51
|
Koyuncu I, Temiz E, Seker F, Balos MM, Akkafa F, Yuksekdag O, Yılmaz MA, Zengin G. A mixed-apoptotic effect of Jurinea mesopotamica extract on prostate cancer cells: a promising source for natural chemotherapeutics. Chem Biodivers 2024; 21:e202301747. [PMID: 38161146 DOI: 10.1002/cbdv.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/03/2024]
Abstract
This research investigates the potential use of Jurinea mesopotamica Hand.-Mazz. (Asteraceae) in cancer treatment. In this study, a plant extract was prepared using all parts of J. mesopotamica, and its effect on the proliferation of cancer and normal cells was tested using the MTT method. It was found to have a selective cytotoxic effect on prostate cancer cells, with the lowest IC50 (half-maximal inhibitory concentration) of 10μg/mL found in the butanol extract (JMBE). The extract suppressed the proliferation of prostate cancer cells (67 %), disrupted organelle integrity (49 %), increased reactive oxidative stress (66 %), and triggered cell death (51 %). In addition, apoptotic gene expressions and protein levels increased, and the profile of amino acids related to energy metabolism was elevated. Based on LC-MS/MS results, the plant contained higher levels of flavonoids, including isoquercitrin, cosmosiin, astragalin, nicotiflorin, luteolin, and apigenin. These results suggest that J. mesopotamica has a selective effect on prostate cancer due to its high flavonoid content and might be a promising natural alternative for cancer treatment.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Fatma Seker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Turkey
| | - M Maruf Balos
- Sanliurfa Provincial Directorate of National Education, Sanliurfa, Turkey
| | - Feridun Akkafa
- Department of Medical Biology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - M Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
52
|
Quradha MM, Duru ME, Kucukaydin S, Tamfu AN, Iqbal M, Bibi H, Khan R, Ceylan O. Comparative assessment of phenolic composition profile and biological activities of green extract and conventional extracts of Salvia sclarea. Sci Rep 2024; 14:1885. [PMID: 38253648 PMCID: PMC10803343 DOI: 10.1038/s41598-024-51661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been an attempt to develop safe and environmental friendly solvents to replace conventional solvents, and use for extraction bioactive compounds from natural sources. A current investigation involved the preparation of green, methanolic, and ultrasonic extracts of S. sclarea, and compared their phenolic profiling using HPLC-DAD, antibacterial, antioxidant, and enzyme inhibition activities. The HPLC-DAD analysis revealed that Rosmarinic acid was the main content in all extracts, with Ellagic acid only present in the green extract. The green extract exhibited superior anti-biofilm activity against S. Aureus and E. Faecalis compared to the other extracts at MIC concentration. Furthermore, the green extract also displayed the highest inhibition of swarming motility in P. Aeruginosa with inhibition range 68.0 ± 2.1 (MIC) to 19.5 ± 0.6 (MIC/4). and better enzyme inhibitory activity against BChE (with IC50 = 131.6 ± 0.98 µg/mL) and AChE (with inhibition 47.00 ± 1.50%) compared to the other extracts; while, the ultrasonic extract showed strong inhibition of violacein production by C. Violaceum with a inhibition range 05.5 ± 0.1 (MIC/32) to 100 ± 0.00 (MIC), followed by the green extract with a inhibition range 15.0 ± 0.5 (MIC/8) to 100 ± 0.00 (MIC), additionally, the ultrasonic and methanoic extracts showed significant activity against urease enzyme with (IC50 = 171.6 ± 0.95 µg/mL and IC5 0 = 187.5 ± 1.32 µg/mL) respectively. Both the green and methanolic extracts showed considerable antioxidant activities, as β-carotene-linoleic acid (IC50 = 5.61 ± 0.47 µg/mL and 5.37 ± 0.27 µg/mL), DPPH· (IC50 = 19.20 ± 0.70 µg/mL and 16.31 ± 0.23 µg/mL), ABTS·+(IC50 = 8.64 ± 0.63 µg/mL and 6.50 ± 0.45 µg/mL) and CUPRAC (A0.5 = 17.22 ± 0.36 µg/mL and 12.28 ± 0.12 µg/mL) respectively, likewise the green extract performing better in metal chelating compared to the other extracts. The green extraction is reported as a cost effective and solvent free method for extracting natural products that produces compounds free of toxic chemicals. This could be the method to be used in the industries as a renewable method.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of Education, Seiyun University, Seiyun, Yemen.
- Pharmacy Department, Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen.
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sıtkı Kocman University, Koycegiz/Mugla, Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454, Ngaoundere, Cameroon
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Hamida Bibi
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Ula Mugla, 48147, Turkey
| |
Collapse
|
53
|
Park W, Han JH, Wei S, Yang ES, Cheon SY, Bae SJ, Ryu D, Chung HS, Ha KT. Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:807. [PMID: 38255882 PMCID: PMC10815680 DOI: 10.3390/ijms25020807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic effects. The study findings suggest that natural products can be promising inhibitors of glycolytic enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors as innovative therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Shibo Wei
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea;
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| |
Collapse
|
54
|
Yang H, Zhao Y, Song W, Fan G. The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma. Int J Biol Macromol 2024; 254:127627. [PMID: 37884243 DOI: 10.1016/j.ijbiomac.2023.127627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
To develop an inhibitor targeting the Wnt/β-catenin signaling pathway, flavonoid monomer that can interact with β-catenin was isolated from Paulownia flowers. Luteolin may form stable hydrogen bonds with β-catenin by molecular docking. Fluorescence quenching analysis determined the physical interaction between luteolin and β-catenin. The binding of luteolin to β-catenin caused a loss of α-helical structure and induced a conformational change through circular dichroism spectroscopy. Luteolin inhibits the activity of the Wnt signaling, causing cholangiocarcinoma (CCA) cell cycle arrest in the G2/M phase, leading to cell apoptosis and inhibition of cell migration. In addition, transcriptome and proteomics analysis showed that the differentially expressed proteins were significantly enriched in the Wnt/β-catenin pathway. β-catenin protein in the nucleus was significantly decreased, while C-Myc and cyclin D1 in the CCA cells were significantly decreased after luteolin treatment. Additionally, activation of the Wnt/β-catenin signaling reversed the inhibitory effect of luteolin on the migration of CCA cells. Therefore, luteolin can directly interact with β-catenin and act as an inhibitor of β-catenin, inhibiting proliferation and reducing the migration ability of CCA cells by inhibiting the Wnt/β-catenin pathway. This study provides a scientific basis for the development of Wnt/β-catenin pathway inhibitors and the prevention and treatment of CCA.
