51
|
Prysliak T, Maina T, Perez-Casal J. Th-17 cell mediated immune responses to Mycoplasma bovis proteins formulated with Montanide ISA61 VG and curdlan are not sufficient for protection against an experimental challenge with Mycoplasma bovis. Vet Immunol Immunopathol 2018; 197:7-14. [DOI: 10.1016/j.vetimm.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 01/24/2023]
|
52
|
Yin N, Wang Y, Lu X, Liu R, Zhang L, Zhao W, Yuan W, Luo Q, Wu H, Luan X, Zhang H. hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res Ther 2018; 9:37. [PMID: 29444704 PMCID: PMC5813427 DOI: 10.1186/s13287-018-0772-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human placenta-derived mesenchymal stem cell (hPMSC) transplantation has been demonstrated to be an effective way of recovering ovarian function in mice with autoimmune induced premature ovarian failure (POF). But the exact mechanism remains unclear. The goal of the present study is to investigate the role of immune factors (T-helper 17 (Th17), cytotoxic T (Tc17) and regulatory T (Treg) cells) in the recovery of ovarian function and whether the phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway is involved in the regulation. METHODS The inhibitor of PI3K/Akt was administered to observe its effect on ovarian function recovery and immune regulation. Serum levels of estradiol (E2), follicle stimulation hormone (FSH), luteinizing hormone (LH) and anti-Müllerian hormone (AMH)) and anti-Zona pellucida antibody (AZPAb) were measured by ELISA to evaluate ovarian function. The morphological changes of ovaries were observed by HE staining. Apoptosis of granular cells (GCs) was determined by detecting the expression of capase-3. Expression of p-Akt protein was detected by immunohistochemistry and western blot assay in ovarian tissues. The MTT assay was performed to assess GC proliferation. GC apoptosis was performed using flow cytometry analysis. Percentages of Th17, Tc17 and Treg cells were detected by flow cytometry. Expression of interleukin (IL)-17 in serum was measured by ELISA. RESULTS LY294002 administration decreased serum levels of E2 and AMH, while the levels of FSH, LH and AZPAb in serum were increased compared with mice in the hPMSC transplantation group. The ovarian morphology presented as atrophy and fibrosis, with functional follicles exhausted. The expression of p-Akt in ovarian tissue was significantly decreased. Also, LY294002 administration significantly decreased proliferation and increased cell apoptosis in GCs, and for immune factors the ratios of Th17/Tc17 and Th17/Treg cells were significantly increased, as well as the serum levels of IL-17. CONCLUSIONS Our data suggest that the PI3K/Akt signal pathway is involved in the recovery of ovarian function by changing the ratios of Th17/ Tc17 and Th17/Treg cells in POF mice following hPMSC transplantation.
Collapse
Affiliation(s)
- Na Yin
- Department of Histology and Embryology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China
| | - Yanlin Wang
- Reproductive Medicine Center of the Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Xueyan Lu
- Department of Histology and Embryology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China
| | - Ranran Liu
- Reproductive Medicine Center of the Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, China
| | - Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China.,Research Institution of Reproductive Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China.,Research Institution of Reproductive Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wendan Yuan
- Basic Medicine College, Binzhou Medical University, Yantai, Shandong, China
| | - Qianqian Luo
- Department of Morphology Laboratory, Binzhou Medical University, Yantai, Shandong, China
| | - Hao Wu
- Clinical Medical School, Binzhou Medical University, Yantai, Shandong, China
| | - Xiying Luan
- Department of Histology and Embryology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China. .,Department of Immunology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China.
| | - Hongqin Zhang
- Department of Histology and Embryology, Binzhou Medical University, 346 Guanhai Rd, Yantai, Shandong, China. .,Research Institution of Reproductive Medicine, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
53
|
|
54
|
Zhang L, Chen J, Xu C, Qi L, Ren Y. Effects of iodine-131 radiotherapy on Th17/Tc17 and Treg/Th17 cells of patients with differentiated thyroid carcinoma. Exp Ther Med 2017; 15:2661-2666. [PMID: 29467858 DOI: 10.3892/etm.2017.5663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
T helper 17 (Th17), T cytotoxic 17 (Tc17) and regulatory T (Treg) cells serve important roles in a number of inflammatory and autoimmune diseases. The aim of the present study was to examine the distribution of Th17, Tc17 and Treg cells in patients with differentiated thyroid cancer (DTC) prior to as well as 7, 30 and 90 days following radioactive iodine-131 (131I) therapy, and to elucidate the probable effects of 131I therapy on Th17/Tc17 and Treg/Th17 cells in patients with DTC. A total of 40 patients with DTC (26 female; 14 male) between the ages of 24 and 72 years, as well as 13 age- and sex-matched healthy subjects were included in this study. The number of Th17, Tc17 and Treg cells in the peripheral blood of patients with DTC and of healthy Controls were assessed by flow cytometry. Th17 and Tc17 cells were counted as percentages of the number of CD3+ T cells; Treg cells were counted as a percentage of the number of CD4+T cells. In addition, the serum levels of interleukin (IL)-17, IL-23, IL-10 and transforming growth factor (TGF)-β1 were examined by ELISA. The frequencies of Th17, Tc17 and Treg cells, as well as the serum levels of IL-17, IL-23, IL-10 and TGF-β1 were significantly elevated in patients with DTC compared with healthy Controls, whereas 131I therapy significantly decreased them. In addition, elevated Th17/Tc17 ratio and reduced Treg/Th17 ratio were observed in patients with DTC at day 0, however, these ratios returned to normal levels following 131I therapy for 90 days as compared with healthy Controls. Notably, Th17/Tc17 and Treg/Th17 ratios varied following 131I therapy for 7 and 30 days. In addition, a strong positive correlation between Th17 and Tc17 cells was observed in the healthy Controls and patients with DTC that received 131I treatment for 90 days, whereas a weak positive correlation between Th17 and Treg cell levels was identified in the healthy Controls and no obvious correlation between Th17 and Treg cells was observed in all patients with DTC pre- and post-131I therapy during the entire treatment period. These data suggested a significant involvement of Th17, Tc17 and Treg cells in the pathology of DTC. Restoring the balance of these cells may contribute to the recovery of patients with DTC following 131I therapy.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Nuclear Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jinyan Chen
- Department of Nuclear Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Caiyun Xu
- Department of Nuclear Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lili Qi
- Department of Nuclear Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Ren
- Department of Nuclear Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
55
|
Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination. J Virol 2017; 91:JVI.01234-17. [PMID: 28956763 DOI: 10.1128/jvi.01234-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022] Open
Abstract
It is well established that interferon gamma (IFN-γ) production by CD4+ T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4+ T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (Th1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient (IL-17A-/-) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A-/- mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A-/- mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A-/- mice had impaired Th1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ+ CD4+ T cells. The impaired Th1 cell responses in IL-17A-/- mice coincided with smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ+ Th1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination.IMPORTANCE T helper type 1 (Th1) immunity, specifically interferon gamma (IFN-γ) production by CD4+ T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and enhancing this response can potentially help improve disease outcomes. Our study demonstrated that interleukin-17A (IL-17A) plays an essential role in enhancing antiviral Th1 responses in the female genital tract (FGT). We found that in the absence of IL-17A, preexposed and vaccinated mice showed poor disease outcomes and were unable to overcome HSV-2 reexposure/challenge. IL-17A-deficient mice (IL-17A-/-) had smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization than did wild-type (WT) mice, which coincided with attenuated Th1 responses postchallenge. This has important implications for developing effective vaccines against HSV-2, as we propose that strategies inducing IL-17A in the genital tract may promote more effective Th1 cell immunity and better overall protection.
Collapse
|
56
|
Hemmi M, Tachibana M, Fujimoto N, Shoji M, Sakurai F, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H. T Helper 17 Promotes Induction of Antigen-Specific Gut-Mucosal Cytotoxic T Lymphocytes following Adenovirus Vector Vaccination. Front Immunol 2017; 8:1456. [PMID: 29163524 PMCID: PMC5681732 DOI: 10.3389/fimmu.2017.01456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 11/14/2022] Open
Abstract
Few current vaccines can establish antigen (Ag)-specific immune responses in both mucosal and systemic compartments. Therefore, development of vaccines providing defense against diverse infectious agents in both compartments is of high priority in global health. Intramuscular vaccination of an adenovirus vector (Adv) has been shown to induce Ag-specific cytotoxic T lymphocytes (CTLs) in both systemic and gut-mucosal compartments. We previously found that type I interferon (IFN) signaling is required for induction of gut-mucosal, but not systemic, CTLs following vaccination; however, the molecular mechanism involving type I IFN signaling remains unknown. Here, we found that T helper 17 (Th17)-polarizing cytokine expression was down-regulated in the inguinal lymph nodes (iLNs) of Ifnar2−/− mice, resulting in the reduction of Ag-specific Th17 cells in the iLNs and gut mucosa of the mice. We also found that prior transfer of Th17 cells reversed the decrease in the number of Ag-specific gut-mucosal CTLs in Ifnar2−/− mice following Adv vaccination. Additionally, prior transfer of Th17 cells into wild-type mice enhanced the induction of Ag-specific CTLs in the gut mucosa, but not in systemic compartments, suggesting a gut mucosa-specific mechanism where Th17 cells regulate the magnitude of vaccine-elicited Ag-specific CTL responses. These data suggest that Th17 cells translate systemic type I IFN signaling into a gut-mucosal CTL response following vaccination, which could promote the development of promising Adv vaccines capable of establishing both systemic and gut-mucosal protective immunity.
