51
|
George MS, Molnar CE, Grenesko EL, Anderson B, Mu Q, Johnson K, Nahas Z, Knable M, Fernandes P, Juncos J, Huang X, Nichols DE, Mailman RB. A single 20 mg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia. Schizophr Res 2007; 93:42-50. [PMID: 17467956 DOI: 10.1016/j.schres.2007.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 11/30/2022]
Abstract
The potential of dopamine D(1) receptor agonists to have beneficial effects on cognitive function has been suggested by a body of preclinical evidence. We now report the use of dihydrexidine (DAR-0100), the first full D(1) agonist, in a pilot study assessing single low dose safety and tolerability in patients with schizophrenia. A within-subject cross-over design was used in 20 adults (18-65 years) with SCID-IV diagnosed schizophrenia. Subjects were outpatients with a moderate level of residual negative symptoms, and were on stable dosing of non-D(1)-blocking antipsychotic drugs. Following screening, subjects were hospitalized for 48 h, and at 0800 h each morning scanned on a 3 T MRI scanner for resting brain perfusion, followed by a Blood Oxygen Level Dependent (BOLD) fMRI scan during an N-Back working memory task. They then received 20 mg subcutaneously (SC) of dihydrexidine or placebo over 15 min, followed by 45 min of intermittent MRI scans of perfusion and BOLD activity during the working memory task. Blood was drawn for serum drug levels and subjects were evaluated for clinical and cognitive changes. The procedure was repeated using the opposite challenge 2 days later. Dihydrexidine was well tolerated with no serious adverse events although three subjects had mild dizziness and five subjects experienced nausea. There was no significant effect of drug on clinical interview ratings or delayed (afternoon) neuropsychological performance. No medication interactions were seen. Thus, a single subcutaneous dose of dihydrexidine is tolerated and safe in patients with schizophrenia and does not produce delayed clinical or neuropsychological improvements.
Collapse
Affiliation(s)
- Mark S George
- Brain Stimulation Laboratory (BSL), Psychiatry Department, Medical University of South Carolina (MUSC) 29425, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
|
53
|
Zhang J, Vinuela A, Neely MH, Hallett PJ, Grant SGN, Miller GM, Isacson O, Caron MG, Yao WD. Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 2007; 282:15778-89. [PMID: 17369255 PMCID: PMC2649122 DOI: 10.1074/jbc.m611485200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopamine D1 receptors play an important role in movement, reward, and learning and are implicated in a number of neurological and psychiatric disorders. These receptors are concentrated in dendritic spines of neurons, including the spine head and the postsynaptic density. D1 within spines is thought to modulate the local channels and receptors to control the excitability and synaptic properties of spines. The molecular mechanisms mediating D1 trafficking, anchorage, and function in spines remain elusive. Here we show that the synaptic scaffolding protein PSD-95 thought to play a role in stabilizing glutamate receptors in the postsynaptic density, interacts with D1 and regulates its trafficking and function. Interestingly, the D1-PSD-95 interaction does not require the well characterized domains of PSD-95 but is mediated by the carboxyl-terminal tail of D1 and the NH(2) terminus of PSD-95, a region that is recognized only recently to participate in protein-protein interaction. Co-expression of PSD-95 with D1 in mammalian cells inhibits the D1-mediated cAMP accumulation without altering the total expression level or the agonist binding properties of the receptor. The diminished D1 signaling is mediated by reduced D1 expression at the cell surface as a consequence of an enhanced constitutive, dynamin-dependent endocytosis. In addition, genetically engineered mice lacking PSD-95 show a heightened behavioral response to either a D1 agonist or the psychostimulant amphetamine. These studies demonstrate a role for a glutamatergic scaffold in dopamine receptor signaling and trafficking and identify a new potential target for the modulation of abnormal dopaminergic function.
Collapse
Affiliation(s)
- Jingping Zhang
- Department of Psychiatry, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Dopamine (DA)-containing neurons involved in the regulation of sleep and waking (W) arise in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc). The VTA and SNc cells have efferent and afferent connections with the dorsal raphe nucleus (DRN), the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT), the locus coeruleus (LC), the lateral and posterior hypothalamus (LH), the basal forebrain (BFB), and the thalamus. Molecular cloning techniques have enabled the characterization of two distinct groups of DA receptors, D(1)-like and D(2)-like receptors. The D(1) subfamily includes the D(1) and D(5) receptors, whereas the D(2) subfamily comprises the D(2), D(3), and D(4) receptors. Systemic administration of a selective D(1) receptor agonist induces behavioral arousal, together with an increase of W and a reduction of slow wave sleep (SWS) and REM sleep (REMS). Systemic injection of a DA D(2) receptor agonist induces biphasic effects, such that low doses reduce W and increase SWS and REMS (predominant activation of the D(2) autoreceptor), whereas large doses induce the opposite effect (predominant facilitation of the D(2) postsynaptic receptor). Compounds with DA D(1) or D(2) receptor blocking properties augment non-REMS and reduce W. Preliminary findings tend to indicate that the administration of a DA D(3)-preferring agonist induces somnolence and sleep in laboratory animals and man. DA neurons in the VTA and the SNc do not change their mean firing rate across the sleep-wake cycle. It has been proposed that DA cells in the midbrain show a change in temporal pattern rather than firing rate during the sleep-wake cycle. The available evidence tends to indicate that during W there occurs an increase of burst firing activity of DA neurons, and an enhanced release of DA in the VTA, the nucleus accumbens (NAc), and a number of forebrain structures. A series of structures relevant for the regulation of the behavioral state, including the DRN, LDT/PPT, LC, and LH, could be partly responsible for the changes in the temporal pattern of activity of DA neurons.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, 2833/602 Zudañez Street, Montevideo 11300, Uruguay.
| | | |
Collapse
|
55
|
Kudoh M, Shibuki K. Sound sequence discrimination learning motivated by reward requires dopaminergic D2 receptor activation in the rat auditory cortex. Learn Mem 2007; 13:690-8. [PMID: 17142301 PMCID: PMC1783622 DOI: 10.1101/lm.390506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the present study. Rats were trained to discriminate sequences of two sound components, and licking behavior in response to one of the two sequences was rewarded with water. To identify the dopaminergic inputs responsible for the learning, dopaminergic afferents to the AC were lesioned with local injection of 6-hydroxydopamine (6-OHDA). The injection attenuated sound sequence discrimination learning, while it had no effect on discrimination between the sound components of the sequence stimuli. Local injection of 6-OHDA into the nucleus accumbens attenuated sound discrimination learning. However, not only discrimination learning of sound sequence but also that of the sound components were impaired. SCH23390 (0.2 mg/kg, i.p.), a D1 receptor antagonist, had no effect on sound sequence discrimination learning, while it attenuated the licking behavior to unfamiliar stimuli. Haloperidol (0.5 mg/kg, i.p.), a D2 family antagonist, attenuated sound sequence discrimination learning, while it had no clear suppressive effect on discrimination of two different sound components and licking. These results suggest that D2 family receptors activated by dopaminergic inputs to the AC are required for sound sequence discrimination learning.
