51
|
Leal-Silva T, Vieira-Santos F, Oliveira FMS, Padrão LDLS, Kraemer L, da Paixão Matias PH, de Almeida Lopes C, Loiola Ruas AC, de Azevedo IC, Nogueira DS, Rachid MA, Caliari MV, Castro Russo R, Fujiwara RT, Bueno LL. Detrimental role of IL-33/ST2 pathway sustaining a chronic eosinophil-dependent Th2 inflammatory response, tissue damage and parasite burden during Toxocara canis infection in mice. PLoS Negl Trop Dis 2021; 15:e0009639. [PMID: 34324507 PMCID: PMC8354467 DOI: 10.1371/journal.pntd.0009639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. Studies have indicated that Th2 response is the main immune defense mechanism against toxocariasis, however, there are still few studies related to this response, mainly the IL-33/ST2 pathway. Some studies have reported an increase in IL-33 during helminth infections, including T. canis. By binding to its ST2 receptor, IL-33 stimulating the Th2 polarized immune cell and cytokine responses. Thus, we aimed to investigate the role of the IL-33/ST2 pathway in the context of T. canis larval migration and the immunological and pathophysiological aspects of the infection in the liver, lungs and brain from Wild-Type (WT) BALB/c background and genetically deficient mice for the ST2 receptor (ST2-/-). The most important findings revealed that the IL-33/ST2 pathway is involved in eosinophilia, hepatic and cerebral parasitic burden, and induces the formation of granulomas related to tissue damage and pulmonary dysfunction. However, ST2-/- mice, the immune response was skewed to Th1/Th17 type than Th2, that enhanced the control of parasite burden related to IgG2a levels, tissue macrophages infiltration and reduced lung dysfunction. Collectively, our results demonstrate that the Th2 immune response triggered by IL-33/ST2 pathway mediates susceptibility to T. canis, related to parasitic burden, eosinophilia and granuloma formation in which consequently contributes to tissue inflammation and injury. Toxocariasis is a neglected disease caused by Toxocara canis, which has 19% worldwide seroprevalence, and is associated with socioeconomic, geographic and environmental factors. Humans become infected by accidental ingestion of T. canis eggs present in contaminated food, water or soil. After ingestion, the larvae hatch in the intestine and can reach various tissues such as liver, lung and brain. Helminth infections usually trigger a Th2 immune response in the host, by releasing cytokines such as IL-4, IL-5, IL-13 and IL-33. IL-33 is an alarmin that binds to the ST2 receptor, and some studies have observed an increase in this cytokine in toxocariasis, however there are no studies regarding the IL-33/ST2 role in this infection. Thus, we evaluated the influence of this pathway by analyzing immunological and pathophysiological aspects in T. canis-infected mice. Our results demonstrated that the IL-33/ST2 pathway is related to parasite burden on the liver and brain and also increases the number of eosinophils in the blood and tissues. In addition, it involved with the pulmonary immune response and granulomas with impact in lung function. In conclusion, the IL-33/ST2 pathway governs the host susceptibility to T. canis in mice.
Collapse
Affiliation(s)
- Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Hemanoel da Paixão Matias
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Loiola Ruas
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Carvalho de Azevedo
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
52
|
Vieira-Santos F, Leal-Silva T, de Lima Silva Padrão L, Ruas ACL, Nogueira DS, Kraemer L, Oliveira FMS, Caliari MV, Russo RC, Fujiwara RT, Bueno LL. Concomitant experimental coinfection by Plasmodium berghei NK65-NY and Ascaris suum downregulates the Ascaris-specific immune response and potentiates Ascaris-associated lung pathology. Malar J 2021; 20:296. [PMID: 34210332 PMCID: PMC8248286 DOI: 10.1186/s12936-021-03824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Ascariasis and malaria are highly prevalent parasitic diseases in tropical regions and often have overlapping endemic areas, contributing to high morbidity and mortality rates in areas with poor sanitary conditions. Several studies have previously aimed to correlate the effects of Ascaris-Plasmodium coinfections but have obtained contradictory and inconclusive results. Therefore, the present study aimed to investigate parasitological and immunopathological aspects of the lung during murine experimental concomitant coinfection by Plasmodium berghei and Ascaris suum during larvae ascariasis. Methods C57BL/6J mice were inoculated with 1 × 104P. berghei strain NK65-NY-infected red blood cells (iRBCs) intraperitoneally and/or 2500 embryonated eggs of A. suum by oral gavage. P. berghei parasitaemia, morbidity and the survival rate were assessed. On the seventh day postinfection (dpi), A. suum lung burden analysis; bronchoalveolar lavage (BAL); histopathology; NAG, MPO and EPO activity measurements; haematological analysis; and respiratory mechanics analysis were performed. The concentrations of interleukin (IL)-1β, IL-12/IL-23p40, IL-6, IL-4, IL-33, IL-13, IL-5, IL-10, IL-17A, IFN-γ, TNF and TGF-β were assayed by sandwich ELISA. Results Animals coinfected with P. berghei and A. suum show decreased production of type 1, 2, and 17 and regulatory cytokines; low leukocyte recruitment in the tissue; increased cellularity in the circulation; and low levels of NAG, MPO and EPO activity that lead to an increase in larvae migration, as shown by the decrease in larvae recovered in the lung parenchyma and increase in larvae recovered in the airway. This situation leads to severe airway haemorrhage and, consequently, an impairment respiratory function that leads to high morbidity and early mortality. Conclusions This study demonstrates that the Ascaris-Plasmodium interaction is harmful to the host and suggests that this coinfection may potentiate Ascaris-associated pathology by dampening the Ascaris-specific immune response, resulting in the early death of affected animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03824-w.
Collapse
Affiliation(s)
- Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Loiola Ruas
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Institute of Biological Sciences, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
53
|
Abstract
Biologics have been widely adopted in multiple subspecialties of otolaryngology. This article provides an overview of past, present, and future uses of biologics in otolaryngology with emphasis on allergic rhinitis, chronic rhinosinusitis with polyposis, head and neck squamous cell carcinoma, salivary and skull base tumors, hearing loss, and other otologic disorders.
Collapse
|
54
|
Valent P, Degenfeld-Schonburg L, Sadovnik I, Horny HP, Arock M, Simon HU, Reiter A, Bochner BS. Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol 2021; 43:423-438. [PMID: 34052871 PMCID: PMC8164832 DOI: 10.1007/s00281-021-00863-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Eosinophils and their mediators play a crucial role in various reactive states such as bacterial and viral infections, chronic inflammatory disorders, and certain hematologic malignancies. Depending on the underlying pathology, molecular defect(s), and the cytokine- and mediator-cascades involved, peripheral blood and tissue hypereosinophilia (HE) may develop and may lead to organ dysfunction or even organ damage which usually leads to the diagnosis of a HE syndrome (HES). In some of these patients, the etiology and impact of HE remain unclear. These patients are diagnosed with idiopathic HE. In other patients, HES is diagnosed but the etiology remains unknown — these patients are classified as idiopathic HES. For patients with HES, early therapeutic application of agents reducing eosinophil counts is usually effective in avoiding irreversible organ damage. Therefore, it is important to systematically explore various diagnostic markers and to correctly identify the disease elicitors and etiology. Depending on the presence and type of underlying disease, HES are classified into primary (clonal) HES, reactive HES, and idiopathic HES. In most of these patients, effective therapies can be administered. The current article provides an overview of the pathogenesis of eosinophil-associated disorders, with special emphasis on the molecular, immunological, and clinical complexity of HE and HES. In addition, diagnostic criteria and the classification of eosinophil disorders are reviewed in light of new developments in the field.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria. .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
55
|
Vieira BM, Corrêa de Souza C, Masid de Brito D, Ferreira RN, Brum RS, Gaspar Elsas MIC, Xavier Elsas P. 5-lipoxygenase- and Glucocorticoid-dependent eosinophilia in a novel surgical model in mice. Int Immunopharmacol 2021; 94:107440. [PMID: 33588174 DOI: 10.1016/j.intimp.2021.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Subcutaneous implants of heat-coagulated egg white (egg white implants, EWI) induce intense local eosinophilia and prime for hyperreactivity following airway ovalbumin challenge. The roles of allergen sensitization, surgical trauma-induced glucocorticoids, and the 5-lipoxygenase (5-LO) pathway were hitherto unexplored in this model, in which quantitative recovery and large-scale purification of the eosinophils from the inflammatory site for functional and immunopharmacological studies are difficult to achieve. METHODS We overcame this limitation by shifting the implantation site to the peritoneal cavity (EWIp), thereby enabling quantitative leukocyte retrieval. RESULTS By day 7 post-surgery, eosinophil counts reached ~ 30% of all leukocytes recovered. Eosinophilia was prevented by: a) induction of allergen-specific oral tolerance to ovalbumin, the main allergen in egg white; b) inactivation of the 5-lipoxygenase pathway; c) blockade of endogenous glucocorticoid signaling by pretreatment with metirapone plus mifepristone before surgery. Highly purified eosinophils (~99% pure) could be obtained from the peritoneal exudate of EWIp-carrier mice in 2 simple, antibody-free steps. Preparative-scale yields, suitable for most biochemical, pharmacological, and molecular applications, were routinely obtained, and could be further enhanced through addition of pre-or post-surgery immunization steps (active or adoptive). The recovered eosinophils were fully functional in vivo, as demonstrated by the transfer of purified eosinophils into eosinophil-deficient Δdbl-GATA-1-KO mice, which upon subsequent challenge with eotaxin-1 present secondary accumulation of neutrophils, but not of mononuclear phagocytes. CONCLUSION These findings document glucocorticoid-, allergen- and 5-lipoxygenase-dependent eosinophilia, which makes EWIp carriers an abundant source of pure, nontransgenic eosinophils for immunopharmacological studies.
