51
|
Zebrafish Embryo Model for Assessment of Drug Efficacy on Mycobacterial Persisters. Antimicrob Agents Chemother 2020; 64:AAC.00801-20. [PMID: 32778551 DOI: 10.1128/aac.00801-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs. By targeting these persisters, the duration of treatment could be shortened, leading to improved tuberculosis treatment and a reduction in transmission. The unique in vivo environment drives the generation of persisters; however, appropriate in vivo mycobacterial persister models enabling optimized drug screening are lacking. To set up a persister infection model that is suitable for this, we infected zebrafish embryos with in vitro-starved Mycobacterium marinum In vitro starvation resulted in a persister-like phenotype with the accumulation of stored neutral lipids and concomitant increased tolerance to ethambutol. However, these starved wild-type M. marinum organisms rapidly lost their persister phenotype in vivo To prolong the persister phenotype in vivo, we subsequently generated and analyzed mutants lacking functional resuscitation-promoting factors (Rpfs). Interestingly, the ΔrpfAB mutant, lacking two Rpfs, established an infection in vivo, whereas a nutrient-starved ΔrpfAB mutant did maintain its persister phenotype in vivo This mutant was, after nutrient starvation, also tolerant to ethambutol treatment in vivo, as would be expected for persisters. We propose that this zebrafish embryo model with ΔrpfAB mutant bacteria is a valuable addition for drug screening purposes and specifically screens to target mycobacterial persisters.
Collapse
|
52
|
Salo VT, Hölttä-Vuori M, Ikonen E. Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet Nexus. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420945820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs) are dynamic cellular hubs of lipid metabolism. While LDs contact a plethora of organelles, they have the most intimate relationship with the endoplasmic reticulum (ER). Indeed, LDs are initially assembled at specialized ER subdomains, and recent work has unraveled an increasing array of proteins regulating ER-LD contacts. Among these, seipin, a highly conserved lipodystrophy protein critical for LD growth and adipogenesis, deserves special attention. Here, we review recent insights into the role of seipin in LD biogenesis and as a regulator of ER-LD contacts. These studies have also highlighted the evolving concept of ER and LDs as a functional continuum for lipid partitioning and pinpointed a role for seipin at the ER-LD nexus in controlling lipid flux between these compartments.
Collapse
Affiliation(s)
- Veijo T. Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
53
|
Kappelt F, Du Ma X, Abou Hasna B, Kornke JM, Maniak M. Phospholipids containing ether-bound hydrocarbon-chains are essential for efficient phagocytosis and neutral lipids of the ester-type perturb development in Dictyostelium. Biol Open 2020; 9:9/7/bio052126. [PMID: 32675052 PMCID: PMC7375469 DOI: 10.1242/bio.052126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipids are the building blocks for cellular membranes; they provide signalling molecules for membrane dynamics and serve as energy stores. One path of their synthesis is initiated by glycerol-3-phosphate acyltransferase (GPAT), which in Dictyostelium resides on the endoplasmic reticulum. When an excess of fatty acids is present, it redistributes to storage organelles, the lipid droplets. Mutants, where the GPAT was eliminated by homologous recombination, produce fewer lipid droplets and are almost devoid of triacylglycerols (TAG), rendering them more resistant to cell death and cell loss in the developmental stages preceding fruiting body formation. The enzyme most closely related to GPAT is called FARAT, because it combines a fatty acyl-reductase (FAR) and an acyltransferase (AT) domain in its sequence. The protein is confined to the lumen of the peroxisome, where it transfers a fatty acid to dihydroxyacetone-phosphate initiating the synthesis of ether lipids, later completed at the endoplasmic reticulum. A mutant lacking FARAT produces lipid droplets that are devoid of the storage lipid monoalkyl-diacyl-glycerol (MDG), but the efficiency of spore formation in the developmental cycle is largely unaltered. Instead, these mutants are strongly impaired in phagocytosis of yeast particles, which is attributed to reduced synthesis of membrane phospholipids containing ether-linked chains.
Collapse
Affiliation(s)
| | - Xiaoli Du Ma
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | | | | | - Markus Maniak
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
54
|
Samuel AZ, Miyaoka R, Ando M, Gaebler A, Thiele C, Takeyama H. Molecular profiling of lipid droplets inside HuH7 cells with Raman micro-spectroscopy. Commun Biol 2020; 3:372. [PMID: 32651434 PMCID: PMC7351753 DOI: 10.1038/s42003-020-1100-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Raman imaging has become an attractive technology in molecular biology because of its ability to detect multiple molecular components simultaneously without labeling. Two major limitations in accurately accounting for spectral features, viz., background removal and spectral unmixing, have been overcome by employing a modified and effective routine in multivariate curve resolution (MCR). With our improved strategy, we have spectrally isolated seven structurally specific biomolecules without any post-acquisition spectral treatments. Consequently, the isolated intensity profiles reflected concentrations of corresponding biomolecules with high statistical accuracy. Our study reveals the changes in the molecular composition of lipid droplets (LDs) inside HuH7 cells and its relation to the physiological state of the cell. Further, we show that the accurate separation of spectral components permits analysis of structural modification of molecules after cellular uptake. A detailed discussion is presented to highlight the potential of Raman spectroscopy with MCR in semi-quantitative molecular profiling of living cells. Samuel, Miyaoka et al. investigate the changes in the molecular composition of lipid droplets inside HuH7 cells and its relation to the physiological state of the cell, using Raman spectroscopy and multivariate curve resolution. This study underscores the importance of separation of spectral components in semi-quantitative molecular profiling of living cells.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Rimi Miyaoka
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Masahiro Ando
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology and Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Insituture for Advances Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan.
| |
Collapse
|
55
|
Santinho A, Salo VT, Chorlay A, Li S, Zhou X, Omrane M, Ikonen E, Thiam AR. Membrane Curvature Catalyzes Lipid Droplet Assembly. Curr Biol 2020; 30:2481-2494.e6. [PMID: 32442467 DOI: 10.1016/j.cub.2020.04.066] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Lipid droplet (LD) biogenesis begins in the endoplasmic reticulum (ER) bilayer, but how the ER topology impacts this process is unclear. An early step in LD formation is nucleation, wherein free neutral lipids, mainly triacylglycerols (TGs) and sterol esters (SEs), condense into a nascent LD. How this transition occurs is poorly known. Here, we found that LDs preferably assemble at ER tubules, with higher curvature than ER sheets, independently of the LD assembly protein seipin. Indeed, the critical TG concentration required for initiating LD assembly is lower at curved versus flat membrane regions. In agreement with this finding, flat ER regions bear higher amounts of free TGs than tubular ones and present less LDs. By using an in vitro approach, we discovered that the presence of free TGs in tubules is energetically unfavorable, leading to outflow of TGs to flat membrane regions or condensation into LDs. Accordingly, in vitro LD nucleation can be achieved by the sole increase of membrane curvature. In contrast to TGs, the presence of free SEs is favored at tubules and increasing SE levels is inhibitory to the curvature-induced nucleation of TG LDs. Finally, we found that seipin is enriched at ER tubules and controls the condensation process, preventing excessive tubule-induced nucleation. The absence of seipin provokes erratic LD nucleation events determined by the abundance of ER tubules. In summary, our data indicate that membrane curvature catalyzes LD assembly.