Collapse
Affiliation(s)
- Masaharu Kudoh
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Niigata 951-8585, Japan.
| | | |
Collapse
|
56
|
Bachtell RK, Whisler K, Karanian D, Self DW. Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl) 2005; 183:41-53. [PMID: 16163523 DOI: 10.1007/s00213-005-0133-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 07/05/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine signaling in the nucleus accumbens (NAc) plays an important role in regulating drug-taking and drug-seeking behaviors, but the role of D(1)- and D(2)-like receptors in this regulation remains unclear. OBJECTIVES Our objective was to study the role of NAc D(1)- and D(2)-like receptors in the reinstatement of cocaine-seeking behavior and the regulation of stabilized cocaine intake in rats. METHODS Using a within-session reinstatement procedure, whereby animals self-administer cocaine (90 min) and extinguish responding (150 min) in a single session, we assessed the ability of NAc microinfusions of the D(1) agonist SKF 81297 and the D(2) agonist 7-OH-DPAT to reinstate extinguished cocaine seeking. The effects of the D(1) antagonist SCH 23390 and the D(2) antagonist eticlopride pretreatment on agonist- and cocaine-primed reinstatement were also measured. Similar agonist and antagonist treatments were tested for their ability to modulate stabilized cocaine and sucrose self-administration. RESULTS Intra-NAc infusions of either SKF 81297 (0.3-3.0 microg) or 7-OH-DPAT (1.0-10.0 microg) dose-dependently reinstated cocaine seeking with greater efficacy in the medial core than in the shell subregion and at doses that also stimulated locomotor behavior. Intra-NAc shell infusions of SCH 23390 (1.0 microg) and eticlopride (3.0-10.0 microg) blocked cocaine-primed reinstatement (2.0 mg/kg, i.v.) and indiscriminately blocked reinstatement induced by either intra-NAc D(1) or D(2) agonists. Doses of agonists that triggered reinstatement failed to alter stabilized cocaine intake, whereas doses of antagonists that blocked reinstatement increased cocaine intake in the shell. CONCLUSIONS Both D(1) and D(2) receptors in the NAc play a prominent, and perhaps cooperative, role in regulating cocaine-taking and cocaine-seeking behaviors.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | | | | | |
Collapse
|
57
|
Yatsu T, Aoki M, Tanaka A. Effect of zelandopam, a dopamine D1-like receptor agonist, in puromycin aminonucleoside nephrosis rats. Eur J Pharmacol 2005; 510:121-6. [PMID: 15740732 DOI: 10.1016/j.ejphar.2005.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/11/2005] [Accepted: 01/13/2005] [Indexed: 01/08/2023]
Abstract
The present experiment was designed to investigate the role of peripheral dopamine D1-like receptors and to evaluate the prophylactic effect of zelandopam, a dopamine D1-like receptor agonist, on puromycin aminonucleoside (PA)-induced nephrosis in rats. Rats were divided into six groups (n=10 per group): 0.9% saline-injected rats (control); PA-injected rats (PAN); PA-injected rats treated with the selective dopamine D1-like receptor agonist zelandopam (30, 100, 300 mg/kg p.o. twice a day); PA-injected rats treated with prednisolone (1 mg/kg p.o. once a day). Nephrosis was induced in rats with a single intravenous injection of PA at a dose of 50 mg/kg. The effects of zelandopam and prednisolone in PA nephrosis rats were evaluated before injection of PA and at 7 and 14 days after injection. PA-induced nephrosis was characterized by an increase in urinary protein excretion (proteinuria) and plasma total cholesterol. Zelandopam dose-dependently attenuated the increase in proteinuria and total cholesterol. Prednisolone significantly attenuated the increase in proteinuria and total cholesterol and resulted in a significant decrease in body weight. The present study demonstrates for the first time that zelandopam, a selective dopamine D1-like receptor agonist, is effective in blunting the development of PA-induced nephrosis, and that the effects of zelandopam are dose dependent.
Collapse
Affiliation(s)
- Takeyuki Yatsu
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | |
Collapse
|
58
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1132] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
59
|
Self DW. Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 2004; 47 Suppl 1:242-55. [PMID: 15464141 DOI: 10.1016/j.neuropharm.2004.07.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/12/2004] [Accepted: 06/30/2004] [Indexed: 11/30/2022]
Abstract
Previous studies have identified several neuroadaptations to chronic drug use, but relatively few have been functionally linked to addiction-related changes in drug-taking and -seeking behaviors. This article summarizes our past and present studies on the contribution of drug-induced neuroadaptations in the mesolimbic dopamine system to addiction-related changes in drug self-administration and the propensity for relapse in drug withdrawal. Our studies suggest that drug-induced up-regulation in cyclic AMP (cAMP)-protein kinase A (PKA) signaling in the nucleus accumbens (NAc) contributes to escalating drug intake and a propensity for relapse by differentially altering the sensitivity of D1 and D2 dopamine receptors that regulate drug-taking and -seeking behaviors. In addition, our studies suggest that drug-induced neuroplasticity at excitatory synapses in both the ventral tegmental area (VTA) and the NAc also facilitates drug-seeking behavior and the propensity for relapse. Finally, the role of both transient and enduring neuroadaptations in regulating drug-seeking behavior is discussed in view of different learning- and memory-based interactions.
Collapse
Affiliation(s)
- David W Self
- Department of Psychiatry, The Seay Center for Basic and Applied Research in Psychiatric Illness, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA.
| |
Collapse
|
60
|
Cavallotti C, Frati A, Cavallotti D, Tranquilli Leali FM. Dopaminergic receptors in rat dura mater: pharmacological characteristics. Clin Exp Pharmacol Physiol 2004; 31:190-4. [PMID: 15008964 DOI: 10.1111/j.1440-1681.2004.03972.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The location and distribution of dopaminergic receptors in rat dura mater was studied by examining several dural zones (vascular, perivascular, intervascular) in different cranial and spinal regions. 2. The pharmacological characteristics and anatomical distribution of dopamine D1- and D2-like receptors sites were investigated using combined pharmacological techniques and immunofluorescent microscopy. 3. Samples of rat dura mater were obtained from 10 adult Wistar rats. On frozen slices, dopaminergic D1 and D2 receptors were stained immunohistochemically using monoclonal antibodies. 4. Inhibition studies were performed using fluorescent and non-fluorescent agonists or antagonists to define the pharmacological specificity of the immunostaining. 5. The greater sensitivity to displacement by amisulpride, bromocryptine, domperidone, haloperidol, raclopride and l-sulpiride than to displacement by N-propyl-nor-apomorphine, quinpirole and clozapine suggests that the immunofluorescent sites observed in these experiments are likely to belong to the dopamine D2 receptor subtype. 6. Our observations provide evidence of the presence of D1 and D2 receptors in the wall of meningeal vessels. The dopaminergic receptors are located in the adventitia, media and intima of dural arteries. Furthermore, the density of receptors is higher in close proximity to arteries and decreases passing from the vascular to the perivascular and intervascular zones. 7. In the rat dura mater, dopamine regulates the meningeal blood vessels and, through this action, dopamine and its receptors can play an important role in the pathogenesis of cephalalgia.
