51
|
Lakatos P, Szabó É, Hegedűs C, Haskó G, Gergely P, Bai P, Virág L. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:743-51. [PMID: 23246565 DOI: 10.1016/j.bbamcr.2012.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/22/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a NAD(+)-dependent protein modification carried out by PARP [poly(ADP-ribose) polymerase] enzymes. Here we set out to investigate whether PARylation regulates UVB-induced cell death in primary human keratinocytes. We used the benchmark PARP inhibitor 3-aminobenzamide (3AB) and a more potent and specific inhibitor PJ34 and found that UVB (0.05-0.2J/cm(2)) induced a dose dependent loss of viability that was prevented by 3AB but not by PJ34. Similarly to PJ34, two other new generation PARP inhibitors also failed to protect keratinocytes from UVB-induced loss of viability. Moreover, silencing PARP-1 in HaCaT human keratinocytes sensitized cells to UVB toxicity but 3AB provided protection to both control HaCaT cells and to PARP-1 silenced cells indicating that the photoprotective effect of 3AB is independent of PARP inhibition. Lower UVB doses (0.0125-0.05J/cm(2)) caused inhibition of proliferation of keratinocytes which was prevented by 3AB but augmented by PJ34. UVB-induced keratinocyte death displayed the characteristics of both apoptosis (morphology, caspase activity, DNA fragmentation) and necrosis (morphology, LDH release) with all of these parameters being inhibited by 3AB and apoptotic parameters slightly enhanced by PJ34. UVA also caused apoptotic and necrotic cell death in keratinocytes with 3AB protecting and PJ34 sensitizing cells to UVA-induced toxicity. 3AB prevented UVB-induced mitochondrial membrane depolarization and generation of hydrogen peroxide. In summary, PARylation is a survival mechanism in UV-treated keratinocytes. Moreover, 3-aminobenzamide is photoprotective and acts by a PARP-independent mechanism at a premitochondrial step of phototoxicity.
Collapse
Affiliation(s)
- Petra Lakatos
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
52
|
Chen Y, Soong J, Mohanty S, Xu L, Scott G. The neural guidance receptor Plexin C1 delays melanoma progression. Oncogene 2012; 32:4941-9. [PMID: 23160370 DOI: 10.1038/onc.2012.511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 01/13/2023]
Abstract
Plexin C1 is a type I transmembrane receptor with intrinsic R-Ras GTPase activity, which regulates cytoskeletal remodeling and adhesion in normal human melanocytes. Melanocytes are pigment-producing cells of the epidermis, precursors for melanoma, and express high levels of Plexin C1, which is lost in melanoma in vitro and in vivo. To determine if Plexin C1 is a tumor suppressor for melanoma, we introduced Plexin C1 into a primary human melanoma cell line, and phenotypes including migration, apoptosis, proliferation and tumor growth in mice were analyzed. Complimentary studies in which Plexin C1 was silenced in human melanocytes were performed. Plexin C1 significantly inhibited migration and proliferation in melanoma, whereas in melanocytes, loss of Plexin C1 increased migration and proliferation. In mouse xenografts, Plexin C1 delayed tumor growth of melanoma at early time points, but tumors eventually escaped the suppressive effects of Plexin C1, due to Plexin C1-dependent activation of the pro-survival protein Akt. R-Ras activation stimulates melanoma migration. Plexin C1 lowered R-Ras activity in melanoma and melanocytes, consistent with inhibitory effects of Plexin C1 on migration of melanocytes and melanoma. To determine if R-Ras is expressed in melanocytic lesions in vivo, staining of tissue microarrays of nevi and melanoma were performed. R-Ras expression was highly limited in melanocytic lesions, being essentially confined to primary melanoma, and almost completely absent in nevi and metastatic melanoma. These data suggest that loss of Plexin C1 in melanoma may promote early steps in melanoma progression through suppression of migration and proliferation, but pro-survival effects of Plexin C1 ultimately abrogate the tumor suppressive effects of Plexin C1. In primary melanoma, loss of Plexin C1 may function in early steps of melanoma progression by releasing inhibition of R-Ras activation, and stimulating migration.