Collapse
Affiliation(s)
- Masahisa Hemmi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Natsuki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kouji Kobiyama
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Host Defense, The Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
57
|
Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, Azizi G, Baradaran B. The paradox of Th17 cell functions in tumor immunity. Cell Immunol 2017; 322:15-25. [PMID: 29103586 DOI: 10.1016/j.cellimm.2017.10.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 02/08/2023]
Abstract
Immune system acts as a host defensive mechanism protecting against attacking pathogens and transformed cells, including cancer cells. Th17 cells are a specific subset of T helper lymphocytes determined by high secretion of IL-17 and other inflammatory cytokines. Th17 cells increase tumor progression by activating angiogenesis and immunosuppressive activities. They can also mediate antitumor immune responses through recruiting immune cells into tumors, stimulating effector CD8+ T cells, or surprisingly by altering toward Th1 phenotype and producing IFN-γ, so Th17 cells are supposed as a double-edged sword in cancer. A comprehensive approach to indicating the activity of Th17 cells in tumor progression could help in the planning of new therapeutic approaches specially targeting Th17 cells in cancer.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mahdian-Shakib
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
58
|
Kataoka K, Fukuyama Y, Briles DE, Miyake T, Fujihashi K. Dendritic cell-targeting DNA-based nasal adjuvants for protective mucosal immunity to Streptococcus pneumoniae. Microbiol Immunol 2017; 61:195-205. [PMID: 28463465 DOI: 10.1111/1348-0421.12487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag-specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant-based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA-based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag-specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine-keyhole limpet hemocyanin (PC-KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae. Finally, the possibility that anti-PC antibodies induced by nasal delivery of pFL plus PC-KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Department of Preventive and Community Dentistry, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yoshiko Fukuyama
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, Institute for Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - David E Briles
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, Institute for Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kohtaro Fujihashi
- Departments of Pediatric Dentistry and Microbiology, Immunobiology Vaccine Center, Institute for Oral Health Research, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| |
Collapse
|
59
|
Andreotti CS, Baravalle C, Sacco SC, Lovato M, Pereyra EA, Renna MS, Ortega HH, Calvinho LF, Dallard BE. Characterization of immune response in Staphylococcus aureus chronically infected bovine mammary glands during active involution. Comp Immunol Microbiol Infect Dis 2017; 54:51-60. [DOI: 10.1016/j.cimid.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023]
|
60
|
Seshadri A, Brat GA, Yorkgitis BK, Keegan J, Dolan J, Salim A, Askari R, Lederer JA. Phenotyping the Immune Response to Trauma: A Multiparametric Systems Immunology Approach. Crit Care Med 2017; 45:1523-1530. [PMID: 28671900 PMCID: PMC10114604 DOI: 10.1097/ccm.0000000000002577] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Trauma induces a complex immune response that requires a systems biology research approach. Here, we used a novel technology, mass cytometry by time-of-flight, to comprehensively characterize the multicellular response to trauma. DESIGN Peripheral blood mononuclear cells samples were stained with a 38-marker immunophenotyping cytometry by time-of-flight panel. Separately, matched peripheral blood mononuclear cells were stimulated in vitro with heat-killed Streptococcus pneumoniae or CD3/CD28 antibodies and stained with a 38-marker cytokine panel. Monocytes were studied for phagocytosis and oxidative burst. SETTING Single-institution level 1 trauma center. PATIENTS OR SUBJECTS Trauma patients with injury severity scores greater than 20 (n = 10) at days 1, 3, and 5 after injury, and age- and gender-matched controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Trauma-induced expansion of Th17-type CD4 T cells was seen with increased expression of interleukin-17 and interleukin-22 by day 5 after injury. Natural killer cells showed reduced T-bet expression at day 1 with an associated decrease in tumor necrosis factor-β, interferon-γ, and monocyte chemoattractant protein-1. Monocytes showed robust expansion following trauma but displayed decreased stimulated proinflammatory cytokine production and significantly reduced human leukocyte antigen - antigen D related expression. Further analysis of trauma-induced monocytes indicated that phagocytosis was no different from controls. However, monocyte oxidative burst after stimulation increased significantly after injury. CONCLUSIONS Using cytometry by time-of-flight, we were able to identify several major time-dependent phenotypic changes in blood immune cell subsets that occur following trauma, including induction of Th17-type CD4 T cells, reduced T-bet expression by natural killer cells, and expansion of blood monocytes with less proinflammatory cytokine response to bacterial stimulation and less human leukocyte antigen - antigen D related. We hypothesized that monocyte function might be suppressed after injury. However, monocyte phagocytosis was normal and oxidative burst was augmented, suggesting that their innate antimicrobial functions were preserved. Future studies will better characterize the cell subsets identified as being significantly altered by trauma using cytometry by time-of-flight, RNAseq technology, and functional studies.
Collapse
Affiliation(s)
- Anupamaa Seshadri
- All authors: Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Harper M, Boyce JD. The Myriad Properties of Pasteurella multocida Lipopolysaccharide. Toxins (Basel) 2017; 9:toxins9080254. [PMID: 28825691 PMCID: PMC5577588 DOI: 10.3390/toxins9080254] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Pasteurella multocida is a heterogeneous species that is a primary pathogen of many different vertebrates. This Gram-negative bacterium can cause a range of diseases, including fowl cholera in birds, haemorrhagic septicaemia in ungulates, atrophic rhinitis in swine, and lower respiratory tract infections in cattle and pigs. One of the primary virulence factors of P. multocida is lipopolysaccharide (LPS). Recent work has shown that this crucial surface molecule shows significant structural variability across different P. multocida strains, with many producing LPS structures that are highly similar to the carbohydrate component of host glycoproteins. It is likely that this LPS mimicry of host molecules plays a major role in the survival of P. multocida in certain host niches. P. multocida LPS also plays a significant role in resisting the action of chicken cathelicidins, and is a strong stimulator of host immune responses. The inflammatory response to the endotoxic lipid A component is a major contributor to the pathogenesis of certain infections. Recent work has shown that vaccines containing killed bacteria give protection only against other strains with identical, or nearly identical, surface LPS structures. Conversely, live attenuated vaccines give protection that is broadly protective, and their efficacy is independent of LPS structure.
Collapse
Affiliation(s)
- Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - John Dallas Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
62
|
Jang YH, Subramanian D, Won SH, Heo MS. Immune response of olive flounder (Paralichthys olivaceus) infected with the myxosporean parasite Kudoa septempunctata. FISH & SHELLFISH IMMUNOLOGY 2017; 67:172-178. [PMID: 28602738 DOI: 10.1016/j.fsi.2017.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the pathophysiological, biochemical, and immunological status of olive flounder (Paralichthys olivaceus) infected with the myxosporean parasite Kudoa septempunctata. Flounder fish collected from Kudoa-infected and uninfected farms were confirmed by microscopic and TaqMan probe-based quantitative PCR screening. Morphological, biochemical, histological, and immune gene expression analyses were performed on uninfected and infected hosts to assess the effect of K. septempunctata. Histological studies confirmed the presence of Kudoa myxospores in the trunk muscles of infected flounder fish. Serum biochemical parameters, including the levels of myeloperoxidase activity, superoxide dismutase activity, alanine aminotransferase, alkaline phosphatase, amylase, bilirubin, total protein, cholesterol, calcium, potassium, sodium, phosphorus, glucose, and galactose, were found to exhibit no significant variations (p > 0.05) between uninfected and infected flounder fish. However, immune-related genes such as Mx, lysozyme, signal transducer and activator of transcription 1, interferon-γ, interferon regulatory factor, and tumour necrosis factor showed significantly elevated expression (p < 0.05) in the trunk muscles of infected flounder fish while no significant differences were noted in uninfected fish trunk muscle and head-kidney of infected and uninfected flounder fish.
Collapse
Affiliation(s)
- Yeoung-Hwan Jang
- Jeju Special Self-Governing Province Ocean and Fisheries Research Institute, Pyoseon-myeon, Segwipo-si, Jeju 697-914, South Korea
| | - Dharaneedharan Subramanian
- Marine Pathogenic Microbes and Aquatic Disease Control Lab, School of Marine Life Sciences, Jeju National University, Jeju 690-756, South Korea
| | - Seung-Hwan Won
- Jeju Special Self-Governing Province Ocean and Fisheries Research Institute, Pyoseon-myeon, Segwipo-si, Jeju 697-914, South Korea
| | - Moon-Soo Heo
- Marine Pathogenic Microbes and Aquatic Disease Control Lab, School of Marine Life Sciences, Jeju National University, Jeju 690-756, South Korea.
| |
Collapse
|
63
|
Gupta PK, Wagner SR, Wu Q, Shilling RA. IL-17A Blockade Attenuates Obliterative Bronchiolitis and IFN-γ Cellular Immune Response in Lung Allografts. Am J Respir Cell Mol Biol 2017; 56:708-715. [PMID: 28118023 DOI: 10.1165/rcmb.2016-0154oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Obliterative bronchiolitis (OB), characterized by fibrous obliteration of the small airways, is a major impediment to long-term survival in lung allograft recipients. We found previously that IL-17A is produced primarily by CD4+ T cells and γδ T cells after lung transplant in a mouse model of orthotopic lung transplant. The absence of either subset of T cells was compensated for by expansion of the other subset, which suggested that systemic blockade of IL-17A was necessary. To determine the specific role of IL-17A in the development of OB, we treated lung allograft recipients with an IL-17A antagonistic antibody. After IL-17A blockade, the incidence of OB was significantly reduced in lung allografts. IL-17A blockade also significantly attenuated the severity of acute rejection and overall lung fibrosis. The decreased OB incidence was associated with reduced lymphocyte recruitment, particularly CD8+ T cells and other IFN-γ-producing lymphocytes, to the lung allograft. Interestingly, IL-17A blockade led to an increase in the frequency of IL-17A-producing T-helper cell type 17 cells and γδ T cells in lung allografts, suggesting that IL-17A is a negative regulator of these T cells. Our data suggest that blocking IL-17A after lung transplant reduces the overall IFN-γ-mediated lymphocyte response and decreases the development of OB.