Collapse
Affiliation(s)
- C Cavallotti
- Department of Cardiovascular and Respiratory Sciences, University La Sapienza and Operative Unit of Neurology, S. Spirito Hospital, Rome, Italy
| | | | | | | |
Collapse
|
61
|
Tseng KY, O'Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004; 24:5131-9. [PMID: 15175382 PMCID: PMC6729185 DOI: 10.1523/jneurosci.1021-04.2004] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, the nature of DA actions in the PFC remains controversial. A critical component in DA actions is its modulation of glutamate transmission, which can be different when specific receptors are activated. To obtain a clear picture of cellular mechanisms involved in these interactions, we studied the effects of DA-glutamate coactivation on pyramidal cell excitability in brain slices obtained from developmentally mature rats using whole-cell patch-clamp recordings. Bath application of NMDA, AMPA, and the D1 agonist SKF38393 induced concentration-dependent excitability increases, whereas bath application of the D2 receptor agonist quinpirole induced a concentration-dependent excitability decrease. The NMDA-mediated response was potentiated by SKF38393. This NMDA-D1 synergism required postsynaptic intracellular Ca2+ and protein kinase A (PKA) and was independent of membrane depolarization. On the other hand, the excitatory effects of both NMDA and AMPA were attenuated by a D2 agonist. Surprisingly, the D2-NMDA interaction was also blocked by the GABA(A) antagonists bicuculline and picrotoxin, suggesting that the inhibitory action of D2 receptors on NMDA-induced responses in the PFC may be mediated by GABAergic interneurons. In contrast, the D2-AMPA interaction involves inhibition of PKA and activation of phospholipase lipase C-IP3 and intracellular Ca2+ at a postsynaptic level. Thus, the modulatory actions of D1 and D2 receptors on PFC pyramidal cell excitability are mediated by multiple intracellular mechanisms and by activation of GABA(A) receptors, depending on the glutamate receptor subtypes involved.
Collapse
Affiliation(s)
- Kuei Y Tseng
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
62
|
Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 2004; 174:3-16. [PMID: 15118803 DOI: 10.1007/s00213-004-1793-y] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND RATIONALE Reinstatement of the function of working memory, the cardinal cognitive process essential for human reasoning and judgment, is potentially the most intractable problem for the treatment of schizophrenia. Since deficits in working memory are associated with dopamine dysregulation and altered D(1) receptor signaling within prefrontal cortex, we present the case for targeting novel drug therapies towards enhancing prefrontal D(1) stimulation for the amelioration of the debilitating cognitive deficits in schizophrenia. OBJECTIVES This review examines the role of dopamine in regulating cellular and circuit function within prefrontal cortex in order to understand the significance of the dopamine dysregulation found in schizophrenia and related non-human primate models. By revealing the associations among prefrontal neuronal function, dopamine and D(1) signaling, and cognition, we seek to pinpoint the mechanisms by which dopamine modulates working memory processes and how these mechanisms may be exploited to improve cognitive function. RESULTS AND CONCLUSIONS Dopamine deficiency within dorsolateral prefrontal cortex leads to abnormal recruitment of this region by cognitive tasks. Both preclinical and clinical studies have demonstrated a direct relationship between prefrontal dopamine function and the integrity of working memory, suggesting that insufficient D(1) receptor signaling in this region results in cognitive deficits. Moreover, working memory deficits can be ameliorated by treatments that augment D(1) receptor stimulation, indicating that this target presents a unique opportunity for the restoration of cognitive function in schizophrenia.
Collapse
|
63
|
Nair VD, Sealfon SC. Agonist-specific transactivation of phosphoinositide 3-kinase signaling pathway mediated by the dopamine D2 receptor. J Biol Chem 2003; 278:47053-61. [PMID: 12970364 DOI: 10.1074/jbc.m303364200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
64
|
Ljungstrom T, Grunnet M, Jensen BS, Olesen SP. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels. Pflugers Arch 2003; 446:684-94. [PMID: 12827359 DOI: 10.1007/s00424-003-1111-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Accepted: 05/15/2003] [Indexed: 12/17/2022]
Abstract
Activation of KCNQ potassium channels by stimulation of co-expressed dopamine D(2) receptors was studied electrophysiologically in Xenopus laevis oocytes and in mammalian cells. To address the specificity of the interaction between D(2)-like receptors and KCNQ channels, combinations of KCNQ1-5 channels and D(2)-like receptors (D(2L), D(3), and D(4)) were investigated in Xenopus oocytes. Activation of either receptor with the selective D(2)-like receptor agonist quinpirole (100 nM) stimulated all the KCNQ currents, independently of the subunit combination, indicating a common pathway of receptor-channel interaction. The KCNQ4 current was investigated in further detail and was increased by 19.9+/-1.6% ( n=20) by D(2L) receptor stimulation. The effect could be mimicked by injection of GTPgammaS and prevented by injection of Bordetella pertussis toxin, indicating that channel stimulation was mediated via a G protein of the G(alphai/o) subtype. Cells of the human neuroblastoma line SH-SY5Y were co-transfected transiently with KCNQ4 and D(2L) receptors. Stimulation of D(2L) receptors increased the KCNQ4 current ( n=6) as determined in whole-cell patch-clamp recordings. The specificity of the dopaminergic activation of the KCNQ channels was confirmed by co-expression of other neuronal K(+) channels (BK, K(V)1.1, and K(V)4.3) with the D(2L) receptor in Xenopus oocytes. None of these K(+) channels responded to stimulation of the D(2L) receptor. In the mammalian brain, dopamine D(2) receptors and KCNQ channels co-localise postsynaptically in several brain regions, so modulation of neuronal excitability by dopamine release could in part be mediated via an effect on KCNQ channels.
