51
|
Jena MK, Nayak N, Chen K, Nayak NR. Role of Macrophages in Pregnancy and Related Complications. Arch Immunol Ther Exp (Warsz) 2019; 67:295-309. [PMID: 31286151 PMCID: PMC7140981 DOI: 10.1007/s00005-019-00552-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50-60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1-M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Manoj K Jena
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India.
| | - Neha Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
52
|
Frontier Progress in the Establishment of Trophoblast Stem Cell and the Identification of New Cell Subtypes at the Maternal-Fetal Interface. MATERNAL-FETAL MEDICINE 2019. [DOI: 10.1097/fm9.0000000000000023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
53
|
Immunosuppressive Tumor Microenvironment Status and Histological Grading of Endometrial Carcinoma. CANCER MICROENVIRONMENT 2019; 12:169-179. [PMID: 31134527 DOI: 10.1007/s12307-019-00225-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
The recent successes of new cancer immunotherapy approaches have led to investigate their relevance in the context of the Endometrial Carcinoma (EC). These therapies, that take the tumor-induced immunosuppressive microenvironment into account, target the tumor immune escape, in particular the inhibitory receptors involved in the regulation of the effector T cells' activity (immune checkpoints). The aim of this study was to identify, in ECs, differences in intergrades immune status that could contribute to the differences in tumor aggressiveness, and could also be used as theranostic tools. The immune status of tumors was assessed by quantitative real-time PCR. We analyzed the expression of specific genes associated to specific leukocytes subpopulations and the expression of reporting genes associated with the tumor escape/resistance. This study highlights significant differences in the EC intergrades immune status especially the tumor-infiltrating cell types and their activation status as well as in the molecular factors produced by the environment. The immune microenvironment of grade 1 ECs hints at a robust tumoricidal milieu while that of higher grades is more evocative of a tolerogenic milieu. This genes-based immunological monitoring of tumors that easily highlights significant intergrade differences relating to the density, composition and functional state of the leukocyte infiltrate, could give solid arguments for choosing the best therapeutic options, especially those targeting immune checkpoints. Moreover it could enable an easy adaptation of individual treatment approaches for each patient.
Collapse
|
54
|
Angelo LS, Bimler LH, Nikzad R, Aviles-Padilla K, Paust S. CXCR6 + NK Cells in Human Fetal Liver and Spleen Possess Unique Phenotypic and Functional Capabilities. Front Immunol 2019; 10:469. [PMID: 30941128 PMCID: PMC6433986 DOI: 10.3389/fimmu.2019.00469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
Tissue-resident Natural Killer (NK) cells vary in phenotype according to tissue origin, but are typically CD56bright, CXCR6+, and CD69+. NK cells appear very early in fetal development, but little is known about when markers of tissue residency appear during gestation and whether the expression of these markers, most notably the chemokine receptor CXCR6, are associated with differences in functional capability. Using multi-parametric flow cytometry, we interrogated fetal liver and spleen NK cells for the expression of a multitude of extracellular markers associated with NK cell maturation, differentiation, and migration. We analyzed total NK cells from fetal liver and spleen and compared them to their adult liver and spleen counterparts, and peripheral blood (PB) NK. We found that fetal NK cells resemble each other and their adult counterparts more than PB NK. Maturity markers including CD16, CD57, and KIR are lower in fetal NK cells than PB, and markers associated with an immature phenotype are higher in fetal liver and spleen NK cells (NKG2A, CD94, and CD27). However, T-bet/EOMES transcription factor profiles are similar amongst fetal and adult liver and spleen NK cells (T-bet−/EOMES+) but differ from PB NK cells (T-bet+EOMES−). Further, donor-matched fetal liver and spleen NK cells share similar patterns of expression for most markers as a function of gestational age. We also performed functional studies including degranulation, cytotoxicity, and antibody-dependent cellular cytotoxicity (ADCC) assays. Fetal liver and spleen NK cells displayed limited cytotoxic effector function in chromium release assays but produced copious amounts of TNFα and IFNγ, and degranulated efficiently in response to stimulation with PMA/ionomycin. Further, CXCR6+ NK cells in fetal liver and spleen produce more cytokines and degranulate more robustly than their CXCR6− counterparts, even though CXCR6+ NK cells in fetal liver and spleen possess an immature phenotype. Major differences between CXCR6− and + NK cell subsets appear to occur later in development, as a distinct CXCR6+ NK cell phenotype is much more clearly defined in PB. In conclusion, fetal liver and spleen NK cells share similar phenotypes, resemble their adult counterparts, and already possess a distinct CXCR6+ NK cell population with discrete functional capabilities.
Collapse
Affiliation(s)
- Laura S Angelo
- Department of Pediatrics, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Lynn H Bimler
- Department of Pediatrics, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,The Immunology Graduate Program at Baylor College of Medicine, Houston, TX, United States
| | - Rana Nikzad
- Department of Pediatrics, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,Translational Biology and Molecular Medicine Graduate Program at Baylor College of Medicine, Houston, TX, United States.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Kevin Aviles-Padilla
- Department of Pediatrics, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program at Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Pediatrics, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,The Immunology Graduate Program at Baylor College of Medicine, Houston, TX, United States.,Translational Biology and Molecular Medicine Graduate Program at Baylor College of Medicine, Houston, TX, United States.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Integrative Molecular and Biomedical Sciences Graduate Program at Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
55
|
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2019; 24:393-415. [PMID: 29668899 DOI: 10.1093/humupd/dmy012] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fertility depends on a receptive state of the endometrium, influenced by hormonal and anatomical adaptations, as well as the immune system. Local and systemic immunity is greatly influenced by microbiota. Recent discoveries of 16S rRNA in the endometrium and the ability to detect low-biomass microbiota fueled the notion that the uterus may be indeed a non-sterile compartment. To date, the concept of the 'sterile womb' focuses on in utero effects of microbiota on offspring and neonatal immunity. However, little awareness has been raised regarding the importance of uterine microbiota for endometrial physiology in reproductive health; manifested in fertility and placentation. OBJECTIVE AND RATIONALE Commensal colonization of the uterus has been widely discussed in the literature. The objective of this review is to outline the possible importance of this uterine colonization for a healthy, fertile uterus. We present the available evidence regarding uterine microbiota, focusing on recent findings based on 16S rRNA, and depict the possible importance of uterine colonization for a receptive endometrium. We highlight a possible role of uterine microbiota for host immunity and tissue adaptation, as well as conferring protection against pathogens. Based on knowledge of the interaction of the mucosal immune cells of the gut with the local microbiome, we want to investigate the potential implications of commensal colonization for uterine health. SEARCH METHODS PubMed and Google Scholar were searched for articles in English indexed from 1 January 2008 to 1 March 2018 for '16S rRNA', 'uterus' and related search terms to assess available evidence on uterine microbiome analysis. A manual search of the references within the resulting articles was performed. To investigate possible functional contributions of uterine microbiota to health, studies on microbiota of other body sites were additionally assessed. OUTCOMES Challenging the view of a sterile uterus is in its infancy and, to date, no conclusions on a 'core uterine microbiome' can be drawn. Nevertheless, evidence for certain microbiota and/or associated compounds in the uterus accumulates. The presence of microbiota or their constituent molecules, such as polysaccharide A of the Bacteroides fragilis capsule, go together with healthy physiological function. Lessons learned from the gut microbiome suggest that the microbiota of the uterus may potentially modulate immune cell subsets needed for implantation and have implications for tissue morphology. Microbiota can also be crucial in protection against uterine infections by defending their niche and competing with pathogens. Our review highlights the need for well-designed studies on a 'baseline' microbial state of the uterus representing the optimal starting point for implantation and subsequent placenta formation. WIDER IMPLICATIONS The complex interplay of processes and cells involved in healthy pregnancy is still poorly understood. The correct receptive endometrial state, including the local immune environment, is crucial not only for fertility but also placenta formation since initiation of placentation highly depends on interaction with immune cells. Implantation failure, recurrent pregnancy loss, and other pathologies of endometrium and placenta, such as pre-eclampsia, represent an increasing societal burden. More robust studies are needed to investigate uterine colonization. Based on current data, future research needs to include the uterine microbiome as a relevant factor in order to understand the players needed for healthy pregnancy.