Collapse
Affiliation(s)
- Bruno Marques Vieira
- Dept. Immunology, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Carina Corrêa de Souza
- Postgraduate Programme in Pathology, Faculdade de Medicina, Hospital Universitário Antônio Pedro, UFF, Rio de Janeiro, Brazil
| | - Daniela Masid de Brito
- Dept. Immunology, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Renato Nunes Ferreira
- Dept. Immunology, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Rebeca S Brum
- Postgraduate Programme in Pathology, Faculdade de Medicina, Hospital Universitário Antônio Pedro, UFF, Rio de Janeiro, Brazil
| | - Maria Ignez C Gaspar Elsas
- Dept. Pediatrics, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZ, Rio de Janeiro, Brazil
| | - Pedro Xavier Elsas
- Dept. Immunology, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
56
|
Vinpocetine alleviates lung inflammation via macrophage inflammatory protein-1β inhibition in an ovalbumin-induced allergic asthma model. PLoS One 2021; 16:e0251012. [PMID: 33914833 PMCID: PMC8084130 DOI: 10.1371/journal.pone.0251012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Asthma is a well-known bronchial disease that causes bronchial inflammation, narrowing of the bronchial tubes, and bronchial mucus secretion, leading to bronchial blockade. In this study, we investigated the association between phosphodiesterase (PDE), specifically PDE1, and asthma using 3-isobutyl-1-methylxanthine (IBMX; a non-specific PDE inhibitor) and vinpocetine (Vinp; a PDE1 inhibitor). Balb/c mice were randomized to five treatment groups: control, ovalbumin (OVA), OVA + IBMX, OVA + Vinp, and OVA + dexamethasone (Dex). All mice were sensitized and challenged with OVA, except for the control group. IBMX, Vinp, or Dex was intraperitoneally administered 1 h before the challenge. Vinp treatment significantly inhibited the increase in airway hyper-responsiveness (P<0.001) and reduced the number of inflammatory cells, particularly eosinophils, in the lungs (P<0.01). It also ameliorated the damage to the bronchi and alveoli and decreased the OVA-specific IgE levels in serum, an indicator of allergic inflammation increased by OVA (P<0.05). Furthermore, the increase in interleukin-13, a known Th2 cytokine, was significantly decreased by Vinp (P<0.05), and Vinp regulated the release and mRNA expression of macrophage inflammatory protein-1β (MIP-1β) increased by OVA (P<0.05). Taken together, these results suggest that PDE1 is associated with allergic lung inflammation induced by OVA. Thus, PDE1 inhibitors can be a promising therapeutic target for the treatment of asthma.
Collapse
|
57
|
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun 2021; 14:4-30. [PMID: 33849008 DOI: 10.1159/000515117] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.
Collapse
Affiliation(s)
- Zoi Michailidou
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Mario Gomez-Salazar
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
58
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
59
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Detection of Eosinophil Extracellular DNA Traps. Methods Mol Biol 2021. [PMID: 33486738 DOI: 10.1007/978-1-0716-1095-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The process of extracellular DNA trap release by leukocytes, including eosinophils, has been considered as an important cell-mediated immune response to different inflammatory stimuli helping to understand the physiopathology of many diseases. Here we describe in detail two useful and simple protocols for a semiquantitative and a qualitative analysis of extracellular DNA traps released by human eosinophils, based on fluorimetry and fluorescence microscopy, respectively. These methods can also be applied to detect the DNA trap release by other leukocytes such as neutrophils and even other cell types.
Collapse
|
61
|
Vial R, Gully M, Bobot M, Scarfoglière V, Brunet P, Bouchouareb D, Duval A, Zino HO, Faraut J, Jehel O, Berdad-Haddad Y, Burtey S, Jarrot PA, Lano G, Robert T. Triage of Patients Suspected of COVID-19 in Chronic Hemodialysis: Eosinophil Count Differentiates Low and High Suspicion of COVID-19. J Clin Med 2020; 10:jcm10010004. [PMID: 33375040 PMCID: PMC7792772 DOI: 10.3390/jcm10010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Daily management to shield chronic dialysis patients from SARS-CoV-2 contamination makes patient care cumbersome. There are no screening methods to date and a molecular biology platform is essential to perform RT-PCR for SARS-CoV-2; however, accessibility remains poor. Our goal was to assess whether the tools routinely used to monitor our hemodialysis patients could represent reliable and quickly accessible diagnostic indicators to improve the management of our hemodialysis patients in this pandemic environment. Methods: In this prospective observational diagnostic study, we recruited patients from La Conception hospital. Patients were eligible for inclusion if suspected of SARS-CoV-2 infection when arriving at our center for a dialysis session between March 12th and April 24th 2020. They were included if both RT-PCR result for SARS-CoV-2 and cell blood count on the day that infection was suspected were available. We calculated the area under the curve (AUC) of the receiver operating characteristic curve. Results: 37 patients were included in the final analysis, of which 16 (43.2%) were COVID-19 positive. For the day of suspected COVID-19, total leukocytes were significantly lower in the COVID-19 positive group (4.1 vs. 7.4 G/L, p = 0.0072) and were characterized by lower neutrophils (2.7 vs. 5.1 G/L, p = 0.021) and eosinophils (0.01 vs. 0.15 G/L, p = 0.0003). Eosinophil count below 0.045 G/L identified SARS-CoV-2 infection with AUC of 0.9 [95% CI 0.81—1] (p < 0.0001), sensitivity of 82%, specificity of 86%, a positive predictive value of 82%, a negative predictive value of 86% and a likelihood ratio of 6.04. Conclusions: Eosinophil count enables rapid routine screening of symptomatic chronic hemodialysis patients suspected of being COVID-19 within a range of low or high probability.
Collapse
Affiliation(s)
- Romain Vial
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Marion Gully
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Mickael Bobot
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
- C2VN, Aix-Marseille University, INSERM 1263, INRAe, 13005 Marseille, France;
| | - Violaine Scarfoglière
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Philippe Brunet
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
- C2VN, Aix-Marseille University, INSERM 1263, INRAe, 13005 Marseille, France;
| | - Dammar Bouchouareb
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Ariane Duval
- Association des Dialysés Provence et Corse, 13009 Marseille, France;
| | - He-oh Zino
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Julien Faraut
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Océane Jehel
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
| | - Yaël Berdad-Haddad
- Hematology Laboratory, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France;
| | - Stéphane Burtey
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
- C2VN, Aix-Marseille University, INSERM 1263, INRAe, 13005 Marseille, France;
| | - Pierre-André Jarrot
- C2VN, Aix-Marseille University, INSERM 1263, INRAe, 13005 Marseille, France;
- Department of Internal Medicine and Clinical Immunology, CHU de Marseille, Hôpital de la Conception, 13005 Marseille, France
| | - Guillaume Lano
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
- C2VN, Aix-Marseille University, INSERM 1263, INRAe, 13005 Marseille, France;
| | - Thomas Robert
- Centre of Nephrology and Renal Transplantation, Hôpital de la Conception, CHU de Marseille, 13005 Marseille, France; (R.V.); (M.G.); (M.B.); (V.S.); (P.B.); (D.B.); (H.-o.Z.); (J.F.); (O.J.); (S.B.); (G.L.)