Collapse
Affiliation(s)
- Trine Ljungstrom
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Building 12.5, 2200, Copenhagen N, Denmark
| | | | | | | |
Collapse
|
65
|
Yang M, Zhang H, Voyno-Yasenetskaya T, Ye RD. Requirement of Gbetagamma and c-Src in D2 dopamine receptor-mediated nuclear factor-kappaB activation. Mol Pharmacol 2003; 64:447-55. [PMID: 12869650 DOI: 10.1124/mol.64.2.447] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The D2 dopamine receptor (D2R) was examined for its ability to mediate nuclear factor-kappaB (NF-kappaB) activation through G proteins. Stimulation of D2R-transfected HeLa cells with its agonist quinpirole induced the expression of a NF-kappaB luciferase reporter and formation of NF-kappaB-DNA complex. This response was blocked by pertussis toxin, and by the Gbetagamma scavengers transducin and beta-adrenergic receptor kinase 1 carboxyl-terminal fragment. Unlike Gi-coupled chemoattractant receptors, D2R activated NF-kappaB without an increase in phospholipase C-beta activity, and the response was only slightly affected by the phosphoinositide 3-kinase inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). In contrast, treatment with genistein and 4-amino-1-tert-butyl-3-(p-methylphenyl)pyrazolo[3,4-d] pyrimidine abolished the induced NF-kappaB activation, suggesting involvement of protein tyrosine kinases. Activation of D2R led to phosphorylation of c-Src at Tyr-418, and expression of a kinase-deficient c-Src inhibited D2R-mediated NF-kappaB activation. The D2R-mediated NF-kappaB activation was not dependent on epidermal growth factor (EGF) receptor transactivation since 4-(3'-chloroanilino)-6,7-dimethoxyquinazoline (AG1478), an EGF receptor-selective tyrphostin used at 1 microM, blocked EGF-induced NF-kappaB activation but not the quinpirole-induced response. In addition, the D2R-mediated NF-kappaB activation was enhanced by over-expression of beta-arrestin 1. These results suggest that D2R-mediated NF-kappaB activation requires Gbetagamma and c-Src, and possibly involves beta-arrestin 1.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacology, M/C 868, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
66
|
Lu L, Grimm JW, Shaham Y, Hope BT. Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J Neurochem 2003; 85:1604-13. [PMID: 12787079 DOI: 10.1046/j.1471-4159.2003.01824.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cocaine self-administration is associated with a propensity to relapse in humans and reinstatement of drug seeking in rats after prolonged withdrawal periods. These behaviors are hypothesized to be mediated by molecular neuroadaptations within the mesolimbic dopamine system. However, in most studies of drug-induced neuroadaptations, cocaine was experimenter-delivered and molecular measurements were performed after short withdrawal periods. In the present study, rats were trained to self-administer intravenous cocaine or oral sucrose (a control non-drug reward) for 10 days (6-h/day) and were killed following 1, 30, or 90 days of reward withdrawal. Tissues from the accumbens and ventral tegmental area (VTA) were assayed for candidate molecular neuroadaptations, including enzyme activities of cAMP-dependent protein kinase (PKA) and adenylate cyclase (AC), and protein expression of cyclin-dependent kinase 5 (cdk5), tyrosine hydroxylase (TH) and glutamate receptor subunits (GluR1, GluR2 and NMDAR1). In the accumbens of cocaine-trained rats, GluR1 and NMDAR1 levels were increased on days 1 and 90, while GluR2 levels were increased on days 1 and 30, but not day 90; PKA activity levels were increased on days 1 and 30, but not day 90, while AC activity, TH and cdk5 levels were unaltered. In the VTA of cocaine-trained rats, NMDAR1 levels were increased for up to 90 days, while GluR2 levels were increased only on day 1; TH and Cdk5 levels were increased only on day 1, while PKA and AC activity levels were unaltered. Cocaine self-administration produces long-lasting molecular neuroadaptations in the VTA and accumbens that may underlie cocaine relapse during periods of abstinence.
Collapse
Affiliation(s)
- Lin Lu
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
67
|
McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 2002; 132:34-40. [PMID: 12417431 DOI: 10.1016/s0165-5728(02)00280-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study documents expression of dopamine (DA) receptors on leukocyte subpopulations using flow cytometric techniques to identify dopamine receptors with subtype-specific antibodies. Of the D1-like receptor family (D(1) and D(5)), only D(5) was detected, and of the D2-like receptor family (D(2), D(3) and D(4)), all dopamine receptors were detected. T-lymphocytes and monocytes had low expression of dopamine receptors, whereas neutrophils and eosinophils had moderate expression. B cells and NK cells had higher and more consistent expression. Dopamine receptors D(3) and D(5) were found in most individuals whereas D(2) and D(4) had more variable expression. D(1) was never found.
Collapse
Affiliation(s)
- F McKenna
- Department of Immunology, University of Liverpool, Royal Liverpool University Hospital, Daulby Street, Liverpool L69 3GA, UK
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1). dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2). substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3). adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity.
Collapse
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Institutions, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
69
|
Pickel VM, Garzón M, Mengual E. Electron microscopic immunolabeling of transporters and receptors identifies transmitter-specific functional sites envisioned in Cajal's neuron. PROGRESS IN BRAIN RESEARCH 2002; 136:145-55. [PMID: 12143378 DOI: 10.1016/s0079-6123(02)36014-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neuronal arborizations that were so elegantly demonstrated in the early drawings of Santiago Ramón y Cajal can now be viewed by high resolution electron microscopic immunocytochemical localization of vesicular and plasmalemmal neurotransmitter transporters and receptors. The subcellular distribution of these proteins confers both chemical selectivity and functional specificity to the dendritic and axonal arborizations described by Cajal. This is illustrated by central dopaminergic and cholinergic neurons. Dopamine terminals in the striatum and ventral pallidum, as well as dendrites of midbrain dopaminergic neurons in the ventral tegmental area and substantia nigra express the plasmalemmal dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2). In forebrain regions, the dopamine D2 receptor (D2R) autoreceptor is localized to dopamine terminals, but also is targeted to pre- and postsynaptic neuronal profiles at a distance from the dopamine terminals. In somata and dendrites of the midbrain dopaminergic neurons, D2R labeling is expressed in most dendrites that contain VMAT2 storage vesicles, as well as in both excitatory and inhibitory afferents. Together, these observations indicate that dopamine is stored in and released from vesicles in both dendrities and axons, and may activate either local or more distant receptors through volume transmission. By analogy, the vesicular acetylcholine transporter (VachT) is similarly localized to the membranes of axon terminals and tubulovesicles in dendrities in the mesopontine tegmental cholinergic nuclei, suggesting that there also may be release of acetylcholine from both dendrities and axons. These results identify chemically selective functional sites for neuronal signaling envisioned by Cajal and redefined by modern technology.
Collapse
Affiliation(s)
- Virginia M Pickel
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th St., New York, NY 10021, USA.
| | | | | |
Collapse
|
70
|
Onali P, Olianas MC. Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol 2002; 448:105-11. [PMID: 12144929 DOI: 10.1016/s0014-2999(02)01910-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several studies have indicated the occurrence of an antagonistic interaction between muscarinic and dopamine D1-like receptors in the ventral striatum, but the subtype(s) of muscarinic receptor involved has not been characterized. We show that in membranes of rat nucleus accumbens, carbachol inhibited the stimulation of adenylyl cyclase activity by dopamine and the dopamine D1-like receptor agonist (+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine without affecting the binding properties of dopamine to dopamine D1-like receptors. The carbachol inhibition was competitively counteracted by receptor antagonists with a rank order of potency typical of the involvement of the muscarinic M(4) receptor subtype. Moreover, muscarinic toxin 3, a selective muscarinic M(4) receptor antagonist, completely blocked the carbachol inhibition, whereas muscarinic toxin 7, a selective muscarinic M(1) receptor antagonist, had no effect. The muscarinic inhibition occurred to a similar extent in the core and shell regions. These data demonstrate that in nucleus accumbens, muscarinic M(4) receptors exert a direct inhibitory control on dopamine D1-like receptor signalling.