Collapse
Affiliation(s)
- Marilen Benner
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
56
|
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol 2019; 4:eaat6114. [PMID: 30635356 PMCID: PMC6744611 DOI: 10.1126/sciimmunol.aat6114] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Pregnancy poses an immunological challenge because a genetically distinct (nonself) fetus must be supported within the pregnant female for the required gestational period. Placentation, or the establishment of the fetally derived placenta, is a common strategy used by eutherian mammals to protect the fetus and promote its growth. However, the substantial morphological differences of the placental architecture among species suggest that the process of placentation results from convergent evolution. Although there are considerable similarities in placental function across placental mammals, there are important differences that arise owing to species-specific immunological (and other biological) constraints. This Review focuses on the immunological similarities and differences that occur at the maternal-fetal interface in the context of human and mouse pregnancies. We discuss how the decidua and placenta of these different species form key immunological barriers that sustain maternal tolerance yet generate innate immune responses that prevent microbial infections.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Center for Microbial Pathogenesis, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Center for Microbial Pathogenesis, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- R. K. Mellon Pediatric Research Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
57
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
58
|
The psychoneuroimmunology of pregnancy. Front Neuroendocrinol 2018; 51:25-35. [PMID: 29110974 DOI: 10.1016/j.yfrne.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/18/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
Pregnancy is associated with a number of significant changes in maternal physiology. Perhaps one of the more notable changes is the significant alteration in immune function that occurs during pregnancy. This change in immune function is necessary to support a successful pregnancy, but also creates a unique period of life during which a female is susceptible to disease and, as we'll speculate here, may also contribute to mental health disorders associated with pregnancy and the postpartum period. Here, we review the known changes in peripheral immune function that occur during pregnancy and the postpartum period, while highlighting the impact of hormones during these times on immune function, brain or neural function, as well as behavior. We also discuss the known and possible impact of pregnancy-induced immune changes on neural function during this time and briefly discuss how these changes might be a risk factor for perinatal anxiety or mood disorders.
Collapse
|
59
|
Zhao X, Jiang Y, Wang L, Li Z, Li Q, Feng X. Advances in Understanding the Immune Imbalance between T-Lymphocyte Subsets and NK Cells in Recurrent Spontaneous Abortion. Geburtshilfe Frauenheilkd 2018; 78:677-683. [PMID: 30258242 PMCID: PMC6150770 DOI: 10.1055/a-0634-1813] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/16/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Recurrent spontaneous abortion is a global problem, and unexplained recurrent abortion triggered by immunological factors is an important focus of current research. Helper T lymphocytes (Th cells) and regulatory T lymphocytes (Treg cells) are central in human immune regulation and play a complex role in pregnancy. Natural killer cells (NK cells) exist in the endometrium and cooperate with T lymphocytes to create immune tolerance at the maternal-fetal interface, which is essential for successful pregnancy. This review has analyzed studies on Th17 cell, Treg cell and NK cell dysfunction and cellular imbalances which may contribute to unexplained recurrent spontaneous abortion to suggest a possible direction for future immunotherapies.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yuepeng Jiang
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Lin Wang
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Zhihao Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Qiang Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xiaoling Feng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| |
Collapse
|
60
|
Zhao G, Yang C, Yang J, Liu P, Jiang K, Shaukat A, Wu H, Deng G. Placental exosome-mediated Bta-miR-499-Lin28B/let-7 axis regulates inflammatory bias during early pregnancy. Cell Death Dis 2018; 9:704. [PMID: 29899331 PMCID: PMC5999645 DOI: 10.1038/s41419-018-0713-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022]
Abstract
Abnormal inflammatory bias in the maternal-fetal interface leads to reproductive failure in mammals. Placental exosomes are involved in maternal-fetal communication during pregnancy. However, whether the placenta or fetus is involved in regulating the balance of uterine local inflammation through exosomes remains unclear, and the mechanism must be further explored. Here we demonstrated that placenta-specific exosomes are abundant in the peripheral blood of dairy cows during early pregnancy and selectively load miRNAs, such as bta-miR-499. In vitro, placental exosome-derived bta-miR-499 inhibits the activation of NF-κB via the Lin28B/let-7 axis, thus repressing LPS-induced inflammation in bovine endometrial epithelial (BEND) cells. Subsequently, inhibition of mmu-miR-499 leads to an impaired balance of inflammation at the maternal-fetal interface in vivo, resulting in an increased risk of pregnancy failure due to placental loss and fetal growth restriction. Thus, our data demonstrate that placental exosomal miR-499 may be a critical immune regulator in the regulation of the inflammation balance at the maternal-fetal interface in the early gestation of dairy cows and other mammals.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
61
|
Impact of prednisone in patients with repeated embryo implantation failures: Beneficial or deleterious? J Reprod Immunol 2018; 127:11-15. [DOI: 10.1016/j.jri.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
|
62
|
Feyaerts D, Kuret T, van Cranenbroek B, van der Zeeuw-Hingrez S, van der Heijden OWH, van der Meer A, Joosten I, van der Molen RG. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire. Hum Reprod 2018; 33:441-451. [DOI: 10.1093/humrep/dey001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/01/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- D Feyaerts
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - T Kuret
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - B van Cranenbroek
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - S van der Zeeuw-Hingrez
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - O W H van der Heijden
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - A van der Meer
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - I Joosten
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - R G van der Molen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
63
|
Roomruangwong C, Anderson G, Berk M, Stoyanov D, Carvalho AF, Maes M. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:262-274. [PMID: 28941769 DOI: 10.1016/j.pnpbp.2017.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
A large body of evidence indicates that major affective disorders are accompanied by activated neuro-immune, neuro-oxidative and neuro-nitrosative stress (IO&NS) pathways. Postpartum depression is predicted by end of term prenatal depressive symptoms whilst a lifetime history of mood disorders appears to increase the risk for both prenatal and postpartum depression. This review provides a critical appraisal of available evidence linking IO&NS pathways to prenatal and postpartum depression. The electronic databases Google Scholar, PubMed and Scopus were sources for this narrative review focusing on keywords, including perinatal depression, (auto)immune, inflammation, oxidative, nitric oxide, nitrosative, tryptophan catabolites (TRYCATs), kynurenine, leaky gut and microbiome. Prenatal depressive symptoms are associated with exaggerated pregnancy-specific changes in IO&NS pathways, including increased C-reactive protein, advanced oxidation protein products and nitric oxide metabolites, lowered antioxidant levels, such as zinc, as well as lowered regulatory IgM-mediated autoimmune responses. The latter pathways coupled with lowered levels of endogenous anti-inflammatory compounds, including ω3 polyunsaturated fatty acids, may also underpin the pathophysiology of postpartum depression. Although increased bacterial translocation, lipid peroxidation and TRYCAT pathway activation play a role in mood disorders, similar changes do not appear to be relevant in perinatal depression. Some IO&NS biomarker characteristics of mood disorders are found in prenatal depression indicating that these pathways partly contribute to the association of a lifetime history of mood disorders and perinatal depression. However, available evidence suggests that some IO&NS pathways differ significantly between perinatal depression and mood disorders in general. This review provides a new IO&NS model of prenatal and postpartum depression.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Michael Berk
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Orygen, the National Centre of Excellence in Youth Mental Health and Orygen Research, Australia
| | - Drozdstoy Stoyanov
- Medical University of Plovdiv, Department of Psychiatry and Medical Psychology, Technology Center for Emergency Medicine, Bulgaria
| | - André F Carvalho
- Department of Clinical Medicine, Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Strategic Research Center, Deakin University, Geelong, Australia; Medical University of Plovdiv, Department of Psychiatry and Medical Psychology, Technology Center for Emergency Medicine, Bulgaria.
| |
Collapse
|
64
|
Ophir Y, Duev-Cohen A, Yamin R, Tsukerman P, Bauman Y, Gamliel M, Mandelboim O. PILRα binds an unknown receptor expressed primarily on CD56bright and decidual-NK cells and activates NK cell functions. Oncotarget 2018; 7:40953-40964. [PMID: 27029068 PMCID: PMC5173034 DOI: 10.18632/oncotarget.8397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
Natural Killer (NK) cells are innate immune lymphocytes specializing in recognition and killing of tumors and pathogens, using an array of activating and inhibitory receptors. NK inhibition is mediated by a large repertoire of inhibitory receptors, whereas a limited number of activating NK cell receptors execute NK cell activation. The ligands recognized by the activating receptors are stress-induced, pathogen derived, tumor specific and even self ligands. However, the full spectrum of NK cell receptors and ligands that control NK cell activity remains uncharacterized. Here we demonstrate that Paired Ig-Like type 2 Receptor Alpha (PILRα), binds a distinct human NK cell sub-population present in the peripheral blood and also in the decidua. We further demonstrate that the interaction of NK cells with PILRα expressing targets lead to elevated IFNγ secretion and cytotoxicity. In conclusion, we present here a novel NK activating ligand which binds and activates an unknown NK receptor expressed on a unique NK cell subset.