Collapse
Affiliation(s)
- Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, PR China
| | - Yaying Zhao
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, PR China; College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, PR China.
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
55
|
Singh K, Agrawal L, Gupta R, Singh D, Kathpalia M, Kaur N. Lectins as a promising therapeutic agent for breast cancer: A review. Breast Dis 2024; 43:193-211. [PMID: 38905027 PMCID: PMC11307042 DOI: 10.3233/bd-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Efficient treatment of cancer has been a subject of research by scientists for many years. Current treatments for cancer, such as radiotherapy, chemotherapy and surgery have been used in traditional combination therapy, but they have major setbacks like non-specificity, non-responsiveness in certain cancer types towards treatment, tumor recurrence, etc. Epidemiological data has shown that breast cancer accounts for 14% of cancer cases occurring in Indian women. In recent years, scientists have started to focus on the use of natural compounds like lectins obtained from various sources to counter the side effects of traditional therapy. Lectins like Sambucus nigra Agglutinin, Maackia amurensis lectin, Okra lectins, Haliclona caerulea lectin, Sclerotium rolfsii lectin, etc., have been discovered to have both diagnostic and therapeutic potential for breast cancer patients. Lectins have been found to have inhibitory effects on various cancer cell activities such as neo-angiogenesis, causing cell cycle arrest at the G1 phase, and inducing apoptosis. The major idea behind the use of lectins in cancer diagnostics and therapeutics is their capability to bind to glycosylated proteins that are expressed on the cell surface. This review focuses on an exploration of the roles of post-translational modification in cancer cells, especially glycosylation, and the potential of lectins in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Keerti Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Lokita Agrawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rhea Gupta
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Divyam Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meghavi Kathpalia
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
56
|
Iqbal MO, Gu Y, Khan IA, Wang R, Chen J. Evaluation of the in vitro antioxidant and antitumor activity of hydroalcoholic extract from Jatropha mollissima leaves in Wistar rats. Front Chem 2023; 11:1283618. [PMID: 38164252 PMCID: PMC10757942 DOI: 10.3389/fchem.2023.1283618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Despite modern sciences and advancements in new drugs or chemicals, the new era now rushes natural remedies for various illnesses and diseases that lead to end organ damage. In this study, we investigated Jatropha mollissima ethanolic extract's effect against doxorubicin-induced cardiotoxicity and renal toxicity. Methods: To determine phytochemicals, a phytochemical screening was conducted. Various assays were used to measure the antioxidant activity, including the DPPH (2,2-diphenylpicrylhydrazyl), SOD (superoxide dismutase), NO (nitric oxide), and others. The antiproliferative effect of Jm was assessed by MTT assay; morphological analysis was performed using an inverted and phase contrast microscope, ultra morphological analysis of apoptosis with acridine orange (AO)/propidium iodide (PI) staining. Results: It was seen that doxorubicin caused elevated serum markers and abnormal changes in histological patterns. The significant reduction in cardiac and renal marker levels seen in groups given either 400 or 600 mg/kg of crude extract demonstrates that Jm has a protective effect against doxorubicin-induced cardiotoxicity due to the presence of active phytoconstituents having antioxidant potential. There is a dose-dependent decrease in cell viability when using J. mollissima. Apoptosis was observed in the treated cells. Conclusion: In conclusion, our research lends credence to the idea that J. mollissima could be used for cancer management and have cardioprotective and nephroprotective effects.
Collapse
Affiliation(s)
- Muhammad Omer Iqbal
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
- Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan, Pakistan
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Imran Ahmad Khan
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan, Pakistan
- Department of Pharmacy, MNS University of Agriculture, Multan, Pakistan
| | - Ruihong Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
57
|
Jones MA, Borun A, Greensmith DJ. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G 1 cell cycle arrest in human leukaemia subtypes. Front Pharmacol 2023; 14:1282239. [PMID: 38155908 PMCID: PMC10752984 DOI: 10.3389/fphar.2023.1282239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Leukemias are a common cancer in adults and children. While existing treatments are effective, they are associated with severe side-effects compounded by the emergence of drug resistance. This necessitates the need to develop new drugs and phytopharmaceuticals offer a largely untapped source. Oleoresins produced by plants in the genus Boswellia have been used for centuries in traditional medicine and recent work suggests they may exhibit anti-cancer activity. However, the underlying mechanisms remain unclear and most existing research focusses on Boswellia serrata; just one of many species in the Boswellia genus. To address these limitations, we elucidated the anti-cancer potential and associated mechanisms of action of Boswellia carterii. Methods: A methanolic solvent extraction method was optimised. The effect of methanolic extracts of B. carterii on leukaemia (K562, MOLT-4 and CCRF-CEM) and normal (PBMC) cell line viability was assessed using MTT assay and flow cytometry. Cell morphology, apoptosis (Annexin-V/propidium iodide), mitochondrial membrane potential (Rhodamine-123) and the cell cycle (propidium iodide) were evaluated using flow cytometry. Regulatory protein expression was quantified using Western Blot. Results: Methanolic extracts of B. carterii oleoresin reduced the viability of K562, MOLT-4 and CCRF-CEM cell lines with selectivity indexes of between 1.75 and 2.68. Extracts increased the proportion of cells in late apoptosis by 285.4% ± 51.6%. Mitochondrial membrane potential was decreased by 41% ± 2% and the expression of cleaved caspase-3, -7, and -9 was increased by 5.7, 3.3, and 1.5-fold respectively. Extracts increased the proportion of cells in subG1 and G1 phase by 867.8% ± 122.9% and 14.0 ± 5.5 and decreased those in S phase and G2/M by 63.4% ± 2.0% and 57.6% ± 5.3%. Expression of CDK2, CDK6, cyclin D1, and cyclin D3 were decreased by 2.8, 4.9, 3.9, and 2.5-fold. Conclusion: We are the first to report that methanolic extracts of B. carterii are selectively cytotoxic against three leukemia cell lines. Cytotoxic mechanisms likely include activation of the intrinsic apoptotic pathway and cell cycle arrest through downregulation of CDK2, CDK6, cyclin D1, and cyclin D3. Our findings suggest that B. carterii may be an important source of novel chemotherapeutic drugs and justifies further investigation.