Collapse
Affiliation(s)
- Pierluigi Onali
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, Via Porcell 4, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
71
|
Cavallotti C, Nuti F, Bruzzone P, Mancone M. Age-related changes in dopamine D2 receptors in rat heart and coronary vessels. Clin Exp Pharmacol Physiol 2002; 29:412-8. [PMID: 12010185 DOI: 10.1046/j.1440-1681.2002.03677.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The distribution of dopamine D2 receptors in rat heart and coronary vessels and the possible age-related changes in D2 receptor density were studied. The pharmacological characteristics and the anatomical location of dopamine D2-like receptor sites in rat heart and coronary vessels were investigated using combined binding techniques and light microscopy autoradiography. 2. Samples of heart and coronary vessels were harvested from young and old rats. On frozen slices, dopaminergic D2 receptors were labelled by means of a selective D2 ligand, namely [3H]-spiroperidol (spiperone). Inhibition studies were performed using unlabelled agonists and/or labelled and unlabelled antagonists to define pharmacological specificity of the binding. Physiological experiments were performed to demonstrate the selective antagonism between D2 receptors and many dopaminergic drugs. 3. [3H]-Spiroperidol was bound to sections of rat heart and coronary artery (in a manner consistent with the labelling of dopamine D2-like receptors) with an equilibrium dissociation constant of approximately 2.4 +/- 0.7 nmol/L and a maximum capacity of binding sites of 65.8 +/- 4.5 fmol/mg protein. Experiments performed on sections of coronary veins did not allow the evaluation of specific binding. Autoradiography, observed with light microscopy, showed the development of specific silver grains within the whole wall of rat heart and coronary artery. The greater sensitivity to displacement by amisulpride, bromocriptine, domperidone, haloperidol, raclopride and L-sulpiride than to displacement by N-propyl-norapomorphine, quinpirole and clozapine suggests that the binding sites observed in these experiments are likely to belong to the dopamine D2 receptor subtype. 4. Comparing results in young and old rats, we observed numerous significant age-related changes, including a decrease in D2 receptors localized in rat heart and coronary artery wall. These D2 receptors show a specific location, in close relationship with dopaminergic nerve fibres. They decrease with age and their role remains unknown.
Collapse
Affiliation(s)
- Carlo Cavallotti
- Department of Cardiovascular and Respiratory Sciences, University La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
72
|
Abstract
Dopamine is a small and relatively simple molecule that fulfills diverse functions. Within the brain, it acts as a classical neurotransmitter whose attenuation or overactivity can result in disorders such as Parkinson's disease and schizophrenia. Major advances in the cloning and characterization of biosynthetic enzymes, transporters, and receptors have increased our knowledge regarding the metabolism, release, reuptake, and mechanism of action of dopamine. Dopamine reaches the pituitary via hypophysial portal blood from several hypothalamic nerve tracts that are regulated by PRL itself, estrogens, and several neuropeptides and neurotransmitters. Dopamine binds to type-2 dopamine receptors that are functionally linked to membrane channels and G proteins and suppresses the high intrinsic secretory activity of the pituitary lactotrophs. In addition to inhibiting PRL release by controlling calcium fluxes, dopamine activates several interacting intracellular signaling pathways and suppresses PRL gene expression and lactotroph proliferation. Thus, PRL homeostasis should be viewed in the context of a fine balance between the action of dopamine as an inhibitor and the many hypothalamic, systemic, and local factors acting as stimulators, none of which has yet emerged as a primary PRL releasing factor. The generation of transgenic animals with overexpressed or mutated genes expanded our understanding of dopamine-PRL interactions and the physiological consequences of their perturbations. PRL release in humans, which differs in many respects from that in laboratory animals, is affected by several drugs used in clinical practice. Hyperprolactinemia is a major neuroendocrine-related cause of reproductive disturbances in both men and women. The treatment of hyperprolactinemia has greatly benefited from the generation of progressively more effective and selective dopaminergic drugs.
Collapse
Affiliation(s)
- N Ben-Jonathan
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA.
| | | |
Collapse
|
73
|
Martin MW, Scott AW, Johnston DE, Griffin S, Luedtke RR. Typical antipsychotics exhibit inverse agonist activity at rat dopamine D1-like receptors expressed in Sf9 cells. Eur J Pharmacol 2001; 420:73-82. [PMID: 11408027 DOI: 10.1016/s0014-2999(01)00982-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The baculovirus system has been used to express the rat dopamine D1 receptors in Spodoptera frugiperda (Sf9) cells. A panel of typical antipsychotics including, alpha-flupenthixol, fluphenazine and thioridizine were found to inhibit dopamine-dependent stimulation of adenylyl cyclase. However, these compounds were also found to inhibit adenylyl cyclase activity in the absence of agonist in Sf9 cells expressing dopamine D1-like receptors. Therefore, these nonselective dopamine receptor compounds displayed negative intrinsic or inverse agonist activity. None of the compounds tested were neutral antagonists.
Collapse
Affiliation(s)
- M W Martin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
74
|
Miyamoto S, Mailman RB, Lieberman JA, Duncan GE. Blunted brain metabolic response to ketamine in mice lacking D(1A) dopamine receptors. Brain Res 2001; 894:167-80. [PMID: 11251190 DOI: 10.1016/s0006-8993(01)01991-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The interaction of glutamatergic and dopamine neurotransmission is thought to have relevance to both the pathophysiology and pharmacotherapy of schizophrenia. For example, subanesthetic doses of the N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine induce schizophrenia-like behavioral effects in humans and both behavioral and brain metabolic activation in rodents. Blockade of NMDA-R results in dopamine release, and antipsychotic drugs that block dopamine neurotransmission decrease NMDA-R antagonist-induced behavioral activation. The involvement of dopamine receptors in brain metabolic activation induced by ketamine is, however, unknown. The present study used D(1A) knockout mice to determine the role of dopamine D(1A) receptors in the effects of subanesthetic doses of ketamine on both behavioral responses and on alterations in regional [14C]2-deoxyglucose (2-DG) uptake. There was less ketamine-induced behavioral activation in D(1A) knockout mice than in wild-type mice. In wild-type mice, ketamine (30 mg/kg) induced dramatic increases in 2-DG uptake in limbic cortical regions, hippocampal formation, nucleus accumbens, basolateral amygdala, and caudal parts of the substantia nigra pars reticulata. D(1A) knockout mice exhibited blunted metabolic activation in response to ketamine in a neuroanatomically specific manner. The selective D(1) antagonist, SCH23390 (0.3 mg/kg), inhibited both ketamine-induced brain metabolic activation and behavioral responses in the wild-type mice, with a similar neuroanatomical specificity observed in the D(1A) knockout mice. Thus, the neuroanatomically selective role that D(1A) receptors play in ketamine-induced behavior and regional brain metabolic activation in mice provides a useful model for further studies of how the D(1A) receptor function may be altered in schizophrenia.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Psychiatry, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
75
|
Abstract
SCH 23390, the halobenzazepine (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5- tetrahydro-1H-3-benzazepine, is a highly potent and selective dopamine D1-like receptor antagonist with a K(i) of 0.2 and 0.3 nM for the D1 and D5 dopamine receptor subtypes, respectively. In vitro, it also binds with high affinity to the 5-HT2 and 5-HT1C serotonin receptor subtypes. However, the doses required to induce a similar response in vivo are greater than 10-fold higher than those required to induce a D1-mediated response. Previous in vivo pharmacological studies with SCH 23390 have shown it to abolish generalized seizures evoked by the chemoconvulsants: pilocarpine and soman. These studies provide evidence of the potential importance of D1-like dopaminergic receptor mechanisms in facilitating the initiation and spread of seizures. The inference from a majority of studies is that the activation of dopamine D1 receptors facilitates seizure activity, whereas activation of D2 receptors may inhibit the development of seizures. SCH 23390 has also been used in studies of other neurological disorders in which the dopamine system has been implicated, such as psychosis and Parkinson's disease. Apart from the study of neurological disorders, SCH 23390 has been extensively used as a tool in the topographical determination of brain D1 receptors in rodents, nonhuman primates, and humans. In summary, SCH 23390 has been a major tool in gaining a better understanding of the role of the dopamine system, more specifically the D1 receptor, in neurological function and dysfunction.