Collapse
Affiliation(s)
- Yael Ophir
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alexandra Duev-Cohen
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Pini Tsukerman
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Bauman
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Moriya Gamliel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of The Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
65
|
Taylor EB, Sasser JM. Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia. Clin Sci (Lond) 2017; 131:2911-2917. [PMID: 29222389 DOI: 10.1042/cs20171070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 04/01/2025]
Abstract
Although pre-eclampsia (PE), a hypertensive disorder of pregnancy, has significant maternal and fetal morbidity and mortality worldwide, the mechanisms contributing to this disease have not been fully elucidated. Studies in patients and experimental models have shown that changes in the number or function of immune cells of both the adaptive and innate immune systems contribute to the development and pathogenesis of PE. This commentary summarizes our current understanding of the role of the immune system in the pathogenesis of PE, specifically focussing on dysfunction of natural killer (NK) cells and T lymphocyte populations.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street Jackson, MS 39216, U.S.A.
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street Jackson, MS 39216, U.S.A
| |
Collapse
|
66
|
Natural cytotoxicity receptor 1 in mouse uNK cell maturation and function. Mucosal Immunol 2017; 10:1122-1132. [PMID: 28098245 DOI: 10.1038/mi.2016.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/29/2016] [Indexed: 02/04/2023]
Abstract
Early and midgestational decidua of mice genetically ablated for expression of the natural killer (NK) cell natural cytotoxicity receptor (NCR; Ncr1Gfp/Gfp mice) shows restricted angiogenesis and atypically small uterine (u)NK cells. We hypothesized that NCR1 inactivation disturbs maturation and angiokine production by uterine natural killer (uNK) cells. Using histological and morphometric approaches, we observed that Ncr1Gfp/Gfp but not control C57BL/6 (B6) implantation sites sustain immature, non-granulated uNK cells into midpregnancy. Mouse uNK cells can be subclassified by their reactivity with Dolichos biflorus agglutinin (DBA) lectin; DBA+ uNK cells with greater Ncr1 expression were investigated. DBA+ uNK cells from Ncr1Gfp/Gfp mice show delayed maturation as indicated by shorter diameters and fewer cytoplasmic granules. Granules in mature Ncr1Gfp/Gfp uNK cells are ultrastructurally abnormal and abundance of granule-associated proteins (perforin, granzyme) and of cytoplasmic proteins (vascular endothelial growth factor; placental growth factor) differs from controls. Leukocyte-leukocyte conjugate formation in gestation day 6.5 and 8.5 intact Ncr1Gfp/Gfp decidua was less frequent than in B6; however, this difference involved leukocytes other than DBA+ uNK cells. These studies strongly support roles for NCR1 and its ligands in normal pregnancy promotion.
Collapse
|
67
|
Winger EE, Reed JL, Ji X. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept. PLoS One 2017; 12:e0180124. [PMID: 28692679 PMCID: PMC5503193 DOI: 10.1371/journal.pone.0180124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/11/2017] [Indexed: 12/16/2022] Open
Abstract
Objective We investigated the capacity of first trimester peripheral blood mononuclear cell (PBMC) microRNA to determine risk of spontaneous preterm birth among pregnant women. Study design The study included 39 pregnant women with the following delivery outcomes: 25 with a full term delivery (38–42 weeks gestation) 14 with spontaneous preterm birth (<38 weeks gestation). Of the 14 women experiencing spontaneous preterm birth, 7 delivered at 34-<38 weeks gestation (late preterm) and 7 delivered at <34 weeks gestation (early preterm). Samples were collected at a mean of 7.9±3.0 weeks gestation. Quantitative rtPCR was performed on 30 selected microRNAs. MicroRNA Risk Scores were calculated and Area-Under the Curve-Receiver-Operational-Characteristic (AUC-ROC) curves derived. Results The AUC-ROC for the group delivering preterm (<38 weeks) was 0.95 (p>0.0001). The AUC-ROC for early preterm group (<34 weeks) was 0.98 (p<0.0001) and the AUC-ROC for the late preterm group (34-<38 weeks) was 0.92 (p<0.0001). Conclusion Quantification of first trimester peripheral blood PBMC MicroRNA may provide sensitive and specific prediction of spontaneous preterm birth in pregnant women. Larger studies are needed for confirmation.
Collapse
Affiliation(s)
- Edward E. Winger
- Laboratory for Reproductive Medicine and Immunology, San Francisco, CA, United States of America
- * E-mail:
| | - Jane L. Reed
- Laboratory for Reproductive Medicine and Immunology, San Francisco, CA, United States of America
| | - Xuhuai Ji
- Stanford University, Human Immune Monitoring Center, Stanford, CA, United States of America
| |
Collapse
|
68
|
Abstract
Congenital infections with pathogens such as Zika virus, Toxoplasma gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, varicella zoster virus, Rubella, Cytomegalovirus, and Herpesviruses are a major cause of morbidity and mortality worldwide. Despite the devastating impact of microbial infections on the developing fetus, relatively little is known about how pathogens associated with congenital disease breach the placental barrier to transit vertically during human pregnancy. In this Review, we focus on transplacental transmission of pathogens during human gestation. We introduce the structure of the human placenta and describe the innate mechanisms by which the placenta restricts microbial access to the intrauterine compartment. Based on current knowledge, we also discuss the potential pathways employed by microorganisms to overcome the placental barrier and prospects for the future.
Collapse
Affiliation(s)
- Nitin Arora
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
69
|
Gaynor LM, Colucci F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front Immunol 2017; 8:467. [PMID: 28484462 PMCID: PMC5402472 DOI: 10.3389/fimmu.2017.00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our understanding of development and function of natural killer (NK) cells has progressed significantly in recent years. However, exactly how uterine NK (uNK) cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.
Collapse
Affiliation(s)
- Louise M. Gaynor
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
70
|
Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, Rist MJ, Beagley K, Healy H, Kassianos AJ. Interferon-γ production by tubulointerstitial human CD56 bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int 2017; 92:79-88. [PMID: 28396119 DOI: 10.1016/j.kint.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
Abstract
Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3-CD56+) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56dim NK cell subset and particularly the CD56bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56bright NK cells (NKp46+ CD117+) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease.
Collapse
Affiliation(s)
- Becker M P Law
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland Medical School, University of Queensland, Brisbane, Queensland, Australia
| | - Xiangju Wang
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Katrina Kildey
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mae Lindner
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Melissa J Rist
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland Medical School, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
71
|
Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK, Szalay AA. Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:41-61. [PMID: 28480327 PMCID: PMC5415323 DOI: 10.1016/j.omto.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb's in vitro binding ability and functionality in cell culture, beside the significant increase of CD56bright NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded β-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our "patient-like" humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system.