- MMG, Bioinformatics & Genetics, Aix-Marseille Université, UMR_S910, 13004 Marseille, France
- Correspondence:
| |
Collapse
|
62
|
Nair AP, Soliman A, Al Masalamani MA, De Sanctis V, Nashwan AJ, Sasi S, Ali EA, Hassan OA, Iqbal FM, Yassin MA. Clinical Outcome of Eosinophilia in Patients with COVID-19: A Controlled Study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020165. [PMID: 33525219 PMCID: PMC7927494 DOI: 10.23750/abm.v91i4.10564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023]
Abstract
Background: Eosinophils can be considered as multifunctional leukocytes that contribute to various physiological and pathological processes depending on their location and activation status. There are emerging eosinophil-related considerations concerning COVID-19. Variable eosinophil counts have been reported during COVID-19. Whether these changes are related to the primary disease process or due to immunomodulation induced by the treatment has not yet been elucidated. Aim of the study: To describe changes in the differential leukocyte counts including eosinophils, in a cohort of symptomatic patients with confirmed COVID-19 and to correlate these changes, if any, with the severity of the disease. Patients and methods: We recorded the clinical data, lab findings, including inflammatory markers and leukocyte and differential count, course of the disease and severity score in 314 confirmed symptomatic cases of COVID-19. Results: Laboratory tests revealed that 28.7 % (n =86) had mild eosinophilia (eosinophil count > 500 <1,500/µL). Thirty-four patients (11.3%) had elevated absolute neutrophil count (ANC) (>8,000/µL), and 7 (2.3%) had decreased ANC (< 1,500/µl). Seven patients (2.3%) had lymphopenia (<1,000/µL) and 4 (4.67%) had lymphocytosis (> 4,000/µL). C-reactive protein (CRP) was elevated in 83 patients (27.6%). Chest X-Ray changes included: increased broncho vascular markings (38%), ground-glass opacity (GGO) pneumonitis (19.3%), lobar consolidation (5%), bronchopneumonia (8.3%), nodular opacity (1%), acute respiratory distress syndrome (ARDS) (2.3%), pleural effusion (1.0%) and other atypical findings (6.6%). Patients with eosinophilia had significantly lower CRP, and lower % of GGO, lobar and bronchopneumonia and ARDS in their chest images compared to patients without eosinophilia (p: <0.05). They also had a lower requirement for a hospital stay, ICU admission, mechanical ventilation, and oxygen supplementation versus patients without eosinophilia (p: <0.05). The eosinophils count was correlated negatively with the duration of ICU admission, mechanical ventilation, and oxygen supplementation and with CRP level (r: - 0.34, -0.32, -0.61 and - 0.39, respectively) (p: < 0.01). Conclusions: Our study reports a relatively high prevalence of eosinophilia in symptomatic COVID-19 positive patients. Patients with eosinophilia had a lower level of CRP, milder clinical course and better disease outcomes compared to those without eosinophilia. Our findings indicated a protective role of eosinophils in mitigating the severity of inflammatory diseases through an inhibitory mechanism, as evidenced by lower CRP. This protective role of eosinophils needs to be validated by further prospective studies. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | - Ashraf Soliman
- Department of Pediatrics. Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Muna A Al Masalamani
- Communicable Disease Center (CDC), Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Vincenzo De Sanctis
- Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara, Italy.
| | - Abdulqadir J Nashwan
- Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Sreethish Sasi
- Department of Internal Medicine, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Elrazi A Ali
- Department of Internal Medicine, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Ola A Hassan
- Family Medicine, Medical Education, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Fatima M Iqbal
- Communicable Disease Center (CDC), Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Mohamed A Yassin
- Department of Haematology/Oncology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar.
| |
Collapse
|
63
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
64
|
Yoon JK, Lee JK, Lee CH, Hwang YI, Kim H, Park D, Hwang KE, Kim SH, Jung KS, Yoo KH, Ra SW, Kim DK. The Association Between Eosinophil Variability Patterns and the Efficacy of Inhaled Corticosteroids in Stable COPD Patients. Int J Chron Obstruct Pulmon Dis 2020; 15:2061-2070. [PMID: 32943859 PMCID: PMC7473991 DOI: 10.2147/copd.s258353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Blood eosinophils are a predictive marker for the use of inhaled corticosteroids (ICS). However, there is concern over whether a single measure of blood eosinophils is sufficient for outlining a treatment plan. Here, we evaluated the association between variability in blood eosinophils and the effects of ICS in stable COPD cohorts. Methods COPD patients in the Korean COPD Subtype Study and the Seoul National University Airway Registry from 2011 to 2018 were analyzed. Based on blood eosinophils at baseline and at 1-year follow-up, the patients were classified into four groups with 250/μL as a cutoff value: consistently high (CH), consistently low (CL), variably increasing (VI), and variably decreasing (VD). We compared rates of acute exacerbations (AEs) according to ICS use in each group after calibration of severity using propensity score matching. Results Of 2,221 COPD patients, 618 were analyzed and a total of 125 (20%), 355 (57%), 63 (10%), and 75 (12%) patients were classified into the CH, CL, VI, and VD groups, respectively. After calibration, we found that ICS users tended to have a lower AE rate in the CH group (RR 0.41, 95% CI 0.21–0.74) and VI group (RR 0.45, 95% CI 0.22–0.88), but not in the CL group (RR 1.42, 95% CI 1.08–1.89) and VD group (RR 1.71, 95% CI 1.00–2.96). Conclusion More than one-fifth of patients had an inconsistent blood eosinophil level after the 1-year follow-up, and the AE-COPD rate according to ICS differed based on variability in eosinophils. Regular follow-up of blood eosinophils is required for COPD patients.
Collapse
Affiliation(s)
- Jung-Ki Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Il Hwang
- Department of Internal Medicine, College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hyunkuk Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Dongil Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ki-Eun Hwang
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Republic of Korea
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ki-Suck Jung
- Department of Internal Medicine, College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seung Won Ra
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
65
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
66
|
An YF, Suo LM, Xue JM, Han HY, Yang G, Liu JQ, Liu ZQ, Liu ZG, Zhao CQ, Yang PC. Role of FcγRI in Antigen-Dependent Eosinophil Activation in Patients With Allergic Rhinitis. Am J Rhinol Allergy 2020; 35:86-97. [PMID: 32586101 DOI: 10.1177/1945892420936587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background The eosinophil (Eo) activation is a crucial factor evoking allergic rhinitis (AR) attacks; factors; the mechanism of triggering Eo activation remains to be further investigated. The interaction of antigen (Ag) and antibody plays a critical role in evoking allergy attacks. This study aims to elucidate the role of FcγRI, the high affinity receptor of IgG, in the Ag-mediated Eo activation. Methods Nasal lavage fluids (NLF) were collected from AR patients and healthy control (HC) subjects. Eos were isolated by flow cytometry cell sorting and analyzed by pertinent immunological approaches. Results Eos composed more than 60% of the cellular components in AR NLF. Exposure to specific Ags (sAgs) in the culture triggered Eos to release inflammatory mediators. High levels of FcγRI were detected on the surface of AR NLF Eos. Exposure to lipopolysaccharide markedly increased the FcγRI expression in naive Eos, which could be bound by Ag-specific IgG (sIgG) to form complexes on the surface of Eos; this made Eos at the sensitized status. Eos bore with the sIgG/FcγRI complexes could be activated upon exposure to sIgG in the culture; these Eos can be designated as Ag-specific Eos. Passive transfer of Ag-specific Eos resulted in profound AR response in mice upon sAg challenge. Depletion of FcγRI on Eos efficiently abolished AR response in mice. Conclusions AR Eos express high levels FcγRI, that can be bound by sIgG to make Eos sensitized. Re-exposure to specific Ags can activate the sensitized Eos.
Collapse
Affiliation(s)
- Yun-Fang An
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Li-Min Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Jin-Mei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Hai-Yang Han
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Jiang-Qi Liu
- Department of Allergy, Longgang ENT Hospital, Shenzhen, China
| | - Zhi-Qiang Liu
- Department of Allergy, Longgang ENT Hospital, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Chang-Qing Zhao
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| |
Collapse
|
67
|
Asfour MH, Kassem AA, Salama A, Abd El-Alim SH. Hydrophobic ion pair loaded self-emulsifying drug delivery system (SEDDS): A novel oral drug delivery approach of cromolyn sodium for management of bronchial asthma. Int J Pharm 2020; 585:119494. [PMID: 32505578 DOI: 10.1016/j.ijpharm.2020.119494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023]
Abstract
The aim of the present study is to develop a self-emulsifying drug delivery system (SEDDS) for the hydrophobic ion pair (HIP) complex of cromolyn sodium (CS), in order to enhance its intestinal absorption and biological activity. Two ion pairing agents (IPAs) were investigated: hexadecyl pyridininum chloride (HPC) and myristyl trimethyl ammonium bromide (MTAB). The optimum binding efficiency for complexation between investigated IPAs and CS was observed at a molar ratio of 1.5:1, where CS binding efficiency was found to be 76.10 ± 2.12 and 91.37 ± 1.73% for MTAB and HPC, respectively. The two prepared complexes exhibited a significant increase in partition coefficient indicating increased lipophilicity. The optimized CS-HIP complex was incorporated into SEDDS formulations. SEDDS formulations F2 (40% oleic acid, 40% BrijTM98, 20% propylene glycol) and F3 (25% oleic acid, 50% BrijTM98, 25% propylene glycol) exhibited nanometric droplet diameters with monodisperse distribution and nearly neutral zeta potential values. Ex vivo intestinal permeation study, using the non-everted gut sac technique, revealed a significantly higher cumulative amount of permeated drug, after 2 h, for F2 and F3 (53.836 and 77.617 µg/cm2, respectively) compared to 8.649 µg/cm2 for plain CS solution. The in vivo evaluation of plain CS solution compared to F2 and F3 was conducted in an ovalbumin sensitization-induced bronchial asthma rat model. Lung function parameters (tidal volume and peak expiratory flow), biochemical parameters (interleukin-5, immunoglobulin-E, myeloperoxidase and airway remodelling parameters) were assessed in addition to histopathological examination. The results indicated the superiority of F3 followed by F2 compared to plain CS solution for prophylaxis of bronchial asthma in rats.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt.
| | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St, Dokki, Cairo 12622, Egypt
| |
Collapse
|
68
|
Ye L, Bai HM, Jiang D, He B, Wen XS, Ge P, Zhang DY. Combination of eosinophil percentage and high-sensitivity C-reactive protein predicts in-hospital major adverse cardiac events in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. J Clin Lab Anal 2020; 34:e23367. [PMID: 32441412 PMCID: PMC7521303 DOI: 10.1002/jcla.23367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background Eosinophil levels predict prognosis in ST‐segment elevation myocardial infarction (STEMI) patients. Both eosinophils and high‐sensitivity C‐reactive protein (hs‐CRP) play a major role in the acute inflammatory response of myocardial infarction. The purpose of this study was to evaluate eosinophil percentage (EOS%) and hs‐CRP as prognostic markers for in‐hospital adverse events in STEMI patients undergoing primary percutaneous coronary intervention. Methods We retrospectively analyzed the clinical data of 518 patients. Major adverse cardiac events (MACEs) were defined as cardiac rupture, cardiac arrest, malignant arrhythmia, and cardiac death. Based on the receiver operating characteristic (ROC) analysis, all patients were regrouped into 3 groups (None, One, and Two) according to cutoff EOS% value (≤0.3%) and hs‐CRP value (>11.8 mg/L). Both Cox regression analyses and the KM (Kaplan‐Meier) survival curve were used to examine the prognostic role of combined hs‐CRP and EOS% in cardiovascular events. Results Of the 518 STEMI patients, 50 of them developed MACEs. Patients who developed MACEs had a significantly lower EOS% and higher hs‐CRP than patients who remained MACE‐free. In the multivariable Cox regression analysis, the highest risk of in‐hospital MACEs was constantly observed in patients with a combined low EOS% and elevated hs‐CRP. Patients with reduced EOS% and high hs‐CRP had significantly higher incidence rates of cardiac rupture (P = .001), cardiac arrest (P = .001), and malignant arrhythmia (P < .001); furthermore, they had the worst cumulative survival compared with the other two groups. Conclusion Combined reduced EOS% and elevated hs‐CRP were valuable tools for identifying patients at risk of in‐hospital MACEs.
Collapse
Affiliation(s)
- Liu Ye
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong-Mei Bai
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Jiang
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing He
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue-Song Wen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ge
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong-Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
69
|
Hu G, Wang S, Zhong K, Xu F, Huang L, Chen W, Cheng P. Tumor-associated tissue eosinophilia predicts favorable clinical outcome in solid tumors: a meta-analysis. BMC Cancer 2020; 20:454. [PMID: 32434481 PMCID: PMC7240929 DOI: 10.1186/s12885-020-06966-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Activated eosinophils have been deemed to affect carcinogenesis and tumor progression via various mechanisms in tumor microenvironment. However, the prognostic role of tumor-associated tissue eosinophilia (TATE) in human cancers remains controversial. Therefore, we conducted this meta-analysis to better comprehend the association between TATE and clinical outcomes of patients. Methods We searched PubMed, Embase and EBSCO to determine the researches assessing the association between TATE and overall survival (OS) and/or disease-free survival (DFS) in patients with cancer, then combined relevant data into hazard ratios (HRs) or odds ratio (OR) for OS, DFS and clinicopathological features including lymph node metastasis etc. with STATA 12.0. Results Twenty six researches with 6384 patients were included in this meta-analysis. We found that the presence of TATE was significantly associated with improved OS, but not with DFS in all types of cancers. In stratified analyses based on cancer types, pooled results manifested that the infiltration of eosinophils was remarkably associated with better OS in esophageal carcinoma and colorectal cancer. In addition, TATE significantly inversely correlated with lymph node metastasis, tumor stage and lymphatic invasion of cancer. Conclusion TATE promotes survival in cancer patients, suggesting that it is a valuable prognostic biomarker and clinical application of biological response modifiers or agonists promoting TATE may be the novel therapeutic strategy for patients.
Collapse
Affiliation(s)
- Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China.
| | - Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Kefang Zhong
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Feng Xu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China
| | - Wei Chen
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Zhejiang, 312000, China.
| | - Pu Cheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
70
|
Siddiqui S, Jaiswal R, Hashmi GS. Quantitative analysis of tumor-associated tissue eosinophils and tumor-associated blood eosinophils in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2020; 24:131-137. [PMID: 32508461 PMCID: PMC7269303 DOI: 10.4103/jomfp.jomfp_70_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background: Stromal response to cancer is usually characterized by intense lymphoplasmacytic infiltrate. However, recently, the attention has shifted to tumor-associated tissue eosinophils (TATE). Tumor-associated blood eosinophils (TABE) are rare in solid cancers; however, carcinoma of the head and neck shows its prevalence. Aim: The aim of the study was to investigate the prevalence and relationship of tissue and blood eosinophils in various grades of oral cancer. The purpose of the article is to emphasize the possible clinical and biological significance of eosinophils in patients of oral squamous cell carcinoma (OSCC) so that appropriate therapeutic strategies can be devised accordingly. Study Design: Thirty histologically confirmed cases of oral squamous cell carcinoma were divided into well, moderate and poorly differentiated carcinoma. Eosinophilic infiltration in the tissue was graded as low, moderate and massive TATE. The number of eosinophils per 100 WBCs was taken as the differential eosinophil count. Blood eosinophilia (BE) >6% was considered to be TABE. Materials and Methods: Hematoxylin and eosin-stained tissue sections at 5 μ were evaluated. Prolonged staining in dilute 0.05% aqueous eosin demonstrated eosinophils selectively. Blood smears were stained by Leishman stain. Statistical Analysis: Student's t-test, Chi-square test, ANOVA, Newman–Keuls Multiple Comparison Test and Karl Pearson correlation coefficient® method were used. Results: The mean TATE value was highest in poorly differentiated carcinoma. TABE was seen only in a few cases and was associated mostly with poorly differentiated OSCC. Conclusion: There was a statistically significant correlation between TATE and histological grades of OSCC. Eosinophilia of the peripheral blood is an adverse sign in patients with carcinoma.
Collapse
Affiliation(s)
- Safia Siddiqui
- Department of Oral Pathology and Microbiology, Sardar Patel Post Graduate Institute of Dental and Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rohit Jaiswal
- Department of Oral Pathology and Microbiology, Sardar Patel Post Graduate Institute of Dental and Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ghulam Sarwar Hashmi
- Department of Oral and Maxillofacial Surgery, ZA Dental College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
71
|
Nagase H, Ueki S, Fujieda S. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: Asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergol Int 2020; 69:178-186. [PMID: 32139163 DOI: 10.1016/j.alit.2020.02.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023] Open
Abstract
IL-5 is the most potent activator of eosinophils and is produced by Th2 cells and ILC2s. A role for IL-5 in eosinophil extracellular trap cell death, i.e., a proinflammatory cell death, has also been reported. Mepolizumab and benralizumab are humanized mAbs that target IL-5 and the IL-5 receptor α, respectively, and their therapeutic efficacy for severe asthma has been established. Although consistent differences in the efficacies of those drugs have not been proven, benralizumab extensively depleted eosinophils via Ab-dependent cell-mediated cytotoxicity. Blood eosinophil count, but not FeNO or IgE, is the best-established predictive biomarker of the efficacy of anti-IL-5 treatment. Regarding the choice of biologics, the balance between blood eosinophil count and FeNO, indication of comorbidities, longitudinal safety, and interval of injection should be considered. Mepolizumab was also effective in maintaining the remission of refractory eosinophilic granulomatous polyangiitis. Moreover, mepolizumab decreased the proportion of patients who required surgery and lowered the nasal polyp score in patients with chronic rhinosinusitis with nasal polyps; a further extensive trial is currently under way. In a phase II benralizumab study performed in Japan, no significant effect on nasal polyp score at week 12 was observed, suggesting a requirement for longer treatment. In this review, the role of IL-5 in eosinophil biology and the current status of anti-IL-5 therapy are discussed. The longitudinal safety of anti-IL-5 therapy has been increasingly established, and this strategy will be continuously indicated for eosinophilic diseases as a specific treatment for eosinophilic inflammation.