Collapse
Affiliation(s)
- J A Bourne
- Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
76
|
Luedtke RR, Freeman RA, Boundy VA, Martin MW, Huang Y, Mach RH. Characterization of (125)I-IABN, a novel azabicyclononane benzamide selective for D2-like dopamine receptors. Synapse 2000; 38:438-49. [PMID: 11044891 DOI: 10.1002/1098-2396(20001215)38:4<438::aid-syn9>3.0.co;2-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The properties of an (125)I-labeled structural analog of 2, 3-dimethoxy-N-[9-(4-fluorobenzyl)-9-azabicyclo[3.3. 1]nonan-3beta-yl]benzamide (MABN), (125)I-IABN, are described. (125)I-IABN was developed as a high-affinity radioligand selective for the D2-like (D2, D3, and D4) dopamine receptor subtypes. (125)I-IABN binds with picomolar affinity and nonselectively to rat D2 and D3 dopamine receptors expressed in Sf9 and HEK 293 cells. (125)I-IABN binds with 7- to 25-fold lower affinity to human D4.4 dopamine receptors expressed in HEK 293 cells. Dissociation constants (Kd) calculated from kinetic experiments were in agreement with equilibrium Kd values obtained from saturation binding studies. Saturation plots of the binding of (125)I-IABN with rat caudate membrane preparations were monophasic and exhibited low nonspecific binding. The pharmacologic profile of the binding of (125)I-IABN to rat caudate was consistent with a D2-like receptor, suggesting that the ligand binds primarily to D2 dopamine receptors. In addition, IABN was found to bind with low affinity to D1 dopamine receptors, as well as to the sigma1 and sigma2 receptor subtypes. Quantitative autoradiographic studies using rat brain slices indicate that (125)I-IABN selectively labels the striatum and the olfactory tubercle area, which is consistent with the labeling of D2-like receptors. IABN blocks dopamine-dependent inhibition of adenylyl cyclase activity at D2 or D4.4 receptors expressed in HEK cells. Therefore, (125)I-IABN appears to be a high-affinity, selective antagonist at D2-like dopamine receptors. Finally, a unique property of the azabicyclononane benzamide (125)I-IABN compared to previously studied substituted benzamides is that the binding of this radioligand is not effected by variations in Na(+) concentration.
Collapse
Affiliation(s)
- R R Luedtke
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth, Texas 76116, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Gauda EB, Northington FJ, Linden J, Rosin DL. Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res 2000; 872:1-10. [PMID: 10924669 DOI: 10.1016/s0006-8993(00)02314-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sensitivity of peripheral arterial chemoreceptors in the carotid body to hypoxia increases with postnatal maturation. Carotid sinus nerve activity is augmented by adenosine binding to A(2a)-adenosine receptors and attenuated by dopamine binding to D(2)-dopamine receptors. In this study, we used in situ hybridization histochemistry to determine the change in the levels of mRNA expression for A(2a) and A(1)-adenosine receptors and D(2)-dopamine receptors in the rat carotid body. We also investigated the cellular distribution and possible colocalization of these receptor mRNAs and tyrosine hydroxylase (TH) mRNAs during the first 2 weeks of postnatal development. By using immunohistocytochemistry, we detected A(2a)-adenosine receptor protein in the carotid body and petrosal ganglion. We found that A(2a)-adenosine receptor mRNA and protein are expressed in the carotid body in animals at 0, 3, 6 and 14 postnatal days. The level of A(2a)-adenosine receptor mRNA expression significantly decreased by 14 postnatal days (P<0.02 vs. day 0) while D(2)-dopamine receptor mRNA levels significantly increased by day 3 and remained greater than D(2)-dopamine receptor mRNA levels at day 0 (P<0.001 all ages vs. day 0). TH mRNA was colocalized in cells in the carotid body with A(2a) adenosine receptor and D(2)-dopamine receptor mRNAs. A(1)-adenosine receptor mRNA was not expressed in the carotid body at any of the ages examined. In the petrosal ganglion, A(1)-adenosine receptor mRNA was abundantly expressed in numerous cells, A(2a)-adenosine receptor mRNA was expressed in a moderate number of cells while D(2)-dopamine receptor mRNA was seen in a few cells in the rostral petrosal ganglion. In conclusion, using in situ hybridization histochemistry, we have shown that mRNA for both the excitatory, A(2a)-adenosine receptor, and the inhibitory, D(2)-dopamine receptor, is developmentally regulated in presumably type I cells in the carotid body which may contribute to the maturation of hypoxic chemosensitivity. Furthermore, the presence A(1)-adenosine receptor mRNAs in cell bodies of the petrosal ganglion suggests that adenosine might also have an inhibitory role in hypoxic chemotransmission.
Collapse
MESH Headings
- Animals
- Arteries/innervation
- Arteries/metabolism
- Carotid Body/cytology
- Carotid Body/growth & development
- Carotid Body/metabolism
- Chemoreceptor Cells/cytology
- Chemoreceptor Cells/growth & development
- Chemoreceptor Cells/metabolism
- Ganglia, Sensory/cytology
- Ganglia, Sensory/growth & development
- Ganglia, Sensory/metabolism
- Gene Expression
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/genetics
- Receptors, Purinergic P1/biosynthesis
- Receptors, Purinergic P1/genetics
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- E B Gauda
- Division of Neonatology, Department of Pediatrics, Johns Hopkins Medical School, 600 N Wolfe St, Baltimore, MD 21287-3200, USA.
| | | | | | | |
Collapse
|
78
|
Kemppainen N, Ruottinen H, Nâgren K, Rinne JO. PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology 2000; 55:205-9. [PMID: 10908891 DOI: 10.1212/wnl.55.2.205] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To study dopamine D1 and D2 receptors in the putamen and the caudate nucleus in patients with AD and age-matched healthy controls by means of PET. METHODS A dopamine D1 receptor antagonist ([11C]NNC 756) and a D2 receptor antagonist ([11C]raclopride) were used as ligands. The uptake of these ligands was calculated as a distribution volume ratio of the putamen and the caudate nucleus to the cerebellum. RESULTS The mean [11C]NNC 756 uptake in AD was reduced by 14% from the mean control value both in the putamen (p = 0.004) and the caudate nucleus (p = 0.009). There was no significant reduction in the mean [11C]raclopride uptake in either the putamen or the caudate nucleus in AD. There was no correlation between [11C]NNC 756 or [11C]raclopride uptake and Mini-Mental State Examination or motor Unified PD Rating Scale scores in patients with AD. CONCLUSIONS There are changes in striatal D1 but not in D2 receptors in AD.