Collapse
Affiliation(s)
- Alexandre Santinho
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Veijo T Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Aymeric Chorlay
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| |
Collapse
|
56
|
Brodwolf R, Volz-Rakebrand P, Stellmacher J, Wolff C, Unbehauen M, Haag R, Schäfer-Korting M, Zoschke C, Alexiev U. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics 2020; 10:6322-6336. [PMID: 32483455 PMCID: PMC7255044 DOI: 10.7150/thno.42581] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescence microscopy is widely used for high content screening in 2D cell cultures and 3D models. In particular, 3D tissue models are gaining major relevance in modern drug development. Enabling direct multiparametric evaluation of complex samples, fluorescence lifetime imaging (FLIM) adds a further level to intensity imaging by the sensitivity of the fluorescence lifetime to the microenvironment. However, the use of FLIM is limited amongst others by the acquisition of sufficient photon numbers without phototoxic effects in live cells. Herein, we developed a new cluster-based analysis method to enhance insight, and significantly speed up analysis and measurement time for the accurate translation of fluorescence lifetime information into pharmacological pathways. Methods: We applied a fluorescently-labeled dendritic core-multishell nanocarrier and its cargo Bodipy as molecules of interest (MOI) to human cells and reconstructed human tissue. Following the sensitivity and specificity assessment of the fitting-free Cluster-FLIM analysis of data in silico and in vitro, we evaluated the dynamics of cellular molecule uptake and intracellular interactions. For 3D live tissue investigations, we applied multiphoton (mp) FLIM. Owing to Cluster-FLIM's statistics-based fitting-free analysis, we utilized this approach for automatization. Results: To discriminate the fluorescence lifetime signatures of 5 different fluorescence species in a single color channel, the Cluster-FLIM method requires only 170, respectively, 90 counts per pixel to obtain 95% sensitivity (hit rate) and 95% specificity (correct rejection rate). Cluster-FLIM revealed cellular interactions of MOIs, representing their spatiotemporal intracellular fate. In a setting of an automated workflow, the assessment of lysosomal trapping of the MOI revealed relevant differences between normal and tumor cells, as well as between 2D and 3D models. Conclusion: The automated Cluster-FLIM tool is fitting-free, providing images with enhanced information, contrast, and spatial resolution at short exposure times and low fluorophore concentrations. Thereby, Cluster-FLIM increases the applicability of FLIM in high content analysis of target molecules in drug development and beyond.
Collapse
|
57
|
Gutierrez E, Lütjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3:3/6/e201900521. [PMID: 32354700 PMCID: PMC7195048 DOI: 10.26508/lsa.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the Alzheimer associated γ-secretase impairs the regulation of cellular lipid droplet homeostasis. Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid β-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.
Collapse
Affiliation(s)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
58
|
Qiao S, Koh SB, Vivekanandan V, Salunke D, Patra KC, Zaganjor E, Ross K, Mizukami Y, Jeanfavre S, Chen A, Mino-Kenudson M, Ramaswamy S, Clish C, Haigis M, Bardeesy N, Ellisen LW. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev 2020; 34:751-766. [PMID: 32273287 PMCID: PMC7263146 DOI: 10.1101/gad.335166.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
In this study, Qiao et al. set out to investigate the role of REDD1 in the development of KRAS-driven tumors. Using genetically engineered mouse models, the authors show that loss of REDD1 promotes the development of oncogenic KRAS-driven pancreatic and lung cancers. Additionally, the authors use a combination of transcriptomic and metabolomic analyses to show that REDD1 deficiency induces lipid uptake, enhances fatty acid oxidation, and suppresses de novo lipid biosynthesis, in particular under hypoxia conditions, which plays an important role for the redox homeostasis of tumor cells through the regulation of NADPH levels. Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.
Collapse
Affiliation(s)
- Shuxi Qiao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Devika Salunke
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | - Krushna Chandra Patra
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Elma Zaganjor
- Ludwig Cancer Center at Harvard, Harvard University, Boston, Massachusetts 02115, USA
| | - Kenneth Ross
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Yusuke Mizukami
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah Jeanfavre
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Athena Chen
- Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Massachusetts General Hospital, Massachusetts 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Massachusetts General Hospital, Massachusetts 02114, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Cancer Center at Harvard, Harvard University, Boston, Massachusetts 02115, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Clary Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Marcia Haigis
- Ludwig Cancer Center at Harvard, Harvard University, Boston, Massachusetts 02115, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
59
|
Vanharanta L, Peränen J, Pfisterer SG, Enkavi G, Vattulainen I, Ikonen E. High‐content imaging and structure‐based predictions reveal functional differences between Niemann‐Pick C1 variants. Traffic 2020; 21:386-397. [DOI: 10.1111/tra.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Minerva Foundation Institute for Medical Research Helsinki Finland
| | - Johan Peränen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Minerva Foundation Institute for Medical Research Helsinki Finland
| | - Simon G. Pfisterer
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Giray Enkavi
- Department of PhysicsUniversity of Helsinki Helsinki Finland
- Computational Physics LaboratoryTampere University of Technology Tampere Finland
| | - Ilpo Vattulainen
- Department of PhysicsUniversity of Helsinki Helsinki Finland
- Computational Physics LaboratoryTampere University of Technology Tampere Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Minerva Foundation Institute for Medical Research Helsinki Finland
| |
Collapse
|
60
|
Abstract
Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER). Continued lipid synthesis by ER membrane enzymes and lipid droplet fusion contribute to the large size of these cytoplasmic lipid droplets (5–15 μm in diameter). Lipid droplets are directionally trafficked within the epithelial cell to the apical plasma membrane. Upon contact, a molecular docking complex assembles to tether the droplet to the plasma membrane and facilitate its membrane envelopment. This docking complex consists of the transmembrane protein, butyrophilin, the cytoplasmic housekeeping protein, xanthine dehydrogenase/oxidoreductase, the lipid droplet coat proteins, PLIN2, and cell death-inducing DFFA-like effector A. Interactions of mitochondria, Golgi, and secretory vesicles with docked lipid droplets have also been reported and may supply membrane phospholipids, energy, or scaffold cytoskeleton for apocrine secretion of the lipid droplet. Final secretion of lipid droplets into the milk occurs in response to oxytocin-stimulated contraction of myoepithelial cells that surround milk-secreting epithelial cells. The mechanistic details of lipid droplet release are unknown at this time. The final secreted milk fat globule consists of a triglyceride core coated with a phospholipid monolayer and various coat proteins, fully encased in a membrane bilayer.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark S Ladinsky
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
61
|
Dalmao-Fernández A, Lund J, Hermida-Gómez T, Vazquez-Mosquera ME, Rego-Pérez I, Blanco FJ, Fernández-Moreno M. Impaired Metabolic Flexibility in the Osteoarthritis Process: A Study on Transmitochondrial Cybrids. Cells 2020; 9:cells9040809. [PMID: 32230786 PMCID: PMC7226768 DOI: 10.3390/cells9040809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most frequent joint disease; however, the etiopathogenesis is still unclear. Chondrocytes rely primarily on glycolysis to meet cellular energy demand, but studies implicate impaired mitochondrial function in OA pathogenesis. The relationship between mitochondrial dysfunction and OA has been established. The aim of the study was to examine the differences in glucose and Fatty Acids (FA) metabolism, especially with regards to metabolic flexibility, in cybrids from healthy (N) or OA donors. Glucose and FA metabolism were studied using D-[14C(U)]glucose and [1-14C]oleic acid, respectively. There were no differences in glucose metabolism among the cybrids. Osteoarthritis cybrids had lower acid-soluble metabolites, reflecting incomplete FA β-oxidation but higher incorporation of oleic acid into triacylglycerol. Co-incubation with glucose and oleic acid showed that N but not OA cybrids increased their glucose metabolism. When treating with the mitochondrial inhibitor etomoxir, N cybrids still maintained higher glucose oxidation. Furthermore, OA cybrids had higher oxidative stress response. Combined, this indicated that N cybrids had higher metabolic flexibility than OA cybrids. Healthy donors maintained the glycolytic phenotype, whereas OA donors showed a preference towards oleic acid metabolism. Interestingly, the results indicated that cybrids from OA patients had mitochondrial impairments and reduced metabolic flexibility compared to N cybrids.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernández
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0363 Oslo, Norway;
| | - Tamara Hermida-Gómez
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - María E Vazquez-Mosquera
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - Ignacio Rego-Pérez
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
| | - Francisco J. Blanco
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
- Correspondence: (F.J.B.); (M.F.-M.)
| | - Mercedes Fernández-Moreno
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Agrupación estratégica CICA-INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas. Universidade da Coruña (UDC), 15006 A Coruña, Spain; (A.D.-F.); (T.H.-G.); (M.E.V.-M.); (I.R.-P.)
- Centro de investigación biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (F.J.B.); (M.F.-M.)
| |
Collapse
|
62
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
63
|
Suarez SI, Warner CC, Brown-Harding H, Thooft AM, VanVeller B, Lukesh JC. Highly selective staining and quantification of intracellular lipid droplets with a compact push–pull fluorophore based on benzothiadiazole. Org Biomol Chem 2020; 18:495-499. [DOI: 10.1039/c9ob02486g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A robust lipophilic dye, based on the structures of the benzothiadiazole heterocycle, was shown to be a potent fluorescent stain for the selective imaging of lipid droplets (LDs) within both live and fixed human cells.