Collapse
|
72
|
Miao R, Zhu Y, Wang Z, Luo S, Wan C. Distinguishment of parasite-infected children from pediatric inpatients with both eosinophilia and effusion. Medicine (Baltimore) 2020; 99:e19625. [PMID: 32243388 PMCID: PMC7440094 DOI: 10.1097/md.0000000000019625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients with both serous effusion and eosinophilia are rarely reported and geographically distributed; their early diagnosis is difficult.According to the ultimate diagnosis, patients (≤14 years) in West China Second hospital with serous effusion and eosinophilia were divided into two groups including a parasitic group and a non-parasitic group. Clinical data were collected and analyzed between the two groups. Subsequently, significant measurement indicators were evaluated by receiver operating characteristic (ROC) curve to explore the optimal cut-off points for the most appropriate sensitivity and specificity.A total of 884 patients were diagnosed with serous effusion and 61 of them displayed co-morbidity with eosinophilia during enrolled time. Among 61 patients, 34 patients had parasitic infection and 27 had non-parasitic diseases. There were statistical difference in effusion position, the levels of white blood cell count (WBC), eosinophil (EOS), EOS%, C-reactive protein (CRP) between parasitic group and non-parasitic group. ROC curve demonstrated that the areas under the curve of EOS count and EOS% were >80%, and the corresponding optimal cut-off values were 1.71 × 10/L and 25.6% for distinguishing between parasitic and non-parasitic infections in our patients.This study provided a quantified index for potentially quick and convenient indicators of pediatric patients presenting with both eosinophilia and effusion. Eosinophils were helpful to improve the initial diagnosis with awareness of parasitic diseases. For the cases with EOS > 1.71 × 10/L or EOS% > 25.6%, parasitic infection should be considered and serological tests are recommended in our region.
Collapse
Affiliation(s)
- Ruixue Miao
- Department of Pediatrics, West China Second Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yu Zhu
- Department of Pediatrics, West China Second Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Zhiling Wang
- Department of Pediatrics, West China Second Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Shuanghong Luo
- Department of Pediatrics, West China Second Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Chaomin Wan
- Department of Pediatrics, West China Second Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, P.R. China
| |
Collapse
|
73
|
Brosnahan MM. Eosinophils of the horse: Part II: Eosinophils in clinical diseases. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. M. Brosnahan
- College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
74
|
Abstract
Phagocytosis is a pivotal immunological process, and its discovery by Elia Metchnikoff in 1882 was a step toward the establishment of the innate immune system as a separate branch of immunology. Elia Metchnikoff received the Nobel Prize in physiology and medicine for this discovery in 1908. Since its discovery almost 140 years before, phagocytosis remains the hot topic of research in immunology. The phagocytosis research has seen a great advancement since its first discovery. Functionally, phagocytosis is a simple immunological process required to engulf and remove pathogens, dead cells and tumor cells to maintain the immune homeostasis. However, mechanistically, it is a very complex process involving different mechanisms, induced and regulated by several pattern recognition receptors, soluble pattern recognition molecules, scavenger receptors (SRs) and opsonins. These mechanisms involve the formation of phagosomes, their maturation into phagolysosomes causing pathogen destruction or antigen synthesis to present them to major histocompatibility complex molecules for activating an adaptive immune response. Any defect in this mechanism may predispose the host to certain infections and inflammatory diseases (autoinflammatory and autoimmune diseases) along with immunodeficiency. The article is designed to discuss its mechanistic complexity at each level, varying from phagocytosis induction to phagolysosome resolution.
Collapse
Affiliation(s)
- Vijay Kumar
- Faculty of Medicine, Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
75
|
Jiménez-Saiz R, Anipindi VC, Galipeau H, Ellenbogen Y, Chaudhary R, Koenig JF, Gordon ME, Walker TD, Mandur TS, Abed S, Humbles A, Chu DK, Erjefält J, Ask K, Verdú EF, Jordana M. Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Front Immunol 2020; 11:155. [PMID: 32117293 PMCID: PMC7033414 DOI: 10.3389/fimmu.2020.00155] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Eosinophils have emerged as multifaceted cells that contribute to tissue homeostasis. However, the impact of the microbiota on their frequency and function at mucosal sites remains unclear. Here, we investigated the role of the microbiota in the regulation of enteric eosinophils. We found that small intestinal (SI) eosinophilia was significantly greater in germ-free (GF) mice compared to specific pathogen free (SPF) controls. This was associated with changes in the production of enteric signals that regulate eosinophil attraction and survival, and was fully reversed by complex colonization. Additionally, SI eosinophils of GF mice exhibited more cytoplasmic protrusions and less granule content than SPF controls. Lastly, we generated a novel strain of eosinophil-deficient GF mice. These mice displayed intestinal fibrosis and were less prone to allergic sensitization as compared to GF controls. Overall, our study demonstrates that commensal microbes regulate intestinal eosinophil frequency and function, which impacts tissue repair and allergic sensitization to food antigens. These data support a critical interplay between the commensal microbiota and intestinal eosinophils in shaping homeostatic, innate, and adaptive immune processes in health and disease.
Collapse
Affiliation(s)
- Rodrigo Jiménez-Saiz
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
- Department of Immunology & Oncology, National Center for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - Varun C. Anipindi
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Heather Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Yosef Ellenbogen
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Roopali Chaudhary
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Joshua F. Koenig
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Melissa E. Gordon
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Tina D. Walker
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Talveer S. Mandur
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Soumeya Abed
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Alison Humbles
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Gaithersburg, MD, United States
| | - Derek K. Chu
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonas Erjefält
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Respiratory Medicine and Allergology, Lund University Hospital, Lund, Sweden
| | - Kjetil Ask
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| | - Elena F. Verdú
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Manel Jordana
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
76
|
Guseva D, Rüdrich U, Kotnik N, Gehring M, Patsinakidis N, Agelopoulos K, Ständer S, Homey B, Kapp A, Gibbs BF, Ponimaskin E, Raap U. Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin Exp Allergy 2020; 50:577-584. [PMID: 31925827 DOI: 10.1111/cea.13560] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity. OBJECTIVE The purpose of this study was to determine the anatomical localization of eosinophils in the skin of patients with AD with regard to peripheral nerves and to investigate whether eosinophils induce sprouting and neurite outgrowth in murine sensory neurons. METHODS Cryosections of skin derived from AD and control (NA) patients were subjected to immunofluorescence analysis with markers for eosinophils, BDNF and neuronal cells. Stimulated eosinophil supernatants were used for the treatment of cultured peripheral mouse dorsal root ganglia (DRG) neurons followed by morphometric analysis. RESULTS Dermal axon density and the proximity of eosinophils to nerve fibres were significantly higher in AD patients vs NA. Both neuronal projections and eosinophils expressed BDNF. Furthermore, activated eosinophil supernatants induced BDNF-dependent mouse DRG neuron branching. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that BDNF-positive eosinophils are also localized in close proximity with nerve fibres in AD, suggesting a functional relationship between BDNF-expressing eosinophils and neuronal projections. These observations suggest that eosinophils may have considerable impact on pruritus by supporting sensory nerve branching.