Collapse
Affiliation(s)
- N Kemppainen
- Department of Neurology, University of Turku, Finland
| | | | | | | |
Collapse
|
79
|
Linnanen T, Brisander M, Unelius L, Sundholm G, Hacksell U, Johansson AM. Derivatives of (R)-1,11-methyleneaporphine: synthesis, structure, and interactions with G-protein coupled receptors. J Med Chem 2000; 43:1339-49. [PMID: 10753471 DOI: 10.1021/jm9911433] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and synthesis of a well-characterized novel ring system, (R)-lambda1,11-methyleneaporphine [(R)-4], and 15 derivatives thereof are presented. The addition of various nucleophiles to (R)-lambda1,11-carbonylaporphine [(R)-11] or to the 1,11-hydroxymethyleneaporphine epimers gave separable mixtures of epimers. The epimeric ratios obtained in most reactions seem to be a result of steric factors directing the nucleophilic attack. The structure of the epimers was determined by a combination of X-ray crystallography (5 derivatives), NMR spectroscopy, and chemical correlation. Interesting and diverse pharmacological profiles of the derivatives were revealed through binding studies at serotonin 5-HT(7) and 5-HT(1A) receptors as well as at dopamine D(2A) receptors. Two derivatives appeared to be selective 5-HT(7) receptor antagonists. It is evident from our results that the novel ring system [(R)-4] provides a useful complement to other scaffolds available to medicinal chemists involved in studies of GPC receptors.
Collapse
Affiliation(s)
- T Linnanen
- Organic Pharmaceutical Chemistry, Uppsala University, Uppsala Biomedical Center, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
80
|
O'Connell DP, Aherne AM. Renal dopaminergic mechanisms and hypertension: a chronology of advances. Clin Exp Hypertens 2000; 22:217-49. [PMID: 10803730 DOI: 10.1081/ceh-100100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dopamine (DA) has been shown to influence kidney function through endogenous synthesis and subsequent interaction with locally expressed dopamine receptor subtypes (D1, D5 as D1-like and D2, D3, and D4 as D2-like). DA, and DA-receptor specific agonists and antagonists can alter renal water and electrolyte excretion along with renin release when infused systemically or intrarenally. Such effects are brought about by a combination of renal hemodynamic and direct tubular effects evoked along the full length of the nephron. The cellular mechanisms that direct these dopamine-mediated renal electrolyte fluxes have recently been clarified and include alterations in adenylyl cyclase, phospholipase C, and phospholipase A1 activity. The dopaminergic system also interacts directly with the renal kallikrein-kinin, prostaglandin and other neurohumoral systems. Aberrant renal dopamine production and/or dopamine receptor function have been reported in salt-dependent and low-renin forms of human primary hypertension as well as in genetic models of animal hypertension, including the SHR and Dahl SS rat. DA D1 or D3 receptor knockout mice have been shown to develop hypertension.
Collapse
Affiliation(s)
- D P O'Connell
- Department of Pharmacology & Therapeutics, University College Cork, Ireland
| | | |
Collapse
|
81
|
Gilliland SL, Alper RH, Levant B. Pharmacology of quinpirole-stimulated [35S]GTPgammaS binding: discrepancy with receptor binding profile. Eur J Pharmacol 2000; 392:125-8. [PMID: 10762663 DOI: 10.1016/s0014-2999(00)00124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional consequences of receptor stimulation by quinpirole, a dopamine D(2)-like receptor agonist, were assessed using agonist-stimulated [35S]GTPgammaS binding in rat striatal membranes. Dopamine receptor antagonists inhibited quinpirole-stimulated [35SCH 23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine), consistent with a dopamine D(2)-like profile. In contrast, the monoamine oxidase inhibitors Ro 41-1049 (N-(2-aminoethyl)-5-(3-fluorophenyl)-4-thiazolecarboxemide), and (+)- and (-)-deprenyl, which inhibit [3H]quinpirole binding, had no effect on agonist-independent or quinpirole-stimulated [35S]GTPgammaS binding. Clorgyline inhibited [35S]GTPgammaS binding by a non-dopamine D(2) receptor-mediated mechanism. These findings demonstrate a notable discrepancy between the pharmacological profile of [3H]quinpirole binding and quinpirole-stimulated [35S]GTPgammaS binding.
Collapse
Affiliation(s)
- S L Gilliland
- Departments of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7147, USA
| | | | | |
Collapse
|
82
|
Lee D, Huang W, Lim AT. Dopamine induces a biphasic modulation of hypothalamic ANF neurons: a ligand concentration-dependent effect involving D5 and D2 receptor interaction. Mol Psychiatry 2000; 5:39-48. [PMID: 10673767 DOI: 10.1038/sj.mp.4000601] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasing evidence now suggests that more than one subtype of dopamine receptors is co-expressed in some of the central neurons. The neurobiological effects on the host cells when these receptors are concurrently activated by their common physiological ligand, dopamine, however, remains elusive. Among the members of the family of dopamine receptors, coupling of D1-like dopamine receptors to Gs and D2-like receptors to Gi proteins are known to augment or suppress cellular functions respectively, through modulation of adenylyl cyclase activity and consequently cAMP generation. Simultaneous activation of D1 and D2 receptors in transfected cell lines expressing the two cloned receptors, however, produced antagonistic effects. This is in contrast to in vivo studies, in which concurrent activation of D1-like and D2-like receptors by their respective agonists may induce synergistic or antagonistic effects or both. We report here that in long-term rat hypothalamic cell cultures, activation of both D1-like (D1 and D5) and D2 receptors on atrial natriuretic factor-producing neurons by dopamine yields a biphasic response. The response is ligand concentration-dependent and involves type II adenylyl cyclases. This process is mediated primarily through antagonistic and synergistic interactions of D5 and D2 receptors as the event is mimicked by the concurrent activation of these two receptors co-transfected in CHO cells. Our present findings suggest a novel action of dopamine, and the biochemical processes involved may underlie some of the pharmacological actions of atypical anti-psychotic drugs. Molecular Psychiatry (2000) 5, 39-48.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Antibodies
- Atrial Natriuretic Factor/analysis
- Atrial Natriuretic Factor/immunology
- Atrial Natriuretic Factor/metabolism
- Benzazepines/pharmacology
- Biological Transport/drug effects
- Biological Transport/physiology
- Blotting, Northern
- Bucladesine/pharmacology
- CHO Cells
- Cells, Cultured
- Colforsin/pharmacology
- Cricetinae
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- GTP-Binding Proteins/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Hypothalamus/cytology
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Ligands
- Neurons/chemistry
- Neurons/cytology
- Neurons/enzymology
- Peptides
- Phosphodiesterase Inhibitors/pharmacology
- Quinpirole/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D5
- Staining and Labeling
- Wasp Venoms/pharmacology
Collapse
Affiliation(s)
- D Lee
- Cell Biology Laboratory, Division of Molecular Schizophrenia, Mental Health Research Institute of Victoria, Parkville, Australia 3052