Collapse
Affiliation(s)
- Pawan Kumar Gupta
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| | - Sarah R Wagner
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| | - Qiang Wu
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and
| | - Rebecca A Shilling
- 1 Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, and.,2 Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
64
|
McGary CS, Alvarez X, Harrington S, Cervasi B, Ryan ES, Iriele RI, Paganini S, Harper J, Easley K, Silvestri G, Ansari AA, Lichterfeld M, Micci L, Paiardini M. The loss of CCR6 + and CD161 + CD4 + T-cell homeostasis contributes to disease progression in SIV-infected rhesus macaques. Mucosal Immunol 2017; 10:1082-1096. [PMID: 28051083 PMCID: PMC5474141 DOI: 10.1038/mi.2016.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Although previous studies have shown that CD4+ T cells expressing CCR6 and CD161 are depleted from blood during HIV infection, the mechanisms underlying their loss remain unclear. In this study, we investigated how the homeostasis of CCR6+ and CD161+ CD4+ T cells contributes to SIV disease progression and the mechanisms responsible for their loss from circulation. By comparing SIV infection in rhesus macaques (RMs) and natural host sooty mangabeys (SMs), we found that the loss of CCR6+ and CD161+ CD4+ T cells from circulation is a distinguishing feature of progressive SIV infection in RMs. Furthermore, while viral infection critically contributes to the loss of CD161+CCR6-CD4+ T cells, a redistribution of CCR6+CD161- and CCR6+CD161+CD4+ T cells from the blood to the rectal mucosa is a chief mechanism for their loss during SIV infection. Finally, we provide evidence that the accumulation of CCR6+CD4+ T cells in the mucosa is damaging to the host by demonstrating their reduction from this site following initiation of antiretroviral therapy in SIV-infected RMs and their lack of accumulation in SIV-infected SMs. These data emphasize the importance of maintaining CCR6+ and CD161+ CD4+ T-cell homeostasis, particularly in the mucosa, to prevent disease progression during pathogenic HIV/SIV infection.
Collapse
Affiliation(s)
- Colleen S. McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Xavier Alvarez
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA
| | - Sean Harrington
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA
| | - Barbara Cervasi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Emily S. Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Robin I. Iriele
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Sara Paganini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
65
|
Sjökvist Ottsjö L, Jeverstam F, Yrlid L, Wenzel AU, Walduck AK, Raghavan S. Induction of mucosal immune responses against Helicobacter pylori infection after sublingual and intragastric route of immunization. Immunology 2016; 150:172-183. [PMID: 27676456 DOI: 10.1111/imm.12676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
There is a current lack of effective mucosal vaccines against major gastroenteric pathogens and particularly against Helicobacter pylori, which causes a chronic infection that can lead to peptic ulcers and gastric cancer in a subpopulation of infected individuals. Mucosal CD4+ T-cell responses have been shown to be essential for vaccine-induced protection against H. pylori infection. The current study addresses the influence of the adjuvant and site of mucosal immunization on early CD4+ T-cell priming to H. pylori antigens. The vaccine formulation consisted of H. pylori lysate antigens and mucosal adjuvants, cholera toxin (CT) or a detoxified double-mutant heat-labile enterotoxin from Escherichia coli (dmLT), which were administered by either the sublingual or intragastric route. We report that in vitro, adjuvants CT and dmLT induce up-regulation of pro-inflammatory gene expression in purified dendritic cells and enhance the H. pylori-specific CD4+ T-cell response including interleukin-17A (IL-17A), interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) secretion. In vivo, sublingual immunization led to an increased frequency of IL-17A+ , IFN-γ+ and TNF-α+ secreting CD4+ T cells in the cervical lymph nodes compared with in the mesenteric lymph nodes after intragastric immunization. Subsequently, IL-17A+ cells were visualized in the stomach of sublingually immunized and challenged mice. In summary, our results suggest that addition of an adjuvant to the vaccine clearly activated dendritic cells, which in turn, enhanced CD4+ T-cell cytokines IL-17A, IFN-γ and TNF-α responses, particularly in the cervical lymph nodes after sublingual vaccination.
Collapse
Affiliation(s)
- Louise Sjökvist Ottsjö
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Jeverstam
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Yrlid
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexander U Wenzel
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna K Walduck
- School of Science, RMIT University, Bundoora, Vic., Australia
| | - Sukanya Raghavan
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
66
|
Chen K, Eddens T, Trevejo-Nunez G, Way EE, Elsegeiny W, Ricks DM, Garg AV, Erb CJ, Bo M, Wang T, Chen W, Lee JS, Gaffen SL, Kolls JK. IL-17 Receptor Signaling in the Lung Epithelium Is Required for Mucosal Chemokine Gradients and Pulmonary Host Defense against K. pneumoniae. Cell Host Microbe 2016; 20:596-605. [PMID: 27923703 DOI: 10.1016/j.chom.2016.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
The cytokine IL-17, and signaling via its heterodimeric IL-17RA/IL-17RC receptor, is critical for host defense against extracellular bacterial and fungal pathogens. Polarized lung epithelial cells express IL-17RA and IL-17RC basolaterally. However, their contribution to IL-17-dependent pulmonary defenses in vivo remains to be determined. To address this, we generated mice with conditional deletion of Il17ra or Il17rc in Scgb1a1-expressing club cells, a major component of the murine bronchiolar epithelium. These mice displayed an impaired ability to recruit neutrophils into the airway lumen in response to IL-17, a defect in bacterial clearance upon mucosal challenge with the pulmonary pathogen Klebsiella pneumoniae, and substantially reduced epithelial expression of the chemokine Cxcl5. Neutrophil recruitment and bacterial clearance were restored by intranasal administration of recombinant CXCL5. Our data show that IL-17R signaling in the lung epithelium plays a critical role in establishing chemokine gradients that are essential for mucosal immunity against pulmonary bacterial pathogens.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Giraldina Trevejo-Nunez
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily E Way
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David M Ricks
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Abhishek V Garg
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carla J Erb
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Meihua Bo
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ting Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Janet S Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| |
Collapse
|
67
|
The Role of Interleukin-23 in the Early Development of Emphysema in HIV1(+) Smokers. J Immunol Res 2016; 2016:3463104. [PMID: 27446965 PMCID: PMC4942665 DOI: 10.1155/2016/3463104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
Rationale. Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1+ smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1+ smokers contains increased levels of inflammatory cytokines compared to HIV1− smokers, we hypothesized that upregulation of lung cytokines in HIV1+ smokers may be functionally related to increased MMP-9 expression. Methods. Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1− healthy nonsmokers, HIV1− healthy smokers, HIV1− smokers with low diffusing capacity (DLCO), HIV1+ nonsmokers, and HIV1+ smokers with low DLCO. Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1− smokers with low DLCO and HIV1+ smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1+ individuals, with greater expression in AM of HIV1+ smokers with low DLCO. Infection with HIV1 in vitro induced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte cocultures in vitro induced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9. Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1+ smokers and suggests that Th17 related inflammation may play a role.
Collapse
|
68
|
Mubarak A, Ahmed MS, Upile N, Vaughan C, Xie C, Sharma R, Acar P, McCormick MS, Paton JC, Mitchell T, Cunliffe N, Zhang Q. A dynamic relationship between mucosal T helper type 17 and regulatory T-cell populations in nasopharynx evolves with age and associates with the clearance of pneumococcal carriage in humans. Clin Microbiol Infect 2016; 22:736.e1-7. [PMID: 27256063 DOI: 10.1016/j.cmi.2016.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/13/2022]
Abstract
Pneumococcal carriage is common in young children, which may account for the high incidence of disease in this age group. Host factors determining the clearance of carriage in humans remain unclear. We aimed to study the relationships between T helper type 17 (Th17) and Foxp3(+) regulatory T (Treg) cells in nasopharynx-associated lymphoid tissue (NALT) and carriage in children and adults. Frequencies of Th17 and Treg cells in NALT were analysed by flow cytometry in association with age and pneumococcal carriage status. Cytokine responses following pneumococcal stimulation were analysed by cytometric beads array. The frequencies of Th17 and Treg cells in NALT were inversely correlated (R -0.60). Whereas Treg cell frequency decreased with age (R -0.63), both Th17 and the Th17: Treg ratio increased with age (R 0.62 and R 0.64, respectively). Also, the Th17: Treg ratio was higher in carriage-negative than in carriage-positive children (p <0.01). Pneumococcal stimulation of tonsillar cells increased both Th17 and Treg cell numbers, but the Th17: Treg ratio and pattern of cytokine responses differed between carriage-negative and carriage-positive children. The former showed markedly higher Th17: Treg and interleukin-17A: interleukin-10 ratios than in the latter (p <0.01). Pneumococcal stimulation also induces Th17, although the capacity of this Th17 differentiation from naive T cells of young children was low, but increased with age. We demonstrated a dynamic relationship between Th17 and Treg cells in human nasopharynx that evolves with age. The balance between Th17 and Treg cells in NALT appears to be a major host factor closely associated with the clearance of Streptococcus pneumoniae from the nasopharynx.