Collapse
Affiliation(s)
| | | | - David James Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
58
|
Rady AM, El-Sayed ASA, El-Baz AF, Abdel-Fattah GG, Magdeldin S, Ahmed E, Osama A, Hassanein SE, Saed H, Yassin M. Proteomics and metabolomics analyses of camptothecin-producing Aspergillus terreus reveal the integration of PH domain-containing proteins and peptidylprolyl cis/trans isomerase in restoring the camptothecin biosynthesis. Microbiol Spectr 2023; 11:e0228123. [PMID: 37855596 PMCID: PMC10714794 DOI: 10.1128/spectrum.02281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Decreasing the camptothecin productivity by fungi with storage and subculturing is the challenge that halts their further implementation to be an industrial platform for camptothecin (CPT) production. The highest differentially abundant proteins were Pleckstrin homology (PH) domain-containing proteins and Peptidyl-prolyl cis/trans isomerase that fluctuated with the subculturing of A. terreus with a remarkable relation to CPT biosynthesis and restored with addition of F. elastica microbiome.
Collapse
Affiliation(s)
- Amgad M. Rady
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Ashraf S. A. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ashraf F. El-Baz
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | | | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital, Cairo, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital, Cairo, Egypt
| | - Sameh E. Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Cairo, Egypt
| | - Hend Saed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
59
|
Abdoul-Latif FM, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. An Overview of Cancer in Djibouti: Current Status, Therapeutic Approaches, and Promising Endeavors in Local Essential Oil Treatment. Pharmaceuticals (Basel) 2023; 16:1617. [PMID: 38004482 PMCID: PMC10674319 DOI: 10.3390/ph16111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Djibouti, a developing economy, grapples with significant socioeconomic obstacles and the prevalence of infectious pathologies, including certain forms of neoplasms. These challenges are exacerbated by limited access to affordable medical technologies for diagnosis, coupled with a lack of preventive interventions, particularly in disadvantaged areas. The attention devoted to local phytotherapeutic treatments underscores the uniqueness of Djibouti's flora, resulting from its distinctive geographical position. International focus specifically centers on harnessing this potential as a valuable resource, emphasizing the phytoconstituents used to counter pathologies, notably carcinomas. This comprehensive overview covers a broad spectrum, commencing with an examination of the current state of knowledge, namely an in-depth investigation of oncological risk factors. Essential elements of control are subsequently studied, highlighting the fundamental prerequisites for effective management. The significance of dietary habits in cancer prevention and support is explored in depth, while traditional methods are examined, highlighting the cultural significance of indigenous essential oil therapies and encouraging further research based on the promising results.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
60
|
Kuttikrishnan S, Masoodi T, Ahmad F, Sher G, Prabhu KS, Mateo JM, Buddenkotte J, El-Elimat T, Oberlies NH, Pearce CJ, Bhat AA, Alali FQ, Steinhoff M, Uddin S. In vitro evaluation of Neosetophomone B inducing apoptosis in cutaneous T cell lymphoma by targeting the FOXM1 signaling pathway. J Dermatol Sci 2023; 112:83-91. [PMID: 37865581 DOI: 10.1016/j.jdermsci.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Cutaneous T cell lymphoma (CTCL) is a T cell-derived non-Hodgkin lymphoma primarily affecting the skin, with treatment posing a significant challenge and low survival rates. OBJECTIVE In this study, we investigated the anti-cancer potential of Neosetophomone B (NSP-B), a fungal-derived secondary metabolite, on CTCL cell lines H9 and HH. METHODS Cell viability was measured using Cell counting Kit-8 (CCK8) assays. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Applied Biosystems' high-resolution Human Transcriptome Array 2.0 was used to examine gene expression. RESULTS NSP-B induced apoptosis in CTCL cells by activating mitochondrial signaling pathways and caspases. We observed downregulated expression of BUB1B, Aurora Kinases A and B, cyclin-dependent kinases (CDKs) 4 and 6, and polo-like kinase 1 (PLK1) in NSP-B treated cells, which was further corroborated by Western blot analysis. Notably, higher expression levels of these genes showed reduced overall and progression-free survival in the CTCL patient cohort. FOXM1 and BUB1B expression exhibited a dose-dependent reduction in NSP-B-treated CTCL cells.FOXM1 silencing decreased cell viability and increased apoptosis via BUB1B downregulation. Moreover, NSP-B suppressed FOXM1-regulated genes, such as Aurora Kinases A and B, CDKs 4 and 6, and PLK1. The combined treatment of Bortezomib and NSP-B showed greater efficacy in reducing CTCL cell viability and promoting apoptosis compared to either treatment alone. CONCLUSION Our findings suggest that targeting the FOXM1 pathway may provide a promising therapeutic strategy for CTCL management, with NSP-B offering significant potential as a novel treatment option.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Feras Q Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha, Qatar; Department of Medicine, Weill Cornell Medicine, NY, USA; College of Medicine, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
61
|
Rana N, Patel D, Parmar M, Mukherjee N, Jha PC, Manhas A. Targeting allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to identify natural product inhibitors via structure-based computational approach. Sci Rep 2023; 13:18090. [PMID: 37872243 PMCID: PMC10593809 DOI: 10.1038/s41598-023-45175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
Cancer has been viewed as one of the deadliest diseases worldwide. Among various types of cancer, breast cancer is the most common type of cancer in women. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a promising druggable target and is overexpressed in cancerous cells, like, breast cancer. We conducted structure-based modeling on the allosteric site of the enzyme. Targeting the allosteric site avoids the problem of drug resistance. Pharmacophore modeling, molecular docking, HYDE assessment, drug-likeness, ADMET predictions, simulations, and free-energy calculations were performed. The RMSD, RMSF, RoG, SASA, and Hydrogen-bonding studies showed that seven candidates displayed stable behaviour. As per the literature, average superimposed simulated structures revealed a similar protein conformational change in the αE'-βf' loop, causing its displacement away from the allosteric site. The MM-PBSA showed tight binding of six compounds with the allosteric pocket. The effect of inhibitors interacting in the allosteric site causes a decrease in the binding energy of J49 (active-site inhibitor), suggesting the effect of allosteric binding. The PCA and FEL analysis revealed the significance of the docked compounds in the stable behaviour of the complexes. The outcome can contribute to the development of potential natural products with drug-like properties that can inhibit the MTHFD2 enzyme.