Collapse
Affiliation(s)
- Desislava Tsoneva
- Department of Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Boris Minev
- Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA.,Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Alexa Frentzen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Qian Zhang
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA.,Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA.,Rudolph Virchow Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
72
|
Park SY, Yun S, Ryu BJ, Han AR, Lee SK. Trophoblasts regulate natural killer cells via control of interleukin-15 receptor signaling. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/09/2016] [Indexed: 01/02/2023] Open
Affiliation(s)
- Seo Y. Park
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Sohyun Yun
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Byung J. Ryu
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Ae R. Han
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| | - Sung K. Lee
- Department of Obstetrics and Gynecology; College of Medicine; Myunggok Medical Research Center; Konyang University; Daejeon Korea
| |
Collapse
|
73
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
74
|
Arenas-Gamboa AM, Rossetti CA, Chaki SP, Garcia-Gonzalez DG, Adams LG, Ficht TA. Human Brucellosis and Adverse Pregnancy Outcomes. CURRENT TROPICAL MEDICINE REPORTS 2016; 3:164-172. [PMID: 29226068 DOI: 10.1007/s40475-016-0092-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Brucellosis is a neglected, zoonotic disease of nearly worldwide distribution. Despite brucellosis being recognized as a reproductive disease in animals, it has been historically known as a flu-like illness in humans with little or no significant role in maternal or newborn health. This review focuses on what is currently known relative to the epidemiology of brucellosis in human pregnancy as well as new insights of placental immunology. Recent Findings New evidence suggests that maternal infection poses a significant risk factor for adverse pregnancy outcomes including increased risk for miscarriage during the first and second trimester of gestation, preterm delivery, and vertical transmission to the fetus. Adverse pregnancy outcomes were not associated with any specific clinical sign. However, prompt diagnosis and treatment significantly decreased the risk of miscarriage or any other adverse effect. Summary Brucellosis during pregnancy should be considered a significant risk factor for adverse pregnancy outcomes in humans. The identification of the mechanism behind bacterial tropism should prove powerful for the development of new countermeasures to prevent these detrimental effects. Increased awareness concerning brucellosis in pregnant women, its transmission, and prevention measures should be considered as a pressing need.
Collapse
Affiliation(s)
- Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Carlos A Rossetti
- Instituto de Patobiología, CICVyA-CNIA, INTA, Nicolas Repetto y de Los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Daniel G Garcia-Gonzalez
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| |
Collapse
|
75
|
Suman P, Gandhi S, Kumar P, Garg K. Prospects of electrochemical immunosensors for early diagnosis of preeclampsia. Am J Reprod Immunol 2016; 77. [PMID: 27666125 DOI: 10.1111/aji.12584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a vascular multisystem disorder that accounts for varying degree of morbidity and mortality of mother and the fetus. This can be significantly averted if diagnosed at an early (18-20 weeks) stage of gestation, as there is no known way to prevent preeclampsia. In spite of extensive work on biomarker discovery, the existing method for its detection is mostly based on colorimetric immunoassays whose sensitivity is ranging in nanomolar range. Further, it has also been observed that change in the expression of a single biomarker is not sufficient to diagnose this condition. So, for early diagnosis (by 18-20 weeks), an immuno-diagnostic platform with detection limits in picomolar range and beyond along with the ability to do simultaneous detection of multiple analyte would be of great importance. A nano-immunosensors with an electrochemical readout system can be a potential alternative that promises for the ultrasensitive detection of analyte with high specificity as well as suitability for on-site analysis. Coupling the lateral flow technology with immunosensors would make it feasible to detect more than one biomarker simultaneously on a microchip. This review intends to summarize the potential preeclampsia biomarkers, limitations of existing diagnostic methods along with the recent advancements, and prospects to develop electrochemical immunosensors for early clinical diagnosis.
Collapse
Affiliation(s)
- Pankaj Suman
- Veterianry Hospital Dhanarua, Animal and Fishery Resources Department (Govt. of Bihar), Patna, Bihar, India
| | - Sonu Gandhi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Kirti Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
76
|
Salahudheen SM, Begam MA. Disease-Modifying Drug Possibly Linked to Placental Insufficiency: Severe placental complications in a pregnant woman with multiple sclerosis. Sultan Qaboos Univ Med J 2016; 16:e368-70. [PMID: 27606121 DOI: 10.18295/squmj.2016.16.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022] Open
Abstract
Disease-modifying drugs (DMDs) such as interferon (IFN)-β and glatiramer acetate are often prescribed to slow disability progression in patients with multiple sclerosis (MS). However, adverse pregnancy outcomes have been reported with these medications. We report the rare occurrence of severe placental complications in a 30-year-old pregnant woman with MS who continued to take IFN-β during her first trimester. She presented at the Tawam Hospital, Al Ain, United Arab Emirates, in 2013 with early-onset fetal growth restriction. At 30 gestational weeks, she developed severe pre-eclampsia. The baby was delivered via emergency Caesarean section and was discharged at the age of two months. Continuation of IFN-β during pregnancy may have contributed to the development of placental insufficiency in this patient. Increased education regarding the risks of DMDs for pregnant patients with MS is very important to ensure successful pregnancy outcomes.
Collapse
Affiliation(s)
| | - Muzibunnisa A Begam
- Department of Obstetrics & Gynaecology, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
77
|
Leff-Gelman P, Mancilla-Herrera I, Flores-Ramos M, Cruz-Fuentes C, Reyes-Grajeda JP, García-Cuétara MDP, Bugnot-Pérez MD, Pulido-Ascencio DE. The Immune System and the Role of Inflammation in Perinatal Depression. Neurosci Bull 2016; 32:398-420. [PMID: 27432060 PMCID: PMC5563787 DOI: 10.1007/s12264-016-0048-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/23/2016] [Indexed: 01/01/2023] Open
Abstract
Major depression during pregnancy is a common psychiatric disorder that arises from a complex and multifactorial etiology. Psychosocial stress, sex, hormones, and genetic vulnerability increase the risk for triggering mood disorders. Microglia and toll-like receptor 4 play a crucial role in triggering wide and varied stress-induced responses mediated through activation of the inflammasome; this leads to the secretion of inflammatory cytokines, increased serotonin metabolism, and reduction of neurotransmitter availability along with hypothalamic-pituitary-adrenal axis hyperactivity. Dysregulation of this intricate neuroimmune communication network during pregnancy modifies the maternal milieu, enhancing the emergence of depressive symptoms and negative obstetric and neuropsychiatric outcomes. Although several studies have clearly demonstrated the role of the innate immune system in major depression, it is still unclear how the placenta, the brain, and the monoaminergic and neuroendocrine systems interact during perinatal depression. Thus, in the present review we describe the cellular and molecular interactions between these systems in major depression during pregnancy, proposing that the same stress-related mechanisms involved in the activation of the NLRP3 inflammasome in microglia and peripheral myeloid cells in depressed patients operate in a similar fashion in the neuroimmune placenta during perinatal depression. Thus, activation of Toll-like receptor 2 and 4 signaling and the NLRP3 inflammasome in placental immune cells may promote a shift of the Th1/Th2 bias towards a predominant Th1/Th17 inflammatory response, associated with increased secretion of pro-inflammatory cytokines, among other secreted autocrine and paracrine mediators, which play a crucial role in triggering and/or exacerbating depressive symptoms during pregnancy.
Collapse
Affiliation(s)
| | | | - Mónica Flores-Ramos
- National Institute of Psychiatry, Mexico City, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
78
|
Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations. Front Immunol 2016; 7:262. [PMID: 27446091 PMCID: PMC4927633 DOI: 10.3389/fimmu.2016.00262] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation.