Collapse
Affiliation(s)
| | | | | | | | | | - John C. Lukesh
- Department of Chemistry
- Wake Forest University
- Winston-Salem
- USA
| |
Collapse
|
64
|
Shi X, Sung SHP, Lee MMS, Kwok RTK, Sung HHY, Liu H, Lam JWY, Williams ID, Liu B, Tang BZ. A lipophilic AIEgen for lipid droplet imaging and evaluation of the efficacy of HIF-1 targeting drugs. J Mater Chem B 2020; 8:1516-1523. [DOI: 10.1039/c9tb02848j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A lipid-droplet-specific AIEgen was used to evaluate the inhibitory efficacy of HIF-1-targeting drugs by assessing lipid-droplet levels.
Collapse
|
65
|
Jana P, Siva A, Soppina V, Kanvah S. Live-cell imaging of lipid droplets using solvatochromic coumarin derivatives. Org Biomol Chem 2020; 18:5608-5616. [DOI: 10.1039/d0ob01277g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs), the lipid-rich intracellular organelles were selectively detected using simple coumarin containing fluorophores.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Aravintha Siva
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Virupakshi Soppina
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| | - Sriram Kanvah
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Gandhinagar 382355
- India
| |
Collapse
|
66
|
Li L, Zhou F, Gao Q, Lu Y, Xu X, Hu R, Wang Z, Peng M, Yang Z, Tang BZ. Visualizing Dynamic Performance of Lipid Droplets in a Parkinson's Disease Model via a Smart Photostable Aggregation-Induced Emission Probe. iScience 2019; 21:261-272. [PMID: 31677478 PMCID: PMC6838505 DOI: 10.1016/j.isci.2019.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disease affected by diverse factors, and lipid droplets (LDs) are increasingly recognized as major players in PD because of their relevance to neuron activity. However, long-term dynamic changes of LDs and their relative activity remain unclear. Here, an aggregation-induced emission (AIE) probe named 2-DPAN was prepared and employed to visualize dynamic processes of LDs in a 6-hydroxydopamine model of PD for the first time, and LDs' accumulation-peak/plateau-decrease were confirmed. We further found a close relationship between LDs and variation in mitochondrial activity. Strikingly, the progression of cell death was accelerated by lipase, whereas pre-stimulation of LDs by unsaturated fatty acid-oleic acid decreased the death process by inhibiting excessive reactive oxygen species (ROS) and fatty acid production, thereby protecting mitochondria. The utilization of 2-DPAN demonstrates the importance of LDs in neuronal homeostasis, and effective tuning of LDs may prevent or inhibit PD progression. 2-DPAN monitors the dynamic changes of Lipid droplets (LDs) in Parkinson disease LDs' dynamic change process including three phases, accumulation-plateau-decrease LDs' change trend was highly correlated with mitochondrial disruption Efficient tuning of LDs could slow the PD progress
Collapse
Affiliation(s)
- Lihua Li
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fan Zhou
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Qun Gao
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Graduate School of Peking Union Medical College, Beijing 100005, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China
| | - Xingyi Xu
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Mingying Peng
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Zhongmin Yang
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
67
|
Engel DF, Grzyb AN, de Oliveira J, Pötzsch A, Walker TL, Brocardo PS, Kempermann G, de Bem AF. Impaired adult hippocampal neurogenesis in a mouse model of familial hypercholesterolemia: A role for the LDL receptor and cholesterol metabolism in adult neural precursor cells. Mol Metab 2019; 30:1-15. [PMID: 31767163 PMCID: PMC6812372 DOI: 10.1016/j.molmet.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Objective In familial hypercholesterolemia (FH), mutations in the low-density lipoprotein (LDL) receptor (LDLr) gene result in increased plasma LDL cholesterol. Clinical and preclinical studies have revealed an association between FH and hippocampus-related memory and mood impairment. We here asked whether hippocampal pathology in FH might be a consequence of compromised adult hippocampal neurogenesis. Methods We evaluated hippocampus-dependent behavior and neurogenesis in adult C57BL/6JRj and LDLr−/− mice. We investigated the effects of elevated cholesterol and the function of LDLr in neural precursor cells (NPC) isolated from adult C57BL/6JRj mice in vitro. Results Behavioral tests revealed that adult LDLr−/− mice showed reduced performance in a dentate gyrus (DG)-dependent metric change task. This phenotype was accompanied by a reduction in cell proliferation and adult neurogenesis in the DG of LDLr−/− mice, suggesting a potential direct impact of LDLr mutation on NPC. Exposure of NPC to LDL as well as LDLr gene knockdown reduced proliferation and disrupted transcriptional activity of genes involved in endogenous cholesterol synthesis and metabolism. The LDL treatment also induced an increase in intracellular lipid storage. Functional analysis of differentially expressed genes revealed parallel modulation of distinct regulatory networks upon LDL treatment and LDLr knockdown. Conclusions Together, these results suggest that high LDL levels and a loss of LDLr function, which are characteristic to individuals with FH, might contribute to a disease-related impairment in adult hippocampal neurogenesis and, consequently, cognitive functions. The LDLr −/− mice show impaired hippocampal related behaviour and adult neurogenesis. In vitro exposure of NPC to LDL and LDLr knock-down reduces cell proliferation. LDL exposure induces lipid storage in NPC. In vitro LDL and LDLr knock-down in NPC modulates distinct regulatory networks.
Collapse
Affiliation(s)
- Daiane F Engel
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| | - Anna N Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jade de Oliveira
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Patricia S Brocardo
- Department of Morphological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Andreza F de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
68
|
Luukkonen PK, Nick A, Hölttä-Vuori M, Thiele C, Isokuortti E, Lallukka-Brück S, Zhou Y, Hakkarainen A, Lundbom N, Peltonen M, Orho-Melander M, Orešič M, Hyötyläinen T, Hodson L, Ikonen E, Yki-Järvinen H. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight 2019; 4:127902. [PMID: 31434800 PMCID: PMC6777808 DOI: 10.1172/jci.insight.127902] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The common patatin-like phospholipase domain-containing protein 3 (PNPLA3) variant I148M predisposes to nonalcoholic liver disease but not its metabolic sequelae. We compared the handling of labeled polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFA) in vivo in humans and in cells harboring different PNPLA3 genotypes. In 148M homozygous individuals, triglycerides (TGs) in very low-density lipoproteins (VLDL) were depleted of PUFAs both under fasting and postprandial conditions compared with 148I homozygotes, and the PUFA/SFA ratio in VLDL-TGs was lower relative to the chylomicron precursor pool. In human PNPLA3-148M and PNPLA3-KO cells, PUFA but not SFA incorporation into TGs was increased at the expense of phosphatidylcholines, and under lipolytic conditions, PUFA-containing diacylglycerols (DAGs) accumulated compared with PNPLA3-148I cells. Polyunsaturated TGs were increased, while phosphatidylcholines (PCs) were decreased in the human liver in 148M homozygous individuals as compared with 148I homozygotes. We conclude that human PNPLA3-I148M is a loss-of-function allele that remodels liver TGs in a polyunsaturated direction by impairing hydrolysis/transacylation of PUFAs from DAGs to feed phosphatidylcholine synthesis.
Collapse
Affiliation(s)
- Panu K. Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Nick
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | | | - Elina Isokuortti
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Susanna Lallukka-Brück
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Peltonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences and
| | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
69
|
Gungor B, Vanharanta L, Hölttä-Vuori M, Pirhonen J, Petersen NHT, Gramolelli S, Ojala PM, Kirkegaard T, Ikonen E. HSP70 induces liver X receptor pathway activation and cholesterol reduction in vitro and in vivo. Mol Metab 2019; 28:135-143. [PMID: 31327756 PMCID: PMC6822257 DOI: 10.1016/j.molmet.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Heat Shock Proteins (HSPs) maintain cellular homeostasis under stress. HSP70 represents a major stress-inducible family member and has been identified as a druggable target in inherited cholesterol-sphingolipid storage diseases. We investigated if HSP70 modulates cholesterol accumulation in more common conditions related to atherogenesis. Methods We studied the effects of recombinant HSP70 in cholesterol-laden primary macrophages from human blood donors and pharmacological HSP70 upregulation in high-cholesterol diet fed zebrafish. Results Recombinant HSP70 facilitated cholesterol removal from primary human macrophage foam cells. RNA sequencing revealed that HSP70 induced a robust transcriptional re-programming, including upregulation of key targets of liver X receptors (LXR), master regulators of whole-body cholesterol removal. Mechanistically, HSP70 interacted with the macrophage LXRalpha promoter, increased LXRalpha and its target mRNAs, and led to elevated levels of key proteins facilitating cholesterol efflux, including ATP-binding cassette transporters A1 and G1. Pharmacological augmentation of endogenous HSP70 in high-cholesterol diet fed zebrafish activated LXR and its target mRNAs and reduced cholesterol storage at the whole organism level. Conclusion These data demonstrate that HSP70 exerts a cholesterol lowering effect in primary human cells and animals and uncover a nuclear action of HSP70 in mediating cross-talk between HSP and LXR transcriptional regulation.