Collapse
Affiliation(s)
- Nisarg Rana
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Dhaval Patel
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, India
| | - Meet Parmar
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, India
| | - Nandini Mukherjee
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India
| | - Prakash C Jha
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Anu Manhas
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| |
Collapse
|
62
|
Chandra J, Hasan N, Nasir N, Wahab S, Thanikachalam PV, Sahebkar A, Ahmad FJ, Kesharwani P. Nanotechnology-empowered strategies in treatment of skin cancer. ENVIRONMENTAL RESEARCH 2023; 235:116649. [PMID: 37451568 DOI: 10.1016/j.envres.2023.116649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In current scenario skin cancer is a serious condition that has a significant impact on world health. Skin cancer is divided into two categories: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Because of its significant psychosocial effects and need for significant investment in new technology and therapies, skin cancer is an illness of global health relevance. From the patient's perspective chemotherapy considered to be the most acceptable form of treatment. However, significant negatives of chemotherapy such as severe toxicities and drug resistance pose serious challenges to the treatment. The field of nanomedicine holds significant promise for enhancing the specificity of targeting neoplastic cells through the facilitation of targeted drug delivery to tumour cells. The integration of multiple therapeutic modalities to selectively address cancer-promoting or cell-maintaining pathways constitutes a fundamental aspect of cancer treatment. The use of mono-therapy remains prevalent in the treatment of various types of cancer, it is widely acknowledged in the academic community that this conventional approach is generally considered to be less efficacious compared to the combination treatment strategy. The employment of combination therapy in cancer treatment has become increasingly widespread due to its ability to produce synergistic anticancer effects, mitigate toxicity associated with drugs, and inhibit multi-drug resistance by means of diverse mechanisms. Nanotechnology based combination therapy represents a promising avenue for the development of efficacious therapies for skin cancer within the context of this endeavour. The objective of this article is to provide a description of distinct challenges for efficient delivery of drugs via skin. This article also provides a summary of the various nanotechnology based combinatorial therapy available for skin cancer with their recent advances. This review also focuses on current status of clinical trials of such therapies.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
63
|
Khamwut A, Klomkliew P, Jumpathong W, Kaewsapsak P, Chanchaem P, Sivapornnukul P, Chantanakat K, T-Thienprasert NP, Payungporn S. In vitro evaluation of the anti‑breast cancer properties and gene expression profiles of Thai traditional formulary medicine extracts. Biomed Rep 2023; 19:70. [PMID: 37719681 PMCID: PMC10502604 DOI: 10.3892/br.2023.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Ariya Khamwut
- Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pornchai Kaewsapsak
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kridsana Chantanakat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
64
|
Afshari H, Noori S, Zarghi A. Curcumin potentiates the anti-inflammatory effects of Tehranolide by modulating the STAT3/NF-κB signaling pathway in breast and ovarian cancer cell lines. Inflammopharmacology 2023; 31:2541-2555. [PMID: 37452228 DOI: 10.1007/s10787-023-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Studies have demonstrated that natural products, such as curcumin and artemisinin, possess anti-inflammatory effects, which can be beneficial for cancer treatment. Tehranolide, as a novel natural product, has a wide range of biological activities, including anti-cancer effects. However, many properties of Tehranolide, like its anti-inflammatory activity and its combination with curcumin, have not been investigated yet. This investigation examined the anti-inflammatory activity of Tehranolide, either alone or in combination with curcumin, via modulating the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and STAT3 (signal transducer and activator of transcription 3) signaling pathways in MDA-MB-231 and SKOV3, breast and ovarian cancer cell lines. METHODS ELISA-based methods were employed to measure the pro-inflammatory cytokine levels and the NF-κB activity in lipopolysaccharide (LPS)-induced cells. The real-time PCR experiment and Griess test were performed to evaluate inducible nitric oxide synthase (iNOS) gene expression and nitrite levels, respectively. The STAT3 and NF-κB signaling pathways were investigated by Western blotting analysis. Tehranolide's anti-cancer activity was also assessed in a mouse model of breast cancer using the TUNEL (terminal deoxynucleotidyl transferase nick-end labeling) assay. RESULTS Tehranolide diminished levels of pro-inflammatory cytokines in cancer cells. Additionally, it suppressed NF-κB DNA binding and STAT3 phosphorylation, reducing iNOS gene expression and nitrite production. Moreover, Western blotting showed that Tehranolide enhanced the inhibitory κB (IκBα) and Bcl-2 (B-cell lymphoma 2)-associated X (BAX) expression, and downregulated the expression of Bcl-2 proteins. Furthermore, the TUNEL assay demonstrated that Tehranolide induced apoptosis in a breast cancer mouse model. Curcumin potentiated all the anti-inflammatory effects of Tehranolide. CONCLUSION This investigation indicated for the first time that Tehranolide, either alone or in combination with curcumin, exerted its anti-inflammatory effects by suppressing NF-κB and STAT3 signaling pathways in SKOV3 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
65
|
Dos Santos EWP, de Sousa RC, de Franca MNF, Santos JF, Ottoni FM, Isidório RG, de Lucca Junior W, Alves RJ, Scher R, Corrêa CB. Inhibitory effect of O-propargyllawsone in A549 lung adenocarcinoma cells. BMC Complement Med Ther 2023; 23:333. [PMID: 37730601 PMCID: PMC10510246 DOI: 10.1186/s12906-023-04156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Lung cancer is the deadliest type of cancer in the world and the search for compounds that can treat this disease is highly important. Lawsone (2-hydroxy-1,4-naphtoquinone) is a naphthoquinone found in plants from the Lawsone genus that show a high cytotoxic effect in cancer cell lines and its derivatives show an even higher cytotoxic effect. METHODS Sulforhodamine B was used to evaluate the cytotoxic activity of compounds on tumor cells. Clonogenic assay was used to analyze the reduction of colonies and wound healing assay to the migratory capacity of A549 cells. Apoptosis and necrosis were analyzed by flow cytometer and Giemsa staining. Hemolysis assay to determine toxicity in human erythrocytes. RESULTS Lawsone derivatives were evaluated and compound 1 (O-propargyllawsone) was the one with the highest cytotoxic effect, with IC50 below 2.5 µM in A549 cells. The compound was able to reduce colony formation and inhibit cell migration. Morphological changes and cytometry analysis show that the compound induces apoptosis and necrosis in A549 cells. CONCLUSIONS These results show that O-propargyllawsone show a cytotoxic effect and may induce apoptosis in A549 cells.