Collapse
Affiliation(s)
- Y Chen
- Department of Dermatology, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
53
|
Morvan D, Steyaert JM, Schwartz L, Israel M, Demidem A. Normal human melanocytes exposed to chronic insulin and glucose supplementation undergo oncogenic changes and methyl group metabolism cellular redistribution. Am J Physiol Endocrinol Metab 2012; 302:E1407-18. [PMID: 22472999 DOI: 10.1152/ajpendo.00594.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent epidemiological studies have suggested a link between cancer and pathophysiological conditions associated with hyperinsulinemia. In this report, we address the possible role of insulin exposure in melanocyte transformation. To this aim, normal melanocytes were exposed to chronic insulin and glucose supplementation (twice the standard medium concentration) for at least 3 wk. After 3-wk treatment, melanocytes increased proliferation (doubling time: 2.7 vs. 5.6 days, P < 0.01). After 3-wk treatment or after 3-wk treatment followed by 4-wk reculture in standard medium, melanocytes were able to grow in soft agar colonies. Treated melanocytes had increased DNA content (+8%, P < 0.05), chromosomal aberrations, and modified oncoprotein profile: p-Akt expression increased (+32%, P < 0.01), Akt decreased, and c-Myc increased (+40%, P < 0.05). PP2A protein expression increased (+42, P < 0.05), while PP2A methylation decreased (-42%, P < 0.05), and PP2A activity was reduced (-27%, P < 0.05). PP2A transcription level was increased (ppp2r1a, PP2A subunit A, +44%, P < 0.05). Also, transcriptomic data revealed modifications in insr (insulin receptors, +10%, P < 0.05) and Il8 (inflammation protein, +99%, P < 0.01). Glycolysis was modified with increased transcription of Pgk1 and Hif1a (P < 0.05), decreased transcription of Pfkfb3 (P < 0.05), decreased activity of pyruvate kinase (P < 0.01), and decreased pyruvate cell content as assessed by (1)H-NMR spectroscopy. In addition, methyl group metabolism was altered with decreased global DNA methylation (-51%, P < 0.01), increased cytosolic protein methylation (+18%, P < 0.05), and consistent changes in methylated species on (1)H-NMR spectra. In conclusion, exposure to chronic insulin and glucose supplementation induces oncogenic changes and methyl group metabolism redistribution, which may be a biomarker of transformation.
Collapse
Affiliation(s)
- Daniel Morvan
- Centre INRA de Clermont-Ferrand, 63122 Saint Genes Champanelle, France
| | | | | | | | | |
Collapse
|
54
|
Maddodi N, Jayanthy A, Setaluri V. Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation. Photochem Photobiol 2012; 88:1075-82. [PMID: 22404235 DOI: 10.1111/j.1751-1097.2012.01138.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The term barrier function as applied to human skin often connotes the physical properties of this organ that provides protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing in the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on (1) the mechanisms involved in selective effects of subcomponents of UV radiation on human skin pigmentation and (2) the interactive influences between keratinocytes and melanocytes, acting as "epidermal melanin unit," that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the nonionizing solar radiation, at cellular and molecular levels, on human skin pigmentation.
Collapse
Affiliation(s)
- Nityanand Maddodi
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | |
Collapse
|
55
|
Swalwell H, Latimer J, Haywood RM, Birch-Machin MA. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radic Biol Med 2012; 52:626-634. [PMID: 22178978 DOI: 10.1016/j.freeradbiomed.2011.11.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/08/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, P<0.001). We show that if melanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (P<0.001), providing evidence for the dual roles of melanin.