Collapse
Affiliation(s)
- Burcin Gungor
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lauri Vanharanta
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Juho Pirhonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | | | - Silvia Gramolelli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Päivi M Ojala
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | | | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
70
|
Li Y, Zhang M, Chen X, Liang J, Chen D, Gao M, Ren L. TICT based fluorescent probe with excellent photostability for real-time and long-term imaging of lipid droplets. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
71
|
Salo VT, Li S, Vihinen H, Hölttä-Vuori M, Szkalisity A, Horvath P, Belevich I, Peränen J, Thiele C, Somerharju P, Zhao H, Santinho A, Thiam AR, Jokitalo E, Ikonen E. Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact. Dev Cell 2019; 50:478-493.e9. [PMID: 31178403 DOI: 10.1016/j.devcel.2019.05.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Seipin is an oligomeric integral endoplasmic reticulum (ER) protein involved in lipid droplet (LD) biogenesis. To study the role of seipin in LD formation, we relocalized it to the nuclear envelope and found that LDs formed at these new seipin-defined sites. The sites were characterized by uniform seipin-mediated ER-LD necks. At low seipin content, LDs only grew at seipin sites, and tiny, growth-incompetent LDs appeared in a Rab18-dependent manner. When seipin was removed from ER-LD contacts within 1 h, no lipid metabolic defects were observed, but LDs became heterogeneous in size. Studies in seipin-ablated cells and model membranes revealed that this heterogeneity arises via a biophysical ripening process, with triglycerides partitioning from smaller to larger LDs through droplet-bilayer contacts. These results suggest that seipin supports the formation of structurally uniform ER-LD contacts and facilitates the delivery of triglycerides from ER to LDs. This counteracts ripening-induced shrinkage of small LDs.
Collapse
Affiliation(s)
- Veijo T Salo
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Shiqian Li
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | - Ilya Belevich
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Pentti Somerharju
- Department of Biochemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alexandre Santinho
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Universite de Paris, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Universite de Paris, Paris, France.
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
72
|
Konjar Š, Frising UC, Ferreira C, Hinterleitner R, Mayassi T, Zhang Q, Blankenhaus B, Haberman N, Loo Y, Guedes J, Baptista M, Innocentin S, Stange J, Strathdee D, Jabri B, Veldhoen M. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci Immunol 2019; 3:3/24/eaan2543. [PMID: 29934344 DOI: 10.1126/sciimmunol.aan2543] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/19/2017] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Epithelial-resident T lymphocytes, such as intraepithelial lymphocytes (IELs) located at the intestinal barrier, can offer swift protection against invading pathogens. Lymphocyte activation is strictly regulated because of its potential harmful nature and metabolic cost, and most lymphocytes are maintained in a quiescent state. However, IELs are kept in a heightened state of activation resembling effector T cells but without cytokine production or clonal proliferation. We show that this controlled activation state correlates with alterations in the IEL mitochondrial membrane, especially the cardiolipin composition. Upon inflammation, the cardiolipin composition is altered to support IEL proliferation and effector function. Furthermore, we show that cardiolipin makeup can particularly restrict swift IEL proliferation and effector functions, reducing microbial containment capability. These findings uncover an alternative mechanism to control cellular activity, special to epithelial-resident T cells, and a novel role for mitochondria, maintaining cells in a metabolically poised state while enabling rapid progression to full functionality.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal.,Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ulrika C Frising
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal.,Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Reinhard Hinterleitner
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Qifeng Zhang
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Nejc Haberman
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Yunhua Loo
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Joana Guedes
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Marta Baptista
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Silvia Innocentin
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Joerg Stange
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Douglas Strathdee
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, Scotland
| | - Bana Jabri
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal. .,Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
73
|
Exner T, Beretta CA, Gao Q, Afting C, Romero-Brey I, Bartenschlager R, Fehring L, Poppelreuther M, Füllekrug J. Lipid droplet quantification based on iterative image processing. J Lipid Res 2019; 60:1333-1344. [PMID: 30926625 DOI: 10.1194/jlr.d092841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous and highly dynamic subcellular organelles required for the storage of neutral lipids. LD number and size distribution are key parameters affected not only by nutrient supply but also by lipotoxic stress and metabolic regulation. Current methods for LD quantification lack general applicability and are either based on time consuming manual evaluation or show limitations if LDs are high in numbers or closely clustered. Here, we present an ImageJ-based approach for the detection and quantification of LDs stained by neutral lipid dyes in images acquired by conventional wide-field fluorescence microscopy. The method features an adjustable preprocessing procedure that resolves LD clusters. LD identification is based on their circular edges and central fluorescence intensity maxima. Adaptation to different cell types is mediated by a set of interactive parameters. Validation was done for three different cell lines using manual evaluation of LD numbers and volume measurement by 3D rendering of confocal datasets. In an application example, we show that overexpression of the acyl-CoA synthetase, FATP4/ACSVL5, in oleate-treated COS7 cells increased the size of LDs but not their number.
Collapse
Affiliation(s)
- Tarik Exner
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Carlo A Beretta
- CellNetworks Math-Clinic Core Facility, BioQuant Heidelberg University, Heidelberg, Germany
| | - Qi Gao
- CellNetworks Math-Clinic Core Facility, BioQuant Heidelberg University, Heidelberg, Germany
| | - Cassian Afting
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany.,Department of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Leonard Fehring
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
74
|
Werling K, Shaw WR, Itoe MA, Westervelt KA, Marcenac P, Paton DG, Peng D, Singh N, Smidler AL, South A, Deik AA, Mancio-Silva L, Demas AR, March S, Calvo E, Bhatia SN, Clish CB, Catteruccia F. Steroid Hormone Function Controls Non-competitive Plasmodium Development in Anopheles. Cell 2019; 177:315-325.e14. [PMID: 30929905 DOI: 10.1016/j.cell.2019.02.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.
Collapse
Affiliation(s)
- Kristine Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maurice A Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathleen A Westervelt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Douglas G Paton
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrea L Smidler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amy A Deik
- Broad Institute, Cambridge, MA 02142, USA
| | - Liliana Mancio-Silva
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Allison R Demas
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sangeeta N Bhatia
- Broad Institute, Cambridge, MA 02142, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
75
|
Thommen A, Werner S, Frank O, Philipp J, Knittelfelder O, Quek Y, Fahmy K, Shevchenko A, Friedrich BM, Jülicher F, Rink JC. Body size-dependent energy storage causes Kleiber's law scaling of the metabolic rate in planarians. eLife 2019; 8:e38187. [PMID: 30608231 PMCID: PMC6320072 DOI: 10.7554/elife.38187] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Kleiber's law, or the 3/4 -power law scaling of the metabolic rate with body mass, is considered one of the few quantitative laws in biology, yet its physiological basis remains unknown. Here, we report Kleiber's law scaling in the planarian Schmidtea mediterranea. Its reversible and life history-independent changes in adult body mass over 3 orders of magnitude reveal that Kleiber's law does not emerge from the size-dependent decrease in cellular metabolic rate, but from a size-dependent increase in mass per cell. Through a combination of experiment and theoretical analysis of the organismal energy balance, we further show that the mass allometry is caused by body size dependent energy storage. Our results reveal the physiological origins of Kleiber's law in planarians and have general implications for understanding a fundamental scaling law in biology.