Collapse
Affiliation(s)
- A Mubarak
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - M S Ahmed
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - N Upile
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - C Vaughan
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - C Xie
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - R Sharma
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - P Acar
- Department of Otolaryngology, Royal Liverpool University Hospital, Liverpool, UK
| | - M S McCormick
- Department of Otolaryngology, Royal Liverpool University Hospital, Liverpool, UK
| | - J C Paton
- Institute of Infection, Research Centre for Infectious Diseases, School of Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | - T Mitchell
- Institute of Microbiology and Infection and School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - N Cunliffe
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - Q Zhang
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK.
| |
Collapse
|
69
|
Tsai HC, Wu R. Mechanisms of Cholera Toxin in the Modulation of TH17 Responses. Crit Rev Immunol 2016; 35:135-52. [PMID: 26351147 DOI: 10.1615/critrevimmunol.2015012295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous studies have shown that TH17 cells and their signature cytokine IL-17A are critical to host defense against various bacterial and fungal infections. The protective responses mediated by TH17 cells and IL-17A include the recruitment of neutrophils, release of antimicrobial peptides and chemokines, and enhanced tight junction of epithelial cells. Due to the importance of TH17 cells in infections, efforts have been made to develop TH17-based vaccines. The goal of vaccination is to establish a protective immunological memory. Most currently approved vaccines are antibody-based and have limited protection against stereotypically different strains. Studies show that T-cell-based vaccines may overcome this limitation and protect hosts against infection of different strains. Two main strategies are used to develop TH17 vaccines: identification of TH17-specific antigens and TH17-skewing adjuvants. Studies have revealed that cholera toxin (CT) induces a potent Th17 response following vaccination. Antigen vaccination along with CT induces a robust TH17 response, which is sometimes accompanied by TH1 responses. Due to the toxicity of CT, it is hard to apply CT in a clinical setting. Thus, understanding how CT modulates TH17 responses may lead to the development of successful TH17-based vaccines.
Collapse
Affiliation(s)
- Hsing-Chuan Tsai
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Reen Wu
- Center for Comparative Respiratory Biology and Medicine, University of California, USA
| |
Collapse
|
70
|
Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol 2016; 9:777-86. [PMID: 26462419 DOI: 10.1038/mi.2015.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/08/2015] [Indexed: 02/04/2023]
Abstract
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis (B. pertussis). T helper 17 (Th17) cells have a central role in the resolution of the infection. Emerging studies document that type I interferons (IFNs) suppress Th17 differentiation and interleukin (IL)-17 responses in models of infection and chronic inflammation. As plasmacytoid dendritic cells (pDCs) are a major source of type I IFNs, we hypothesize that during B. pertussis infection in mice, pDC-derived IFNα inhibits a rapid increase in Th17 cells. We found that IFNα-secreting pDCs appear in the lungs during the early stages of infection, while a robust rise of Th17 cells in the lungs is detected at 15 days post-infection or later. The presence of IFNα led to reduced Th17 differentiation and proliferation in vitro. Furthermore, in vivo blocking of IFNα produced by pDCs during infection with B. pertussis infection resulted in early increase of Th17 frequency, inflammation, and reduced bacterial loads in the airways of infected mice. Taken together, the experiments reported here describe an inhibitory role for pDCs and pDC-derived IFNα in modulating Th17 responses during the early stages of B. pertussis infection, which may explain the prolonged nature of whooping cough.
Collapse
|
71
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
72
|
Susceptibility to Lower Respiratory Infections in Childhood is Associated with Perturbation of the Cytokine Response to Pathogenic Airway Bacteria. Pediatr Infect Dis J 2016; 35:561-6. [PMID: 26910587 DOI: 10.1097/inf.0000000000001092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Neonatal colonization of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood. Therefore, we hypothesized that children developing LRI have an aberrant immune response to pathogenic bacteria in infancy. The objective was to characterize in vitro the early life systemic immune response to pathogenic bacteria and study the possible association with incidence of LRI during the first 3 years of life. METHODS The Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) is a clinical birth cohort study of 411 children born of mothers with asthma. LRI incidence was prospectively captured from 6-monthly planned visits and visits at acute respiratory episodes. The in vitro systemic immune response to Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae was characterized by the production of TNF-α, IFN-γ, IL-2, IL-5, IL-10, IL-13 and IL-17 in peripheral blood mononuclear cells isolated at age 6 months from 291 infants. Data were analyzed by Poisson regression against incidence of LRI in infancy. RESULTS A multivariable model including all cytokine responses from the 3 different bacterial stimulations significantly identified children at risk of LRI (P = 0.006). The immune response pattern associated with LRI was characterized by perturbed production of several cytokines rather than production of one specific cytokine, and was independent of concurrent asthma. TNF-α and IL-5 were key drivers but did not explain the entire variation in LRI susceptibility. CONCLUSIONS Children at risk of future LRI present a perturbed systemic immune response upon exposure to common airway pathogens in early life.
Collapse
|
73
|
Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland. PLoS One 2016; 11:e0154172. [PMID: 27100324 PMCID: PMC4839698 DOI: 10.1371/journal.pone.0154172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection.
Collapse
|
74
|
Lai Y, Dong C. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int Immunol 2016; 28:181-8. [PMID: 26545932 PMCID: PMC4889878 DOI: 10.1093/intimm/dxv063] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/18/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory cytokines are key regulators of immune responses. Persistent and excessive production of inflammatory cytokines underscores the development of autoimmune diseases. Therefore, neutralizing inflammatory cytokines or antagonizing their receptor function is considered as a useful therapeutic strategy to treat autoimmune diseases. To achieve the success of such a strategy, understanding of the complex actions of these cytokines and cytokine networks is required. In this review we focus on four inflammatory cytokines--tumor necrosis factor α (TNFα), interleukin-6 (IL-6), IL-23 and IL-17--and dissect how the dysregulation of these cytokines regulates autoimmune diseases. On the basis of pre-clinical and clinical data, we specifically discuss the therapeutic rationale for targeting these cytokines and describe the potential adverse effects.
Collapse
Affiliation(s)
- Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Science, East China Normal University, No.500 Minhang Dongchuan Road, Shanghai 200241, China
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Medical Research Building D330, No.30 Haidian Shuangqing Road, Beijing 100084, China
| |
Collapse
|
75
|
Abstract
New insights into the biological mechanisms involved in modulating periodontal inflammation and alveolar bone loss are paving the way for novel therapeutic strategies for periodontitis. The neutrophil adhesion cascade for transmigration in response to infection or inflammation is a key paradigm in immunity. Developmental endothelial locus-1 (Del-1) is one of several newly identified endogenous inhibitors of the leukocyte adhesion cascade. Del-1 competes with intercellular adhesion molecule-1 (ICAM-1) on endothelial cells for binding to the LFA-1 integrin on neutrophils, thereby regulating neutrophil recruitment and local inflammation. In animal periodontitis models, Del-1 deficiency resulted in severe inflammation and alveolar bone loss, but local treatment with recombinant Del-1 prevented neutrophil infiltration and bone loss. The expression of Del-1 is inhibited by the pro-inflammatory cytokine IL-17. Nucleic-acid-receptor-mediated inflammatory responses may be important in periodontal disease pathogenesis. Bacterial nucleic acids released during inflammation are detected by host microbial DNA sensors, e.g., Toll-like receptor-9 (TLR-9), leading to the activation of pro- and/or anti-inflammatory signaling pathways. DNA from periodontitis-associated bacteria induced pro-inflammatory cytokine production in human macrophage-like cells through the TLR-9 and NF-κB signaling pathways, but had less effect on human osteoblasts. Inhibition of TLR-9 signaling in human macrophages reduced cytokine production in response to P. gingivalis DNA. Differential expression of a polymorphic site in the TLR-9 gene promoter region and increased TLR-9 gene and protein expression were reported in chronic periodontitis. Further research to confirm that periodontal bacterial DNA contributes to destructive inflammation in vivo could provide alternative therapeutic targets to control periodontitis.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania Dental School, Philadelphia, PA, USA
| | | |
Collapse
|
76
|
Abstract
OBJECTIVES The avian influenza H7N9 virus can cause cytokine overproduction and result in severe pneumonia and acute respiratory distress syndrome. Many studies have focused on hypercytokinemia during avian influenza infection. This study examined the association between C-reactive protein (CRP) and cytokines. METHODS The plasma cytokine and chemokine profiles of 57 H7N9 patients were investigated using a multiplex immunoassay. The CRP levels of patients with H7N9 and patients with H1N1 were also compared. Further, the association between cytokines and CRP in H7N9 infections was explored. RESULTS Compared with H1N1 virus, it was found that H7N9 virus induced higher expression of CRP, leading to cytokine storms. Several cytokines, including MIP-1β, MCP-1, IP-10, and IL-6, were observed to have significantly positive relationships with CRP levels, whereas IL-17A was negatively associated with CRP levels. CONCLUSIONS These findings suggest that CRP may be used as an early indicator to identify high-risk patients, to assess disease progression, and to determine the development of hypercytokinemia.
Collapse
|
77
|
Ramezanpour M, Moraitis S, Smith JLP, Wormald PJ, Vreugde S. Th17 Cytokines Disrupt the Airway Mucosal Barrier in Chronic Rhinosinusitis. Mediators Inflamm 2016; 2016:9798206. [PMID: 26903715 PMCID: PMC4745600 DOI: 10.1155/2016/9798206] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/26/2023] Open
Abstract
Cytokine mediated changes in paracellular permeability contribute to a multitude of pathological conditions including chronic rhinosinusitis (CRS). The purpose of this study was to investigate the effect of interferons and of Th1, Th2, and Th17 cytokines on respiratory epithelium barrier function. Cytokines and interferons were applied to the basolateral side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS with nasal polyp patients. Transepithelial electrical resistance (TEER) and permeability of FITC-conjugated dextrans were measured over time. Additionally, the expression of the tight junction protein Zona Occludens-1 (ZO-1) was examined via immunofluorescence. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Our results showed that application of interferons and of Th1 or Th2 cytokines did not affect the mucosal barrier function. In contrast, the Th17 cytokines IL-17, IL-22, and IL-26 showed a significant disruption of the epithelial barrier, evidenced by a loss of TEER, increased paracellular permeability of FITC-dextrans, and discontinuous ZO-1 immunolocalisation. These results indicate that Th17 cytokines may contribute to the development of CRSwNP by promoting a leaky mucosal barrier.