Collapse
Affiliation(s)
- Helen Swalwell
- Department of Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jennifer Latimer
- Department of Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel M Haywood
- RAFT Leopold Muller Building, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, UK
| | - Mark A Birch-Machin
- Department of Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
56
|
Moan J, Baturaite Z, Porojnicu AC, Dahlback A, Juzeniene A. UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden. Photochem Photobiol Sci 2012; 11:191-8. [DOI: 10.1039/c1pp05215b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
57
|
Mouret S, Forestier A, Douki T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci 2011; 11:155-62. [PMID: 21986862 DOI: 10.1039/c1pp05185g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to solar UV radiation is the origin of most skin cancers, including deadly melanomas. Melanomas are quite different from keratinocyte-derived tumours and exhibit a different mutation spectrum in the activated oncogenes, possibly arising from a different class of DNA damage. In addition, some data suggest a role for UVA radiation in melanomagenesis. To get further insight into the molecular mechanisms underlying induction of melanoma, we quantified a series of UV-induced DNA damage in primary cultures of normal human melanocytes. The results were compared with those obtained in keratinocytes from the same donors. In the UVB range, the frequency and the distribution of pyrimidine dimers was the same in melanocytes and keratinocytes. UVA was also found to produce thymine cyclobutane dimer as the major DNA lesion with an equal efficiency in both cell types. In contrast, following UVA-irradiation a large difference was found for the yield of 8-oxo-7,8-dihydroguanine; the level of this product was 2.2-fold higher in melanocytes than in keratinocytes. The comet assay showed that the induction of strand breaks was equally efficient in both cell types but that the yield of Fpg-sensitive sites was larger in melanocytes. Our data show that, upon UVA irradiation, oxidative lesions contribute to a larger extent to DNA damage in melanocytes than in keratinocytes. We also observed that the basal level of oxidative lesions was higher in the melanocytes, in agreement with a higher oxidative stress that may be due to the production of melanin. The bulk of these results, combined with qPCR and cell survival data, may explain some of the differences in mutation spectrum and target genes between melanomas and carcinomas arising from keratinocytes.
Collapse
Affiliation(s)
- Stéphane Mouret
- Laboratoire Lésions des Acides Nucléiques, SCIB, UMR-E3 CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054, France
| | | | | |
Collapse
|
58
|
Vaid M, Prasad R, Sun Q, Katiyar SK. Silymarin targets β-catenin signaling in blocking migration/invasion of human melanoma cells. PLoS One 2011; 6:e23000. [PMID: 21829575 PMCID: PMC3145779 DOI: 10.1371/journal.pone.0023000] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser(45), Ser(33/37) and Thr(41), and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ram Prasad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qian Sun
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Santosh K. Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham VA Medical Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
59
|
Vaid M, Singh T, Katiyar SK. Grape seed proanthocyanidins inhibit melanoma cell invasiveness by reduction of PGE2 synthesis and reversal of epithelial-to-mesenchymal transition. PLoS One 2011; 6:e21539. [PMID: 21738696 PMCID: PMC3124524 DOI: 10.1371/journal.pone.0021539] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/01/2011] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E(2) production. Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of melanoma cells with COX-2 small interfering RNA, also inhibited melanoma cell migration. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate, an inducer of COX-2, enhanced the phosphorylation of ERK1/2, a protein of mitogen-activated protein kinase family, and subsequently cell migration whereas both GSPs and celecoxib significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-promoted cell migration as well as phosphorylation of ERK1/2. Treatment of cells with UO126, an inhibitor of MEK, also inhibited the migration of melanoma cells. Further, GSPs inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Additionally, inhibition of melanoma cell migration by GSPs was associated with reversal of epithelial-mesenchymal transition process, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin and cytokeratins) while loss of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in melanoma cells. Together, these results indicate that GSPs have the ability to inhibit melanoma cell invasion/migration by targeting the endogenous expression of COX-2 and reversing the process of epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Santosh K. Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham VA Medical Center, Birmingham, Alabama, United States of America
| |
Collapse
|
60
|