Collapse
Affiliation(s)
- Albert Thommen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Steffen Werner
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- FOM Institute AMOLFAmsterdamThe Netherlands
| | - Olga Frank
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jenny Philipp
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource EcologyDresdenGermany
| | | | - Yihui Quek
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Massachusetts Institute of TechnologyCambridgeUnited States
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource EcologyDresdenGermany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Benjamin M Friedrich
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
76
|
Shi L, Li K, Li LL, Chen SY, Li MY, Zhou Q, Wang N, Yu XQ. Novel easily available purine-based AIEgens with colour tunability and applications in lipid droplet imaging. Chem Sci 2018; 9:8969-8974. [PMID: 30647889 PMCID: PMC6301202 DOI: 10.1039/c8sc03369b] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, tetraphenylethene, triphenylamine and other man-made core AIE luminescent materials (AIEgens) have attracted significant scientific interest. However, the design and synthesis of natural product based, facile and color tunable AIEgens remains challenging. Herein, a novel series of AIEgens based on purine-core molecular rotors is reported, which can be facilely synthesized and shows color tunable emission. Moreover, these purine-based AIEgens exhibit lipid droplet specific properties in live cellular imaging with low background, high selectivity and excellent biocompatibility.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Meng-Yang Li
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Qian Zhou
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Nan Wang
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu , China 610064 . ;
| |
Collapse
|
77
|
A lipid droplet-targeted fluorescence probe for visualizing exogenous copper (II) based on LLCT and LMCT. Talanta 2018; 188:178-182. [DOI: 10.1016/j.talanta.2018.05.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022]
|
78
|
Jurkiewicz P, Melser S, Maucourt M, Ayeb H, Veljanovski V, Maneta-Peyret L, Hooks M, Rolin D, Moreau P, Batoko H. The multistress-induced Translocator protein (TSPO) differentially modulates storage lipids metabolism in seeds and seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:274-286. [PMID: 30003614 DOI: 10.1111/tpj.14028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 05/11/2023]
Abstract
Translocator proteins (TSPO) are conserved membrane proteins extensively studied in mammals, but their function is still unclear. Angiosperm TSPO are transiently induced by abiotic stresses in vegetative tissues. We showed previously that constitutive expression of the Arabidopsis TSPO (AtTSPO) could be detrimental to the cell. Degradation of AtTSPO requires an active autophagy pathway. We show here that genetic modifications of TSPO expression in plant and yeast cells reduce the levels of cytoplasmic lipid droplets (LD). Transgenic Arabidopsis seedlings overexpressing AtTSPO contain less LD as compared with wild type (WT). LD levels were increased in Arabidopsis AtTSPO knockout (KO) seedlings. Deletion of the Schizosaccharomyces pombe TSPO resulted in an increase in LD level in the cell. As compared with the WT, the mutant strain was more sensitive to cerulenin, an inhibitor of fatty acids and sterol biosynthesis. We found that in contrast with seedlings, overexpression of AtTSPO (OE) resulted in an up to 50% increase in seeds fatty acids as compared with WT. A time course experiment revealed that after 4 days of seed imbibition, the levels of triacylglycerol (TAG) was still higher in the OE seeds as compared with WT or KO seeds. However, the de novo synthesis of phospholipids and TAG after 24 h of imbibition was substantially reduced in OE seeds as compared with WT or KO seeds. Our findings support a plant TSPO role in energy homeostasis in a tissue-specific manner, enhancing fatty acids and LD accumulation in mature seeds and limiting LD levels in seedlings.
Collapse
Affiliation(s)
- Pawel Jurkiewicz
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Su Melser
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Center, IBVM, CS 20032 F-33140, Villenave d'Ornon, France
| | - Haitham Ayeb
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Vasko Veljanovski
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
| | - Mark Hooks
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Center, IBVM, CS 20032 F-33140, Villenave d'Ornon, France
| | - Dominique Rolin
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Center, IBVM, CS 20032 F-33140, Villenave d'Ornon, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, INRA Bordeaux Aquitaine, 33140, Villenave d'Ornon, France
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000, Bordeaux, France
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
79
|
Sharma A, Jha AK, Mishra S, Jain A, Chauhan BS, Kathuria M, Rawat KS, Gupta NM, Tripathi R, Mitra K, Sachdev M, Bhatt MLB, Goel A. Imaging and Quantitative Detection of Lipid Droplets by Yellow Fluorescent Probes in Liver Sections of Plasmodium Infected Mice and Third Stage Human Cervical Cancer Tissues. Bioconjug Chem 2018; 29:3606-3613. [DOI: 10.1021/acs.bioconjchem.8b00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ashutosh Sharma
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ajay K. Jha
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shachi Mishra
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankita Jain
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhavana S. Chauhan
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kathuria
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kundan S. Rawat
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific
and Innovative Research, Ghaziabad 201 002, India
| | - Neeraj M. Gupta
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renu Tripathi
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Monika Sachdev
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Madan L. B. Bhatt
- Department of Radiotherapy, King George’s Medical University, Lucknow 226003, India
| | - Atul Goel
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific
and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
80
|
Fam TK, Klymchenko AS, Collot M. Recent Advances in Fluorescent Probes for Lipid Droplets. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1768. [PMID: 30231571 PMCID: PMC6163203 DOI: 10.3390/ma11091768] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are organelles that serve as the storage of intracellular neutral lipids. LDs regulate many physiological processes. They recently attracted attention after extensive studies showed their involvement in metabolic disorders and diseases such as obesity, diabetes, and cancer. Therefore, it is of the highest importance to have reliable imaging tools. In this review, we focus on recent advances in the development of selective fluorescent probes for LDs. Their photophysical properties are described, and their advantages and drawbacks in fluorescence imaging are discussed. At last, we review the reported applications using these probes including two-photon excitation, in vivo and tissue imaging, as well as LDs tracking.
Collapse
Affiliation(s)
- Tkhe Kyong Fam
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Andrey S Klymchenko
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Mayeul Collot
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
81
|
Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nat Med 2018; 24:1372-1383. [PMID: 29988127 DOI: 10.1038/s41591-018-0102-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022]
Abstract
Recent research has focused on environmental effects that control tissue functionality and systemic metabolism. However, whether such stimuli affect human thermogenesis and body mass index (BMI) has not been explored. Here we show retrospectively that the presence of brown adipose tissue (BAT) and the season of conception are linked to BMI in humans. In mice, we demonstrate that cold exposure (CE) of males, but not females, before mating results in improved systemic metabolism and protection from diet-induced obesity of the male offspring. Integrated analyses of the DNA methylome and RNA sequencing of the sperm from male mice revealed several clusters of co-regulated differentially methylated regions (DMRs) and differentially expressed genes (DEGs), suggesting that the improved metabolic health of the offspring was due to enhanced BAT formation and increased neurogenesis. The conclusions are supported by cell-autonomous studies in the offspring that demonstrate an enhanced capacity to form mature active brown adipocytes, improved neuronal density and more norepinephrine release in BAT in response to cold stimulation. Taken together, our results indicate that in humans and in mice, seasonal or experimental CE induces an epigenetic programming of the sperm such that the offspring harbor hyperactive BAT and an improved adaptation to overnutrition and hypothermia.