Collapse
Affiliation(s)
- Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.,Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Urda Rüdrich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Nika Kotnik
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Manuela Gehring
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Nikolaos Patsinakidis
- University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| | - Konstantin Agelopoulos
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Kapp
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.,Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Ulrike Raap
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
77
|
Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci 2020; 16:893-903. [PMID: 32071558 PMCID: PMC7019139 DOI: 10.7150/ijbs.39725] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is sensitive to pathogen-induced acute or chronic liver injury, and liver transplantation (LT) is the only effective strategy for end-stage liver diseases. However, the clinical application is limited by a shortage of liver organs, immunological rejection and high cost. Mesenchymal stromal cell (MSC)-based therapy has gradually become a hot topic for promoting liver regeneration and repairing liver injury in various liver diseases, since MSCs are reported to migrate toward injured tissues, undergo hepatogenic differentiation, inhibit inflammatory factor release and enhance the proliferation of liver cells in vivo. MSCs exert immunoregulatory effects through cell-cell contact and the secretion of anti-inflammatory factors to inhibit liver inflammation and promote liver regeneration. In addition, MSCs are reported to effectively inhibit the activation of cells of the innate immune system, including macrophages, natural killer (NK) cells, dendritic cells (DCs), monocytes and other immune cells, and inhibit the activation of cells of the adaptive immune system, including T lymphocytes, B lymphocytes and subsets of T cells or B cells. In the current review, we mainly focus on the potential effects and mechanisms of MSCs in inhibiting the activation of immune cells to attenuate liver injury in models or patients with acute liver failure (ALF), nonalcoholic fatty liver disease (NAFLD), and liver fibrosis and in patients or models after LT. We highlight that MSC transplantation may replace general therapies for eliminating acute or chronic liver injury in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zhongwen Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
78
|
Suzuki K, Nishiwaki K, Gunji T, Katori M, Masuoka H, Yano S. Elevated eosinophil level predicted long time to next treatment in relapsed or refractory myeloma patients treated with lenalidomide. Cancer Med 2020; 9:1694-1702. [PMID: 31950647 PMCID: PMC7050101 DOI: 10.1002/cam4.2828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Lenalidomide is an immunomodulatory drug that is administered commonly in patients with relapsed or refractory multiple myeloma (RRMM). Eosinophils have immunological functions, for instance, in allergic diseases and asthma. The purpose of this study was to investigate the clinical significance of elevated eosinophil levels in patients with RRMM treated with lenalidomide. A total of 59 patients were included. Elevated eosinophil level was defined as an increase in the eosinophil count of ≥250/µL from the eosinophil count on day 1 during the first cycle. The percentage of patients with elevated eosinophil levels was 22.0%. The overall response ratio in the elevated eosinophil group and nonelevated eosinophil group was 84.6% and 63.0% (P = .189), respectively. The median time to next treatment (TTNT) in the elevated eosinophil group was significantly longer than that in the nonelevated group (40.3 months vs 8.4 months; P = .017). Additionally, TTNT in the elevated eosinophil group with partial response (PR) or better was significantly longer than that in the nonelevated eosinophil group with PR or better (40.3 months vs 11.9 months; P = .021). We concluded that elevated eosinophil levels were frequently observed and might predict a longer TTNT in patients with RRMM treated with lenalidomide.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Tadahiro Gunji
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuji Katori
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Hidekazu Masuoka
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
79
|
Arbustini E, Narula N, Giuliani L, Di Toro A. Genetic Basis of Myocarditis: Myth or Reality? MYOCARDITIS 2020. [PMCID: PMC7122345 DOI: 10.1007/978-3-030-35276-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genetic basis of myocarditis remains an intriguing concept, at least as long as the definition of myocarditis constitutes the definitive presence of myocardial inflammation sufficient to cause the observed ventricular dysfunction in the setting of cardiotropic infections. Autoimmune or immune-mediated myocardial inflammation constitutes a complex area of clinical interest, wherein numerous and not yet fully understood role of hereditary auto-inflammatory diseases can result in inflammation of the pericardium and myocardium. Finally, myocardial involvement in hereditary immunodeficiency diseases, cellular and humoral, is a possible trigger for infections which may complicate the diseases themselves. Whether the role of constitutional genetics can make the patient susceptible to myocardial inflammation remains yet to be explored.
Collapse
|
80
|
Overview of Basic Immunology and Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:1-36. [PMID: 32301008 DOI: 10.1007/978-3-030-41008-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells are found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and cross-talk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
|
81
|
Abstract
Eosinophils are important immune cells that have been implicated in resistance to gastrointestinal nematode (GIN) infections in both naturally and experimentally infected sheep. Proteins of particular importance appear to be IgA-Fc alpha receptor (FcαRI), C-C chemokine receptor type 3 (CCR3), proteoglycan 3 (PRG3, major basic protein 2) and EPX (eosinophil peroxidase). We used known human nucleotide sequences to search the ruminant genomes, followed by translation to protein and sequence alignments to visualize differences between sequences and species. Where a sequence was retrieved for cow, but not for sheep and goat, this was used additionally as a reference sequence. In this review, we show that eosinophil function varies among host species. Consequently, investigations into the mechanisms of ruminant immune responses to GIN should be conducted using the natural host. Specifically, we address differences in protein sequence and structure for eosinophil proteins.
Collapse
|
82
|
Keown K, Abbott S, Kuzeljevic B, Rayment JH, Chilvers MA, Yang CL. An investigation into biomarkers for the diagnosis of ABPA and aspergillus disease in cystic fibrosis. Pediatr Pulmonol 2019; 54:1787-1793. [PMID: 31359612 DOI: 10.1002/ppul.24465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity lung disease due to Aspergillus fumigatus (Af) which occurs in 10% of patients with cystic fibrosis (CF). ABPA is associated with increased morbidity and accelerated lung function decline; however, existing diagnostic criteria are nonspecific and diagnosis remains challenging. As ABPA is driven by Th2 inflammation, the aim of this study was to evaluate exhaled nitric oxide (FE NO ), eosinophilic cationic protein (ECP), peripheral eosinophil count, and bronchodilator response (BDR) in patients with CF. METHODS A prospective observational cohort study of pediatric CF patients in a tertiary center. Patients had a clinical and serologic ABPA assessment, FENO , serum ECP, peripheral eosinophil count, and assessment of BDR. Patients were stratified into three groups; ABPA, Af sensitized (AFS), and non-ABPA non-Af-sensitized (non-AFS). RESULTS A total of 62 patients were included in the study: 13% ABPA, 19% AFS, and 68% non-AFS. Mean FENO was higher in the ABPA group at 37.8 ppb compared to AFS 15.1 ppb (P = .05) and non-AFS 13.7 ppb (P = .04). Mean peripheral eosinophil count in ABPA group was also higher at 1000 cells/uL, compared to AFS 221 cells/uL (P = .03) and non-AFS 220 cells/uL (P = .03). Mean BDR in ABPA group was 13% compared to 5.5% in non-AFS (P = .01). Serum ECP was higher in patients with ABPA positive compared to the other groups, although this was not statistically significant. CONCLUSION In children with cystic fibrosis, FENO and peripheral eosinophil counts are elevated in ABPA compared to those that are just sensitized to Aspergillus and may serve as useful diagnostic tests.
Collapse
Affiliation(s)
- Karen Keown
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Salome Abbott
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Boris Kuzeljevic
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Mark A Chilvers
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Connie L Yang
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
83
|
Nakashima C, Ishida Y, Kitoh A, Otsuka A, Kabashima K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp Dermatol 2019; 28:1405-1411. [DOI: 10.1111/exd.14014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/29/2019] [Accepted: 07/27/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Chisa Nakashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yoshihiro Ishida
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Akihiko Kitoh
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Atsushi Otsuka
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Translational Research Department for Skin and Brain Diseases Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR) Skin Research Institute of Singapore Biopolis Singapore
| |
Collapse
|
84
|
Varricchi G, Marone G, Spadaro G, Russo M, Granata F, Genovese A, Marone G. Novel Biological Therapies in Severe Asthma: Targeting the Right Trait. Curr Med Chem 2019; 26:2801-2822. [PMID: 29318959 DOI: 10.2174/0929867325666180110094542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation that results in a wide spectrum of clinical manifestations. Patients with severe asthma represent a substantial share of consumption of healthcare resources and hospitalization. Moreover, these patients are at risk of increased morbidity and mortality. Recently, several phenotypes and endotypes of asthma have been identified. The identification of specific subtypes of asthma is fundamental for optimizing the clinical benefit of novel treatments. Although in most patients the disease can be controlled by some combination of pharmacologic agents, in some 5-10% of patients the disease remains uncontrolled. Several monoclonal antibodies (mAbs) targeting pathogenetic molecules (e.g., IgE, IL-5, IL- 5Rα, IL-4, IL-13, TSLP) are currently available or under development for the treatment of different forms of severe type 2 asthma. The identification of diagnostic and predictive biomarkers (e.g., IgE, blood eosinophil count, FeNO, periostin, etc.) has revolutioned the field of targeted therapy in severe asthma. Monoclonal antibodies targeting Th2-driven inflammation are generally safe in adult patients with moderate-to-severe asthma. The long-term safety of these biologics is a relevant issue that should be addressed. Unfortunately, little is known about non-type 2 asthma. Further studies are needed to identify biomarkers to guide targeted therapies of different forms of non-type 2 asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
85
|
Eaton P, do Amaral CP, Couto SCP, Oliveira MS, Vasconcelos AG, Borges TKS, Kückelhaus SAS, Leite JRSA, Muniz-Junqueira MI. Atomic Force Microscopy Is a Potent Technique to Study Eosinophil Activation. Front Physiol 2019; 10:1261. [PMID: 31632296 PMCID: PMC6781654 DOI: 10.3389/fphys.2019.01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are multifunctional cells with several functions both in healthy individuals, and those with several diseases. Increased number and morphological changes in eosinophils have been correlated with the severity of an acute asthma exacerbation. We measured eosinophils obtained from healthy controls and individuals with acute asthma using atomic force microscopy (AFM). In the control samples, cells showed more rounded morphologies with some spreading, while activated cells from symptomatic individuals were spreading, and presenting emission of multiple pseudopods. Eosinophils presenting separate granules close to the cells suggesting some degranulation was also increased in asthma samples. In comparison to histopathological techniques based on brightfield microscopy, AFM showed considerably more details of these morphological changes, making the technique much more sensitive to detect eosinophil morphological changes that indicate functional alteration of this cell. AFM could be an important tool to evaluate diseases with alterations in eosinophil functions.