Collapse
Affiliation(s)
- Edmilson Willian Propheta Dos Santos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Rauan Cruz de Sousa
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jileno Ferreira Santos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Flaviano Melo Ottoni
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Geralda Isidório
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Waldecy de Lucca Junior
- Laboratory of Molecular Neuroscience of Sergipe, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Ricardo José Alves
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Scher
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiane Bani Corrêa
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| |
Collapse
|
66
|
Keeler AM, Petruzziello PE, Boger EG, D'Ambrosio HK, Derbyshire ER. Exploring the Chain Release Mechanism from an Atypical Apicomplexan Polyketide Synthase. Biochemistry 2023; 62:2677-2688. [PMID: 37556730 DOI: 10.1021/acs.biochem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Polyketide synthases (PKSs) are megaenzymes that form chemically diverse polyketides and are found within the genomes of nearly all classes of life. We recently discovered the type I PKS from the apicomplexan parasite Toxoplasma gondii, TgPKS2, which contains a unique putative chain release mechanism that includes ketosynthase (KS) and thioester reductase (TR) domains. Our bioinformatic analysis of the thioester reductase of TgPKS2, TgTR, suggests differences compared to other systems and hints at a possibly conserved release mechanism within the apicomplexan subclass Coccidia. To evaluate this release module, we first isolated TgTR and observed that it is capable of 4 electron (4e-) reduction of octanoyl-CoA to the primary alcohol, octanol, utilizing NADH. TgTR was also capable of generating octanol in the presence of octanal and NADH, but no reactions were observed when NADPH was supplied as a cofactor. To biochemically characterize the protein, we measured the catalytic efficiency of TgTR using a fluorescence assay and determined the TgTR binding affinity for cofactor and substrates using isothermal titration calorimetry (ITC). We additionally show that TgTR is capable of reducing an acyl carrier protein (ACP)-tethered substrate by liquid chromatography mass spectrometry and determine that TgTR binds to holo-TgACP4, its predicted cognate ACP, with a KD of 5.75 ± 0.77 μM. Finally, our transcriptional analysis shows that TgPKS2 is upregulated ∼4-fold in the parasite's cyst-forming bradyzoite stage compared to tachyzoites. Our study identifies features that distinguish TgPKS2 from well-characterized systems in bacteria and fungi and suggests it aids the T. gondii cyst stage.
Collapse
Affiliation(s)
- Aaron M Keeler
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Porter E Petruzziello
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elizabeth G Boger
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hannah K D'Ambrosio
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
67
|
Shouman H, Said HS, Kenawy HI, Hassan R. Molecular and biological characterization of pyocyanin from clinical and environmental Pseudomonas aeruginosa. Microb Cell Fact 2023; 22:166. [PMID: 37644606 PMCID: PMC10466709 DOI: 10.1186/s12934-023-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Pyocyanin is a secondary metabolite secreted by P. aeruginosa. It is a redox-active blue/green phenazine pigment that has various beneficial applications. The present study aims at screening the production of pyocyanin among clinical and environmental P. aeruginosa isolates in Dakahlya governorate, Egypt. Thereafter, large-scale production, purification, structure elucidation, and assessment of the biological activity of the highest pyocyanin producers were targeted. RESULTS Pyocyanin from the highest clinical (PsC05) and environmental (PsE02) producers were subjected to large-scale production, followed by purification using silica gel column. Pyocyanin was characterized using TLC, UV-Vis, 1 H NMR, and FTIR spectroscopy to confirm its structure and purity. Purified pyocyanin showed remarkable antimicrobial efficacy against all tested food-borne pathogens, MDR/XDR clinically isolated bacteria and C. albicans. Furthermore, it showed a substantial effect on biofilm inhibition and eradication of pre-formed biofilm against strong biofilm producing bacterial pathogens. However, it had limited antibiofilm activity against C. albicans. Pyocyanin from PsC05 had higher antioxidant and radicals scavenging activity than that from PsE02 as determined by FRAP, DPPH, and ABTS assays. Likewise, pyocyanin from PsC05 was more active against tested cancer cell lines, especially human Breast Cancer (MCF-7) and Colorectal Carcinoma (HCT-116), than that from PsE02. More importantly, it showed minimal cytotoxicity to normal cells. CONCLUSIONS P. aeruginosa clinical and environmental isolates produce pyocyanin pigment in varying amounts. Pyocyanin exhibits substantial anti-bacterial, and anti-fungal activity; thus, enhancing its medical applicability. It could be used to inhibit and/or eradicate biofilm from the surfaces of medical devices which is a chief source of nosocomial infections. Its antioxidant along with cytotoxic activity against cancer cell lines, make it a promising contender for use as a substitute for synthetic agents in cancer treatment.