Collapse
|
82
|
van Rijn JM, Ardy RC, Kuloğlu Z, Härter B, van Haaften-Visser DY, van der Doef HP, van Hoesel M, Kansu A, van Vugt AH, Thian M, Kokke FT, Krolo A, Başaran MK, Kaya NG, Aksu AÜ, Dalgıç B, Ozcay F, Baris Z, Kain R, Stigter EC, Lichtenbelt KD, Massink MP, Duran KJ, Verheij JB, Lugtenberg D, Nikkels PG, Brouwer HG, Verkade HJ, Scheenstra R, Spee B, Nieuwenhuis EE, Coffer PJ, Janecke AR, van Haaften G, Houwen RH, Müller T, Middendorp S, Boztug K. Intestinal Failure and Aberrant Lipid Metabolism in Patients With DGAT1 Deficiency. Gastroenterology 2018; 155:130-143.e15. [PMID: 29604290 PMCID: PMC6058035 DOI: 10.1053/j.gastro.2018.03.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Congenital diarrheal disorders are rare inherited intestinal disorders characterized by intractable, sometimes life-threatening, diarrhea and nutrient malabsorption; some have been associated with mutations in diacylglycerol-acyltransferase 1 (DGAT1), which catalyzes formation of triacylglycerol from diacylglycerol and acyl-CoA. We investigated the mechanisms by which DGAT1 deficiency contributes to intestinal failure using patient-derived organoids. METHODS We collected blood samples from 10 patients, from 6 unrelated pedigrees, who presented with early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure; we performed next-generation sequencing analysis of DNA from 8 patients. Organoids were generated from duodenal biopsies from 3 patients and 3 healthy individuals (controls). Caco-2 cells and patient-derived dermal fibroblasts were transfected or transduced with vectors that express full-length or mutant forms of DGAT1 or full-length DGAT2. We performed CRISPR/Cas9-guided disruption of DGAT1 in control intestinal organoids. Cells and organoids were analyzed by immunoblot, immunofluorescence, flow cytometry, chromatography, quantitative real-time polymerase chain reaction, and for the activity of caspases 3 and 7. RESULTS In the 10 patients, we identified 5 bi-allelic loss-of-function mutations in DGAT1. In patient-derived fibroblasts and organoids, the mutations reduced expression of DGAT1 protein and altered triacylglycerol metabolism, resulting in decreased lipid droplet formation after oleic acid addition. Expression of full-length DGAT2 in patient-derived fibroblasts restored formation of lipid droplets. Organoids derived from patients with DGAT1 mutations were more susceptible to lipid-induced cell death than control organoids. CONCLUSIONS We identified a large cohort of patients with congenital diarrheal disorders with mutations in DGAT1 that reduced expression of its product; dermal fibroblasts and intestinal organoids derived from these patients had altered lipid metabolism and were susceptible to lipid-induced cell death. Expression of full-length wildtype DGAT1 or DGAT2 restored normal lipid metabolism in these cells. These findings indicate the importance of DGAT1 in fat metabolism and lipotoxicity in the intestinal epithelium. A fat-free diet might serve as the first line of therapy for patients with reduced DGAT1 expression. It is important to identify genetic variants associated with congenital diarrheal disorders for proper diagnosis and selection of treatment strategies.
Collapse
Affiliation(s)
- Jorik M. van Rijn
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zarife Kuloğlu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Bettina Härter
- Division of Paediatric Surgery, Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Innsbruck, Austria
| | - Désirée Y. van Haaften-Visser
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Hubert P.J. van der Doef
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Aydan Kansu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Anke H.M. van Vugt
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Marini Thian
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Freddy T.M. Kokke
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Meryem Keçeli Başaran
- Pediatric Gastroenterology Department, Akdeniz University Medicine Hospital, Antalya, Turkey
| | - Neslihan Gurcan Kaya
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University School of Medicine, Ankara, Turkey
| | - Figen Ozcay
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Zeren Baris
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Edwin C.A. Stigter
- Molecular Cancer Research, Center Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Klaske D. Lichtenbelt
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maarten P.G. Massink
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Karen J. Duran
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joke B.G.M Verheij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen The Netherlands
| | - Peter G.J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Henkjan J. Verkade
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - René Scheenstra
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands
| | - Paul J. Coffer
- Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands
| | - Andreas R. Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Gijs van Haaften
- Department of Medical Genetics, Center for Molecular Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roderick H.J. Houwen
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, Utrecht University, Utrecht, The Netherlands
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Middendorp
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center, Utrecht University, Utrecht, The Netherlands.
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
83
|
Mishra R, Mushtaq Z, Regar R, Mallik B, Kumar V, Sankar J. Selective Imaging of Lipids in Adipocytes
by Using an Imidazolyl Derivative of Perylene Bisimide. Chembiochem 2018; 19:1386-1390. [DOI: 10.1002/cbic.201800134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ruchika Mishra
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Zeeshan Mushtaq
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Ramprasad Regar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Bhagaban Mallik
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Vimlesh Kumar
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| | - Jeyaraman Sankar
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhopal 462066 India
| |
Collapse
|
84
|
Vanhoutte R, Kahler JP, Martin S, van Veen S, Verhelst SHL. Clickable Polyamine Derivatives as Chemical Probes for the Polyamine Transport System. Chembiochem 2018; 19:907-911. [DOI: 10.1002/cbic.201800043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Roeland Vanhoutte
- Laboratory of Chemical Biology; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Jan Pascal Kahler
- Laboratory of Chemical Biology; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS; Otto-Hahn-Strasse 6b 44227 Dortmund Germany
| |
Collapse
|
85
|
Poppelreuther M, Sander S, Minden F, Dietz MS, Exner T, Du C, Zhang I, Ehehalt F, Knüppel L, Domschke S, Badenhop A, Staudacher S, Ehehalt R, Stremmel W, Thiele C, Heilemann M, Füllekrug J. The metabolic capacity of lipid droplet localized acyl-CoA synthetase 3 is not sufficient to support local triglyceride synthesis independent of the endoplasmic reticulum in A431 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018. [PMID: 29526665 DOI: 10.1016/j.bbalip.2018.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
ACSL3 is the only long chain fatty acyl-CoA synthetase consistently found on growing and mature lipid droplets (LDs), suggesting that this specific localization has biological relevance. Current models for LD growth propose that triglycerides are synthesized by enzymes at the LD surface, with activated fatty acids provided by LD localized ACSL3, thus allowing growth independent of the ER. Here, we tested this hypothesis by quantifying ACSL3 on LDs from human A431 cells. RNAi of ACSL3 reduced the oleoyl-CoA synthetase activity by 83%, suggesting that ACSL3 is by far the dominant enzyme of A431 cells. Molar quantification revealed that there are 1.4 million ACSL3 molecules within a single cell. Metabolic labeling indicated that each ACSL3 molecule contributed a net gain of 3.1 oleoyl-CoA/s. 3D reconstruction of confocal images demonstrated that 530 individual lipid droplets were present in an average oleate fed A431 cell. A representative single lipid droplet with a diameter of 0.66 μm contained 680 ACSL3 molecules on the surface. Subcellular fractionation showed that at least 68% of ACSL3 remain at the ER even during extensive fatty acid supplementation. High resolution single molecule microscopy confirmed the abundance of cytoplasmic ACSL3 outside of LDs. Model calculations for triglyceride synthesis using only LD localized ACSL3 gave significant slower growth of LDs as observed experimentally. In conclusion, although ACSL3 is an abundant enzyme on A431 LDs, the metabolic capacity is not sufficient to account for LD growth solely by the local synthesis of triglycerides.
Collapse
Affiliation(s)
| | - Simone Sander
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Fadil Minden
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Marina S Dietz
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Germany
| | - Tarik Exner
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Chen Du
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Ingrid Zhang
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Friedrich Ehehalt
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Laura Knüppel
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Susanne Domschke
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Anna Badenhop
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Sarah Staudacher
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Robert Ehehalt
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Wolfgang Stremmel
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Germany
| | - Mike Heilemann
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany.