Collapse
Affiliation(s)
- Peter Eaton
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Constança Pais do Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Shirley C P Couto
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Mariangela S Oliveira
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Andreanne G Vasconcelos
- Research Center in Morphology and Applied Immunology, Morphology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Tatiana K S Borges
- Laboratory of Cellular Immunology, Pathology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Selma A S Kückelhaus
- Research Center in Morphology and Applied Immunology, Morphology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - José Roberto S A Leite
- Research Center in Morphology and Applied Immunology, Morphology Area, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
86
|
Takemura N, Kurashima Y, Mori Y, Okada K, Ogino T, Osawa H, Matsuno H, Aayam L, Kaneto S, Park EJ, Sato S, Matsunaga K, Tamura Y, Ouchi Y, Kumagai Y, Kobayashi D, Suzuki Y, Yoshioka Y, Nishimura J, Mori M, Ishii KJ, Rothenberg ME, Kiyono H, Akira S, Uematsu S. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci Transl Med 2019; 10:10/429/eaan0333. [PMID: 29467297 DOI: 10.1126/scitranslmed.aan0333] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/05/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced intestinal fibrosis (RIF) is a serious complication after abdominal radiotherapy for pelvic tumor or peritoneal metastasis. Herein, we show that RIF is mediated by eosinophil interactions with α-smooth muscle actin-positive (α-SMA+) stromal cells. Abdominal irradiation caused RIF especially in the submucosa (SM) of the small intestine, which was associated with the excessive accumulation of eosinophils in both human and mouse. Eosinophil-deficient mice showed markedly ameliorated RIF, suggesting the importance of eosinophils. After abdominal irradiation, chronic crypt cell death caused elevation of extracellular adenosine triphosphate, which in turn activated expression of C-C motif chemokine 11 (CCL11) by pericryptal α-SMA+ cells in the SM to attract eosinophils in mice. Inhibition of C-C chemokine receptor 3 (CCR3) by genetic deficiency or neutralizing antibody (Ab) treatment suppressed eosinophil accumulation in the SM after irradiation in mice, suggesting a critical role of the CCL11/CCR3 axis in the eosinophil recruitment. Activated α-SMA+ cells also expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate eosinophils. Transforming growth factor-β1 from GM-CSF-stimulated eosinophils promoted collagen expression by α-SMA+ cells. In translational studies, treatment with a newly developed interleukin-5 receptor α-targeting Ab, analogous to the human agent benralizumab, depleted intestinal eosinophils and suppressed RIF in mice. Collectively, we identified eosinophils as a crucial factor in the pathogenesis of RIF and showed potential therapeutic strategies for RIF by targeting eosinophils.
Collapse
Affiliation(s)
- Naoki Takemura
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Kurashima
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan.,Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuki Mori
- Laboratory of Biofunctional Imaging, World Premier Institute (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuki Okada
- Immunology and Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co. Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, Mainz 55131, Germany
| | - Hideki Osawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hirosih Matsuno
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Lamichhane Aayam
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Kaneto
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Eun Jeong Park
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Molecular Pathobiology and Cell Adhesion Biology, Basic Medical Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kouta Matsunaga
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Tamura
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuo Ouchi
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yutaro Kumagai
- Quantitative Immunology Research Unit, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daichi Kobayashi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, World Premier Institute (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Mark E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Uematsu
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. .,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
87
|
Vieira BM, de Souza dos Santos MC, Masid-de-Brito D, Queto T, Alves TM, Zani CL, Gaspar-Elsas MIC, Xavier-Elsas P. Potent stimulation of eosinopoiesis in murine bone-marrow by myriadenolide is mediated by cysteinyl-leukotriene signaling. Int Immunopharmacol 2019; 72:82-91. [DOI: 10.1016/j.intimp.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
88
|
Rygula A, Fernandes RF, Grosicki M, Kukla B, Leszczenko P, Augustynska D, Cernescu A, Dorosz A, Malek K, Baranska M. Raman imaging highlights biochemical heterogeneity of human eosinophils versus human eosinophilic leukaemia cell line. Br J Haematol 2019; 186:685-694. [PMID: 31134616 DOI: 10.1111/bjh.15971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
Eosinophils are acidophilic granulocytes that develop in the bone marrow. Although their population contributes only to approximately 1-6% of all leucocytes present in the human blood, they possess a wide range of specific functions. They play a key role in inflammation-regulating processes, when their numbers can increased to above 5 × 109 /l of peripheral blood. Their characteristic feature is the presence of granules containing eosinophil peroxidase (EPO), the release of which can trigger a cascade of events promoting oxidative stress, apoptosis or necrosis, leading finally to cell death. Raman spectroscopy is a powerful technique to detect EPO, which comprises a chromophore protoporphyrin IX. Another cell structure associated with inflammation processes are lipid bodies (lipid-rich organelles), also well recognized and imaged using high resolution confocal Raman spectroscopy. In this work, eosinophils isolated from the blood of a human donor were analysed versus their model, EoL-1 human eosinophilic leukaemia cell line, by Raman spectroscopic imaging. We showed that EPO was present only in primary cells and not found in the cell line. Eosinophils were activated using phorbol 12-myristate 13-acetate, which resulted in lipid bodies formation. An effect of cells stimulation was studied and compared for eosinophils and EoL-1.
Collapse
Affiliation(s)
- Anna Rygula
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Rafaella F Fernandes
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.,Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Bozena Kukla
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Dominika Augustynska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | | | - Aleksandra Dorosz
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
89
|
Bai C, Jiang D, Wang L, Xue F, Chen O. A high blood eosinophil count may be a risk factor for incident asthma in population at risk. Respir Med 2019; 151:59-65. [PMID: 31047119 DOI: 10.1016/j.rmed.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Eosinophilia is considered to be associated with allergic disease and may predict asthma exacerbation. Eosinophils contribute to the pathophysiology and pathogenesis of asthma. However, studies on high blood eosinophil counts (BECs) and incident asthma remain scarce. OBJECTIVE To examine whether high BECs are positively associated with incident asthma in adults. METHODS Our study included 57975 participants aged from 20 to 79 years from the Shandong multi-center health check-up longitudinal study for Health Management. All patients with determined baseline BECs were ≥20 years old and free from asthma. We defined incident asthma as self-reported new-onset asthma occurring during the 10-year follow-up period. Multivariate modeling employed Poisson regression and Cox proportional hazards models to verify the association between BEC and incident asthma by adjusting demographics and some relevant comorbidities (rhinitis, nasal polyps, pneumonia, bronchitis, and chronic obstructive pulmonary disease). RESULTS A BEC ≥110 cells/μL was a risk factor for incident asthma (adjusted IRR = 1.62, 95% CI: 1.05-2.50, P = .028) in the Poisson regression. In the Cox proportional hazards model, the BEC cutoff point for incident asthma was also determined to be 110 cells/μL (HR = 1.59, 95% CI: 1.01-2.51, P = .045). CONCLUSION A high BEC is a risk factor for incident asthma, especially when the BEC exceeds 110 cells/μL. This suggests that adults with high BECs are more likely to develop asthma.