Collapse
Affiliation(s)
- Janine E Melsen
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Gertjan Lugthart
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
79
|
Cheng SB, Sharma S. Preeclampsia and health risks later in life: an immunological link. Semin Immunopathol 2016; 38:699-708. [PMID: 27339196 DOI: 10.1007/s00281-016-0579-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Pregnancy represents a period of physiological stress, and although this stress is experienced for a very modest portion of life, it is now recognized as a window to women's future health, often by unmasking predispositions to conditions that only become symptomatic later in life. In normal pregnancy, the mother experiences mild metabolic syndrome-like condition through week 20 of gestation. A pronounced phenotype of metabolic syndrome may program pregnancy complications such as preeclampsia. Preeclampsia is a serious complication with a myriad of manifestations for mother and offspring. This pregnancy syndrome is a polygenic disease and has been now linked to higher incidence of cardiovascular disease, diabetes, and several other disorders associated with vulnerable organs. Furthermore, the offspring born to preeclamptic mothers also exhibit an elevated risk of cardiovascular disease, stroke, and mental disorders during adulthood. This suggests that preeclampsia not only exposes the mother and the fetus to complications during pregnancy but also programs chronic diseases in later life. The etiology of preeclampsia is thought to be primarily associated with poor placentation and entails excessive maternal inflammation and endothelial dysfunction. It is well established now that the maternal immune system and the placenta are involved in a highly choreographed cross-talk that underlies adequate spiral artery remodeling required for uteroplacental perfusion and free flow of nutrients to the fetus. Since normal pregnancy is associated with a sequence of events represented by temporal events of inflammation (implantation), anti-inflammation (gestation), and inflammation (parturition), it is quite possible that unscheduled alterations in these regulatory responses may lead to pathologic consequences. Although it is not clear whether immunological alterations occur early in pregnancy, it is proposed that dysregulated systemic and placental immunity contribute to impaired angiogenesis and the onset of preeclampsia. This review will focus on important aspects of the immune system that coordinate with placental dysfunction to program preeclampsia and influence health in later life.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA.
| |
Collapse
|
80
|
Nel I, Lucar O, Petitdemange C, Béziat V, Lapalus M, Bédossa P, Debré P, Asselah T, Marcellin P, Vieillard V. Accumulation of Intrahepatic TNF-α-Producing NKp44+ NK Cells Correlates With Liver Fibrosis and Viral Load in Chronic HCV Infection. Medicine (Baltimore) 2016; 95:e3678. [PMID: 27175704 PMCID: PMC4902546 DOI: 10.1097/md.0000000000003678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the setting of chronic hepatitis C virus (HCV) infection, changes in natural killer (NK) cells have been shown to reflect activation in response to virus stimulation. The contribution of individual natural cytotoxicity receptors to HCV infection remains to be clarified. NKp44 is the sole specific natural cytotoxicity receptor expressed only on activated NK cells.In this study, peripheral blood and liver NK-cell subsets were purified from 31 patients with chronic C hepatitis or nonalcoholic steatohepatitis, and then characterized by flow cytometry. Their polyfunctional activity was determined by expression of the CD107a degranulation marker, together with intracellular cytokine production.Unlike the patients with nonalcoholic steatohepatitis, patients with chronic HCV infection had a higher frequency of NKp44 NK cells in the liver than in their peripheral blood (P < 0.0001). Intrahepatic NKp44 NK cells from HCV individuals produced higher levels of tumor necrosis factor-α than did NKp44 NK cells (P = 0.0011). Importantly, the frequency of intrahepatic NKp44 NK cells was correlated with both HCV-RNA levels (P = 0.0234) and stage of fibrosis (P = 0.0003).Our findings suggest that the accumulation of intrahepatic tumor necrosis factor-α-producing NKp44 resident NK cells play a role in the liver damage associated with chronic HCV infection.
Collapse
Affiliation(s)
- Isabelle Nel
- From the Sorbonne Universités (IN, OL, CP, VB, PD, VV), UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris; Univ Paris Diderot (ML), INSERM UMR 1149, CRI Paris Montmartre, Clichy; AP-HP (PB), Service d'Anatomie Pathologique; and AP-HP (TA, PM), Service d'Hépatologie, Hôpital Beaujon, Clichy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Innate lymphoid cells (ILCs) are innate immune cells that provide an early source of cytokines to initiate and tailor the immune response to the type of the encountered pathogen or insult. The group 1 ILCs are comprised of conventional natural killer (cNK) cells and subsets of "unconventional NK cells," termed ILC1s. Although cNK cells and ILC1s share many features, such as certain phenotypic markers and the ability to produce IFN-γ upon activation, it is now becoming apparent that these two subsets develop from different progenitors and show unique tissue distribution and functional characteristics. Recent studies have aimed at elucidating the individual contributions of cNK cells and ILC1s during protective host responses as well as during chronic inflammation. This review provides an overview of the current knowledge of the developmental origins as well as of the phenotypic and functional characteristics of ILC1s.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Surgery, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
82
|
Ban Y, Zhao Y, Liu F, Dong B, Kong B, Qu X. Effect of Indoleamine 2,3-Dioxygenase Expressed in HTR-8/SVneo Cells on Decidual NK Cell Cytotoxicity. Am J Reprod Immunol 2016; 75:519-28. [PMID: 26782048 DOI: 10.1111/aji.12481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 01/26/2023] Open
Abstract
PROBLEM To study the effect of indoleamine 2,3-dioxygenase (IDO) expressed in HTR-8/SVneo cells on NKG2D and NKp46 expression and cytotoxicity of decidual NK (dNK) and peripheral NK (pNK) cells. METHOD OF STUDY CD56(+) dNK and pNK cells purified were cultured with HTR-8/SVneo cell conditioned medium (CM), 1-MT+HTR-8/SVneo cell CM, and complete RPMI 1640 medium (negative control) in vitro. The mRNA and protein expression of NKG2D and NKp46 in NK cells were then assessed by qRT-PCR and flow cytometry, respectively. Their cytotoxicity was evaluated with LDH assays, and TNF-α secretion was analyzed by ELISA. RESULTS For dNK cells, the mRNA and protein expression of NKp46 as well as NKG2D did not differ significantly among the three groups (P > 0.05), whereas for pNK cells, the expression level was significantly decreased in HTR-8/SVneo cell CM group than the other two groups (P < 0.01). Peripheral NK cells cultured with HTR-8/SVneo cell CM showed reduced cytotoxicity and TNF-α secretion than the other two groups (P < 0.01), although there were no significant differences among three groups for dNK cells (P > 0.05). CONCLUSION IDO expressed by HTR-8/SVneo cells can down-regulate NKp46 and NKG2D expression and reduce cytotoxicity in pNK cells, and may contribute to keep dNK cytotoxicity at a low level, suggesting an important role for IDO in the maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Yanli Ban
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Fen Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Baihua Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
83
|
Sharkey AM, Xiong S, Kennedy PR, Gardner L, Farrell LE, Chazara O, Ivarsson MA, Hiby SE, Colucci F, Moffett A. Tissue-Specific Education of Decidual NK Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3026-32. [PMID: 26320253 PMCID: PMC4574523 DOI: 10.4049/jimmunol.1501229] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023]
Abstract
During human pregnancy, fetal trophoblast cells invade the decidua and remodel maternal spiral arteries to establish adequate nutrition during gestation. Tissue NK cells in the decidua (dNK) express inhibitory NK receptors (iNKR) that recognize allogeneic HLA-C molecules on trophoblast. Where this results in excessive dNK inhibition, the risk of pre-eclampsia or growth restriction is increased. However, the role of maternal, self-HLA-C in regulating dNK responsiveness is unknown. We investigated how the expression and function of five iNKR in dNK is influenced by maternal HLA-C. In dNK isolated from women who have HLA-C alleles that carry a C2 epitope, there is decreased expression frequency of the cognate receptor, KIR2DL1. In contrast, women with HLA-C alleles bearing a C1 epitope have increased frequency of the corresponding receptor, KIR2DL3. Maternal HLA-C had no significant effect on KIR2DL1 or KIR2DL3 in peripheral blood NK cells (pbNK). This resulted in a very different KIR repertoire for dNK capable of binding C1 or C2 epitopes compared with pbNK. We also show that, although maternal KIR2DL1 binding to C2 epitope educates dNK cells to acquire functional competence, the effects of other iNKR on dNK responsiveness are quite different from those in pbNK. This provides a basis for understanding how dNK responses to allogeneic trophoblast affect the outcome of pregnancy. Our findings suggest that the mechanisms that determine the repertoire of iNKR and the effect of self-MHC on NK education may differ in tissue NK cells compared with pbNK.
