51
|
Zhang Y, Wu X, Andy Tao W. Characterization and Applications of Extracellular Vesicle Proteome with Post-Translational Modifications. Trends Analyt Chem 2018; 107:21-30. [PMID: 31598025 DOI: 10.1016/j.trac.2018.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are a diverse population of complex membrane-encapsulated vesicles released by a variety of cell types and exist in most of body fluids. Continuously growing number of reports revealed that EVs participate in multiple biological processes, such as intercellular communication, immune regulation, and dissemination of cancer cells. Accordingly, recent attention has been given to the characterization of extracellular vesicles and their components. This review focuses on state-of-the-art proteomic technologies to analyze proteomes of EVs, especially their post-translational modifications (PTMs). With their strong biological relevance and the relatively noninvasive accessibility from body fluids, the promising potential and early applications of EV proteome and its PTMs as attracting biomarker sources are also evaluated.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
52
|
|
53
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
54
|
Lee S, Tumolo JM, Ehlinger AC, Jernigan KK, Qualls-Histed SJ, Hsu PC, McDonald WH, Chazin WJ, MacGurn JA. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin. eLife 2017; 6:29176. [PMID: 29130884 PMCID: PMC5706963 DOI: 10.7554/elife.29176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/10/2017] [Indexed: 11/30/2022] Open
Abstract
Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole.
Collapse
Affiliation(s)
- Sora Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Jessica M Tumolo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Aaron C Ehlinger
- Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Susan J Qualls-Histed
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Pi-Chiang Hsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University, Nashville, United States.,Mass Spectrometry Research Center, Vanderbilt University, Nashville, United States
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
55
|
Jupin I, Ayach M, Jomat L, Fieulaine S, Bressanelli S. A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase. PLoS Pathog 2017; 13:e1006714. [PMID: 29117247 PMCID: PMC5695851 DOI: 10.1371/journal.ppat.1006714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/20/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
The positive-strand RNA virus Turnip yellow mosaic virus (TYMV) encodes an ovarian tumor (OTU)-like protease/deubiquitinase (PRO/DUB) protein domain involved both in proteolytic processing of the viral polyprotein through its PRO activity, and in removal of ubiquitin chains from ubiquitylated substrates through its DUB activity. Here, the crystal structures of TYMV PRO/DUB mutants and molecular dynamics simulations reveal that an idiosyncratic mobile loop participates in reversibly constricting its unusual catalytic site by adopting "open", "intermediate" or "closed" conformations. The two cis-prolines of the loop form a rigid flap that in the most closed conformation zips up against the other side of the catalytic cleft. The intermediate and closed conformations also correlate with a reordering of the TYMV PRO/DUB catalytic dyad, that then assumes a classical, yet still unusually mobile, OTU DUB alignment. Further structure-based mutants designed to interfere with the loop's mobility were assessed for enzymatic activity in vitro and in vivo, and were shown to display reduced DUB activity while retaining PRO activity. This indicates that control of the switching between the dual PRO/DUB activities resides prominently within this loop next to the active site. Introduction of mutations into the viral genome revealed that the DUB activity contributes to the extent of viral RNA accumulation both in single cells and in whole plants. In addition, the conformation of the mobile flap was also found to influence symptoms severity in planta. Such mutants now provide powerful tools with which to study the specific roles of reversible ubiquitylation in viral infection. Viruses have much smaller genomes than their hosts. Consequently, they often encode proteins which are multifunctional. For instance, some viral proteases have a dual function, being also deubiquitinases, i.e. enzymes capable of removing ubiquitin tags grafted onto proteins and that often target them for destruction. The protease and deubiquitinase activities share a single active site that is used alternately for one function or the other, but how this switch between activities may be regulated is presently unknown. To answer this question, we studied a simple plant virus that is a useful model system for these complex molecular biology phenomena, and that encodes a simplified protease/deubiquitinase. Here, thanks to a combination of structural and functional analyses, we managed to decouple the two activities, killing the deubiquitinase activity while preserving the protease one. This successful decoupling relies on our discovery that a loop inserted next to the active site is mobile, and can thus act as a switch between the two activities. This result allowed us to demonstrate the importance of the specific deubiquinase activity in viral multiplication. In addition, viral symptoms were also severely affected by mutations affecting the loop mobility. Our data provide powerful tools for further studies, that may also be relevant for more complex or medically relevant viruses.
Collapse
Affiliation(s)
- Isabelle Jupin
- Institut Jacques Monod, CNRS—Univ Paris-Diderot, Paris, France
- * E-mail: (IJ); (SB)
| | - Maya Ayach
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
| | - Lucile Jomat
- Institut Jacques Monod, CNRS—Univ Paris-Diderot, Paris, France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
| | - Stéphane Bressanelli
- Institute for Integrative Biology of the Cell, CEA—CNRS—Univ Paris-Saclay, Gif sur Yvette, France
- * E-mail: (IJ); (SB)
| |
Collapse
|
56
|
Pilling C, Cooper JA. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms. Sci Rep 2017; 7:10838. [PMID: 28883622 PMCID: PMC5589800 DOI: 10.1038/s41598-017-11040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 02/08/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.
Collapse
Affiliation(s)
- Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.,Molecular and Cellular Biology Program, 1959 NE Pacific Street, HSB T-466, University of Washington, Box 357275, Seattle, WA, 98195-7275, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.
| |
Collapse
|
57
|
Stoten CL, Carlton JG. ESCRT-dependent control of membrane remodelling during cell division. Semin Cell Dev Biol 2017; 74:50-65. [PMID: 28843980 PMCID: PMC6015221 DOI: 10.1016/j.semcdb.2017.08.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) proteins form an evolutionarily conserved membrane remodelling machinery. Identified originally for their role in cargo sorting and remodelling of endosomal membranes during yeast vacuolar sorting, an extensive body of work now implicates a sub-complex of this machinery (ESCRT-III), as a transplantable membrane fission machinery that is dispatched to various cellular locations to achieve a topologically unique membrane separation. Surprisingly, several ESCRT-III-regulated processes occur during cell division, when cells undergo a dramatic and co-ordinated remodelling of their membranes to allow the physical processes of division to occur. The ESCRT machinery functions in regeneration of the nuclear envelope during open mitosis and in the abscission phase of cytokinesis, where daughter cells are separated from each other in the last act of division. Roles for the ESCRT machinery in cell division are conserved as far back as Archaea, suggesting that the ancestral role of these proteins was as a membrane remodelling machinery that facilitated division and that was co-opted throughout evolution to perform a variety of other cell biological functions. Here, we will explore the function and regulation of the ESCRT machinery in cell division.
