovibrio. The EDC composition appeared to be dynamic during the growth phase of the tomato, with the structure of the community at the early stages of growth displaying major differences from the late stages. Inorganic fertilization negatively affected the diversity and modified the profile of the predominant components of the EDC in the different growth stages. Populations such as Burkholderia and Geobacter plus the Cyanobacteria appeared particularly affected by fertilization.Our work demonstrates an extensive endophytic diazotrophic diversity, suggesting a high potential for nitrogen fixation. The effect of the phenologic stage and inorganic-chemical soil fertilization on the community structure indicated a dynamic community that responded to environmental changes. These findings contribute to a better understanding of endophytic associations that could be helpful in assisting to shape the endomicrobiome that provides essential benefits to crops.
Collapse
|
97
|
Tavares M, Kozak M, Balola A, Coutinho CP, Godinho CP, Hassan AA, Cooper VS, Sá-Correia I. Adaptation and Survival of Burkholderia cepacia and B. contaminans During Long-Term Incubation in Saline Solutions Containing Benzalkonium Chloride. Front Bioeng Biotechnol 2020; 8:630. [PMID: 32714902 PMCID: PMC7344210 DOI: 10.3389/fbioe.2020.00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 01/28/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of opportunistic pathogenic bacteria with a remarkable metabolic capacity and broad genotypic/phenotypic plasticity, allowing their adaptation to hostile conditions, including nutrient depleted solutions containing antimicrobial agents. Bcc bacteria are feared contaminants in pharmaceutical industries and cause nosocomial outbreaks, posing health threats to immunocompromised individuals and cystic fibrosis (CF) patients. In this study, the adaptation and survival of B. cepacia and B. contaminans isolates was investigated after long-term incubation in nutrient depleted saline solutions supplemented with increasing concentrations of the biocidal preservative benzalkonium chloride (BZK), recreating the storage conditions of pharmaceutical products. These epidemiologically related isolates were recovered from intrinsically contaminated saline solutions for nasal application and from two CF patients. Long-term incubation in saline solutions containing BZK led to the development of bacterial sub-populations that survived for at least 16 months, despite an initial 2-3 log decrease in viability, displaying a progressive dose-dependent decrease of colony and cell size, including the appearance of small colony variants (SCVs). Bacterial colonies lost pigmentation, changed the morphotype from rough to smooth and produced more spherical cells during extended incubation with BZK. The development of macroscopically visible cellular aggregates, rich in polysaccharide and harboring viable cells in their interior was triggered by BZK. The existence of a metabolic pathway for BZK degradation was confirmed through genome analysis. This study reveals mechanisms underlying the prevalence of Bcc bacteria as contaminants of pharmaceutical products containing BZK, which often lead to false-negative results during quality control and routine testing.
Collapse
Affiliation(s)
- Mariana Tavares
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mariya Kozak
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Balola
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P Coutinho
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia P Godinho
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - A Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
98
|
Effects of Selected Functional Bacteria on Maize Growth and Nutrient Use Efficiency. Microorganisms 2020; 8:microorganisms8060854. [PMID: 32517011 PMCID: PMC7356773 DOI: 10.3390/microorganisms8060854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR), which include isolates from genera Paraburkholderia, Burkholderia and Serratia, have received attention due to their numerous plant growth-promoting mechanisms such as their ability to solubilize insoluble phosphates and nitrogen-fixation. However, there is a dearth of information on the potential plant growth-promoting effects of these three groups of bacteria on non-legumes such as maize. This study determined the influences of the aforementioned strains on soil properties, maize growth, nutrient uptake and nutrient use efficiency. A pot trial using maize as a test crop was done using a randomized complete block design with 7 treatments each replicated 7 times. The treatments used in this study were: Control (no fertilizer), chemical fertilizer (CF), organic-chemical fertilizers combination without inoculum (OCF) and with inocula consisting of single strains [cellulolytic bacteria (TC), organic fertilizer and chemical fertilizer with N-fixing bacteria (TN), organic fertilizer and chemical fertilizer with P-solubilizing bacteria (TP)) and three-strain inocula (TCNP), respectively. The variables measured included plant growth and nutrient content, soil nutrient content and functional rhizospheric bacterial populations. Paraburkholderia nodosa NB1 and Burkholderia cepacia PB3 showed comparable effects on maize biomass and also improved N and P use efficiencies when compared to full chemical fertilization. Nitrogen-fixing rhizobacteria had a positive effect on above-ground biomass of maize. Paraburkholderia nodosa NB1 improved soil total C and organic matter contents, besides being the only bacterial treatment that improved K use efficiency compared to OCF. The results suggest that P. nodosa NB1 and B. cepacia PB3 have potential usage in bio-fertilizers. In contrast, treatments with Serratia nematodiphila C46d and consortium strains showed poorer maize nutrient uptake and use efficiency than the other single strain treatments. Bacterial treatments generally showed comparable or higher overall N and P use efficiencies than full chemical fertilization. These findings suggest that at least half the amounts of N and P fertilizers could be reduced through the use of combined fertilization together with beneficial bacteria.