Collapse
Affiliation(s)
- Heba Shouman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Heba Shehta Said
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hany I Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
68
|
Dawoud MHS, Mannaa IS, Abdel-Daim A, Sweed NM. Integrating Artificial Intelligence with Quality by Design in the Formulation of Lecithin/Chitosan Nanoparticles of a Poorly Water-Soluble Drug. AAPS PharmSciTech 2023; 24:169. [PMID: 37552427 DOI: 10.1208/s12249-023-02609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/25/2023] [Indexed: 08/09/2023] Open
Abstract
The aim of the current study is to explore the potential of artificial intelligence (AI) when integrated with Quality by Design (QbD) approach in the formulation of a poorly water-soluble drug, for its potential use in carcinoma. Silymarin is used as a model drug for its potential effectiveness in liver cancer. A detailed QbD approach was applied. The effect of the critical process parameters was studied on each of the particle size, size distribution, and entrapment efficiency. Response surface designs were applied in the screening and optimization of lecithin/chitosan nanoparticles, to obtain an optimized formula. The release rate was tested, where artificial neural network models were used to predict the % release of the drug from the optimized formula at different time intervals. The optimized formula was tested for its cytotoxicity. A design space was established, with an optimized formula having a molar ratio of 18.33:1 lecithin:chitosan and 38.35 mg silymarin. This resulted in nanoparticles with a size of 161 nm, a polydispersity index of 0.2, and an entrapment efficiency of 97%. The optimized formula showed a zeta potential of +38 mV, with well-developed spherical particles. AI successfully showed high prediction ability of the drug's release rate. The optimized formula showed an enhancement in the cytotoxic effect of silymarin with a decreased IC50 compared to standard silymarin. Lecithin/chitosan nanoparticles were successfully formulated, with deep process and product understanding. Several tools were used as AI which could shift pharmaceutical formulations from experience-dependent studies to data-driven methodologies in the future.
Collapse
Affiliation(s)
- Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt.
| | - Islam S Mannaa
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt
| | - Amira Abdel-Daim
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, intersection of 26th of July road and Elwahat road, 6th of October city, Giza, Egypt
| |
Collapse
|
69
|
Jee W, Ko HM, Park DI, Park YR, Park SM, Kim H, Na YC, Jung JH, Jang HJ. Momordicae Semen inhibits migration and induces apoptotic cell death by regulating c-Myc and CNOT2 in human pancreatic cancer cells. Sci Rep 2023; 13:12800. [PMID: 37550432 PMCID: PMC10406802 DOI: 10.1038/s41598-023-39840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
Pancreatic cancer(PC) is less common than other cancers; however, it has a poor prognosis. Therefore, studying novel target signaling and anticancer agents is necessary. Momordicae Semen (MS), the seed of Momordica sochinensis Spreng, mainly found in South-East Asia, including China and Bangladesh, is used to treat various diseases because of its anticancer, antioxidant, anti-inflammatory, and antibacterial properties. However, the effect of the MS extract on pancreatic cancer cells remains unknown. In this study investigated whether the MS extract exerted an anti-cancer effect by regulating c-Myc through CNOT2. Cytotoxicity and proliferation were investigated using MTT and colony formation assays. The levels of apoptotic, oncogenic, and migration-associated factors were confirmed using immunoblotting and immunofluorescence. Wound closure was analyzed using a wound healing assay. The chemical composition of the MS methanol extracts was analyzed using liquid chromatography-mass spectrometry. We confirmed that the MS extract regulated apoptotic factors and attenuated the stability of c-Myc and its sensitivity to fetal bovine serum. Furthermore, the MS extract increased apoptosis by regulating c-Myc and CNOT2 expression and enhanced the sensitivity of 5-FU in pancreatic cancer. This study showed that the MS extract is a promising new drug for PC.
Collapse
Affiliation(s)
- Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Do-Il Park
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ye-Rin Park
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - So-Mi Park
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Hyungsuk Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-Ro, Seodaemun-Gu, Seoul, 03759, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
70
|
Zhang J, Xu HX, Wu YL, Cho WCS, Xian YF, Lin ZX. Synergistic Anti-Tumor Effect of Toosendanin and Paclitaxel on Triple-Negative Breast Cancer via Regulating ADORA2A-EMT Related Signaling. Adv Biol (Weinh) 2023; 7:e2300062. [PMID: 37401656 DOI: 10.1002/adbi.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Indexed: 07/05/2023]
Abstract
Triple negative breast cancer (TNBC) is an aggressive cancer with very poor prognosis. Combination therapy has proven to be a promising strategy for enhancing TNBC treatment efficacy. Toosendanin (TSN), a plant-derived triterpenoid, has shown pleiotropic effects against a variety of tumors. Herein, it is evaluated whether TSN can enhance the efficacy of paclitaxel (PTX), a common chemotherapeutic agent, against TNBC. It is found that TSN and PTX synergistically suppress the proliferation of TNBC cell lines such as MDA-MB-231 and BT-549, and the combined treatment also inhibits the colony formation and induces cell apoptosis. Furthermore, this combination shows more marked migratory inhibition when compared to PTX alone. Mechanistic study shows that the ADORA2A pathway in TNBC is down-regulated by the combination treatment via mediating epithelial-to-mesenchymal transition (EMT) process. In addition, the combined treatment of TSN and PTX significantly attenuates the tumor growth when compared to PTX monotherapy in a mouse model bearing 4T1 tumor. The results suggest that combination of TSN and PTX is superior to PTX alone, suggesting that it may be a promising alternative adjuvant chemotherapy strategy for patients with TNBC, especially those with metastatic TNBC.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Lin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
71
|
Joshi S, Painuli S, Misra K, Kumar N, Bachheti RK, Rai N, Singab ANB. Analyses of Elaeocarpus sphaericus Extract for Antioxidant, Antiproliferative and Gene Repression Activities against HIF-1α and VEGF. Chem Biodivers 2023; 20:e202300249. [PMID: 37318911 DOI: 10.1002/cbdv.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The study presents antioxidant, phytochemical, anti-proliferative, and gene repression activities against Hypoxia-inducible factor (HIF-1) alpha and Vascular endothelial growth factor (VEGF) of Elaeocarpus sphaericus extract. Elaeocarpus sphaericus dried and crushed plant leaves were extracted using water and methanol by ASE (Accelerated Solvent Extraction) method. Total phenolic content (TPC) and total flavonoid content (TFC) were used to measure the extracts' phytochemical activity (TFC). Antioxidant potential of the extracts was measured through DPPH, ABTS, FRAP, and TRP. Methanolic extract of the leaves of E. sphaericus has shown a higher amount of TPC (94.666±4.040 mg/gm GAE) and TFC value (172.33±3.21 mg/gm RE). The antioxidant properties of extracts in the yeast model (Drug Rescue assay) showed promising results. Ascorbic acid, gallic acid, hesperidin, and quercetin were found in the aqueous and methanolic extracts of E. sphaericus at varying amounts, according to a densiometric chromatogram generated by HPTLC analysis. Methanolic extract of E. sphaericus (10 mg/ml) has shown good antimicrobial potential against all bacterial strains used in the study except E. coli. The anticancer activity of the extract in HeLa cell lines ranged from 77.94±1.03 % to 66.85±1.95 %, while it ranged from 52.83±2.57 % to 5.44 % in Vero cell lines at varying concentration (1000 μg/ml-31.2 μg/ml). A promising effect of extract was observed on the expression activity of HIF-1 and VEGF gene through RT-PCR assay.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Biotechnology, Graphic Era deemed to be University, Dehradun, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era deemed to be University, Dehradun, India