Schanab O, Humer J, Gleiss A, Mikula M, Sturlan S, Grunt S, Okamoto I, Muster T, Pehamberger H, Waltenberger A. Expression of human endogenous retrovirus K is stimulated by ultraviolet radiation in melanoma. Pigment Cell Melanoma Res 2011; 24:656-65. [PMID: 21501418 DOI: 10.1111/j.1755-148x.2011.00860.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human endogenous retroviruses (HERVs) represent a cellular reservoir of potentially pathogenic retroviral genes. A growing body of evidence indicates that the activation of endogenous retroviral sequences might be involved in the transformation of melanocytes. In this study, we investigated the effects of ultraviolet radiation (UVR) on the expression of human endogenous retrovirus type K (HERV-K) in melanoma cells and non-melanoma cells in vitro. Solely in melanoma cell lines, irradiation with UVB (200 mJ/cm(2)) resulted in a significant transcriptional activation of the retroviral pol gene as well as in an enhanced expression of the retroviral envelope protein (env). In addition, UVB treatment induced the production of retroviral particles in the supernatants of melanoma cell lines. These data indicate that HERV-K expression can be activated by UVB irradiation and suggest an involvement of HERV-K in UVR-related melanoma pathogenesis.
Collapse
Affiliation(s)
- Oliver Schanab
- Department of Dermatology, Division of General Dermatology, Medical University Vienna, Waehringer Guertel, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Katiyar SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch Biochem Biophys 2011; 508:152-8. [PMID: 21094124 PMCID: PMC3077767 DOI: 10.1016/j.abb.2010.11.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 11/22/2022]
Abstract
Excessive exposure of the skin to solar ultraviolet (UV) radiation is one of the major factors for the development of skin cancers, including non-melanoma. For the last several centuries the consumption of dietary phytochemicals has been linked to numerous health benefits including the photoprotection of the skin. Green tea has been consumed as a popular beverage world-wide and skin photoprotection by green tea polyphenols (GTPs) has been widely investigated. In this article, we have discussed the recent investigations and mechanistic studies which define the potential efficacy of GTPs on the prevention of non-melanoma skin cancer. UV-induced DNA damage, particularly the formation of cyclobutane pyrimidine dimers, has been implicated in immunosuppression and initiation of skin cancer. Topical application or oral administration of green tea through drinking water of mice prevents UVB-induced skin tumor development, and this prevention is mediated, at least in part, through rapid repair of DNA. The DNA repair by GTPs is mediated through the induction of interleukin (IL)-12 which has been shown to have DNA repair ability. The new mechanistic investigations support and explain the anti-photocarcinogenic activity, in particular anti-non-melanoma skin cancer, of green tea and explain the benefits of green tea for human health.
Collapse
Affiliation(s)
- Santosh K Katiyar
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
62
|
Meyskens FL, Yang S. Thinking about the role (largely ignored) of heavy metals in cancer prevention: hexavalent chromium and melanoma as a case in point. Recent Results Cancer Res 2011; 188:65-74. [PMID: 21253789 DOI: 10.1007/978-3-642-10858-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ultraviolet (UV) light exposure accounts for only 40-50% of the attributable risk for cutaneous melanoma (CM); also classical UV-induced lesions are rare in melanomas (especially among CM with NRAS or BRAF mutations). It is therefore likely that an additional environmental factor exists as familial and genetic factors play a role in less than 5%. A large amount of (largely forgotten) epidemiologic data indicates that heavy metal exposure is strongly associated with the development of CM. Also, epidemiologic studies of patients with joint replacement indicate a marked subsequent time-related increase in melanoma in patients with metal-on-metal hip arthroplasties. In these patients chromium and cobalt levels rise to 10x normal and stay elevated at levels two- to threefold normal for at least 10 years. Chromium is widely used in industry for its anticorrosive and steel-strengthening properties and is widespread in everyday materials. Our hypothesis is therefore that chromium, alone or in conjunction with UV, plays a major role in the pathogenesis of CM. We have incubated human neonatal melanocytes for more than 10 weeks in the presence of a wide range and concentrations of metals without effect except by hexavalent chromium Cr(VI)and to a lesser degree Co²(+). After prolonged culture, chromium-incubated cells produced foci and when replated secondary colonies formed. We have just begun to study this phenomenon in more detail and studies without and with different wavelengths of UV will be explored. Of interest is that aneuploidy (a universal chromosomal change in cutaneous melanoma) in lymphocytes in patients with hip-on-hip metal prostheses has been demonstrated by others.