Collapse
Affiliation(s)
- Chenxiao Bai
- School of Nursing, Shandong University, Jinan, Shandong, China
| | - Di Jiang
- School of Nursing, Shandong University, Jinan, Shandong, China
| | - Liwen Wang
- School of Nursing, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China.
| | - Ou Chen
- School of Nursing, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
90
|
Lomborg N, Jakobsen M, Bode CS, Junker P. IgG4-related disease in patients with newly diagnosed idiopathic retroperitoneal fibrosis: a population-based Danish study. Scand J Rheumatol 2019; 48:320-325. [DOI: 10.1080/03009742.2018.1551963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- N Lomborg
- Department of Rheumatology, Vejle Hospital, Vejle, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - M Jakobsen
- Department of Pathology, Vejle Hospital, Vejle, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - CS Bode
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Pathology, Roskilde Hospital, Roskilde, Denmark
| | - P Junker
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
91
|
Vasanthakumar A, Kallies A. Interleukin (IL)-33 and the IL-1 Family of Cytokines-Regulators of Inflammation and Tissue Homeostasis. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028506. [PMID: 29101106 DOI: 10.1101/cshperspect.a028506] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytokines play an integral role in shaping innate and adaptive immune responses. Members of the interleukin (IL)-1 family regulate a plethora of immune-cell-mediated processes, which include pathogen defense and tissue homeostasis. Notably, the IL-1 family cytokine IL-33 promotes adaptive and innate type 2 immune responses, confers viral protection and facilitates glucose metabolism and tissue repair. At the cellular level, IL-33 stimulates differentiation, maintenance, and function of various immune cell types, including regulatory T cells, effector CD4+ and CD8+ T cells, macrophages, and type 2 innate lymphoid cells (ILC2s). Other IL-1 family members, such as IL-1β and IL-18 promote type 1 responses, while IL-37 limits immune activation. Although IL-1 cytokines play critical roles in immunity and tissue repair, their deregulated expression is often linked to autoimmune and inflammatory diseases. Therefore, IL-1 cytokines are regulated tightly by posttranscriptional mechanisms and decoy receptors. In this review, we discuss the biology and function of IL-1 family cytokines, with a specific focus on regulation and function of IL-33 in immune and tissue homeostasis.
Collapse
Affiliation(s)
- Ajithkumar Vasanthakumar
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Axel Kallies
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
92
|
Group 2 innate lymphoid cells and eosinophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2019; 19:18-25. [DOI: 10.1097/aci.0000000000000496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
93
|
Yu JE, Sim DW, Koh YI. Etiologies and differential markers of eosinophilia-associated diseases in the Allergy Department of a single university hospital. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.3.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ji Eun Yu
- Division of Allergy, Asthma, and Clinical Immunology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Da Woon Sim
- Division of Allergy, Asthma, and Clinical Immunology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Il Koh
- Division of Allergy, Asthma, and Clinical Immunology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
94
|
Janićijević Ž, Ninkov M, Kataranovski M, Radovanović F. Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs. Macromol Biosci 2018; 19:e1800322. [PMID: 30548776 DOI: 10.1002/mabi.201800322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Poly(DL-lactide-co-ε-caprolactone)/poly(acrylic acid) implantable composite reservoirs for cationic drugs are synthesized by sequentially applying photoirradiation and liquid phase inversion. The chemical composition and microstructure of reservoirs are characterized with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and scanning electron microscopy (SEM), respectively. Drug loading and release properties are investigated using methylene blue as the drug model. Biocompatibility of reservoirs is examined through a series of in vitro tests and an in vivo experiment of subcutaneous implantation in Dark Agouti rats. Reservoirs show good ion-exchange capacity, high water content, and fast reversible swelling with retained geometry. Results of drug loading and release reveal excellent loading efficiency and diffusion-controlled release during 2 weeks. Biocompatibility tests in vitro demonstrate the lack of implant proinflammatory potential and hindered adhesion of L929 cells on the implant surface. Implants exhibit low acute toxicity and elicit a normal acute foreign body reaction that reaches the early stages of fibrous capsule formation after 7 days.
Collapse
Affiliation(s)
- Željko Janićijević
- University of Belgrade, School of Electrical Engineering, Bulevar kralja Aleksandra 73, 11120, Belgrade, Serbia.,Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| | - Marina Ninkov
- Department of Ecology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Milena Kataranovski
- Department of Ecology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.,Department of Physiology and Biochemistry, University of Belgrade, Studenstki trg 16, 11000, Belgrade, Serbia
| | - Filip Radovanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| |
Collapse
|
95
|
Abstract
Immune cells are present in the adipose tissue (AT) and regulate its function. Under lean conditions, immune cells predominantly of type 2 immunity, including eosinophils, M2-like anti-inflammatory macrophages and innate lymphoid cells 2, contribute to the maintenance of metabolic homeostasis within the AT. In the course of obesity, pro-inflammatory immune cells, such as M1-like macrophages, prevail in the AT. Inflammation in the obese AT is associated with the development of metabolic complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Thus, the immune cell-adipocyte crosstalk in the AT is an important regulator of AT function and systemic metabolism. We discuss herein this crosstalk with a special focus on the role of innate immune cells in AT inflammation and metabolic homeostasis in obesity.
Collapse
Affiliation(s)
- Kyoung-Jin Chung
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
96
|
Ueki S, Hebisawa A, Kitani M, Asano K, Neves JS. Allergic Bronchopulmonary Aspergillosis-A Luminal Hypereosinophilic Disease With Extracellular Trap Cell Death. Front Immunol 2018; 9:2346. [PMID: 30364279 PMCID: PMC6193060 DOI: 10.3389/fimmu.2018.02346] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is characterized by an early allergic response and late-phase lung injury in response to repeated exposure to Aspergillus antigens, as a consequence of persistent fungal colonization of the airways. Here, we summarize the clinical and pathological features of ABPA, focusing on thick mucus plugging, a key observation in ABPA. Recent findings have indicated that luminal eosinophils undergo cytolytic extracellular trap cell death (ETosis) and release filamentous chromatin fibers (extracellular traps, ETs) by direct interaction with Aspergillus fumigatus. Production of ETs is considered to be an innate immune response against non-phagocytable pathogens using a "trap and kill" mechanism, although eosinophil ETs do not promote A. fumigatus damage or killing. Compared with neutrophils, eosinophil ETs are composed of stable and condensed chromatin fibers and thus might contribute to the higher viscosity of eosinophilic mucus. The major fate of massively accumulated eosinophils in the airways is ETosis, which potentially induces the release of toxic granule proteins and damage-associated molecular patterns, epithelial damage, and further decreases mucus clearance. This new perspective on ABPA as a luminal hypereosinophilic disease with ETosis/ETs could provide a better understanding of airway mucus plugging and contribute to future therapeutic strategies for this challenging disease.
Collapse
Affiliation(s)
- Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akira Hebisawa
- Clinical Research Center and Pathology Division, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Masashi Kitani
- Clinical Research Center and Pathology Division, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
97
|
Leiferman KM, Peters MS. Eosinophil-Related Disease and the Skin. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1462-1482.e6. [DOI: 10.1016/j.jaip.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
|
98
|
Haematological alterations in non-human hosts infected with Trypanosoma cruzi: a systematic review. Parasitology 2018; 146:142-160. [PMID: 30070181 DOI: 10.1017/s0031182018001294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
American trypanosomiasis is a neglected tropical disease whose spectrum has not been quite understood, including the impact of Trypanosoma cruzi infection on the haematological parameters of different vertebrate hosts. Thus, this study was designed to compare the pattern of haematological changes induced by T. cruzi infection in order to identify possible species-specific differences among taxons. We also aimed at evaluating the use of this parameter as a tool for diagnosis during the acute phase, when symptoms are usually masked. For this purpose, we performed a systematic search on PubMed and Scopus databases to retrieve original studies published until August 2016. Thirty-one studies were selected using Prisma strategy, which were then submitted to data extraction and methodological bias analysis. Half of the studies showed that the number of erythrogram decreased in infected animals, indicating anaemia. In 68.2% of the studies, the total amount of leukogram values increased, suggesting infection. The main methodological limitations were insufficient information for T. cruzi strains identification, inoculation routes and parasitological characterization. Most of the mammalian species analysed showed the same pattern of haematological changes following T. cruzi infection, indicating that haematological parameters might direct the diagnosis of Chagas disease in the initial phase.
Collapse
|
99
|
Bochner BS. The eosinophil: For better or worse, in sickness and in health. Ann Allergy Asthma Immunol 2018; 121:150-155. [PMID: 29499369 PMCID: PMC6087501 DOI: 10.1016/j.anai.2018.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
100
|
Ohta N, Ueki S, Konno Y, Hirokawa M, Kubota T, Tomioka-Matsutani S, Suzuki T, Ishida Y, Kawano T, Miyasaka T, Takahashi T, Suzuki T, Ohno I, Kakehata S, Fujieda S. ETosis-derived DNA trap production in middle ear effusion is a common feature of eosinophilic otitis media. Allergol Int 2018; 67:414-416. [PMID: 29242145 DOI: 10.1016/j.alit.2017.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nobuo Ohta
- Division of Otolaryngology, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Yamagata City Hospital Saiseikan, Yamagata, Japan.
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshinori Kubota
- Yamagata City Hospital Saiseikan, Yamagata, Japan; Department of Otolaryngology Head and Neck Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | | | | | - Yusuke Ishida
- Division of Anatomy and Cell Biology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tatsutoshi Suzuki
- Department of Otolaryngology Head and Neck Surgery, Kitasato University Faculty of Medicine, Sagamihara, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Seiji Kakehata
- Department of Otolaryngology Head and Neck Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| |
Collapse
|