Collapse
|
58
|
Nagel MK, Kalinowska K, Vogel K, Reynolds GD, Wu Z, Anzenberger F, Ichikawa M, Tsutsumi C, Sato MH, Kuster B, Bednarek SY, Isono E. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proc Natl Acad Sci U S A 2017; 114:E7197-E7204. [PMID: 28784794 PMCID: PMC5576839 DOI: 10.1073/pnas.1710866114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.
Collapse
Affiliation(s)
- Marie-Kristin Nagel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kamila Kalinowska
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Karin Vogel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Anzenberger
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mie Ichikawa
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Chie Tsutsumi
- Department of Botany, National Museum of Nature and Science, 305-0005 Tsukuba, Japan
| | - Masa H Sato
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Erika Isono
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
59
|
Giovannone AJ, Reales E, Bhattaram P, Fraile-Ramos A, Weimbs T. Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes. Mol Biol Cell 2017; 28:2843-2853. [PMID: 28814500 PMCID: PMC5638587 DOI: 10.1091/mbc.e17-07-0461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023] Open
Abstract
Monoubiquitination of Stx3 leads to efficient endocytosis from the basolateral plasma membrane and trafficking into the multivesicular body/exosomal pathway. Stx3 plays a role in cargo recruitment into exosomes. This pathway is exploited by HCMV for virion excretion. Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion.
Collapse
Affiliation(s)
- Adrian J Giovannone
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Pallavi Bhattaram
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
60
|
Setz C, Friedrich M, Rauch P, Fraedrich K, Matthaei A, Traxdorf M, Schubert U. Inhibitors of Deubiquitinating Enzymes Block HIV-1 Replication and Augment the Presentation of Gag-Derived MHC-I Epitopes. Viruses 2017; 9:v9080222. [PMID: 28805676 PMCID: PMC5580479 DOI: 10.3390/v9080222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
In recent years it has been well established that two major constituent parts of the ubiquitin proteasome system (UPS)—the proteasome holoenzymes and a number of ubiquitin ligases—play a crucial role, not only in virus replication but also in the regulation of the immunogenicity of human immunodeficiency virus type 1 (HIV-1). However, the role in HIV-1 replication of the third major component, the deubiquitinating enzymes (DUBs), has remained largely unknown. In this study, we show that the DUB-inhibitors (DIs) P22077 and PR-619, specific for the DUBs USP7 and USP47, impair Gag processing and thereby reduce the infectivity of released virions without affecting viral protease activity. Furthermore, the replication capacity of X4- and R5-tropic HIV-1NL4-3 in human lymphatic tissue is decreased upon treatment with these inhibitors without affecting cell viability. Most strikingly, combinatory treatment with DIs and proteasome inhibitors synergistically blocks virus replication at concentrations where mono-treatment was ineffective, indicating that DIs can boost the therapeutic effect of proteasome inhibitors. In addition, P22077 and PR-619 increase the polyubiquitination of Gag and thus its entry into the UPS and the major histocompatibility complex (MHC)-I pathway. In summary, our data point towards a model in which specific inhibitors of DUBs not only interfere with virus spread but also increase the immune recognition of HIV-1 expressing cells.
Collapse
Affiliation(s)
- Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Melanie Friedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Kirsten Fraedrich
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Alina Matthaei
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
61
|
Zhao GN, Zhang P, Gong J, Zhang XJ, Wang PX, Yin M, Jiang Z, Shen LJ, Ji YX, Tong J, Wang Y, Wei QF, Wang Y, Zhu XY, Zhang X, Fang J, Xie Q, She ZG, Wang Z, Huang Z, Li H. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat Med 2017; 23:742-752. [PMID: 28481357 DOI: 10.1038/nm.4334] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is an increasingly prevalent liver pathology that can progress from non-alcoholic fatty liver disease (NAFLD), and it is a leading cause of cirrhosis and hepatocellular carcinoma. There is currently no pharmacological therapy for NASH. Defective lysosome-mediated protein degradation is a key process that underlies steatohepatitis and a well-recognized drug target in a variety of diseases; however, whether it can serve as a therapeutic target for NAFLD and NASH remains unknown. Here we report that transmembrane BAX inhibitor motif-containing 1 (TMBIM1) is an effective suppressor of steatohepatitis and a previously unknown regulator of the multivesicular body (MVB)-lysosomal pathway. Tmbim1 expression in hepatocytes substantially inhibited high-fat diet-induced insulin resistance, hepatic steatosis and inflammation in mice. Mechanistically, Tmbim1 promoted the lysosomal degradation of toll-like receptor 4 by cooperating with the ESCRT endosomal sorting complex to facilitate MVB formation, and the ubiquitination of Tmbim1 by the E3 ubiquitin ligase Nedd4l was required for this process. We also found that overexpression of Tmbim1 in the liver effectively inhibited a severe form of NAFLD in mice and NASH progression in monkeys. Taken together, these findings could lead to the development of promising strategies to treat NASH by targeting MVB regulators to properly orchestrate the lysosome-mediated protein degradation of key mediators of the disease.