Collapse
Affiliation(s)
- Andrew M Sharkey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Shiqiu Xiong
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Philippa R Kennedy
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Lydia E Farrell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Olympe Chazara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Martin A Ivarsson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Susan E Hiby
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, United Kingdom
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| |
Collapse
|
84
|
Zhang J, Dunk CE, Kwan M, Jones RL, Harris LK, Keating S, Lye SJ. Human dNK cell function is differentially regulated by extrinsic cellular engagement and intrinsic activating receptors in first and second trimester pregnancy. Cell Mol Immunol 2015; 14:203-213. [PMID: 26277900 DOI: 10.1038/cmi.2015.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
Decidual natural killer (dNK) cells express an array of activation receptors to regulate placental immunity and development during early pregnancy. We investigated the functional character of human dNK cells during the first and second trimester of gestation and the interaction between dNK and trophoblast cells. Although the frequency of CD56+CD16- dNK among the total CD45+ leukocytes did not change over this period, the expression of the activating receptors, NKp80 and NKG2D, was greatly upregulated. We observed a significantly higher number of extravillous trophoblast cells in proximity to the dNK cells in the first trimester in comparison with the second trimester decidua. NKG2D expression by first trimester dNK cells was decreased when co-cultured with the HTR-8 trophoblast cell line. In the second trimester, functional markers of dNK activation, i.e., angiogenic factor production (e.g., vascular endothelial growth factor, interleukin-8, interferon-gamma), remained stable despite an increase in NKp80 or NKG2D surface expression. Furthermore, the degranulation capacity of dNK cells, as assessed by CD107a, was decreased in the second trimester. We suggest that in the first trimester, trophoblast-dNK interactions generate a population of dNK cells with a suppressed activating phenotype. In the second trimester, the loss of trophoblast-dNK interactions led to the inhibition of dNK cell function, although their activating receptor expression was increased. We speculate that during pregnancy, two mechanisms operate to modulate the dNK cell activation:suppression of activating receptor levels in the first trimester by trophoblasts and disengagement of receptor-ligand coupling in the second trimester.
Collapse
Affiliation(s)
- Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON M5G 1L4, Canada
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5G 1L4, Canada
| | - Rebecca L Jones
- Institute of Human Development, University of Manchester, Manchester, M13 9WL, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Lynda K Harris
- Institute of Human Development, University of Manchester, Manchester, M13 9WL, UK.,St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Sarah Keating
- Department of Pathology, University of Toronto, Toronto, ON M5G 1L4, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada.,Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON M5G 1L4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5G 1L4, Canada
| |
Collapse
|
85
|
Chen CP, Piao L, Chen X, Yu J, Masch R, Schatz F, Lockwood CJ, Huang SJ. Expression of Interferon γ by Decidual Cells and Natural Killer Cells at the Human Implantation Site: Implications for Preeclampsia, Spontaneous Abortion, and Intrauterine Growth Restriction. Reprod Sci 2015; 22:1461-7. [PMID: 25963913 DOI: 10.1177/1933719115585148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human first-trimester decidual cells (FTDCs) chemoattract CXCR3-expressing circulating CD56(bright)CD16(-) natural killer (NK) cells, which increase uteroplacental blood flow by remodeling spiral arteries and arterioles. This recruitment reflects elevated FTDC expression of NK cell-recruiting induced protein 10 and interferon (IFN)-inducible T-cell-α chemoattractant produced in response to the synergistic effects of tumor necrosis factor α (TNF-α) and IFN-γ stimulation. Decidual macrophages express TNF-α, whereas the cellular origin of IFN-γ is unclear. Therefore, this study aims to identify the cell source(s) of IFN-γ in human first trimester decidua. Immunostaining of decidual sections revealed that both FTDCs and decidual NK (dNK) cells express IFN-γ. Although individual dNK cells express higher IFN-γ levels, the more numerous FTDCs account for greater proportion of total IFN-γ immunostaining. Freshly isolated FTDCs express greater IFN-γ staining than dNK cells as measured by flow cytometry, whereas incubation of dNK cells with documented NK cell activators significantly increases IFN-γ above FTDC levels. Confluent FTDCs intrinsically produce, but paradoxically respond to, exogenous IFN-γ.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Longzhu Piao
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xilin Chen
- Department of Hematology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jianhua Yu
- Department of Hematology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rachel Masch
- Department of Obstetrics and Gynecology, Beth Israel Medical Center, New York, NY, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
86
|
Tripathi S, Chabtini L, Dakle PJ, Smith B, Akiba H, Yagita H, Guleria I. Effect of TIM-3 Blockade on the Immunophenotype and Cytokine Profile of Murine Uterine NK Cells. PLoS One 2015; 10:e0123439. [PMID: 25897749 PMCID: PMC4405344 DOI: 10.1371/journal.pone.0123439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/03/2015] [Indexed: 12/02/2022] Open
Abstract
NK cells are the most abundant lymphocyte population in the feto-maternal interface during gestation. The uterine NK cells (uNK) are transient, have a unique immunophenotype and produce a number of cytokines. These cytokines play an important role in establishment and maintenance of vascular remodeling and tolerance associated with successful pregnancy. The uNK cells also express TIM-3 during gestation and blockade of TIM-3 expression results in fetal loss in mice. In this study we determined the effect of TIM-3 blockade on uNK cells. Specifically we observed surface receptor phenotype and cytokine production by uNK cells following TIM-3 blockade. Our results show that TIM-3 plays a role in regulating the uNK cells and contributes to the maintenance of tolerance at the feto-maternal interface.
Collapse
Affiliation(s)
- Sudipta Tripathi
- Children's Hospital Boston, Renal Division, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lola Chabtini
- Children's Hospital Boston, Renal Division, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pranal J Dakle
- Children's Hospital Boston, Renal Division, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Smith
- Children's Hospital Boston, Renal Division, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hisaya Akiba
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Indira Guleria
- Children's Hospital Boston, Renal Division, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
87
|
Liu X, Zhao M, Yang X, Han M, Xu X, Jiang Y, Hu X. Toxoplasma gondii infection of decidual CD1c(+) dendritic cells enhances cytotoxicity of decidual natural killer cells. Inflammation 2015; 37:1261-70. [PMID: 24573986 DOI: 10.1007/s10753-014-9853-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is crosstalk between decidual natural killer (dNK) cells and decidual dendritic cells (dDCs) that promotes tolerance of trophoblast cells carrying paternally derived antigens. In the present study, we report that infection of CD1c(+) dDCs with Toxoplasma gondii enhanced gamma interferon (IFN-γ) production by dNK cells in co-culture. The enhancement of IFN-γ production was induced by cytokine IL-12 which increased obviously in co-culture of dDCs with dNK cells following T. gondii infection, and this enhancement largely abrogated when cells were cultured in the presence of an anti-IL-12 antibody. The expression of KIR2DL4 and NKG2D on dNK cells was increased after T. gondii infection, and higher expression of NKG2D was induced by co-cultured dDCs. Neutralization of IL-12 decreased NKG2D expression on dNK cells. Furthermore, dDCs with T. gondii infection increased the cytotoxicity of co-cultured dNK cells against K562 target cells, which was mediated by activating receptor of NKG2D. Thus, T. gondii infection of dDCs enhanced dNK cell IFN-γ production and NKG2D expression, and then led to increased cytotoxicity of dNK cells. The up-regulated dNK cell cytotoxicity at the maternal-fetal interface may contribute to abnormal pregnancy outcomes caused by T. gondii infection in early pregnancy.
Collapse
Affiliation(s)
- Xianbing Liu
- Department of Immunology, Binzhou Medical University, No.346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | | | | | | | | | | | | |
Collapse
|
88
|
Lee SK, Kim CJ, Kim DJ, Kang JH. Immune cells in the female reproductive tract. Immune Netw 2015; 15:16-26. [PMID: 25713505 PMCID: PMC4338264 DOI: 10.4110/in.2015.15.1.16] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023] Open
Abstract
The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy.