| |
Collapse
|
86
|
Agarwal P, Scherer D, Günther B, Rupenthal ID. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int J Pharm 2018; 538:119-129. [DOI: 10.1016/j.ijpharm.2018.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/23/2022]
|
87
|
Collot M, Fam TK, Ashokkumar P, Faklaris O, Galli T, Danglot L, Klymchenko AS. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. J Am Chem Soc 2018; 140:5401-5411. [PMID: 29446627 DOI: 10.1021/jacs.7b12817] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipid droplets (LDs) are intracellular lipid-rich organelles that regulate the storage of neutral lipids and were recently found to be involved in many physiological processes, metabolic disorders, and diseases including obesity, diabetes, and cancers. Herein we present a family of new fluorogenic merocyanine fluorophores based on an indolenine moiety and a dioxaborine barbiturate derivative. These so-called StatoMerocyanines (SMCy) fluoresce from yellow to the near-infrared (NIR) in oil with an impressive fluorescence enhancement compared to aqueous media. Additionally, SMCy display remarkably high molar extinction coefficients (up to 390 000 M-1 cm-1) and high quantum yield values (up to 100%). All the members of this new family specifically stain the LDs in live cells with very low background noise. Unlike Nile Red, a well-known lipid droplet marker, SMCy dyes possess narrow absorption and emission bands in the visible, thus allowing multicolor imaging. SMCy proved to be compatible with fixation and led to high-quality 3D images of lipid droplets in cells and tissues. Their high brightness allowed efficient tissue imaging of adipocytes and circulating LDs. Moreover their remarkably high two-photon absorption cross-section, especially SMCy5.5 (up to 13 300 GM), as well as their capacity to efficiently fluoresce in the NIR region led to two-photon multicolor tissue imaging (liver). Taking advantage of the available color palette, lipid droplet exchange between cells was tracked and imaged, thus demonstrating intercellular communication.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| | - Tkhe Kyong Fam
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| | - Pichandi Ashokkumar
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| | - Orestis Faklaris
- ImagoSeine Core Facility, Institut Jacques Monod , Université Paris Diderot/CNRS, UMR 7593 , 15 Rue Hélène Brion , 75205 Paris CEDEX 13 , France
| | - Thierry Galli
- INSERM U894 , Centre de Psychiatrie et Neurosciences, "Membrane Traffic in Health and Diseased Brain" Team , 102-108 Rue de la Santé , 75014 Paris , France.,Université Paris Descartes , 75014 Paris , France
| | - Lydia Danglot
- INSERM U894 , Centre de Psychiatrie et Neurosciences, "Membrane Traffic in Health and Diseased Brain" Team , 102-108 Rue de la Santé , 75014 Paris , France.,Université Paris Descartes , 75014 Paris , France
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213 , Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin , 67401 Illkirch , France
| |
Collapse
|
88
|
Harchouni S, Field B, Menand B. AC-202, a highly effective fluorophore for the visualization of lipid droplets in green algae and diatoms. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:120. [PMID: 29713379 PMCID: PMC5913787 DOI: 10.1186/s13068-018-1117-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/12/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lipid-specific live cell dyes are an important tool for the study of algal lipid metabolism, the monitoring of lipid production, and the identification of algal strains with high lipid yields. Nile Red and BODIPY have emerged as the principal dyes for these purposes. However, they suffer from a number of shortcomings including for specificity, penetration, interference from chlorophyll autofluorescence, and incompatibility with widely used genetically encoded reporters in the green and blue regions of the spectrum such as the green fluorescent protein and the red fluorescent protein. RESULTS We tested a new blue fluorescent dye, AC-202, in both the green algae Chlamydomonas reinhardtii and the pennate diatom Phaeodactylum tricornutum. We show that AC-202 is effective in both algae and that after minimal sample preparation, it can label lipid droplets induced by nitrogen starvation or by inhibitors of the TOR (target of rapamycin) kinase. We found that AC-202 benefits from a low background signal and is therefore more sensitive than BODIPY for semiquantitative in vivo fluorescence measurements. Finally, a co-staining experiment indicated that AC-202 can be used for multicolor imaging in combination with both red and green fluorophores. CONCLUSIONS AC-202 is an alternative and highly effective fluorophore for algal research that resolves drawbacks encountered with other neutral lipid dyes. AC-202 can be used to rapidly and sensitively visualize lipid droplets, and will contribute to the identification of metabolic and signaling pathways involved in lipid droplet formation, monitoring lipid production, and in the development of screens for algal strains suitable for biofuel production.
Collapse
Affiliation(s)
- Seddik Harchouni
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR7265 BVME, 13009 Marseille, France
| |
Collapse
|
89
|
O’Connor D, Byrne A, Dolan C, Keyes TE. Phase partitioning, solvent-switchable BODIPY probes for high contrast cellular imaging and FCS. NEW J CHEM 2018. [DOI: 10.1039/c7nj04604a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipophilic BODIPY fluorphores, in which the BODIPY core bears pendant dipyrido[3,2-a:2′,3′-c]phenazine (Dppz) or naphthyridyl and cholesterol substituents were designed and prepared as lipid probes for both liposomes and live cell imaging.
Collapse
Affiliation(s)
- Darragh O’Connor
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| | - Aisling Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| | - Ciarán Dolan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
90
|
Morel E, Ghezzal S, Lucchi G, Truntzer C, Pais de Barros JP, Simon-Plas F, Demignot S, Mineo C, Shaul PW, Leturque A, Rousset M, Carrière V. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:199-211. [PMID: 29196159 DOI: 10.1016/j.bbalip.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Sara Ghezzal
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Géraldine Lucchi
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Caroline Truntzer
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Plateforme de Lipidomique, INSERM UMR1231, Université de Bourgogne Franche Comté, F-21000 Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France; EPHE, PSL Research University, F-75006 Paris, France
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Armelle Leturque
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Véronique Carrière
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France.
| |
Collapse
|
91
|
Van den Bossche L, Schoonenberg VAC, Burgener IA, Penning LC, Schrall IM, Kruitwagen HS, van Wolferen ME, Grinwis GCM, Kummeling A, Rothuizen J, van Velzen JF, Stathonikos N, Molenaar MR, Helms BJ, Brouwers JFHM, Spee B, van Steenbeek FG. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts. PLoS One 2017; 12:e0186491. [PMID: 29049355 PMCID: PMC5648188 DOI: 10.1371/journal.pone.0186491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS) and intrahepatic portosystemic shunts (IHPSS) was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS P<0.01; IHPSS P = 0.042). Involvement of lipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.
Collapse
Affiliation(s)
- Lindsay Van den Bossche
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vivien A. C. Schoonenberg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Iwan A. Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ingrid M. Schrall
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hedwig S. Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anne Kummeling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen F. van Velzen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nikolas Stathonikos
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Martijn R. Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht, The Netherlands
| | - Bernd J. Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht, The Netherlands
| | - Jos F. H. M. Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
92
|
Abstract
Triacylglycerol is a universal storage molecule for metabolic energy in living organisms. However, Dictyostelium amoebae, that have accumulated storage fat from added fatty acids do not progress through the starvation period preceding the development of the durable spore. Mutants deficient in genes of fat metabolism, such as fcsA, encoding a fatty acid activating enzyme, or dgat1 and dgat2, specifying proteins that synthesize triacylglycerol, strongly increase their chances to contribute to the spore fraction of the developing fruiting body, but lose the ability to produce storage fat efficiently. Dictyostelium seipin, an orthologue of a human protein that in patients causes the complete loss of adipose tissue when mutated, does not quantitatively affect fat storage in the amoeba. Dictyostelium seiP knockout mutants have lipid droplets that are enlarged in size but reduced in number. These mutants are as vulnerable as the wild type when exposed to fatty acids during their vegetative growth phase, and do not efficiently enter the spore head in Dictyostelium development. Summary: In contrast to many living organisms, storage fat is not beneficial for Dictyostelium cells when progressing through starvation and subsequent development of a dormant stage.
Collapse
Affiliation(s)
- Jessica M Kornke
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | - Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
93
|
Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci Rep 2017; 7:10779. [PMID: 28883484 PMCID: PMC5589817 DOI: 10.1038/s41598-017-11103-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
The grey and white matter regions of the mammalian brain consist of both neurons and neuroglial cells. Among the neuroglia, the two macroglia oligodendrocytes and astrocytes are the most abundant cell types. While the major function of oligodendrocytes is the formation of the lipid-rich myelin structure, the heterogeneous group of astrocytes fulfils a multitude of important roles in cerebral development and homeostasis. Brain lipid homeostasis involves the synthesis of a specific cerebral lipidome by local lipid metabolism. In this study we have investigated the fatty acid uptake and lipid biosynthesis in grey and white matter regions of the murine brain. Key findings were: (i) white matter oligodendrocytes and astrocytes take up saturated and unsaturated fatty acids, (ii) different grey matter regions show varying lipid labelling intensities, (iii) the medial habenula, an epithalamic grey matter structure, and the oligodendrocytes and astrocytes therein are targeted by fatty acids, and (iv) in the medial habenula, the neutral lipid containing lipid droplets are found in cells facing the ventricle but undetectable in the habenular parenchyma. Our data indicate a role for oligodendrocytes and astrocytes in local lipid metabolism of white and grey matter regions in the brain.