| | | | | |
Collapse
|
83
|
Luedtke RR, Griffin SA, Conroy SS, Jin X, Pinto A, Sesack SR. Immunoblot and immunohistochemical comparison of murine monoclonal antibodies specific for the rat D1a and D1b dopamine receptor subtypes. J Neuroimmunol 1999; 101:170-87. [PMID: 10580800 DOI: 10.1016/s0165-5728(99)00142-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The two D1-like dopamine receptor subtypes, D1a and D1b, are structurally similar and pharmacologically indistinguishable using currently available ligands. To differentiate between the D1-like dopamine receptor subtypes, murine monoclonal antibodies to the rat Dla and the rat D1b dopamine receptor have been prepared. Rat D1-like and D2-like dopamine receptors expressed in Sf9 cells were used to verify the immunospecificity of the monoclonal anti-(D1a dopamine receptor) and anti-(D1b dopamine receptor) antibodies using immunoblot and immunohistochemical techniques. These two antibodies were used to compare the temporal dynamics of D1-like dopamine receptors expressed in Sf9 cells following infection with recombinant baculovirus and to monitor the partial purification of detergent solubilized receptors following ion exchange chromatography. Immunoreactivity of the anti-(D1a receptor) antibody was observed in the striatum and cortical regions of the rat brain using immunoblot techniques. No reactivity on immunoblots was observed for the anti-(D1b receptor) antibody using rat brain tissue, probably due to the low levels of receptor expression. For immunohistochemical studies using rat brain slices, the anti-(D1a receptor) antibody heterogeneously labeled cells and punctate processes within the striatal neuropil while labeling in the adjacent cerebral cortex was weak. Anti-(D1b receptor) antibody immunoreactivity was weak in the .striatum and generally limited to sparse perikarya in the dorsal region. However, immunoreactivity was observed in numerous cells within the vertical and horizontal limbs of the diagonal band and in the ventral pallidum. Immunoreactivity of the anti-(D1b receptor) antibody was also observed in layer V pyramidal neurons of the frontal sensorimotor cortex.
Collapse
Affiliation(s)
- R R Luedtke
- Department of Pharmacology, University of North Texas Health Science Center at Fort Worth, 76107, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Abstract
Since the first transgenic mouse was reported in 1980, genetically engineered mice have become an invaluable biological tool for better understanding of physiological and pathological processes in many fields of biomedical research. The transgenic technology allows researchers to carry out specific genetic manipulation in all cells of a laboratory animal, and makes it possible to dissect gene function in a living organism. In the field of neurosciences these animals have contributed greatly to shed light on basic mechanisms of brain function as well as to generate useful animal models for studying human neurological disorders. In this review, the different techniques available for generating specific mutations in the mouse genome will be described, from pronuclear microinjection to gene targeting in embryonic stem cells, and to the second generation of inducible and conditional knockout mice. Then, the impact of transgenic mouse models as an alternative or additional approach to neuropharmacology will be discussed, not only for the study of molecular mechanisms in the central nervous system but also for the identification of new biological targets for innovative pharmacological therapy.
Collapse
Affiliation(s)
- R Brusa
- Schering-Plough Research Institute, San Raffaele Science Park, Via Olgettina 58, Milan, Italy
| |
Collapse
|
85
|
Alberts GL, Pregenzer JF, Im WB. Contributions of cysteine 114 of the human D3 dopamine receptor to ligand binding and sensitivity to external oxidizing agents. Br J Pharmacol 1998; 125:705-10. [PMID: 9831905 PMCID: PMC1571004 DOI: 10.1038/sj.bjp.0702136] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Cysteine 114 (C114) of the human dopamine D3 receptor is located at the helical face of transmembrane segment III (TMIII) near aspartate 110, a counterion for the amine group of catecholamines. The contributions of C114 to receptor function were investigated here using site-directed mutagenesis of C114 to serine. 2. The C114S mutant, as expressed in Sf-9 cells, bound aminotetralin antagonists (UH-232 and AJ-76) and several agonists ((-)3-PPP, apomorphine, pramipexole and quinpirole) with markedly lower affinities as compared to the wild type D3 receptor, but bound other structurally diverse dopaminergic ligands with only minor changes in affinity. Because an N-propyl substituent is the only common structural feature among most affected ligands, we propose that the mutation alters 'a propyl cleft' on the receptor. The mutation hardly affected quinpirole-dependent [35S]-GTPgammaS binding, suggesting C114 plays a minimal role in receptor-G-protein coupling. 3. N-Ethylmaleimide(NEM), a sulfhydryl modifying agent, blocked ligand binding to the D3 receptor, but not to the C114S mutant. We infer that C114 is the primary residue on the D3 receptor vulnerable to external oxidizing agents. Dopamine D2long and D4(2) receptors contain highly homologous TMIII sequences including an equivalent cysteine residue. However, only the D2long receptor, not the D4(2) receptor, displayed NEM sensitivity similar to that of the D3 receptor. 4. We conclude that C114 is critical for high affinity interactions between the D3 receptor and ligands containing an N-propyl substituent, and unlike its counterpart in the D4(2) receptor, is highly susceptible to external oxidizing agents.
Collapse
Affiliation(s)
- G L Alberts
- Biology II/Neuroscience Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001, USA
| | | | | |
Collapse
|
86
|
Bird IM, Lightly ER, Nicol M, Williams BC, Walker SW. Dopaminergic stimulation of cortisol secretion from bovine zfr cells occurs through nonspecific stimulation of adrenergic beta-receptors. Endocr Res 1998; 24:769-72. [PMID: 9888575 DOI: 10.3109/07435809809032685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous reports have suggested a possible dopaminergic inhibition of the actions of AII on aldosterone secretion via adenylate-cyclase inhibitory 'D2' receptors. Others suggest a possible stimulation of aldosterone secretion via a stimulatory 'D1' receptor/cAMP pathway. We have examined the actions of dopamine on basal and AII-stimulated cortisol secretion by cultured bovine zfr cells. Dopamine alone caused a dose-dependent increase in cortisol secretion at doses >10(-5) M, and also enhanced steroidogenic output in response to submaximal (10(-10) M) but not maximal (10(-8) M) stimulatory doses of AII. The stimulatory action of dopamine alone on cortisol secretion was not, however, reproduced by the 'D1' agonist fenoldopam, and was fully blocked by propranolol. Dopamine had neither a stimulatory effect on basal phosphoinositol production nor an inhibitory effect on AII-stimulated phosphoinositol production. Our findings are therefore inconsistent with the activation of a 'D1' or 'D2' class receptor, and suggest the stimulation of cortisol secretion occurred nonspecifically through a beta-adrenergic receptor.
Collapse
Affiliation(s)
- I M Bird
- Dept. Ob/Gyn, Univ. WI-Madison, 53715, USA
| | | | | | | | | |
Collapse
|