Collapse
Affiliation(s)
- Mahnaz Ramezanpour
- Department of Surgery (Otorhinolaryngology Head and Neck Surgery), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, SA 5011, Australia
| | - Sophia Moraitis
- Department of Surgery (Otorhinolaryngology Head and Neck Surgery), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, SA 5011, Australia
| | - Jason L. P. Smith
- School of Biology, Faculty of Science and Engineering, Flinders University of South Australia, Adelaide, SA 5042, Australia
| | - P. J. Wormald
- Department of Surgery (Otorhinolaryngology Head and Neck Surgery), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, SA 5011, Australia
| | - Sarah Vreugde
- Department of Surgery (Otorhinolaryngology Head and Neck Surgery), The Queen Elizabeth Hospital and The University of Adelaide, Adelaide, SA 5011, Australia
| |
Collapse
|
78
|
Porcherie A, Gilbert FB, Germon P, Cunha P, Trotereau A, Rossignol C, Winter N, Berthon P, Rainard P. IL-17A Is an Important Effector of the Immune Response of the Mammary Gland to Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:803-12. [PMID: 26685206 DOI: 10.4049/jimmunol.1500705] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
The cytokine IL-17A has been shown to play critical roles in host defense against bacterial and fungal infections at different epithelial sites, but its role in the defense of the mammary gland (MG) has seldom been investigated, although infections of the MG constitute the main pathology afflicting dairy cows. In this study, we showed that IL-17A contributes to the defense of the MG against Escherichia coli infection by using a mouse mastitis model. After inoculation of the MG with a mastitis-causing E. coli strain, the bacterial load increased rapidly, triggering an intense influx of leukocytes into mammary tissue and increased concentrations of IL-6, IL-22, TNF-α, and IL-10. Neutrophils were the first cells that migrated intensely to the mammary tissue, in line with an early production of CXCL2. Depletion of neutrophils induced an increased mammary bacterial load. There was a significant increase of IL-17-containing CD4(+) αβ T lymphocyte numbers in infected glands. Depletion of IL-17A correlated with an increased bacterial colonization and IL-10 production. Intramammary infusion of IL-17A at the onset of infection was associated with markedly decreased bacterial numbers, decreased IL-10 production, and increased neutrophil recruitment. Depletion of CD25(+) regulatory T cells correlated with a decreased production of IL-10 and a reduced bacterial load. These results indicate that IL-17A is an important effector of MG immunity to E. coli and suggest that an early increased local production of IL-17A would improve the outcome of infection. These findings point to a new lead to the development of vaccines against mastitis.
Collapse
Affiliation(s)
- Adeline Porcherie
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Florence B Gilbert
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Pierre Germon
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Patricia Cunha
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Angélina Trotereau
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Christelle Rossignol
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Nathalie Winter
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Patricia Berthon
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| | - Pascal Rainard
- UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, F-37380 Nouzilly, France; and UMR1282 Infectiologie et Santé Publique, Université François-Rabelais de Tours, F-37000 Tours, France
| |
Collapse
|
79
|
Cleret-Buhot A, Zhang Y, Planas D, Goulet JP, Monteiro P, Gosselin A, Wacleche VS, Tremblay CL, Jenabian MA, Routy JP, El-Far M, Chomont N, Haddad EK, Sekaly RP, Ancuta P. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology 2015; 12:102. [PMID: 26654242 PMCID: PMC4676116 DOI: 10.1186/s12977-015-0226-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The HIV-1 infection is characterized by profound CD4(+) T cell destruction and a marked Th17 dysfunction at the mucosal level. Viral suppressive antiretroviral therapy restores Th1 but not Th17 cells. Although several key HIV dependency factors (HDF) were identified in the past years via genome-wide siRNA screens in cell lines, molecular determinants of HIV permissiveness in primary Th17 cells remain to be elucidated. RESULTS In an effort to orient Th17-targeted reconstitution strategies, we investigated molecular mechanisms of HIV permissiveness in Th17 cells. Genome-wide transcriptional profiling in memory CD4(+) T-cell subsets enriched in cells exhibiting Th17 (CCR4(+)CCR6(+)), Th1 (CXCR3(+)CCR6(-)), Th2 (CCR4(+)CCR6(-)), and Th1Th17 (CXCR3(+)CCR6(+)) features revealed remarkable transcriptional differences between Th17 and Th1 subsets. The HIV-DNA integration was superior in Th17 versus Th1 upon exposure to both wild-type and VSV-G-pseudotyped HIV; this indicates that post-entry mechanisms contribute to viral replication in Th17. Transcripts significantly enriched in Th17 versus Th1 were previously associated with the regulation of TCR signaling (ZAP-70, Lck, and CD96) and Th17 polarization (RORγt, ARNTL, PTPN13, and RUNX1). A meta-analysis using the NCBI HIV Interaction Database revealed a set of Th17-specific HIV dependency factors (HDFs): PARG, PAK2, KLF2, ITGB7, PTEN, ATG16L1, Alix/AIP1/PDCD6IP, LGALS3, JAK1, TRIM8, MALT1, FOXO3, ARNTL/BMAL1, ABCB1/MDR1, TNFSF13B/BAFF, and CDKN1B. Functional studies demonstrated an increased ability of Th17 versus Th1 cells to respond to TCR triggering in terms of NF-κB nuclear translocation/DNA-binding activity and proliferation. Finally, RNA interference studies identified MAP3K4 and PTPN13 as two novel Th17-specific HDFs. CONCLUSIONS The transcriptional program of Th17 cells includes molecules regulating HIV replication at multiple post-entry steps that may represent potential targets for novel therapies aimed at protecting Th17 cells from infection and subsequent depletion in HIV-infected subjects.
Collapse
Affiliation(s)
- Aurélie Cleret-Buhot
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Yuwei Zhang
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Delphine Planas
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | | | - Patricia Monteiro
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Annie Gosselin
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Vanessa Sue Wacleche
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Cécile L Tremblay
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC, Canada.
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. .,Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Mohamed El-Far
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Elias K Haddad
- Division of infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA, USA.
| | | | - Petronela Ancuta
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| |
Collapse
|
80
|
Rainard P, Cunha P, Ledresseur M, Staub C, Touzé JL, Kempf F, Gilbert FB, Foucras G. Antigen-Specific Mammary Inflammation Depends on the Production of IL-17A and IFN-γ by Bovine CD4+ T Lymphocytes. PLoS One 2015; 10:e0137755. [PMID: 26375594 PMCID: PMC4573518 DOI: 10.1371/journal.pone.0137755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 12/03/2022] Open
Abstract
Intramammary infusion of the antigen used to sensitize cows by the systemic route induces a local inflammation associated with neutrophil recruitment. We hypothesize that this form of delayed type hypersensitivity, which may occur naturally during infections or could be induced intentionally by vaccination, can impact the outcome of mammary gland infections. We immunized cows with ovalbumin to identify immunological correlates of antigen-specific mammary inflammation. Intraluminal injection of ovalbumin induced a mastitis characterized by a prompt tissue reaction (increase in teat wall thickness) and an intense influx of leukocytes into milk of 10 responder cows out of 14 immunized animals. The magnitude of the local inflammatory reaction, assessed through milk leukocytosis, correlated with antibody titers, skin thickness test, and production of IL-17A and IFN-γ in a whole-blood antigen stimulation assay (WBA). The production of these two cytokines significantly correlated with the magnitude of the milk leukocytosis following the ovalbumin intramammary challenge. The IL-17A and IFN-γ production in the WBA was dependent on the presence of CD4+ cells in blood samples. In vitro stimulation of peripheral blood lymphocytes with ovalbumin followed by stimulation with PMA/ionomycin allowed the identification by flow cytometry of CD4+ T cells producing either IL-17A, IFN-γ, or both cytokines. The results indicate that the antigen-specific WBA, and specifically IL-17A and IFN-γ production by circulating CD4+ cells, can be used as a predictor of mammary hypersensitivity to protein antigens. This prompts further studies aiming at determining how Th17 and/or Th1 lymphocytes modulate the immune response of the mammary gland to infection.