Collapse
Affiliation(s)
- Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Miao Yin
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhou Jiang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Li-Jun Shen
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jingjing Tong
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutao Wang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiao-Fang Wei
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Wang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xin Zhang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Fang
- Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingguo Xie
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Gang She
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zan Huang
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
62
|
Shin H, Bang S, Kim J, Jun JH, Song H, Lim HJ. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice. Sci Rep 2017; 7:41986. [PMID: 28155881 PMCID: PMC5290465 DOI: 10.1038/srep41986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
Dormant blastocysts during delayed implantation undergo autophagic activation, which is an adaptive response to prolonged survival in utero during less favorable environment. We observed that multivesicular bodies (MVBs) accumulate in the trophectoderm of dormant blastocysts upon activation for implantation. Since autophagosomes are shown to fuse with MVBs and efficient autophagic degradation requires functional MVBs, we examined if MVB formation in activated blastocysts are associated with protracted autophagic state during dormancy. We show here that autophagic activation during dormancy is one precondition for MVB formation in activated blastocysts. Furthermore, the blockade of FGF signaling with PD173074 partially interferes with MVB formation in these blastocysts, suggesting the involvement of FGFR signaling in this process. We believe that MVB formation in activated blastocysts after dormancy is a potential mechanism of clearing subcellular debris accumulated during prolonged autophagy.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Biomedical Science &Technology, Institute of Biomedical Science &Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Soyoung Bang
- Department of Biomedical Science &Technology, Institute of Biomedical Science &Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Jiyeon Kim
- Department of Biomedical Science &Technology, Institute of Biomedical Science &Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, 553 Sanseong-daero, Seongnam, Gyeonggi-do 13135, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, CHA Bio Complex, 689 Sampyeong-dong, Seongnam, Gyeonggi-do 13884, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science &Technology, Institute of Biomedical Science &Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.,Department of Veterinary Medicine, School of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
63
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
64
|
Selective Lysosomal Transporter Degradation by Organelle Membrane Fusion. Dev Cell 2016; 40:151-167. [PMID: 28017618 DOI: 10.1016/j.devcel.2016.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/19/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
Lysosomes rely on their resident transporter proteins to return products of catabolism to the cell for reuse and for cellular signaling, metal storage, and maintaining the lumenal environment. Despite their importance, little is known about the lifetime of these transporters or how they are regulated. Using Saccharomyces cerevisiae as a model, we discovered a new pathway intrinsic to homotypic lysosome membrane fusion that is responsible for their degradation. Transporter proteins are selectively sorted by the docking machinery into an area between apposing lysosome membranes, which is internalized and degraded by lumenal hydrolases upon organelle fusion. These proteins have diverse lifetimes that are regulated in response to protein misfolding, changing substrate levels, or TOR activation. Analogous to endocytosis for controlling surface protein levels, the "intralumenal fragment pathway" is critical for lysosome membrane remodeling required for organelle function in the context of cellular protein quality control, ion homeostasis, and metabolism.
Collapse
|
65
|
Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S, Xie Q. ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. MOLECULAR PLANT 2016; 9:1570-1582. [PMID: 27856401 DOI: 10.1016/j.molp.2016.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 11/05/2016] [Indexed: 05/03/2023]
Abstract
Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-like protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-linked diubiquitin, and PYL4 possesses K63-linked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoqiang Cao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China.
| |
Collapse
|
66
|
Tavares LA, da Silva EML, da Silva-Januário ME, Januário YC, de Cavalho JV, Czernisz ÉS, Mardones GA, daSilva LLP. CD4 downregulation by the HIV-1 protein Nef reveals distinct roles for the γ1 and γ2 subunits of the AP-1 complex in protein trafficking. J Cell Sci 2016; 130:429-443. [PMID: 27909244 DOI: 10.1242/jcs.192104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
The HIV accessory protein Nef is a major determinant of viral pathogenesis that facilitates viral particle release, prevents viral antigen presentation and increases infectivity of new virus particles. These functions of Nef involve its ability to remove specific host proteins from the surface of infected cells, including the CD4 receptor. Nef binds to the adaptor protein 2 (AP-2) and CD4 in clathrin-coated pits, forcing CD4 internalization and its subsequent targeting to lysosomes. Herein, we report that this lysosomal targeting requires a variant of AP-1 containing isoform 2 of γ-adaptin (AP1G2, hereafter γ2). Depletion of the γ2 or μ1A (AP1M1) subunits of AP-1, but not of γ1 (AP1G1), precludes Nef-mediated lysosomal degradation of CD4. In γ2-depleted cells, CD4 internalized by Nef accumulates in early endosomes and this alleviates CD4 removal from the cell surface. Depletion of γ2 also hinders EGFR-EGF-complex targeting to lysosomes, an effect that is not observed upon γ1 depletion. Taken together, our data provide evidence that the presence of γ1 or γ2 subunits delineates two distinct variants of AP-1 complexes, with different functions in protein sorting.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Eulália M L da Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Mara E da Silva-Januário
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Julianne V de Cavalho
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Érika S Czernisz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Gonzalo A Mardones
- Department of Physiology, School of Medicine, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
67
|
Comparative Analysis of Ciliary Membranes and Ectosomes. Curr Biol 2016; 26:3327-3335. [PMID: 27866888 DOI: 10.1016/j.cub.2016.09.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/20/2016] [Accepted: 09/27/2016] [Indexed: 01/06/2023]
Abstract
Primary and motile cilia/flagella function as cellular antennae, receiving signals from the environment and subsequently activating signaling pathways that are critical for cellular homeostasis and differentiation [1-3]. Recent work with the green alga Chlamydomonas and the nematode C. elegans demonstrated that ectosomes can be released from the cilium and can mediate the intercellular communication [4-9]. To better understand the function of flagellar ectosomes, we have compared their protein composition to that of the flagellar membrane from which they are derived. Ectosomes released from flagella have a unique protein composition, being enriched in a subset of flagellar membrane proteins, proteases, proteins from the endosomal sorting complex required for transport (ESCRT) [10-12], small GTPases, and ubiquitinated proteins. Live imaging showed that an ESCRT-related protein (PDCD6) was enriched in ectosomes released from flagella during gamete activation. We devised a sensitive and rapid assay to monitor ectosome release using luciferase fused to PDCD6 and a mutated ubiquitin. Ectosome release increased when cells underwent flagellar resorption. Knockdown of two ESCRT-related proteins, PDCD6 and VPS4, attenuated ectosome release during flagellar shortening and shortening was slowed. These data suggest that the ESCRT proteins mediate ectosome release and thereby influence flagellar shortening in Chlamydomonas. In addition, the prevalence of receptors such as agglutinin and ubiquitinated proteins in ciliary ectosomes suggests that they are involved in cell signaling and turnover of ciliary proteins.