Collapse
Affiliation(s)
- Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Chul Jung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Dong-Jae Kim
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Jee-Hyun Kang
- Department of Family Medicine, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
89
|
Horton NC, Mathew PA. NKp44 and Natural Cytotoxicity Receptors as Damage-Associated Molecular Pattern Recognition Receptors. Front Immunol 2015; 6:31. [PMID: 25699048 PMCID: PMC4313717 DOI: 10.3389/fimmu.2015.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/15/2015] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are a key constituent of the innate immune system, protecting against bacteria, virally infected cells, and cancer. Recognition and protective function against such cells are dictated by activating and inhibitory receptors on the surface of the NK cell, which bind to specific ligands on the surface of target cells. Among the activating receptors is a small class of specialized receptors termed the natural cytotoxicity receptors (NCRs) comprised of NKp30, NKp46, and NKp44. The NCRs are key receptors in the recognition and termination of virally infected and tumor cells. Since their discovery over 10 years ago, ligands corresponding to the NCRs have largely remained elusive. Recent identification of the cellular ligands for NKp44 and NKp30 as exosomal proliferating cell nuclear antigen (PCNA) and HLA-B-associated transcript 3 (BAT3), respectively, implicate that NCRs may function as receptors for damage-associated molecular pattern (DAMP) molecules. In this review, we focus on NKp44, which surprisingly recognizes two distinct ligands resulting in either activation or inhibition of NK cell effector responses in response to tumor cells. The inhibitory function of NKp44 requires further study as it may play a pivotal role in placentation in addition to being exploited by tumors as a mechanism to escape NK cell killing. Finally, we suggest that the NCRs are a class of pattern recognition receptors, which recognize signals of genomic instability and cellular stress via interaction with the c-terminus of DAMP molecules localized to the surface of target cells by various co-ligands.
Collapse
Affiliation(s)
- Nathan C Horton
- Department of Cell Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center , Fort Worth, TX , USA
| | - Porunelloor A Mathew
- Department of Cell Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center , Fort Worth, TX , USA
| |
Collapse
|
90
|
Bersani I, De Carolis MP, Foell D, Weinhage T, Rossi ED, De Carolis S, Rubortone SA, Romagnoli C, Speer CP. Interleukin-22: biomarker of maternal and fetal inflammation? Immunol Res 2015; 61:4-10. [PMID: 25407645 DOI: 10.1007/s12026-014-8568-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histologic chorioamnionitis (HCA) is an intrauterine status of inflammation which may lead to the fetal inflammatory response syndrome. Inflammation is a pathogenetic mechanism also of preeclampsia, although not of microbial origin. The aim of the present pilot study was to evaluate the pattern of inflammatory cytokines in mothers and high-risk preterm infants during the perinatal period. Concentrations of proinflammatory and anti-inflammatory cytokines and C-reactive protein were evaluated in maternal, cord, and neonatal blood of very preterm infants <1,500 g birth weight. Histologic examinations of placentae and umbilical cords were performed. The 65 mother-neonate pairs enrolled were subdivided into three groups: (1) HCA group (n = 15), (2) preeclampsia group (n = 17), and (3) control group, in the absence of HCA/preeclampsia (n = 33). Maternal Interleukin (IL)-6 levels were significantly higher in women of the HCA group compared with the preeclampsia and control groups (p < 0.05). IL-22 was detected in nearly all maternal samples [median value 693.115 pg/ml (599.91-809.91 pg/ml)], with no statistical difference between the groups, but with a tendency to increased levels among preeclamptic women. Increased concentrations of IL-22 were detected in cord blood of neonates exposed to preeclampsia, compared with controls and infants exposed to HCA (p < 0.05). We speculate that the tendentially higher concentrations of IL-22 in preeclamptic mothers and the significantly higher concentrations in cord blood may reflect placental dysfunction and the underlying reparative processes at the maternal-fetal interface. Therefore, IL-22 could be an important biomarker of inflammation in preeclampsia.
Collapse
Affiliation(s)
- Iliana Bersani
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breen M, Park SDE, Magee DA, Babrzadeh F, Warry A, Watson M, Bradley DG, MacHugh DE, Parham P, Hammond JA. Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts. THE JOURNAL OF IMMUNOLOGY 2014; 193:6016-30. [PMID: 25398326 PMCID: PMC4258407 DOI: 10.4049/jimmunol.1401980] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle.
Collapse
Affiliation(s)
| | - Paul J Norman
- Department of Structural Biology, Stanford University, Stanford, CA 94035; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University, Stanford, CA 94035; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035
| | - Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695; Center for Comparative Medicine and Translational Research, Raleigh, NC 27539; Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599
| | - Steven D E Park
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Andrew Warry
- Bioscience Information Technology Services, Biotechnology and Biological Sciences Research Council, Swindon SN2 1UH, United Kingdom
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland; and
| | - David E MacHugh
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA 94035; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035
| | - John A Hammond
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom;
| |
Collapse
|
92
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
93
|
Almasry SM, Elmansy RA, Elfayomy AK, Algaidi SA. Ultrastructure alteration of decidual natural killer cells in women with unexplained recurrent miscarriage: a possible association with impaired decidual vascular remodelling. J Mol Histol 2014; 46:67-78. [PMID: 25355193 DOI: 10.1007/s10735-014-9598-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/26/2014] [Indexed: 12/21/2022]
Abstract
This study aimed to evaluate the extent of remodelling of intra-decidual segments of the spiral arteries in human deciduas between the 6th and 10th gestational weeks in women with unexplained recurrent miscarriages (RM) in comparison to gestational-matched controls. A possible association with the number, immunoexpressive behaviour and ultrastructural changes of decidual natural killer cells (dNKCs) was investigated. Decidual biopsies were obtained from RM cases (n = 40) and women with no history of spontaneous miscarriage and at least one live birth at term (n = 30). Staining was performed using PAS, anti-CD34 and anti-CD56 antibodies, using an avidin-biotin-peroxides technique. Analysis by means of light and transmission electron microscopy was employed. To determine the extent of remodelling of decidual vessels, a quantitative score was analysed using histological criteria of vascular transformation and then related to the number of CD56(+) dNKCs. In RM, dNKCs were distributed among decidual cells and around the vessels. They possessed numerous polyploidic protrusions on cell membranes crossing from one cell to another. The cells became more irregular and exhibited heterogeneous electron-dense granules in their cytoplasm compared to controls. The non-remodelling score and number of dNKCs were significantly increased in RM group (p < 0.001). The number of dNKCs was significantly correlated with the scores in both control (r = 0.491; p = 0.006) and RM (r = 0.852; p < 0.001) groups. It appears that dNKCs play a key role in impaired decidual artery remodelling that may be involved with early RM. This may be due to increased numbers of cells or impaired cellular interactions resulting from alterations to the ultrastructure.