Collapse
|
99
|
Cullings K, Stott MB, Marinkovich N, DeSimone J, Bhardwaj S. Phylum-level diversity of the microbiome of the extremophilic basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert: An island of biodiversity in a thermal soil desert. Microbiologyopen 2020; 9:e1062. [PMID: 32478485 PMCID: PMC7424252 DOI: 10.1002/mbo3.1062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
We used high‐throughput DNA sequencing methods combined with bio‐geochemical profiles to characterize the internal environment and community structure of the microbiome of the basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert from soils within a geothermal feature of Yellowstone National Park. Pisolithus arhizus is unique in that it forms closed fruiting bodies that sequester visible sulfur within. Fourier transform infrared spectroscopy (FTIR) analysis demonstrates that the P. arhizus fruiting body also concentrates copper, manganese, nickel, and zinc and contains pure granular silica. Gas chromatography‐mass spectrometry (GC‐MS) analysis indicates an environment rich in hydrocarbons. Oxygen probe analysis reveals that zones of up to 4× atmospheric oxygen exist within nanometers of zones of near anoxia. Analysis of microbial community structure using high‐throughput DNA sequencing methods shows that the fruiting body supports a microbiome that reflects the physiochemical environment of the fruiting body. Diversity and richness measures indicate a microbiome that is significantly richer and more diverse than that of the soils in which P. arhizus grows. Further, P. arhizus sporocarps are enriched significantly in Proteobacteria (primarily Burkholderia) Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Nitrospirae, Elusimicrobia, and Latescibacteria (WS3) while soils are enriched in Actinobacteria (primarily Mycobacterium), Dormibacteraeota (AD3), and Eremiobacteraeota (WPS‐2). Finally, pairwise % similarity comparisons indicate that P. arhizus harbors two lineages that may represent new groups in the candidate phylum radiation (CPR). Together, these results demonstrate that P. arhizus provides a novel environment for microbiome studies and provides for interesting hypotheses regarding the evolution, origins, and functions of symbioses and novel microbes.
Collapse
Affiliation(s)
- Ken Cullings
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Julia DeSimone
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| | - Shilpa Bhardwaj
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
100
|
Kong P, Hong C. Complete genome sequence of a boxwood endophyte Burkholderia sp. SSG with broad biotechnological application potential. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00455. [PMID: 32368513 PMCID: PMC7184123 DOI: 10.1016/j.btre.2020.e00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/09/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
Burkholderia sp. strain SSG is a boxwood endophyte with potent antagonistic activities against a variety of plant pathogens. Here we present its complete genome sequence that is 8.6 Mb long with a GC content of 66.9%, 10,209 predicted protein-coding sequences, and 866 secondary metabolism gene clusters. Many of these genes and clusters involve antibiosis and other antagonistic activities against plant pathogens and insect pests as well as plant growth promoting traits but none for the Burkholderia cepacia epidemic strain marker. This genome sequence supports SSG as a potent biocontrol agent and source of other biotechnological applications.
Collapse
Affiliation(s)
- Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA
| |
Collapse
|