Collapse
|
63
|
Oancea E, Wicks NL. TRPM1: new trends for an old TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:135-45. [PMID: 21290293 DOI: 10.1007/978-94-007-0265-3_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TRPM1, initially named Melastatin, is the founding member of the TRPM subfamily of Transient Receptor Potential (TRP) ion channels. Despite sustained efforts, the molecular properties and physiological functions of TRPM1 remained elusive until recently. New evidence has uncovered novel TRPM1 splice variants and revealed that TRPM1 is critical for a non-selective cation conductance in melanocytes and retinal bipolar cells. Functionally, TRPM1 has been shown to mediate retinal ON bipolar cell transduction and suggested to regulate melanocyte pigmentation. Notably, TRPM1 mutations have also been associated with congenital stationary night blindness in humans. This review will summarize and discuss our present knowledge of TRPM1: its discovery, expression, regulation, and proposed functions in skin and eye.
Collapse
Affiliation(s)
- Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA.
| | | |
Collapse
|
64
|
Abstract
The incidence of melanoma has continued to rise dramatically over the past few decades, especially in young females. Due to the deadly nature of this disease, melanoma has become an important public health problem. It is generally accepted that ultraviolet light radiation (UVR) from sunlight is a major risk factor for melanoma skin cancer development. However, the mechanistic details of how sunlight via UVR causes melanoma are still being elucidated. Currently, it is thought that carcinogenic, inflammatory, and immunosuppressive properties of UVR all contribute to initiation, progression, and metastasis of primary melanoma. We review current findings on how sunlight-generated UVR generates DNA damage, inflammation, and immune suppression, thus leading to melanoma.
Collapse
Affiliation(s)
- Lilit Garibyan
- Department of Dermatology, Massachusetts General Hospital Boston, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
65
|
Singh T, Vaid M, Katiyar N, Sharma S, Katiyar SK. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E₂ and prostaglandin E₂ receptors. Carcinogenesis 2010; 32:86-92. [PMID: 20974686 DOI: 10.1093/carcin/bgq215] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of berberine, an isoquinoline alkaloid, on human melanoma cancer cell migration and the molecular mechanisms underlying these effects using melanoma cell lines, A375 and Hs294. Using an in vitro cell migration assay, we show that over expression of cyclooxygenase (COX)-2, its metabolite prostaglandin E₂ (PGE₂) and PGE₂ receptors promote the migration of cells. We found that treatment of A375 and Hs294 cells with berberine resulted in concentration-dependent inhibition of migration of these cells, which was associated with a reduction in the levels of COX-2, PGE₂ and PGE₂ receptors (EP2 and EP4). Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of cells with COX-2 small interfering RNA, also inhibited cell migration. Treatment of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), an inducer of COX-2 or PGE₂, enhanced cell migration, whereas berberine inhibited TPA- or PGE₂-promoted cell migration. Berberine reduced the basal levels as well as PGE₂-stimulated expression levels of EP2 and EP4. Treatment of the cells with the EP4 agonist stimulated cell migration and berberine blocked EP4 agonist-induced cell migration activity. Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, inhibited cell migration. Together, these results indicate for the first time that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE₂ and PGE₂ receptors.