Collapse
|
94
|
Sharma R, Das A. Organ-specific phenotypic and functional features of NK cells in humans. Immunol Res 2014; 58:125-31. [PMID: 24366663 DOI: 10.1007/s12026-013-8477-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells kill virus-infected and tumor target cells without prior sensitization. Each NK cell expresses a multitude of activating and inhibitory receptors, and the interplay of signals determines the outcome of NK cell activity. NK cell-mediated cytolysis of target cell involves polarized degranulation at effector-target interface. Peripheral blood NK cell constitutes about 10% of lymphocytes, and approximately 90% of peripheral blood NK cells are CD56(dim)CD16(+); however, there is a distinct subset of NK cells, CD56(bright)CD16(-), expressed by certain lymphoid organs which are able to produce large amounts of cytokines including interferon-γ, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor, but the cytotoxicity is attained only on their prolonged activation. In this review, we discuss the accumulated data on distinct phenotypes of NK cells in human uterus, liver, intestine, skin, and lung and also attempt to correlate their phenotype with corresponding activity and functions, with significant stress on the role of NK cells in pathology in the specific organs. Our detailed understanding of altered NK cell activity in different organs and their inherent cytotoxic activity against tumor target cells will help us design better immunotherapeutic strategies in NK cell-mediated cancer therapies.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, New Delhi, 110042, Delhi, India
| | | |
Collapse
|
95
|
Sotnikova N, Voronin D, Antsiferova Y, Bukina E. Interaction of Decidual CD56+ NK with Trophoblast Cells during Normal Pregnancy and Recurrent Spontaneous Abortion at Early Term of Gestation. Scand J Immunol 2014; 80:198-208. [DOI: 10.1111/sji.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022]
Affiliation(s)
- N. Sotnikova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - D. Voronin
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - Y. Antsiferova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - E. Bukina
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| |
Collapse
|
96
|
Amodio G, Sales de Albuquerque R, Gregori S. New insights into HLA-G mediated tolerance. ACTA ACUST UNITED AC 2014; 84:255-63. [PMID: 25132109 DOI: 10.1111/tan.12427] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human Leukocyte Antigen G (HLA-G) is a nonclassical HLA class I molecule with well-characterized immunomodulatory activities. HLA-G was first described as a regulatory molecule that allows the fetus to elude the maternal immune response. In the last decade it has become evident that HLA-G is involved in modulating both innate and adaptive immune responses, in maintaining tolerance in autoimmune and inflammatory diseases and after transplantation, and in promoting immune escape in cancer and infectious diseases. HLA-G exerts its modulatory/regulatory functions directly by interacting with specific inhibitory receptors. The expression of HLA-G is finely tuned by genetic variations in the noncoding region of the locus. The recent discovery of dendritic cells-10 (DC-10) as naturally occurring HLA-G-expressing dendritic cells opens new perspectives in the identification of the molecular and cellular mechanisms underlying HLA-G-mediated tolerance. An overview on the HLA-G-mediated inhibition of innate and adaptive immune cells, on the genetic influence on HLA-G expression, and on HLA-G-expressing DC-10 is presented. Moreover, we discuss the central and critical role of DC-10 in the HLA-G-mediated tolerance.
Collapse
Affiliation(s)
- G Amodio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
97
|
Lima PDA, Zhang J, Dunk C, Lye SJ, Croy BA. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol 2014; 11:522-37. [PMID: 25066422 DOI: 10.1038/cmi.2014.63] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed.
Collapse
Affiliation(s)
- Patricia D A Lima
- Ottawa Hospital Research Institute, The Ottawa Hospital General Campus, Critical Care Wing, Ottawa, ON, Canada
| | - Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Stephen J Lye
- 1] Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Physiology and University of Toronto, Toronto, ON, Canada [3] Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
98
|
Lockwood CJ, Basar M, Kayisli UA, Guzeloglu-Kayisli O, Murk W, Wang J, De Paz N, Shapiro JP, Masch RJ, Semerci N, Huang SJ, Schatz F. Interferon-γ protects first-trimester decidual cells against aberrant matrix metalloproteinases 1, 3, and 9 expression in preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2549-59. [PMID: 25065683 DOI: 10.1016/j.ajpath.2014.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 01/19/2023]
Abstract
Human extravillous trophoblast (EVT) invades the decidua via integrin receptors and subsequently degrades extracellular matrix proteins. In preeclampsia (PE), shallow EVT invasion elicits incomplete spiral artery remodeling, causing reduced uteroplacental blood flow. Previous studies show that preeclamptic decidual cells, but not interstitial EVTs, display higher levels of extracellular matrix-degrading matrix metalloproteinase (MMP)-9, but not MMP-2. Herein, we extend our previous PE-related assessment of MMP-2 and MMP-9 to include MMP-1, which preferentially degrades fibrillar collagens, and MMP-3, which can initiate a local proteolytic cascade. In human first-trimester decidual cells incubated with estradiol, tumor necrosis factor-α (TNF-α) significantly enhanced MMP-1, MMP-3, and MMP-9 mRNA and protein levels and activity measured by real-time quantitative RT-PCR, ELISA, immunoblotting, and zymography, respectively. In contrast, interferon γ (IFN-γ) reversed these effects and medroxyprogesterone acetate elicited further reversal. Immunoblotting revealed that p38 mitogen-activated protein kinase signaling mediated TNF-α enhancement of MMP-1, MMP-3, and MMP-9, whereas IFN-γ inhibited p38 mitogen-activated protein kinase phosphorylation. Unlike highly regulated MMP-1, MMP-3, and MMP-9, MMP-2 mRNA and protein expression was constitutive in decidual cells. Because inflammation underlies PE-associated shallow EVT invasion, these results suggest that excess macrophage-derived TNF-α augments expression of MMP-1, MMP-3, and MMP-9 in decidual cells to interfere with normal stepwise EVT invasion of the decidua. In contrast, decidual natural killer cell-derived IFN-γ reverses such TNF-α-induced MMPs to protect against PE.
Collapse
Affiliation(s)
- Charles J Lockwood
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Murat Basar
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - William Murk
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, Connecticut
| | - Jenny Wang
- Department of Obstetrics and Gynecology, School of Medicine, Yale University, New Haven, Connecticut
| | - Nicole De Paz
- Department of Obstetrics and Gynecology, School of Medicine, Yale University, New Haven, Connecticut
| | - John P Shapiro
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Rachel J Masch
- Beth Israel Medical Center, Albert Einstein College of Medicine, New York, New York
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
99
|
Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol 2014; 28:1408-22. [PMID: 25051170 DOI: 10.1210/me.2014-1074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantation is an essential process during establishment of pregnancy in mammals. It is initiated with the attachment of the blastocyst to a receptive uterine epithelium followed by its invasion into the stromal tissue. These events are profoundly regulated by the steroid hormones 17β-estradiol and progesterone. During the past several years, mouse models harboring conditional gene knockout mutations have become powerful tools for determining the functional roles of cellular factors involved in various aspects of implantation biology. Studies using these genetic models as well as primary cultures of human endometrial cells have established that the estrogen receptor α, the progesterone receptor, and their downstream target genes critically regulate uterine growth and differentiation, which in turn control embryo-endometrial interactions during early pregnancy. These studies have uncovered a diverse array of molecular cues, which are produced under the influence of estrogen receptor α and progesterone receptor and exchanged between the epithelial and stromal compartments of the uterus during the progressive phases of implantation. These paracrine signals are critical for acquisition of uterine receptivity and functional interactions with the embryo. This review highlights recent work describing paracrine mechanisms that govern steroid-regulated uterine epithelial-stromal dialogue during implantation and their roles in fertility and disease.
Collapse
Affiliation(s)
- Sandeep Pawar
- Departments of Molecular and Integrative Physiology (S.P., A.M.H., M.K.B.) and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
100
|
Leno-Durán E, Muñoz-Fernández R, Olivares EG, Tirado-González I. Liaison between natural killer cells and dendritic cells in human gestation. Cell Mol Immunol 2014; 11:449-55. [PMID: 24954224 DOI: 10.1038/cmi.2014.36] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/30/2022] Open
Abstract
A successful pregnancy relies on immunological adaptations that allow the fetus to grow and develop in the uterus, despite being recognized by maternal immune cells. Among several immunocompetent cell types present within the human maternal/fetal interface, DC-SIGN(+) dendritic cells (DCs) and CD56(+) natural killer (NK) cells are of major importance for early pregnancy maintenance, not only generating maternal immunological tolerance but also regulating stromal cell differentiation. Previous reports show the presence of NK-DC cell conjugates in first trimester human decidua, suggesting that these cells may play a role in the modulation of the local immune response within the uterus. While effective immunity is necessary to protect the mother from harmful pathogens, some form of tolerance must be activated to avoid an immune response against fetal antigens. This review article discusses current evidence concerning the functions of DC and NK cells in pregnancy and their liaison in human decidua.
Collapse
Affiliation(s)
- Ester Leno-Durán
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Raquel Muñoz-Fernández
- Instituto de Parasitología y Biomedicina 'López Neyra', Centro superior de investigaciones científicas, Armilla, Granada, Spain
| | - Enrique García Olivares
- 1] Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain [2] Hospital Universitario San Cecilio, Granada, Spain
| | - Irene Tirado-González
- 1] Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain [2] Medicine University of Berlin, Charité Centre 12 Internal Medicine and Dermatology, Berlin, Germany
| |
Collapse
|