Collapse
|
68
|
Barouch-Bentov R, Neveu G, Xiao F, Beer M, Bekerman E, Schor S, Campbell J, Boonyaratanakornkit J, Lindenbach B, Lu A, Jacob Y, Einav S. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment. mBio 2016; 7:e01456-16. [PMID: 27803188 PMCID: PMC5090039 DOI: 10.1128/mbio.01456-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. IMPORTANCE Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether envelopment of HCV and other viruses lacking defined late domains is ESCRT mediated and, if so, what the entry points into the ESCRT pathway are remain unknown. Here, we report the interaction network of HCV with the ESCRT machinery and a critical role for HRS, an ESCRT-0 complex component, in HCV envelopment. Viral protein ubiquitination was discovered to be a signal for HRS binding and HCV assembly, thereby functionally compensating for the absence of late domains. These findings characterize how a virus lacking defined late domains co-opts ESCRT to bud intracellularly. Since the ESCRT machinery is essential for the life cycle of multiple viruses, better understanding of this virus-host interplay may yield targets for broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gregory Neveu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Fei Xiao
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Melanie Beer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Elena Bekerman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph Campbell
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jim Boonyaratanakornkit
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Yves Jacob
- Département de Virologie, Unité de Génétique Moléculaire des Virus ARN (GMVR), Institut Pasteur, Centre national de la recherche scientifique, and Université Paris Diderot, Paris, France
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
69
|
MacDonald C, Stamnes MA, Katzmann DJ, Piper RC. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies. Cell Cycle 2016; 14:3673-8. [PMID: 26505929 DOI: 10.1080/15384101.2015.1100773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.
Collapse
Affiliation(s)
- Chris MacDonald
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| | - Mark A Stamnes
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| | - David J Katzmann
- b Biochemistry and Molecular Biology; Mayo Clinic College of Medicine ; Rochester , MN USA
| | - Robert C Piper
- a Molecular Physiology and Biophysics; University of Iowa ; Iowa City , IA USA
| |
Collapse
|
70
|
Abstract
The narrow membrane necks formed during viral, exosomal and intra-endosomal budding from membranes, as well as during cytokinesis and related processes, have interiors that are contiguous with the cytosol. Severing these necks involves action from the opposite face of the membrane as occurs during the well-characterized formation of coated vesicles. This 'reverse' (or 'inverse')-topology membrane scission is carried out by the endosomal sorting complex required for transport (ESCRT) proteins, which form filaments, flat spirals, tubes and conical funnels that are thought to direct membrane remodelling and scission. Their assembly, and their disassembly by the ATPase vacuolar protein sorting-associated 4 (VPS4) have been intensively studied, but the mechanism of scission has been elusive. New insights from cryo-electron microscopy and various types of spectroscopy may finally be close to rectifying this situation.
Collapse
|
71
|
The Ubiquitin Ligase Itch and Ubiquitination Regulate BFRF1-Mediated Nuclear Envelope Modification for Epstein-Barr Virus Maturation. J Virol 2016; 90:8994-9007. [PMID: 27466427 DOI: 10.1128/jvi.01235-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cellular endosomal sorting complex required for transport (ESCRT) was recently found to mediate important morphogenesis processes at the nuclear envelope (NE). We previously showed that the Epstein-Barr virus (EBV) BFRF1 protein recruits the ESCRT-associated protein Alix to modulate NE structure and promote EBV nuclear egress. Here, we uncover new cellular factors and mechanisms involved in this process. BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. BFRF1 is ubiquitinated, and elimination of possible ubiquitination by either lysine mutations or fusion of a deubiquitinase hampers NE-derived vesicle formation and virus maturation. While it interacts with multiple Nedd4-like ubiquitin ligases, BFRF1 preferentially binds Itch ligase. We show that Itch associates with Alix and BFRF1 and is required for BFRF1-induced NE vesicle formation. Our data demonstrate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE and EBV maturation, uncovering novel regulatory mechanisms of nuclear egress of viral nucleocapsids. IMPORTANCE The nuclear envelope (NE) of eukaryotic cells not only serves as a transverse scaffold for cellular processes, but also as a natural barrier for most DNA viruses that assemble their nucleocapsids in the nucleus. Previously, we showed that the cellular endosomal sorting complex required for transport (ESCRT) machinery is required for the nuclear egress of EBV. Here, we further report the molecular interplay among viral BFRF1, the ESCRT adaptor Alix, and the ubiquitin ligase Itch. We found that BFRF1-induced NE vesicles are similar to those observed following EBV reactivation. The lysine residues and the ubiquitination of BFRF1 regulate the formation of BFRF1-induced NE-derived vesicles and EBV maturation. During the process, a ubiquitin ligase, Itch, preferably associates with BFRF1 and is required for BFRF1-induced NE vesicle formation. Therefore, our data indicate that Itch, ubiquitin, and Alix control the BFRF1-mediated modulation of the NE, suggesting novel regulatory mechanisms for ESCRT-mediated NE modulation.
Collapse
|
72
|
Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci 2016; 73:3497-506. [PMID: 27137187 PMCID: PMC4980412 DOI: 10.1007/s00018-016-2255-5] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome.
Collapse
Affiliation(s)
- Guinevere L Grice
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
73
|
Abstract
In this issue of Structure, Xiao et al. (2015) describe a new mechanism of regulation of lipid binding. Structural and functional studies demonstrate that Tom1 interactions with the cargo sorting protein Tollip induce the partially unfolded Tom1-binding domain of Tollip to fold. This folding modulates lipid binding of Tollip, mediating its dissociation from PI(3)P and committing Tollip to cargo trafficking.
Collapse
|
74
|
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590:2494-511. [PMID: 27350027 DOI: 10.1002/1873-3468.12272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.
Collapse
Affiliation(s)
- Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
75
|
Pereira EA, daSilva LLP. HIV-1 Nef: Taking Control of Protein Trafficking. Traffic 2016; 17:976-96. [PMID: 27161574 DOI: 10.1111/tra.12412] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/25/2022]
Abstract
The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions.
Collapse
Affiliation(s)
- Estela A Pereira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
76
|
Abstract
Bilayered phospholipid membranes are vital to the organization of the living cell. Based on fundamental principles of polarity, membranes create borders allowing defined spaces to be encapsulated. This compartmentalization is a prerequisite for the complex functional design of the eukaryotic cell, yielding localities that can differ in composition and operation. During macroautophagy, cytoplasmic components become enclosed by a growing double bilayered membrane, which upon closure creates a separate compartment, the autophagosome. The autophagosome is then primed for fusion with endosomal and lysosomal compartments, leading to degradation of the captured material. A large number of proteins have been found to be essential for autophagy, but little is known about the specific lipids that constitute the autophagic membranes and the membrane modeling events that are responsible for regulation of autophagosome shape and size. In this Commentary, we review the recent progress in our understanding of the membrane shaping and remodeling events that are required at different steps of the autophagy pathway. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome' by Tassula Proikas-Cezanne et al. (J. Cell Sci. 128, 207-217).