Collapse
Affiliation(s)
- Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
66
|
Scherer D, Kumar R. Genetics of pigmentation in skin cancer--a review. Mutat Res 2010; 705:141-153. [PMID: 20601102 DOI: 10.1016/j.mrrev.2010.06.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 01/05/2023]
Abstract
Skin pigmentation is one of the most overt human physical traits with consequences on susceptibility to skin cancer. The variations in skin pigmentation are dependent on geographic location and population ethnicity. Skin colouration is mainly due to the pigmentation substance melanin, produced in specialized organelles (melanosomes) within dendritic melanocytes, and transferred to neighbouring keratinocytes. The two types of melanin synthesized in well defined chemical reactions are the protective dark coloured eumelanin and the sulphur containing light red-yellow pheomelanin. The events leading to the synthesis of melanin are controlled by signalling cascades that involve a host of genes encoding ligands, receptors, transcription factors, channel transporters and many other crucial molecules. Several variants within the genes involved in pigmentation have been associated with high risk phenotypes like fair skin, brown-red hair and green-blue eyes. Many of those variants have also been implicated in the risk of various skin cancers. The variants within the key pigmentation gene, melanocortin-receptor 1 (MC1R), in particular have been ubiquitously linked with high risk traits and skin cancers involving both pigmentary and non-pigmentary functions and likely interaction with variants in other genes. Many of the variants in other genes, functional in pigmentation pathway, have also been associated with phenotypic variation and risk of skin cancers. Those genes include agouti signalling protein (ASIP), tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), oculocutaneous albinism II (OCA2), various solute carrier genes and transporters. Most of those associations have been confirmed in genome wide association studies that at the same time have also identified new loci involved in phenotypic variation and skin cancer risk. In conclusion, the genetic variants within the genes involved in skin pigmentation besides influencing phenotypic traits are important determinants of risk of several skin cancers. However, ultimate risk of skin cancer is dependent on interplay between genetic and host factors.
Collapse
Affiliation(s)
- Dominique Scherer
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| |
Collapse
|
67
|
Jin XJ, Kim EJ, Oh IK, Kim YK, Park CH, Chung JH. Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo. J Korean Med Sci 2010; 25:930-7. [PMID: 20514317 PMCID: PMC2877234 DOI: 10.3346/jkms.2010.25.6.930] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 11/29/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are known to play important roles in various physiological and pathological processes. Recent studies have shown that some omega-3 (omega-3) PUFAs, such as eicosapentaenoic acid (EPA) and dodecahexaenoic acid (DHA), have protective effects on acute and chronic UV-induced changes. However, the effects of other omega-3 PUFAs including 11,14,17-eicosatrienoic acid (20:3) (ETA) on UV-induced skin damages are poorly understood. In this study, we investigated the cutaneous photoprotective effects of ETA in hairless mice in vivo. Female HR-1 hairless mice were topically treated with vehicle (ethanol:polyethylene glycol=30:70) only, 0.1% ETA, or 1% ETA once a day for 3 successive days after one time UV irradiation (200 mJ/cm(2)) on dorsal skins. Skin biopsy was carried out on the fourth day (72 hr after UV irradiation). We found that topical treatment with ETA attenuated UV-induced epidermal and dermal thickness and infiltration of inflammatory cells, and impairment of skin barrier function. In addition, ETA suppressed the expression of IL-1beta, COX-2, and MMP-13 induced by UV irradiation. Our results show that the topical application of ETA protects against UV-induced skin damage in hairless mice and suggest that ETA can be a potential agent for preventing and/or treating UV-induced inflammation and photoaging.