| | - Kshipra Misra
- DRDO, DIPAS, Department of Biochemical Sciences, Timarpur, Delhi, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era deemed to be University, Dehradun, India
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Allied Sciences, Graphic Era Hill University (G.E.H.U), Society Area, Clement Town, Dehradun, 248002, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era deemed to be University, Dehradun, India
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
72
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
73
|
Ain QU, Iqbal MO, Khan IA, Bano N, Naeem M, Jamaludin MI, Devaraj S. Phytochemical, antioxidant, antipyretic and anti-inflammatory activities of aqueous-methanolic leaf extract of Mangifera indica. Am J Transl Res 2023; 15:4533-4543. [PMID: 37560231 PMCID: PMC10408527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE Plant-based natural antioxidants have a wide variety of biological activities with significant therapeutic value. Mangifera indica has been used traditionally to treat a variety of ailments in animals and human, but little is defined about its biological or pharmacological effects. Therefore, the objective of the present study was to evaluate phytochemical, antioxidant, antipyretic and anti-inflammatory activities of aqueous-methanolic leaf extract of M. indica. METHODS To investigate the possible impact of aqueous-methanolic leaf extract of M. indica on oxidative stress, inflammation, and pyrexia, we used a combined in vitro and in vivo series of experiments on laboratory animals. RESULTS Results revealed significant antioxidant potential in 2,2-diphenylpicrylhydrazyl (DPPH) and nitric oxide (NO) scavenging assay, while significant but dose dependent antipyretic potential was documented in typhoid-paratyphoid A and B (TAB) vaccine and prostaglandin E (PGE) induced pyrexia models. Significant anti-inflammatory effects were observed in both acute and chronic inflammatory models of arachidonic acid and formalin. Phytochemical screening and high-performance liquid chromatography (HPLC) analysis of M. Indica confirmed the presence of mangiferin, quercetin, and isoquercetin. These phytoconstituents likely play a role in the observed biological activities. Our results show that M. indica has antioxidant, anti-inflammatory, and antipyretic effects, lending credence to its traditional use and advocating for its utilization as a viable contender in treating oxidative stress-associated ailments. CONCLUSION It is concluded that Magnifera indica has various properties in the treatment of various diseases.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Ali-Ul-Murtaza, Department of Rehabilitation Sciences, Muhammad Institute of Medical and Allied SciencesMultan 60000, Punjab, Pakistan
- Department of Pathobiology, MNS University of AgricultureMultan 60000, Punjab, Pakistan
| | - Muhammad Omer Iqbal
- Key Laboratory of Glycoscience and Glycotechnology of Shandong ProvinceQingdao 266003, Shandong, China
- Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of ChinaQingdao 266003, Shandong, China
| | - Imran Ahmad Khan
- Department of Pharmacology and Physiology, MNS University of AgricultureMultan 60000, Punjab, Pakistan
| | - Naheed Bano
- Faculty of Veterinary & Animal Sciences, MNS University of AgricultureMultan 60000, Punjab, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal UniversityShijiazhuang 050024, Hebei, China
| | - Mohamad Ikhwan Jamaludin
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi MalaysiaJohor Bahru 81310, Johor, Malaysia
| | - Sutha Devaraj
- Faculty of Medicine, AIMST UniversityBedong 08100, Kedah, Malaysia
| |
Collapse
|
74
|
Priya PS, Kumar RS, Gawwad MRA, Alarjani KM, Elshikhe MS, Namasivayam SKR, Arockiaraj J. Azadiradione (AZD) neem biomass derived limonoid: extraction, characterization, and potential biological activities with special reference to anti-microbial and anti-cancer activities. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 158:405-416. [DOI: 10.1016/j.sajb.2023.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
75
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
76
|
Gariboldi MB, Marras E, Ferrario N, Vivona V, Prini P, Vignati F, Perletti G. Anti-Cancer Potential of Edible/Medicinal Mushrooms in Breast Cancer. Int J Mol Sci 2023; 24:10120. [PMID: 37373268 DOI: 10.3390/ijms241210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.
Collapse
Affiliation(s)
- Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Francesca Vignati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
77
|
Wei N, Burnett J, Crocker DL, Huang Y, Li S, Wipf P, Chu E, Schmitz JC. Quassinoid analogs exert potent antitumor activity via reversible protein biosynthesis inhibition in human colorectal cancer. Biochem Pharmacol 2023; 212:115564. [PMID: 37116665 PMCID: PMC11225567 DOI: 10.1016/j.bcp.2023.115564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Cellular protein synthesis is accelerated in human colorectal cancer (CRC), and high expression of protein synthesis regulators in CRC patients is associated with poor prognosis. Thus, inhibition of protein synthesis may be an effective therapeutic strategy for CRC. We previously demonstrated that the quassinoid bruceantinol (BOL) had antitumor activity against CRC. Herein, potent tumor growth suppression (>80%) and STAT3 inhibition was observed in two different mouse models following BOL administration. Loss of body and spleen weight was observed but was eliminated upon nanoparticle encapsulation while maintaining strong antitumor activity. STAT3 siRNA knockdown exhibited modest suppression of cell proliferation. Surprisingly, STAT3 inhibition using a PROTAC degrader (SD-36) had little effect on cancer cell proliferation suggesting the possibility of additional mechanism(s) of action for quassinoids. BOL-resistant (BR) cell lines, HCT116BR and HCA7BR, were equally sensitive to standard CRC therapeutic agents and known STAT3 inhibitors but resistant to homoharringtonine (HHT), a known protein synthesis inhibitor. The ability of quassinoids to inhibit protein synthesis was dependent on the structure of the C15 sidechain. Of note, BOL did not inhibit protein synthesis in normal human colon epithelial cells whereas HHT and napabucasin remained effective in these normal cells. Novel quassinoids were designed, synthesized, and evaluated in pre-clinical CRC models. Treatment with the most potent analog, 5c, resulted in significant inhibition of cell proliferation and protein synthesis at nanomolar concentrations. These quassinoid analogs may represent a novel class of protein synthesis inhibitors for the treatment of human CRC.