Collapse
Affiliation(s)
- Sven R Carlsson
- Department of Medical Biochemistry and Biophysics, University of Umeå, SE-901 87 Umeå, Sweden
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, NO-0317 Oslo, Norway
| |
Collapse
|
77
|
Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V, Reymond N, Fernandez L, Milhiet PE, Georget V, Urbach S, Lasorsa L, Orsetti B, Boissière-Michot F, Lopez-Crapez E, Theillet C, Roche S, Benistant C. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat Commun 2016; 7:10765. [PMID: 26899482 PMCID: PMC4764922 DOI: 10.1038/ncomms10765] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2+/ER+ tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers. ERBB2 overexpression in human breast cancer leads to invasion and metastasis. Here the authors report that ERBB2 induces indirect phosphorylation of TOM1L1 that promotes trafficking of the metalloprotease MT1-MMP to invadopodia, which leads to tumour cell invasion.
Collapse
Affiliation(s)
- Clément Chevalier
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Guillaume Collin
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Simon Descamps
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Heiani Touaitahuata
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Valérie Simon
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Nicolas Reymond
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Laurent Fernandez
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| | | | - Serge Urbach
- Functional Proteomics Platform, 34090 Montpellier, France
| | - Laurence Lasorsa
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, 34298 Montpellier, France
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, 34298 Montpellier, France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Serge Roche
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Christine Benistant
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France.,Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| |
Collapse
|
78
|
Huebner AR, Cheng L, Somparn P, Knepper MA, Fenton RA, Pisitkun T. Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation. Mol Cell Proteomics 2016; 15:1556-71. [PMID: 26884507 DOI: 10.1074/mcp.m115.054965] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 01/02/2023] Open
Abstract
Exosomes, derived from multivesicular bodies (MVBs), contain proteins and genetic materials from their cell of origin and are secreted from various cells types, including kidney epithelial cells. In general, it is thought that protein cargo is ubiquitylated but that ubiquitin is cleaved by specific deubiquitylases during the process of cargo incorporation into MVBs. Here, we provide direct evidence that, in vivo, deubiquitylation is not essential. Ubiquitin was detected within human MVBs and urinary exosomes by electron microscopy. Of the >6000 proteins identified in human urinary exosomes was mass spectrometry, 15% were ubiquitylated with various topologies (Lys63>Lys48> Lys11>Lys6>Lys29>Lys33>Lys27). A significant preference for basic amino acids upstream of ubiquitylation sites suggests specific ubiquitylation motifs. The current studies demonstrate that, in vivo, deubiquitylation of proteins is not necessary for their incorporation into MVBs and highlight that urinary exosomes are an enriched source for studying ubiquitin modifications in physiological or disease states.
Collapse
Affiliation(s)
- Alyssa R Huebner
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Lei Cheng
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | | | - Mark A Knepper
- ¶Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD 20892-1603
| | - Robert A Fenton
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark;
| | - Trairak Pisitkun
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark; §Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand;
| |
Collapse
|
79
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
80
|
Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proc Natl Acad Sci U S A 2015; 112:15892-7. [PMID: 26668364 DOI: 10.1073/pnas.1518765113] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding.
Collapse
|
81
|
Wang X, Zhu N, Li W, Zhu F, Wang Y, Yuan Y. Mono-ubiquitylated ORF45 Mediates Association of KSHV Particles with Internal Lipid Rafts for Viral Assembly and Egress. PLoS Pathog 2015; 11:e1005332. [PMID: 26650119 PMCID: PMC4674120 DOI: 10.1371/journal.ppat.1005332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022] Open
Abstract
Herpesviruses acquire their envelope by budding into the lumen of cytoplasmic membrane vesicles. This process is initiated by component(s) on viral particles, which recognize the budding site where the viral glycoproteins are present and recruit cellular cargo transport and sorting machinery to the site to complete the budding process. Proteins in the tegument layer, connecting capsid and envelope, are candidates for the recognition of budding sites on vesicle membrane and induction of budding and final envelopment. We examined several outer and matrix tegument proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) and found that ORF45 associates with lipid rafts (LRs) of cellular membrane. LRs are membrane micro-domains, which have been implicated as relay stations in intracellular signaling and transport including viral entry and virion assembly. The ability of ORF45 to target LR is dependent on the mono-ubiquitylation of ORF45 at Lys297 as the mutation at Lys297 (K297R) abolished LR-association of ORF45. The K297R mutation also impairs ORF45 and viral particle co-localization with trans-Golgi network and endosomes, but facilitates ORF45 and viral particles co-localizing with lysosomes. More importantly, the recombinant KSHV carrying ORF45 K297R mutant (BAC-K297R) was found severely defective in producing mature and infectious virion particles in comparison to wild type KSHV (BAC16). Taken together, our results reveal a new function of KSHV tegument protein ORF45 in targeting LR of host cell membrane, promoting viral particles co-localization with trans-Golgi and endosome vesicles and facilitating the maturation and release of virion particles, suggesting that ORF45 plays a role in bringing KSHV particles to the budding site on cytoplasmic vesicle membrane and triggering the viral budding process for final envelopment and virion maturation.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nannan Zhu
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Wenwei Li
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Fanxiu Zhu
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Yan Wang
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (YW); (YY)
| | - Yan Yuan
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YW); (YY)
| |
Collapse
|
82
|
Fujimoto K, Ida H, Hirota Y, Ishigai M, Amano J, Tanaka Y. Intracellular Dynamics and Fate of a Humanized Anti-Interleukin-6 Receptor Monoclonal Antibody, Tocilizumab. Mol Pharmacol 2015; 88:660-75. [PMID: 26180046 DOI: 10.1124/mol.115.099184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Tocilizumab (TCZ), a humanized anti-interleukin-6 (IL-6) receptor (IL-6R) monoclonal antibody, abrogates signal transducer protein gp130-mediated IL-6 signaling by competitively inhibiting the binding of IL-6 to the receptor, and shows clinical efficacy in autoimmune and inflammatory diseases. Despite accumulating evidence for therapeutic efficacy, the behavior and fate of TCZ at the cellular level remain largely unknown. To address this, we evaluated the endocytosis and intracellular trafficking of IL-6R in HeLa cells. The results of our study provide evidence that IL-6R is constitutively internalized from the cell surface by ligand or TCZ binding and the expression of gp130 in an independent manner and is targeted via endosomes without being significantly directed to the recycling pathway to, and degraded in, lysosomes. Furthermore, the cytoplasmic tail of IL-6R is required for constitutive endocytosis of the receptor, which is mediated by the clathrin and AP-2 complex. We further demonstrate that FcRn, whose function is to regulate the serum persistence of IgG, is confined primarily to early/recycling endosomes and rapidly transits between these compartments and late endosomes/lysosomes without being degraded. Importantly, the expression of FcRn induces the segregation of TCZ from IL-6R, resulting in extensive colocalization of TCZ and FcRn in IL-6R-depleted endosomal compartments. Collectively, our results suggest that FcRn can accelerate the retrieval of the internalized TCZ, not only from endosomes but also from lysosomes. Our findings provide new insight into the mechanism by which the antibody internalized into cells is rescued from lysosomal degradation and into how its serum levels are maintained.