Collapse
Affiliation(s)
- Pascal Rainard
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- * E-mail:
| | - Patricia Cunha
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Marion Ledresseur
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Christophe Staub
- UE1297, Unité Expérimentale de Physiologie Animale, UEPAO, INRA, Nouzilly, France
| | - Jean-Luc Touzé
- Université François Rabelais de Tours, Tours, France
- UMR0085, Physiologie de la Reproduction et du Comportement, INRA, Nouzilly, France
| | - Florent Kempf
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Florence B. Gilbert
- UMR1282, Infectiologie et Santé Publique, INRA, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
| | - Gilles Foucras
- INP, ENVT, Université de Toulouse, Toulouse, France
- UMR1225, Interactions Hôte Agents Pathogènes, INRA, Toulouse, France
| |
Collapse
|
81
|
Steinberg RS, Lima M, Gomes de Oliveira NL, Miyoshi A, Nicoli JR, Neumann E, Nunes AC. Effect of intestinal colonisation by two Lactobacillus strains on the immune response of gnotobiotic mice. Benef Microbes 2015; 5:409-19. [PMID: 24939801 DOI: 10.3920/bm2013.0075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of intestinal colonisation on the immune system was investigated in germ-free mice monoassociated with Lactobacillus strains isolated from calf faeces. Single doses of Lactobacillus acidophilus L36 or Lactobacillus salivarius L38 were administered to germ-free mice by intragastric gavage. Ten days later, the mice were euthanised. Gene expression levels of interleukin 5 (IL-5), IL-6, IL-10, IL-12b, IL-17a, gamma interferon (IFN-γ), transforming growth factor beta 1 (TGF-β1), and tumour necrosis factor alpha (TNF-α) were quantified in segments of the small and large intestines by real time quantitative polymerase chain reaction. All the mice were colonised rapidly after Lactobacillus administration with intestinal counts ranging from 6.53 to 8.26 log cfu/g. L. acidophilus L36 administration increased the expression of cytokines involved with the Th2 (IL-5, IL-6 and TGF-β1) and Th17 (IL-17a, TNF-α and IL-6) inflammatory response, whereas L. salivarius L38 appeared to stimulate a pattern of less diversified cytokines in the intestine. Intragastric gavage of L. acidophilus L36 and L. salivarius L38 induced similar levels of colonisation in the digestive tracts of germ-free mice but stimulated different immune responses in the intestinal mucosa. The different immunomodulation patterns might facilitate the potential use of these lactobacilli as probiotics to treat distinct pathological conditions, for example protection against Citrobacter rodentium infection by stimulating IL-17 production.
Collapse
Affiliation(s)
- R S Steinberg
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M Lima
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - N L Gomes de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A Miyoshi
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - E Neumann
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A C Nunes
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
82
|
Zhang D, Wei C, Yao J, Cai X, Wang L. Interleukin-10 gene-carrying bifidobacteria ameliorate murine ulcerative colitis by regulating regulatory T cell/T helper 17 cell pathway. Exp Biol Med (Maywood) 2015; 240:1622-9. [PMID: 25956685 DOI: 10.1177/1535370215584901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease suggested to be closely related to the imbalance of regulatory T cell/T helper 17 cell (Treg/Th17) signaling. Previously, we constructed an interleukin-10 (IL-10) expression vector, BL-hIL-10, and proved that it ameliorates dextran sulfate sodium-induced intestinal inflammation in mice. In this study, we further explored the mechanisms underlying BL-hIL-10 treatment from the Treg/Th17 imbalance perspective. Our results showed that the oral administration of BL-hIL-10 reduced the UC inflammation in mice significantly, which was assessed by disease activity index, spleen index, and pathological changes in colon tissue. Moreover, the mice after BL-hIL-10 treatment had increased proportion of Treg cells while Th17 cells decreased greatly, leading to the reconstruction of Treg/Th17 balance. Furthermore, the Th17 cell-secreted factors, such as IL-6, IL-17, and IL-23, were reduced, but the Treg-related factors, IL-10 and Transforming growth factor-β1 (TGF-β1), were elevated accordingly. Finally, Western blot confirmed the inhibition of nuclear hypoxia-inducible factor-1α (HIF-1α) and cytoplasmic mechanistic target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3) in intestinal tissues. In conclusion, oral administration of BL-hIL-10 can alleviate the inflammation responses of UC in murine model through the restoration of Treg/Th17 imbalance, which might be at least partially due to the inhibition of hypoxia-mTOR-HIF-1α-Th17 axis as well as IL-6-STAT3-HIF-1α-Th17 pathway.
Collapse
Affiliation(s)
- Dingguo Zhang
- Department of Gastroenterology, Jinan University of Medical Sciences, Shenzhen People's Hospital, Engineering Technology Research and Development Center of Shenzhen, Shenzhen, Guangdong 518020, ChinaThe first two authors contributed to this research equally
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Medical Sciences, Shenzhen People's Hospital, Engineering Technology Research and Development Center of Shenzhen, Shenzhen, Guangdong 518020, ChinaThe first two authors contributed to this research equally
| | - Jun Yao
- Department of Gastroenterology, Jinan University of Medical Sciences, Shenzhen People's Hospital, Engineering Technology Research and Development Center of Shenzhen, Shenzhen, Guangdong 518020, ChinaThe first two authors contributed to this research equally
| | - Xiaoyan Cai
- Department of Gastroenterology, Jinan University of Medical Sciences, Shenzhen People's Hospital, Engineering Technology Research and Development Center of Shenzhen, Shenzhen, Guangdong 518020, ChinaThe first two authors contributed to this research equally
| | - Lisheng Wang
- Department of Gastroenterology, Jinan University of Medical Sciences, Shenzhen People's Hospital, Engineering Technology Research and Development Center of Shenzhen, Shenzhen, Guangdong 518020, ChinaThe first two authors contributed to this research equally
| |
Collapse
|
83
|
Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology 2015; 12:38. [PMID: 25924895 PMCID: PMC4438463 DOI: 10.1186/s12977-015-0164-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
Background Depletion of mucosal Th17 cells during HIV/SIV infections is a major cause for microbial translocation, chronic immune activation, and disease progression. Mechanisms contributing to Th17 deficit are not fully elucidated. Here we investigated alterations in the Th17 polarization potential of naive-like CD4+ T-cells, depletion of Th17-commited subsets during HIV pathogenesis, and Th17 restoration in response to antiretroviral therapy (ART). Results Peripheral blood CD4+ T-cells expressing a naive-like phenotype (CD45RA+CCR7+) from chronically HIV-infected subjects receiving ART (CI on ART; median CD4 counts 592 cells/μl; viral load: <50 HIV-RNA copies/ml; time since infection: 156 months) compared to uninfected controls (HIV-) were impaired in their survival and Th17 polarization potential in vitro. In HIV- controls, IL-17A-producing cells mainly originated from naive-like T-cells with a regulatory phenotype (nTregs: CD25highCD127−FoxP3+) and from CD25+CD127+FoxP3− cells (DP, double positive). Th17-polarized conventional naive CD4+ T-cells (nT: CD25−CD127+FoxP3−) also produced IL17A, but at lower frequency compared to nTregs and DP. In CI on ART subjects, the frequency/counts of nTreg and DP were significantly diminished compared to HIV- controls, and this paucity was further associated with decreased proportions of memory T-cells producing IL-17A and expressing Th17 markers (CCR6+CD26+CD161+, mTh17). nTregs and DP compared to nT cells harbored superior levels of integrated/non-integrated HIV-DNA in CI on ART subjects, suggesting that permissiveness to integrative/abortive infection contributes to impaired survival and Th17 polarization of lineage-committed cells. A cross-sectional study in CI on ART subjects revealed that nTregs, DP and mTh17 counts were negatively correlated with the time post-infection ART was initiated and positively correlated with nadir CD4 counts. Finally, a longitudinal analysis in a HIV primary infection cohort demonstrated a tendency for increased nTreg, DP, and mTh17 counts with ART initiation during the first year of infection. Conclusions These results support a model in which the paucity of phenotypically naive nTregs and DP cells, caused by integrative/abortive HIV infection and/or other mechanisms, contributes to Th17 deficiency in HIV-infected subjects. Early ART initiation, treatment intensification with integrase inhibitors, and/or other alternative interventions aimed at preserving/restoring the pool of cells prone to acquire Th17 functions may significantly improve mucosal immunity in HIV-infected subjects. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0164-6) contains supplementary material, which is available to authorized users.
Collapse
|
84
|
Colonna M, Fuchs A, Cella M. Innate Lymphoid Cells in Mucosal Homeostasis, Infections, Autoimmune Disorders, and Tumors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
85
|
Berzofsky JA, Franchini G. Human/Simian Immunodeficiency Virus Transmission and Infection at Mucosal Sites. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
86
|
Pavot V, Rochereau N, Rességuier J, Gutjahr A, Genin C, Tiraby G, Perouzel E, Lioux T, Vernejoul F, Verrier B, Paul S. Cutting edge: New chimeric NOD2/TLR2 adjuvant drastically increases vaccine immunogenicity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5781-5. [PMID: 25392526 DOI: 10.4049/jimmunol.1402184] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TLR ligands are critical activators of innate immunity and are being developed as vaccine adjuvants. However, their usefulness in conjunction with NOD-like receptor agonists remains poorly studied. In this study, we evaluated a new ligand that targets both TLR2 and NOD2 receptors. We assessed its ability to enhance dendritic cell maturation in vitro in addition to improving systemic and mucosal immune responses in mice. The chimeric NOD2/TLR2 ligand induced synergistic upregulation of dendritic cell maturation markers, costimulatory molecules, and secretion of proinflammatory cytokines compared with combinations of separate ligands. Furthermore, when coadministered with biodegradable nanoparticles carrying a model Ag, the ligand was able to induce high Ag-specific IgA and IgG titers at both systemic and mucosal sites after parenteral immunizations. These findings point out the potential utility of chimeric molecules TLR/NOD as adjuvants for vaccines to induce systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Vincent Pavot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France; Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| | - Nicolas Rochereau
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| | - Julien Rességuier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France
| | - Alice Gutjahr
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France; Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and Cayla-InvivoGen, Toulouse F-31000, France
| | - Christian Genin
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| | | | | | | | | | - Bernard Verrier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| |
Collapse
|
87
|
Gao W, Wu Y, Tian Y, Ni B. Yin–Yang Regulation of RORγt Protein Complex in Th17 Differentiation. Int Rev Immunol 2014; 34:295-304. [DOI: 10.3109/08830185.2014.969423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Verwaerde C, Debrie AS, Dombu C, Legrand D, Raze D, Lecher S, Betbeder D, Locht C. HBHA vaccination may require both Th1 and Th17 immune responses to protect mice against tuberculosis. Vaccine 2014; 32:6240-50. [PMID: 25252198 DOI: 10.1016/j.vaccine.2014.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/12/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022]
Abstract
Almost one century after the discovery of the BCG vaccine, tuberculosis remains a major cause of global mortality and morbidity, emphasizing the urgent need to design more efficient vaccines. The heparin-binding haemagglutinin (HBHA) appears to be a promising vaccine candidate, as it was shown to afford protection to mice against a challenge infection with Mycobacterium tuberculosis when combined with the strong adjuvant DDA/MPL (dimethyldioctadecyl-ammonium bromide/monophosphoryl lipid A), a TLR4 ligand. In this study, we investigated the immunological response and protection of mice immunized with HBHA formulated in lipid-containing nanoparticles and adjuvanted with CpG, a TLR9 ligand. Subcutaneous immunization with this HBHA formulation led to a marked Th1 response, characterized by high IFN-γ levels, but no significant IL-17 production, both in spleen and lung, in contrast to DDA/MPL MPL-formulated HBHA, which induced both IFN-γ and IL-17. This cytokine profile was also observed in BCG-primed mice and persisted after M. tuberculosis infection. No significant protection was obtained against challenge infection after vaccination with the nanoparticle-CpG formulation, and this was associated with a failure to mount a memory immune response. These results suggest the importance of both Th1 and Th17 immune responses for vaccine-induced immunity.