Collapse
|
94
|
Tang J, Zhang Y, Yin HY, Xu G, Zhang JL. Precise Labeling and Tracking of Lipid Droplets in Adipocytes Using a Luminescent ZnSalen Complex. Chem Asian J 2017; 12:2533-2538. [DOI: 10.1002/asia.201701010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Tang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Yanfei Zhang
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Peking University; Beijing 100191 P.R. China
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Peking University; Beijing 100191 P.R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Rare Earth Materials Chemistry and Applications; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| |
Collapse
|
95
|
Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, Tang BZ. Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. Chem Sci 2017; 8:5440-5446. [PMID: 28970923 PMCID: PMC5609514 DOI: 10.1039/c7sc01400g] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets are dynamic organelles involved in various physiological processes and their detection is thus of high importance to biomedical research. Recent reports show that AIE probes for lipid droplet imaging have the superior advantages of high brightness, large Stokes shift and excellent photostability compared to commercial dyes but suffer from the problem of having a short excitation wavelength. In this work, an AIE probe, namely TPA-BI, was rationally designed and easily prepared from triphenylamine and imidazolone building blocks for the two-photon imaging of lipid droplets. TPA-BI exhibited TICT+AIE features with a large Stokes shift of up to 202 nm and a large two-photon absorption cross-section of up to 213 GM. TPA-BI was more suitable for two-photon imaging of the lipid droplets with the merits of a higher 3D resolution, lesser photobleaching, a reduced autofluorescence and deeper penetration in tissue slices than a commercial probe based on BODIPY 493/503, providing a promising imaging tool for lipid droplet tracking and analysis in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Meijuan Jiang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Xinggui Gu
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Yilin Zhang
- Department of Physics , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Ryan T K Kwok
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Kam Sing Wong
- Department of Physics , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
96
|
Maier A, Wu H, Cordasic N, Oefner P, Dietel B, Thiele C, Weidemann A, Eckardt KU, Warnecke C. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice. FASEB J 2017; 31:4971-4984. [PMID: 28760743 DOI: 10.1096/fj.201700235r] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
Abstract
Recently we identified hypoxia-inducible protein 2 (HIG2)/hypoxia-inducible lipid droplet-associated (HILPDA) as lipid droplet (LD) protein. Because HILPDA is highly expressed in atherosclerotic plaques, we examined its regulation and function in murine macrophages, compared it to the LD adipose differentiation-related protein (Adrp)/perilipin 2 (Plin2), and investigated its effects on atherogenesis in apolipoprotein E-deficient (ApoE-/-) mice. Tie2-Cre-driven Hilpda conditional knockout (cKO) did not affect viability, proliferation, and ATP levels in macrophages. Hilpda proved to be a target of hypoxia-inducible factor 1 (Hif-1) and peroxisome proliferator-activated receptors. In contrast, Adrp/Plin2 was not induced by Hif-1. Hilpda localized to the endoplasmic reticulum-LD interface, the site of LD formation. Hypoxic lipid accumulation and storage of oxidized LDL, cholesteryl esters and triglycerides were abolished in Hilpda cKO macrophages, independent of the glycolytic switch, fatty acid or lipoprotein uptake. Hilpda depletion reduced resistance against lipid overload and increased production of reactive oxygen species after reoxygenation. LPS-stimulated prostaglandin-E2 production was dysregulated in macrophages, demonstrating the substrate buffer and reservoir function of LDs for eicosanoid production. In ApoE-/- Hilpda cKO mice, total aortic plaque area, plaque macrophages and vascular Vegf expression were reduced. Thus, macrophage Hilpda is crucial to foam-cell formation and lipid deposition, and to controlled prostaglandin-E2 production. By these means Hilpda promotes lesion formation and progression of atherosclerosis.-Maier, A., Wu, H., Cordasic, N., Oefner, P., Dietel, B., Thiele, C., Weidemann, A., Eckardt, K.-U., Warnecke, C. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice.
Collapse
Affiliation(s)
- Anja Maier
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hao Wu
- Department of Molecular Biology and Genetics, and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Oefner
- Institute for Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Barbara Dietel
- Department of Molecular Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Thiele
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; and
| | - Alexander Weidemann
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Medicine I, Nephrology, Transplantation, and Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Cologne, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Warnecke
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany;
| |
Collapse
|
97
|
Renvoisé B, Malone B, Falgairolle M, Munasinghe J, Stadler J, Sibilla C, Park SH, Blackstone C. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum Mol Genet 2017; 25:5111-5125. [PMID: 27638887 DOI: 10.1093/hmg/ddw315] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs; SPG1-76 plus others) are length-dependent disorders affecting long corticospinal axons, and the most common autosomal dominant forms are caused by mutations in genes that encode the spastin (SPG4), atlastin-1 (SPG3A) and REEP1 (SPG31) proteins. These proteins bind one another and shape the tubular endoplasmic reticulum (ER) network throughout cells. They also are involved in lipid droplet formation, enlargement, or both in cells, though mechanisms remain unclear. Here we have identified evidence of partial lipoatrophy in Reep1 null mice in addition to prominent spastic paraparesis. Furthermore, Reep1-/- embryonic fibroblasts and neurons in the cerebral cortex both show lipid droplet abnormalities. The apparent partial lipodystrophy in Reep1 null mice, although less severe, is reminiscent of the lipoatrophy phenotype observed in the most common form of autosomal recessive lipodystrophy, Berardinelli-Seip congenital lipodystrophy. Berardinelli-Seip lipodystrophy is caused by autosomal recessive mutations in the BSCL2 gene that encodes an ER protein, seipin, that is also mutated in the autosomal dominant HSP SPG17 (Silver syndrome). Furthermore, REEP1 co-immunoprecipitates with seipin in cells. This strengthens the link between alterations in ER morphogenesis and lipid abnormalities, with important pathogenic implications for the most common forms of HSP.
Collapse
Affiliation(s)
| | | | | | - Jeeva Munasinghe
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
98
|
Bader CA, Carter EA, Safitri A, Simpson PV, Wright P, Stagni S, Massi M, Lay PA, Brooks DA, Plush SE. Unprecedented staining of polar lipids by a luminescent rhenium complex revealed by FTIR microspectroscopy in adipocytes. MOLECULAR BIOSYSTEMS 2017; 12:2064-8. [PMID: 27170554 DOI: 10.1039/c6mb00242k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fourier transform infrared (FTIR) microspectroscopy and confocal imaging have been used to demonstrate that the neutral rhenium(i) tricarbonyl 1,10-phenanthroline complex bound to 4-cyanophenyltetrazolate as the ancillary ligand is able to localise in regions with high concentrations of polar lipids such as phosphatidylethanolamine (PE), sphingomyelin, sphingosphine and lysophosphatidic acid (LPA) in mammalian adipocytes.
Collapse
Affiliation(s)
- C A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences/Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | - E A Carter
- Vibrational Spectroscopy Core Facility and School of Chemistry, The University of Sydney, Sydney, Australia
| | - A Safitri
- Vibrational Spectroscopy Core Facility and School of Chemistry, The University of Sydney, Sydney, Australia
| | - P V Simpson
- School of Chemistry, Curtin University, Perth, Australia
| | - P Wright
- School of Chemistry, Curtin University, Perth, Australia
| | - S Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - M Massi
- School of Chemistry, Curtin University, Perth, Australia
| | - P A Lay
- Vibrational Spectroscopy Core Facility and School of Chemistry, The University of Sydney, Sydney, Australia
| | - D A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences/Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | - S E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences/Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| |
Collapse
|
99
|
Appelqvist H, Stranius K, Börjesson K, Nilsson KPR, Dyrager C. Specific Imaging of Intracellular Lipid Droplets Using a Benzothiadiazole Derivative with Solvatochromic Properties. Bioconjug Chem 2017; 28:1363-1370. [DOI: 10.1021/acs.bioconjchem.7b00048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hanna Appelqvist
- Department
of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Kati Stranius
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden
| | - K. Peter. R. Nilsson
- Department
of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Christine Dyrager
- Department
of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
100
|
Öberg E, Appelqvist H, Nilsson KPR. Non-fused Phospholes as Fluorescent Probes for Imaging of Lipid Droplets in Living Cells. Front Chem 2017; 5:28. [PMID: 28487854 PMCID: PMC5403830 DOI: 10.3389/fchem.2017.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Molecular tools for fluorescent imaging of specific compartments in cells are essential for understanding the function and activity of cells. Here, we report the synthesis of a series of pyridyl- and thienyl-substituted phospholes and the evaluation of these dyes for fluorescent imaging of cells. The thienyl-substituted phospholes proved to be successful for staining of cultured normal and malignant cells due to their fluorescent properties and low toxicity. Co-staining experiments demonstrated that these probes target lipid droplets, which are, lipid-storage organelles found in the cytosol of nearly all cell types. Our findings confirm that thienyl-substituted phospholes can be utilized as fluorescent tools for vital staining of cells, and we foresee that these fluorescent dyes might be used in studies to unravel the roles that lipid droplets play in cellular physiology and in diseases.
Collapse
Affiliation(s)
- Elisabet Öberg
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - Hanna Appelqvist
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping UniversityLinköping, Sweden
| |
Collapse
|