Collapse
Affiliation(s)
- Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Hiroaki Ida
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Masaki Ishigai
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Jun Amano
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences (K.F., H.I., Y.H., Y.T.), and Organelle Homeostasis Research Center (K.F., Y.T.), Kyushu University, Maidashi, Fukuoka, Japan; and Chugai Pharmaceutical Co., Ltd., Fuji-Gotemba Research Laboratories, Komakado, Gotemba-shi, Shizuoka, Japan (M.I., J.A.)
| |
Collapse
|
83
|
Tom1 Modulates Binding of Tollip to Phosphatidylinositol 3-Phosphate via a Coupled Folding and Binding Mechanism. Structure 2015; 23:1910-1920. [DOI: 10.1016/j.str.2015.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022]
|
84
|
Takahashi H, Mayers JR, Wang L, Edwardson JM, Audhya A. Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophys J 2015; 108:76-84. [PMID: 25564854 DOI: 10.1016/j.bpj.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022] Open
Abstract
The turnover of integral membrane proteins requires a specialized transport pathway mediated by components of the endosomal sorting complex required for transport (ESCRT) machinery. In most cases, entry into this pathway requires that cargoes undergo ubiquitin-modification, thereby facilitating their sequestration on endosomal membranes by specific, ubiquitin-binding ESCRT subunits. However, requirements underlying initial cargo recognition of mono-ubiquitinated cargos remain poorly defined. In this study, we determine the capability of each ESCRT complex that harbors a ubiquitin-binding domain to bind a reconstituted integral membrane cargo (VAMP2), which has been covalently linked to mono-ubiquitin. We demonstrate that ESCRT-0, but not ESCRT-I or ESCRT-II, is able to associate stably with the mono-ubiquitinated cargo within a lipid bilayer. Moreover, we show that the ubiquitin-binding domains in both Hrs and STAM must be intact to enable cargo binding. These results indicate that the two subunits of ESCRT-0 function together to bind and sequester cargoes for downstream sorting into intralumenal vesicles.
Collapse
Affiliation(s)
- Hirohide Takahashi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Jonathan R Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
85
|
Liu XM, Sun LL, Hu W, Ding YH, Dong MQ, Du LL. ESCRTs Cooperate with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos. Mol Cell 2015; 59:1035-42. [DOI: 10.1016/j.molcel.2015.07.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022]
|
86
|
Dobzinski N, Chuartzman S, Kama R, Schuldiner M, Gerst J. Starvation-Dependent Regulation of Golgi Quality Control Links the TOR Signaling and Vacuolar Protein Sorting Pathways. Cell Rep 2015; 12:1876-86. [DOI: 10.1016/j.celrep.2015.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/09/2015] [Accepted: 08/09/2015] [Indexed: 01/18/2023] Open
|
87
|
Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc Natl Acad Sci U S A 2015; 112:E5543-51. [PMID: 26324913 DOI: 10.1073/pnas.1510516112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.
Collapse
|
88
|
Calistri A, Munegato D, Toffoletto M, Celestino M, Franchin E, Comin A, Sartori E, Salata C, Parolin C, Palù G. Functional Interaction Between the ESCRT-I Component TSG101 and the HSV-1 Tegument Ubiquitin Specific Protease. J Cell Physiol 2015; 230:1794-806. [PMID: 25510868 DOI: 10.1002/jcp.24890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/11/2014] [Indexed: 02/01/2023]
Abstract
Similar to phosphorylation, transient conjugation of ubiquitin to target proteins (ubiquitination) mediated by the concerted action of ubiquitin ligases and de-ubiquitinating enzymes (DUBs) can affect substrate function. As obligate intracellular parasites, viruses rely on different cellular pathways for their own replication and the well conserved ubiquitin conjugating/de-conjugating system is not an exception. Viruses not only usurp the host proteins involved in the ubiquitination/de-ubiquitination process, but they also encode their own ubiquitin ligases and DUBs. Here we report that an N-terminal variant of the herpes simplex virus (HSV) type-1 large tegument protein VP1/2 (VP1/2(1-767)), encompassing an active DUB domain (herpesvirus tegument ubiquitin specific protease, htUSP), and TSG101, a component of the endosomal sorting complex required for transport (ESCRT)-I, functionally interact. In particular, VP1/2(1-767) modulates TSG101 ubiquitination and influences its intracellular distribution. Given the role played by the ESCRT machinery in crucial steps of both cellular pathways and viral life cycle, the identification of TSG101 as a cellular target for the HSV-1 specific de-ubiquitinating enzyme contributes to the clarification of the still under debate function of viral encoded DUBs highly conserved throughout the Herpesviridae family.