Collapse
Affiliation(s)
- Xing-Ji Jin
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Eun Ju Kim
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - In Kyung Oh
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul Nationa University College of Medicine, Seoul, Korea
- Institute of Dermatological Science, Medical Research Center, Seoul National University, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
68
|
Vitamin D in health and disease: an insight into traditional functions and new roles for the 'sunshine vitamin'. Nutr Res Rev 2010; 22:118-36. [PMID: 19900346 DOI: 10.1017/s0954422409990102] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D is unique among the vitamins in that man can synthesise it via the action of UV radiation upon the skin. This combined with its ability to act on specific target tissues via vitamin D receptors (VDR) make its classification as a steroid hormone more appropriate. While vitamin D deficiency is a recognised problem in some northern latitude countries, recent studies have shown that even in sunny countries, such as Australia, vitamin D deficiency may be more prevalent than first thought. Vitamin D is most well known for its role in bone health; however, the discovery of VDR on a wide variety of tissue types has also opened up roles for vitamin D far beyond traditional bone health. These include possible associations with autoimmune diseases such as multiple sclerosis and inflammatory bowel diseases, cancer, CVD and muscle strength. First, this paper presents an overview of the two sources of vitamin D: exposure to UVB radiation and food sources of vitamin D, with particular focus on both Australian and international studies on dietary vitamin D intake and national fortification strategies. Second, the paper reviews recent epidemiological and experimental evidence linking vitamin D and its role in health and disease for the major conditions linked to suboptimal vitamin D, while identifying significant gaps in the research and possible future directions for research.
Collapse
|
69
|
Kyrgidis A, Tzellos TG, Triaridis S. Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications. J Carcinog 2010; 9:3. [PMID: 20442802 PMCID: PMC2862505 DOI: 10.4103/1477-3163.62141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/04/2010] [Indexed: 12/18/2022] Open
Abstract
Background: The classification and prognostic assessment of melanoma is currently based on morphologic and histopathologic biomarkers. Availability of an increasing number of molecular biomarkers provides the potential for redefining diagnostic and prognostic categories and utilizing pharmacogenomics for the treatment of patients. The aim of the present review is to provide a basis that will allow the construction–or reconstruction–of future melanoma research. Methods: We critically review the common medical databases (PubMed, EMBASE, Scopus and Cochrane CENTRAL) for studies reporting on molecular biomarkers for melanoma. Results are discussed along the hallmarks proposed for malignant transformation by Hanahan and Weinberg. We further discuss the genetic basis of melanoma with regard to the possible stem cell origin of melanoma cells and the role of sunlight in melanoma carcinogenesis. Results: Melanocyte precursors undergo several genome changes –UV-induced or not– which could be either mutations or epigenetic. These changes provide stem cells with abilities to self-invoke growth signals, to suppress antigrowth signals, to avoid apoptosis, to replicate without limit, to invade, proliferate and sustain angiogenesis. Melanocyte stem cells are able to progressively collect these changes in their genome. These new potential functions, drive melanocyte precursors to the epidermis were they proliferate and might cause benign nevi. In the epidermis, they are still capable of acquiring new traits via changes to their genome. With time, such changes could add up to transform a melanocyte precursor to a malignant melanoma stem cell. Conclusions: Melanoma cannot be considered a “black box” for researchers anymore. Current trends in the diagnosis and prognosis of melanoma are to individualize treatment based on molecular biomarkers. Pharmacogenomics constitute a promising field with regard to melanoma patients' treatment. Finally, development of novel monoclonal antibodies is expected to complement melanoma patient care while a number of investigational vaccines could find their way into everyday oncology practice.