Collapse
Affiliation(s)
- Claudie Verwaerde
- Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Univ Lille Nord de France, Lille, France.
| | - Anne-Sophie Debrie
- Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Univ Lille Nord de France, Lille, France
| | | | - Damien Legrand
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Dominique Raze
- Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Univ Lille Nord de France, Lille, France
| | - Sophie Lecher
- Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Univ Lille Nord de France, Lille, France
| | | | - Camille Locht
- Inserm U1019, Lille, France; CNRS UMR8204, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; Univ Lille Nord de France, Lille, France
| |
Collapse
|
89
|
Liu X, Wu H, Chang X, Tang Y, Liu Q, Zhang Y. Notable mucosal immune responses induced in the intestine of zebrafish (Danio rerio) bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. FISH & SHELLFISH IMMUNOLOGY 2014; 40:99-108. [PMID: 24997435 DOI: 10.1016/j.fsi.2014.06.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Live attenuated vaccine is one of the efficient vaccine candidates in aquaculture, which can be easily delivered to fish via bath-vaccination. An outstanding advantage of bath-vaccination is that vaccine delivery is through the same route as that utilized by many fish pathogens, generating specific mucosal immune responses. In this work, we investigated the mucosal immune responses induced by a live attenuated Vibrio anguillarum vaccine in zebrafish via bath-vaccination. Bacteria proliferated rapidly in 3 h after vaccination and maintained at a high level until 6 h in the intestine. Besides, bacteria persisted in the intestine for a longer time whereas decreased rapidly in the skin and gills. Moreover, a significant up-regulation of TLR5 triggering a MyD88-dependent signaling pathway was observed in the intestine, which implied that flagella were the crucial antigenic component of the live attenuated vaccine. And macrophages and neutrophils showed active responses participating in antigen recognition and sampling after vaccination. Furthermore, an inflammation was observed with plenty of lymphocytes in the intestine at 24 h post vaccination but eliminated within 7 days. In conclusion, the live attenuated V. anguillarum vaccine induced notable mucosal immune responses in the intestine which could be used as a mucosal vaccine vector in the future.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Xinyue Chang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yufei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
90
|
Zhang WJ, Wang Y, Yu K, Duan JZ, Yao WR, Wang Y, Yang RG, Yang GB. Associated changes in the transcription levels of IL-17A and tight junction-associated genes in the duodenal mucosa of rhesus macaques repeatedly exposed to simian/human immunodeficiency virus. Exp Mol Pathol 2014; 97:225-33. [PMID: 25034324 DOI: 10.1016/j.yexmp.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/12/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mucosal barrier dysfunction might play a key role in HIV/AIDS, yet the early effects of HIV-1 on intestinal mucosal barrier, especially tight junctions (TJ) have not been well addressed. AIMS To investigate the effects of acute HIV-1 infection on the expression of intestinal IL-17A and TJ-associated genes using an NHP-AIDS model. METHODS TaqMan probe real-time RT-PCR methods were established and claudin-1, claudin-3, occludin and zonula occluden-1 (ZO-1) mRNA levels in the duodenal biopsies of rhesus macaques collected before and after rectal exposures to SHIV-SF162P4 were examined and compared with that of IL-17A, IL-6, TGF-β, RORγt, T-bet, Foxp-3 and GATA-3. RESULTS The mRNA levels of TJ-associated genes were statistically significantly reduced soon after viral exposures and the mRNA levels of claudin-1, occludin and ZO-1 in viral positive tissues (from Group I) were lower than that in viral negative tissues (from Group II) after viral exposure. IL-17A mRNA levels were also decreased and positively correlated with the mRNA levels of the TJ-associated genes after viral exposure or infection, although the levels of IL-6, TGF-β and RORγt mRNA showed no statistical difference. The levels of GATA-3 mRNA in tissues collected before viral exposure were statistically different between Group I and Group II animals. The balance between T-bet and GATA-3 mRNA levels in Group II was markedly altered and statistically significantly different from that in Group I. CONCLUSIONS Acute SHIV, and by extension HIV infection could affect the expression of TJ-associated genes, probably through IL-17A and other immune alterations.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Yue Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Kai Yu
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Jia-Zhong Duan
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Wen-Rong Yao
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Yan Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Rong-Ge Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China.
| |
Collapse
|
91
|
Ziai S, Coriati A, Gauthier MS, Rabasa-Lhoret R, Richter MV. Could T cells be involved in lung deterioration and hyperglycemia in cystic fibrosis? Diabetes Res Clin Pract 2014; 105:22-9. [PMID: 24731255 DOI: 10.1016/j.diabres.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is the most frequent complication of cystic fibrosis (CF) and associated with increased mortality. Why patients have an accelerated loss of lung function before the diagnosis of CFRD remains poorly understood. We reported that patients with or without CFRD had increased glucose excursions when compared to healthy peers. Studies have demonstrated that patients with CF have increased glucose fluctuations and hyperglycemia and that this may affect the clinical course of CF and lead to lymphocyte dysfunction. T-helper 17 (Th17) lymphocytes produce and secrete the pro-inflammatory cytokine IL-17. The Th17 pathway is involved in CF lung inflammation, β-cell destruction in type 1 diabetes (T1D) and Th17 cells of patients with type 2 diabetes have increased production of IL-17 when compared to healthy peers. Also, regulatory T-cells (Tregs) have been shown to be dysfunctional and produce IL-17 in T1D. Furthermore, vitamin D can affect inflammation in CF, diabetes and the differentiation of lymphocytes. In this review, we discuss the potential roles of hyperglycemia on Th17 cells, Tregs and IL-17 as a potential cause for accelerated lung function decline before CFRD and how this could be modulated by vitamin D or by directly intervening in the IL-17A pathway.
Collapse
Affiliation(s)
- S Ziai
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - A Coriati
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - M-S Gauthier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - R Rabasa-Lhoret
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada; Montreal Diabetes Research Centre (MDRC), Montréal, Québec, Canada; Cystic Fibrosis Clinic, Centre Hospitalier de l'Université de Montréal (CHUM) & CHUM Research Center (CR-CHUM), Montréal, Québec, Canada
| | - M V Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
92
|
Richardson MB, Williams SJ. MCL and Mincle: C-Type Lectin Receptors That Sense Damaged Self and Pathogen-Associated Molecular Patterns. Front Immunol 2014; 5:288. [PMID: 25002863 PMCID: PMC4066366 DOI: 10.3389/fimmu.2014.00288] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Macrophage C-type lectin (MCL) and macrophage inducible C-type lectin (Mincle) comprise part of an extensive repertoire of pattern recognition receptors with the ability to sense damage-associated and pathogen-associated molecular patterns. In this review, we cover the discovery and molecular characterization of these C-type lectin receptors, and highlight recent advances in the understanding of their roles in orchestrating the response of the immune system to bacterial and fungal infection, and damaged self. We also discuss the identification and structure-activity relationships of activating ligands, particularly trehalose dimycolate and related mycobacterial glycolipids, which have significant potential in the development of TH1/TH17 vaccination strategies.
Collapse
Affiliation(s)
- Mark B. Richardson
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
93
|
Sabbaghi M, Aram R, Roustaei H, Fadavi Islam M, Daneshvar M, Castaño AR, Haghparast A. IL-17A concentration of seminal plasma and follicular fluid in infertile men and women with various clinical diagnoses. Immunol Invest 2014; 43:617-26. [DOI: 10.3109/08820139.2014.909453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
94
|
Corneth OBJ, Mus AMC, Asmawidjaja PS, Klein Wolterink RGJ, van Nimwegen M, Brem MD, Hofman Y, Hendriks RW, Lubberts E. Absence of interleukin-17 receptor a signaling prevents autoimmune inflammation of the joint and leads to a Th2-like phenotype in collagen-induced arthritis. Arthritis Rheumatol 2014; 66:340-9. [PMID: 24504806 DOI: 10.1002/art.38229] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 10/08/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Interleukin-17A (IL-17A) signals through the IL-17 receptor (IL-17R) A/C heterodimer. IL-17RA serves as a common receptor subunit for several IL-17 cytokine family members. Lack of IL-17RA signaling may therefore have additional effects beyond those of lack of IL-17A alone. The present study was undertaken to determine the role of IL-17RA signaling in autoimmune arthritis. METHODS Disease incidence and severity were scored in type II collagen-treated wild-type, IL-17RA-deficient, and IL-23p19-deficient mice. T helper cell profiles and humoral immune responses were analyzed at several time points. Pathogenicity of T cells and total splenocytes was determined by in vitro functional assay. IL-17RA signaling was blocked in vivo in mice with antigen-induced arthritis (AIA). RESULTS Comparable to the findings in IL-23p19-deficient mice, IL-17RA-deficient mice were completely protected against the development of collagen-induced arthritis (CIA). However, IL-17RA-deficient mice exhibited an increased number of IL-4-producing CD4+ T cells, distinct from IL-17A+CD4+ T cells. This was associated with fewer plasma cells, lower production of pathogenic IgG2c antibody, and increased production of IgG1 antibody. Both isolated CD4+ T cells and total splenocytes from IL-17RA-deficient mice had a reduced ability to induce IL-6 production by synovial fibroblasts in the setting of CIA, in a functional in vitro assay. Furthermore, blocking of IL-17RA signaling in AIA reduced synovial inflammation. CONCLUSION These results demonstrate that absence of IL-17RA leads to a Th2-like phenotype characterized by IL-4 production and suggest that IL-17RA signaling plays a critical role in the regulation of IL-4 in CIA and the development of autoimmune inflammation of the joint.