Collapse
Affiliation(s)
- A Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Yang B, Stjepanovic G, Shen Q, Martin A, Hurley JH. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat Struct Mol Biol 2015; 22:492-8. [PMID: 25938660 PMCID: PMC4456219 DOI: 10.1038/nsmb.3015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
The AAA+ ATPase Vps4 disassembles ESCRT-III and is essential for HIV-1 budding and other pathways. Vps4 is a paradigmatic member of a class of hexameric AAA+ ATPases that disassemble protein complexes without degradation. To distinguish between local displacement versus global unfolding mechanisms for complex disassembly, we carried out hydrogen-deuterium exchange during Saccharomyces cerevisiae Vps4 disassembly of of a chimeric Vps24-2 ESCRT-III filament. EX1 exchange behavior shows that Vps4 completely unfolds ESCRT-III substrates on a time scale consistent with the disassembly reaction. The established unfoldase ClpX showed the same pattern, demonstrating a common unfolding mechanism. Vps4 hexamers containing a single cysteine residue in the pore loops were cross-linked to ESCRT-III subunits containing unique cysteine within the folded core domain. These data support a mechanism in which Vps4 disassembles its substrates by completely unfolding them and threading them through the central pore.
Collapse
Affiliation(s)
- Bei Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Goran Stjepanovic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Qingtao Shen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - James H Hurley
- 1] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA. [2] Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
90
|
Kunadt M, Eckermann K, Stuendl A, Gong J, Russo B, Strauss K, Rai S, Kügler S, Falomir Lockhart L, Schwalbe M, Krumova P, Oliveira LMA, Bähr M, Möbius W, Levin J, Giese A, Kruse N, Mollenhauer B, Geiss-Friedlander R, Ludolph AC, Freischmidt A, Feiler MS, Danzer KM, Zweckstetter M, Jovin TM, Simons M, Weishaupt JH, Schneider A. Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation. Acta Neuropathol 2015; 129:695-713. [PMID: 25778619 PMCID: PMC4405286 DOI: 10.1007/s00401-015-1408-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
Extracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinson's Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system. We find that sorting of α-Synuclein in extracellular vesicles is regulated by sumoylation and that sumoylation acts as a sorting factor for targeting of both, cytosolic and transmembrane proteins, to extracellular vesicles. We provide evidence that the SUMO-dependent sorting utilizes the endosomal sorting complex required for transport (ESCRT) by interaction with phosphoinositols. Ubiquitination of cargo proteins is so far the only known determinant for ESCRT-dependent sorting into the extracellular vesicle pathway. Our study reveals a function of SUMO protein modification as a Ubiquitin-independent ESCRT sorting signal, regulating the extracellular vesicle release of α-Synuclein. We deciphered in detail the molecular mechanism which directs α-Synuclein into extracellular vesicles which is of highest relevance for the understanding of Parkinson's disease pathogenesis and progression at the molecular level. We furthermore propose that sumo-dependent sorting constitutes a mechanism with more general implications for cell biology.
Collapse
Affiliation(s)
- Marcel Kunadt
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Katrin Eckermann
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Anne Stuendl
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Jing Gong
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Belisa Russo
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Katrin Strauss
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Surya Rai
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Sebastian Kügler
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Lisandro Falomir Lockhart
- Laboratory of Cellular Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Martin Schwalbe
- Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Petranka Krumova
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Luis M. A. Oliveira
- Laboratory of Cellular Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Mathias Bähr
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University Munich, Marchionistr. 15, 81377 Munich, Germany
| | - Armin Giese
- Department of Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Niels Kruse
- Department of Neuropathology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Brit Mollenhauer
- Department of Neuropathology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Paracelsus-Elena Klinik, Klinikstr. 16, 34128 Kassel, Germany
| | - Ruth Geiss-Friedlander
- Department of Molecular Biology, University Medicine Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Albert C. Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Marisa S. Feiler
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Karin M. Danzer
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Zweckstetter
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
- Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Thomas M. Jovin
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Laboratory of Cellular Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Mikael Simons
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Jochen H. Weishaupt
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Charcot Professorship for Neurodegeneration, Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anja Schneider
- Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), Göttingen, Germany
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Von-Siebold-Str. 5, 37075 Göttingen, Germany
| |
Collapse
|
91
|
Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3-GENES GENOMES GENETICS 2015; 5:1335-49. [PMID: 25911227 PMCID: PMC4502368 DOI: 10.1534/g3.115.017699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon.
Collapse
|
92
|
Bowman SL, Puthenveedu MA. Postendocytic Sorting of Adrenergic and Opioid Receptors: New Mechanisms and Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:189-206. [PMID: 26055059 DOI: 10.1016/bs.pmbts.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). Much of our understanding of this relationship between GPCR endocytic trafficking and signaling comes from studies done on catecholamine and opioid receptors. After ligand-induced endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process driven by specific sequences on the receptor and proteins that interact with this sequence. Recent data suggest that sequence-dependent recycling plays complex roles in regulating both the timing and location of GPCR signaling. This chapter will describe our current understanding of the mechanisms regulating GPCR sorting in the endosome and discuss emerging ideas on their role in GPCR signaling, focusing on adrenergic and opioid receptors as prototypes.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
93
|
Pentecost M, Vashisht AA, Lester T, Voros T, Beaty SM, Park A, Wang YE, Yun TE, Freiberg AN, Wohlschlegel JA, Lee B. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins. PLoS Pathog 2015; 11:e1004739. [PMID: 25782006 PMCID: PMC4363627 DOI: 10.1371/journal.ppat.1004739] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/10/2015] [Indexed: 11/24/2022] Open
Abstract
The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype. Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. Paramyxoviruses include human and animal pathogens of medical and agricultural significance. Their matrix (M) structural protein organizes virion assembly at the plasma membrane and mediates viral budding. While nuclear localization of M proteins has been described for some paramyxoviruses, the underlying mechanisms of nuclear trafficking and the biological relevance of this observation have remained largely unexamined. Through comparative analyses of M proteins across five Paramyxovirinae genera, we identify M proteins from at least three genera that exhibit similar nuclear trafficking phenotypes regulated by an NLSbp as well as an NES sequence within M that may mediate the interaction of M with host nuclear transport receptors. Additionally, a conserved lysine within the NLSbp of some M proteins is required for nuclear export by regulating M ubiquitination. Sendai virus engineered to express a ubiquitination-defective M does not produce infectious virus but instead displays extensive cell-cell fusion while M is retained in the nucleolus. Thus, some Paramyxovirinae M proteins undergo regulated and active nuclear and subnuclear transport, a prerequisite for viral morphogenesis, which also suggests yet to be discovered roles for M in the nucleus.