Collapse
Affiliation(s)
- Athanassios Kyrgidis
- Department of Otolaryngology, Head & Neck Surgery, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
70
|
Scherer D, Nagore E, Bermejo JL, Figl A, Botella-Estrada R, Thirumaran RK, Angelini S, Hemminki K, Schadendorf D, Kumar R. Melanocortin receptor 1 variants and melanoma risk: A study of 2 European populations. Int J Cancer 2009; 125:1868-75. [DOI: 10.1002/ijc.24548] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
71
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
72
|
Devi S, Kedlaya R, Maddodi N, Bhat KMR, Weber CS, Valdivia H, Setaluri V. Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light. Am J Physiol Cell Physiol 2009; 297:C679-87. [PMID: 19587221 DOI: 10.1152/ajpcell.00092.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin (TRPM) is a subfamily of ion channels that are involved in sensing taste, ambient temperature, low pH, osmolarity, and chemical ligands. Melastatin 1/TRPM1, the founding member, was originally identified as melanoma metastasis suppressor based on its expression in normal pigment cells in the skin and the eye but not in aggressive, metastasis-competent melanomas. The role of TRPM1 and its regulation in normal melanocytes and in melanoma progression is not understood. Here, we studied the relationship of TRPM1 expression to growth and differentiation of human epidermal melanocytes. TRPM1 expression and intracellular Ca(2+) levels are significantly lower in rapidly proliferating melanocytes compared to the slow growing, differentiated melanocytes. We show that lentiviral short hairpin RNA (shRNA)-mediated knockdown of TRPM1 results in reduced intracellular Ca(2+) and decreased Ca(2+) uptake suggesting a role for TRPM1 in Ca(2+) homeostasis in melanocytes. TRPM1 knockdown also resulted in a decrease in tyrosinase activity and intracellular melanin pigment. Expression of the tumor suppressor p53 by transfection or induction of endogenous p53 by ultraviolet B radiation caused repression of TRPM1 expression accompanied by decrease in mobilization of intracellular Ca(2+) and uptake of extracellular Ca(2+). These data suggest a role for TRPM1-mediated Ca(2+) homeostasis, which is also regulated by ultraviolet B, in melanogenesis.
Collapse
Affiliation(s)
- Sulochana Devi
- Dept. of Dermatology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Weigmann HJ, Schanzer S, Patzelt A, Bahaban V, Durat F, Sterry W, Lademann J. Comparison of human and porcine skin for characterization of sunscreens. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:024027. [PMID: 19405756 DOI: 10.1117/1.3103340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The universal sun protection factor (USPF) characterizing sunscreen efficacy based on spectroscopically determined data, which were obtained using the tape stripping procedure. The USPF takes into account the complete ultraviolet (UV) spectral range in contrast to the classical sun protection factor (SPF). Until now, the USPF determination has been evaluated only in human skin. However, investigating new filters not yet licensed excludes in vivo investigation on human skin but requires the utilization of a suitable skin model. The penetration behavior and the protection efficacy of 10 commercial sunscreens characterized by USPF were investigated, comparing human and porcine skin. The penetration behavior found for typical UV filter substances is nearly identical for both skin types. The comparison of the USPF obtained for human and porcine skin results in a linear relation between both USPF values with a correlation factor R(2)=0.98. The results demonstrate the possibility for the use of porcine skin to determine the protection efficacy of sunscreens.
Collapse
Affiliation(s)
- Hans-Jürgen Weigmann
- Charite-Universitatsmedizin Berlin, Department of Dermatology, Center of Experimental and Applied Cutaneous Physiology, Chariteplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
From UVs to metastases: modeling melanoma initiation and progression in the mouse. J Invest Dermatol 2008; 128:2381-91. [PMID: 18787547 DOI: 10.1038/jid.2008.177] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cutaneous malignant melanoma is highly invasive and capable of metastasizing to distant sites where it is typically resistant to available therapy. While striving to prevent or eradicate melanoma, researchers have two significant advantages not shared by those working on many other cancers. The main environmental etiological agent, UV radiation, is known and melanocytic lesions are excisable for molecular analysis from most stages. Yet knowledge about how UV initiates melanoma has been insufficient to achieve prevention, and the understanding of metastatic mechanisms has been inadequate to reduce mortality. Here, we review the value of melanoma mouse models, focusing on these critical early and late stages.
Collapse
|