Collapse
|
95
|
Faure E, Mear JB, Faure K, Normand S, Couturier-Maillard A, Grandjean T, Balloy V, Ryffel B, Dessein R, Chignard M, Uyttenhove C, Guery B, Gosset P, Chamaillard M, Kipnis E. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome. Am J Respir Crit Care Med 2014; 189:799-811. [PMID: 24555512 DOI: 10.1164/rccm.201307-1358oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Pseudomonas aeruginosa, a major problem pathogen responsible for severe infections in critically ill patients, triggers, through a functional type-3 secretion system (T3SS), the activation of an intracellular cytosolic sensor of innate immunity, NLRC4. Although the NLRC4-inflammasome-dependent response contributes to increased clearance of intracellular pathogens, it seems that NLRC4 inflammasome activation decreases the clearance of P. aeruginosa, a mainly extracellular pathogen. OBJECTIVES We sought to determine the underlying mechanisms of this effect of the activation of NLRC4 by P. aeruginosa. METHODS We established acute lung injury in wild-type and Nlrc4(-/-) mice using sublethal intranasal inocula of P. aeruginosa strain CHA expressing or not a functional T3SS. We studied 96-hour survival, lung injury, bacterial clearance from the lungs, cytokine secretion in bronchoalveolar lavage, lung antimicrobial peptide expression by quantitative polymerase chain reaction, and flow cytometry analysis of lung cells. MEASUREMENTS AND MAIN RESULTS Nlrc4(-/-) mice showed enhanced bacterial clearance and decreased lung injury contributing to increased survival against extracellular P. aeruginosa strain expressing a functional T3SS. The mechanism involved decreased NLRC4-inflammasome-driven IL-18 secretion attenuating lung injury caused by excessive neutrophil recruitment. Additionally, in the lungs of Nlrc4(-/-) mice secretion of IL-17 by innate immune cells was increased and responsible for increased expression of lung epithelial antimicrobial peptides. Furthermore, IL-18 secretion was found to repress IL-17 and IL-17-driven lung antimicrobial peptide expression. CONCLUSIONS We report a new role of the T3SS apparatus itself, independently of exotoxin translocation. Through NLRC4 inflammasome activation, the T3SS promotes IL-18 secretion, which dampens a beneficial IL-17-mediated antimicrobial host response.
Collapse
Affiliation(s)
- Emmanuel Faure
- 1 Pseudomonas aeruginosa Host-Pathogen Translational Research Group, Université Droit et Santé de Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Roberts LM, Davies JS, Sempowski GD, Frelinger JA. IFN-γ, but not IL-17A, is required for survival during secondary pulmonary Francisella tularensis Live Vaccine Stain infection. Vaccine 2014; 32:3595-603. [PMID: 24837506 DOI: 10.1016/j.vaccine.2014.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/02/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
IL-17 and IFN-γ production by Th17 and Th1 cells, respectively, is critical for survival during primary respiratory infection with the pathogenic bacterium, Francisella tularensis Live Vaccine Strain (LVS). The importance, however, of these T cell subsets and their soluble mediators is not well understood during a secondary or memory response. We measured the number of CD4(+) T cells producing IFN-γ or IL-17 in the spleen and lungs of vaccinated mice on day four of the secondary response using intracellular cytokine staining in order to identify protective T cell subsets participating in the memory response. Few bacteria were present in spleens of vaccinated mice on day four and a T cell response was not observed. In the lung, where more bacteria were present, there was a robust Th1 response in vaccinated mice but Th17 cells were not present at higher numbers in vaccinated mice compared to unvaccinated mice. These data show that the lung is the dominant site of the secondary immune response and suggest that Th17 cells are not required for survival during secondary challenge. To further investigate the importance of IFN-γ and IL-17 during the secondary response to F. tularensis, we neutralized either IFN-γ or IL-17 in vivo using monoclonal antibody treatment. Vaccinated mice treated with anti-IFN-γ lost more weight and had higher bacterial burdens compared to vaccinated mice treated with isotype control antibody. In contrast, treatment with anti-IL-17A antibody did not alter weight loss profiles or bacterial burdens compared to mice treated with isotype control antibody. Together, these results suggested that IFN-γ is required during both primary and secondary respiratory F. tularensis infection. IL-17, on the other hand, is only critical during the primary response to respiratory F. tularensis but dispensable during the secondary response.
Collapse
Affiliation(s)
- Lydia M Roberts
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, MRB 218,Tucson, AZ 85718, United States
| | - John S Davies
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, MRB 218,Tucson, AZ 85718, United States
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, 909 S. LaSalle Street, Durham, NC 27710, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, MRB 218,Tucson, AZ 85718, United States.
| |
Collapse
|
97
|
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12. [PMID: 24370461 PMCID: PMC4062078 DOI: 10.1016/j.bbi.2013.12.015] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022] Open
Abstract
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Lloyd H. Kasper
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
98
|
Gray C, Ahmed MS, Mubarak A, Kasbekar AV, Derbyshire S, McCormick MS, Mughal MK, McNamara PS, Mitchell T, Zhang Q. Activation of memory Th17 cells by domain 4 pneumolysin in human nasopharynx-associated lymphoid tissue and its association with pneumococcal carriage. Mucosal Immunol 2014; 7:705-17. [PMID: 24220296 DOI: 10.1038/mi.2013.89] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/02/2013] [Indexed: 02/04/2023]
Abstract
Pneumococcal carriage is common in children that may account for the high incidence of disease in this age group. Recent studies in animals suggest an important role for CD4+ T cells, T helper type 17 (Th17) cells in particular, in pneumococcal clearance. Whether this Th17-mediated mechanism operates in humans and what pneumococcal components activate Th17 are unknown. We investigated the ability of domain 4 pneumolysin (D4Ply) to activate CD4+ T cells including Th17 in human nasopharynx-associated lymphoid tissue (NALT) and peripheral blood. We show that D4Ply elicited a prominent CD4+ T-cell proliferative response. More importantly, D4Ply elicited a significant memory Th17 response in NALT, and a moderate response in peripheral blood mononuclear cells (PBMCs). This D4Ply-elicited memory Th17 response was more marked in carriage- than in carriage+ children in both NALT and PBMCs. In contrast, no difference was shown in D4Ply-induced Th1 response between the two groups. We also show D4Ply activated human monocytes and murine macrophages that was in part dependent on Toll-like receptor 4 (TLR-4). Our results support a protective role of Th17 against pneumococcal carriage in human nasopharynx, and identify a novel property of D4Ply to activate Th17 in NALT that may offer an attractive vaccine candidate in intranasal immunization against pneumococcal infection.
Collapse
Affiliation(s)
- C Gray
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - M S Ahmed
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - A Mubarak
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| | - A V Kasbekar
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - S Derbyshire
- Department of Otolaryngology, Alder Hey Children's Hospital, Liverpool, UK
| | - M S McCormick
- Department of Otolaryngology, Royal Liverpool University Hospital, Liverpool, UK
| | - M K Mughal
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - P S McNamara
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - T Mitchell
- Institute of Microbiology and Infection and School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - Q Zhang
- Institute of Infection and Global Health, Department of Clinical Infection Microbiology and Immunology, Liverpool, UK
| |
Collapse
|
99
|
Larsen JM, Brix S, Thysen AH, Birch S, Rasmussen MA, Bisgaard H. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants. J Allergy Clin Immunol 2014; 133:1008-13. [DOI: 10.1016/j.jaci.2014.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 12/20/2022]
|
100
|
McLean LP, Cross RK, Shea-Donohue T. Combined blockade of IL-17A and IL-17F may prevent the development of experimental colitis. Immunotherapy 2014; 5:923-5. [PMID: 23998727 DOI: 10.2217/imt.13.87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The contribution of Th17 cells to the development of colitis is well described. The effector cytokines IL-17A and IL-17F have been proposed as potential therapeutic targets for the treatment of patients with inflammatory bowel disease. In a proof-of-concept study for the treatment of patients with Crohn's disease, secukinumab, a monoclonal antibody directed against IL-17A, was ineffective and associated with more adverse events than placebo. Wedebye Schmidt et al. propose that blockade of both IL-17A and IL-17F, rather than either cytokine alone, attenuates the development of colitis in a T-cell transfer model of experimental colitis. These findings suggest that combined blockade of IL-17A and IL-17F may be an effective strategy for the treatment of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Leon P McLean
- University of Maryland School of Medicine, Department of Medicine, Division of Gastroenterology & Hepatology, MD, USA
| | | | | |
Collapse
|