Collapse
Affiliation(s)
- Mickey Pentecost
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Talia Lester
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tim Voros
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shannon M. Beaty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arnold Park
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yao E. Wang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tatyana E Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
94
|
Loncle N, Agromayor M, Martin-Serrano J, Williams DW. An ESCRT module is required for neuron pruning. Sci Rep 2015; 5:8461. [PMID: 25676218 PMCID: PMC4327575 DOI: 10.1038/srep08461] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022] Open
Abstract
Neural circuits are refined by both functional and structural changes. Structural remodeling by large-scale pruning occurs where relatively long neuronal branches are cut away from their parent neuron and removed by local degeneration. Until now, the molecular mechanisms executing such branch severing events have remained poorly understood. Here, we reveal a role for the Endosomal Sorting Complex Required for Transport (ESCRT) machinery during neuronal remodeling. Our data show that a specific ESCRT pruning module, including members of the ESCRT-I and ESCRT-III complexes, but not ESCRT-0 or ESCRT-II, are required for the neurite scission event during pruning. Furthermore we show that this ESCRT module requires a direct, in vivo, interaction between Shrub/CHMP4B and the accessory protein Myopic/HD-PTP.
Collapse
Affiliation(s)
- Nicolas Loncle
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL
| | - Monica Agromayor
- Department of Infectious Diseases, Second Floor Borough Wing, Guy's Hospital, London, SE1 9RT
| | - Juan Martin-Serrano
- Department of Infectious Diseases, Second Floor Borough Wing, Guy's Hospital, London, SE1 9RT
| | - Darren W Williams
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL
| |
Collapse
|
95
|
Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc Natl Acad Sci U S A 2015; 112:1886-91. [PMID: 25624505 DOI: 10.1073/pnas.1421271112] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 domain-containing protein2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.
Collapse
|
96
|
Verma R, Marchese A. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J Biol Chem 2015; 290:6810-24. [PMID: 25605718 DOI: 10.1074/jbc.m114.606699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.
Collapse
Affiliation(s)
- Rita Verma
- From the Biochemistry and Molecular Biology Program, and
| | - Adriano Marchese
- From the Biochemistry and Molecular Biology Program, and Department of Molecular Pharmacology and Therapeutics, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
97
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
98
|
Gao C, Luo M, Zhao Q, Yang R, Cui Y, Zeng Y, Xia J, Jiang L. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol 2014; 24:2556-63. [PMID: 25438943 DOI: 10.1016/j.cub.2014.09.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 01/10/2023]
Abstract
Tight control of membrane protein homeostasis by selective degradation is crucial for proper cell signaling and multicellular organismal development. Membrane proteins destined for degradation, such as misfolded proteins or activated receptors, are usually ubiquitinated and sorted into the intraluminal vesicles (ILVs) of prevacuolar compartments/multivesicular bodies (PVCs/MVBs), which then fuse with vacuoles/lysosomes to deliver their contents to the lumen for degradation by luminal proteases. The formation of ILVs and the sorting of ubiquitinated membrane cargoes into them are facilitated by the endosomal sorting complex required for transport (ESCRT) machinery. Plants possess most evolutionarily conserved members of the ESCRT machinery but apparently lack orthologs of ESCRT-0 subunits and the ESCRT-I component Mvb12. Here, we identified a unique plant ESCRT component called FYVE domain protein required for endosomal sorting 1 (FREE1). FREE1 binds to phosphatidylinositol-3-phosphate (PI3P) and ubiquitin and specifically interacts with Vps23 via PTAP-like tetrapeptide motifs to be incorporated into the ESCRT-I complex. Arabidopsis free1 mutant is seedling lethal and defective in the formation of ILVs in MVBs. Consequently, endocytosed plasma membrane (PM) proteins destined for degradation, such as the auxin efflux carrier PIN2, cannot reach the lumen of the vacuole and mislocalize to the tonoplast. Collectively, our findings provide the first functional characterization of a plant FYVE domain protein, which is essential for plant growth via its role as a unique evolutionary ESCRT component for MVB biogenesis and vacuolar sorting of membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ming Luo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Key Laboratory of Plant Resources, Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiong Zhao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Renzhi Yang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
99
|
Mutation of the highly conserved Ser-40 of the HIV-1 p6 gag protein to Phe causes the formation of a hydrophobic patch, enhances membrane association, and polyubiquitination of Gag. Viruses 2014; 6:3738-65. [PMID: 25279819 PMCID: PMC4213559 DOI: 10.3390/v6103738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023] Open
Abstract
The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag.
Collapse
|
100
|
Molfetta R, Quatrini L, Gasparrini F, Zitti B, Santoni A, Paolini R. Regulation of fc receptor endocytic trafficking by ubiquitination. Front Immunol 2014; 5:449. [PMID: 25278942 PMCID: PMC4166898 DOI: 10.3389/fimmu.2014.00449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Most immune cells, particularly phagocytes, express various receptors for the Fc portion of the different immunoglobulin isotypes (Fc receptors, FcRs). By binding to the antibody, they provide a link between the adaptive immune system and the powerful effector functions triggered by innate immune cells such as mast cells, neutrophils, macrophages, and NK cells. Upon ligation of the immune complexes, the downstream signaling pathways initiated by the different receptors are quite similar for different FcR classes leading to the secretion of preformed and de novo synthesized pro-inflammatory mediators. FcR engagement also promotes negative signals through the combined action of several molecules that limit the extent and duration of positive signaling. To this regard, ligand-induced ubiquitination of FcRs for IgE (FcεR) and IgG (FcγR) has become recognized as a key modification that generates signals for the internalization and/or delivery of engaged receptor complexes to lysosomes or cytoplasmic proteasomes for degradation, providing negative-feedback regulation of Fc receptor activity. In this review, we discuss recent advances in our understanding of the molecular mechanisms that ensure the clearance of engaged Fcε and Fcγ receptor complexes from the cell surface with an emphasis given to the cooperation between the ubiquitin pathway and endosomal adaptors including the endosomal sorting complex required for transport (ESCRT) in controlling receptor internalization and sorting along the endocytic compartments.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK , London , UK
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome , Rome , Italy ; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| |
Collapse
|