Collapse
Affiliation(s)
- Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Montefiore Einstein Cancer Center, Cancer Therapeutics Program, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - James Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Desirae L Crocker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yixian Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edward Chu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Montefiore Einstein Cancer Center, Cancer Therapeutics Program, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John C Schmitz
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States.
| |
Collapse
|
78
|
Lazarević D, Mušović J, Trtić-Petrović T, Gadžurić S. Partition of parthenolide in ternary {block copolymer + biocompatible ionic liquid or natural deep eutectic solvent + water} systems. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
79
|
Kim YS, Lee JC, Lee M, Oh HJ, An WG, Sung ES. Discovering Potential Anti-Oral Squamous Cell Carcinoma Mechanisms from Kochiae Fructus Using Network-Based Pharmacology Analysis and Experimental Validation. Life (Basel) 2023; 13:1300. [PMID: 37374083 DOI: 10.3390/life13061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The natural product Kochiae Fructus (KF) is the ripe fruit of Kochia scoparia (L.) Schrad and is renowned for its anti-inflammatory, anticancer, anti-fungal, and anti-pruritic effects. This study examined the anticancer effect of components of KF to assess its potential as an adjuvant for cancer treatment. Network-based pharmacological and docking analyses of KF found associations with oral squamous cell carcinoma. The molecular docking of oleanolic acid (OA) with LC3 and SQSTM1 had high binding scores, and hydrogen binding with amino acids of the receptors suggests that OA is involved in autophagy, rather than the apoptosis pathway. For experimental validation, we exposed SCC-15 squamous carcinoma cells derived from a human tongue lesion to KF extract (KFE), OA, and cisplatin. The KFE caused SCC-15 cell death, and induced an accumulation of the autophagy marker proteins LC3 and p62/SQSTM1. The novelty of this study lies in the discovery that the change in autophagy protein levels can be related to the regulatory death of SCC-15 cells. These findings suggest that KF is a promising candidate for future studies to provide insight into the role of autophagy in cancer cells and advance our understanding of cancer prevention and treatment.
Collapse
Affiliation(s)
- Youn-Sook Kim
- Research Institute for Longevity and Well-Being, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Choon Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Minhyung Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Hae-Jin Oh
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Won G An
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eui-Suk Sung
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
80
|
Nazreen S, Elbehairi SEI, Malebari AM, Alghamdi N, Alshehri RF, Shati AA, Ali NM, Alfaifi MY, Elhenawy AA, Alam MM. New Natural Eugenol Derivatives as Antiproliferative Agents: Synthesis, Biological Evaluation, and Computational Studies. ACS OMEGA 2023; 8:18811-18822. [PMID: 37273621 PMCID: PMC10233844 DOI: 10.1021/acsomega.3c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Semisynthetic modifications of natural products have bestowed us with many anticancer drugs. In the present work, a natural product, eugenol, has been modified synthetically to generate new anticancer agents. The final compounds were structurally confirmed by NMR, IR, and mass techniques. From the cytotoxicity results, compound 17 bearing morpholine was found to be the most active cytotoxic agent with IC50 1.71 (MCF-7), 1.84 (SKOV3), and 1.1 μM (PC-3) and a thymidylate synthase (TS) inhibitor with an IC50 of 0.81 μM. Further cellular studies showed that compound 17 could induce apoptosis and arrest the cell cycle at the S phase in PC-3 carcinoma. The docking study strongly favors compound 17 to be a TS inhibitor as it displayed a similar interaction to 5-fluorouracil. The in silico pharmacokinetics and DFT computational studies support the results obtained from docking and biological evaluation and displayed favorable pharmacokinetic profile for a drug to be orally available. Compound 17 was found to be a promising TS inhibitor which could suppress DNA synthesis and consequently DNA damage in prostate cancer cells.
Collapse
Affiliation(s)
- Syed Nazreen
- Department
of Chemistry, Faculty of Science, Al-Baha
University, Al-Baha 65799, Kingdom of Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Cell
Culture Laboratory, Egyptian Organization for Biological Products
and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Azizah M. Malebari
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Nuha Alghamdi
- Department
of Chemistry, Faculty of Science, Al-Baha
University, Al-Baha 65799, Kingdom of Saudi Arabia
| | - Reem F. Alshehri
- Chemistry
Department, Faculty of Science and Art, Taibah University, Al Ula, Madinah 16857, Kingdom of Saudi Arabia
| | - Ali A. Shati
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Saudi Arabia
| | - Nada M. Ali
- Department
of Chemistry, Faculty of Science, Al-Baha
University, Al-Baha 65799, Kingdom of Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Saudi Arabia
| | - Ahmed A. Elhenawy
- Chemistry
Department, Faculty of Science, Al-Azhar
Unuversity, 11884 Nasr
City, Cairo 11751, Egypt
| | - Mohammad Mahboob Alam
- Department
of Chemistry, Faculty of Science, Al-Baha
University, Al-Baha 65799, Kingdom of Saudi Arabia
| |
Collapse
|
81
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
82
|
Booth JM, Fusi M, Marasco R, Daffonchio D. The microbial landscape in bioturbated mangrove sediment: A resource for promoting nature-based solutions for mangroves. Microb Biotechnol 2023. [PMID: 37209285 PMCID: PMC10364319 DOI: 10.1111/1751-7915.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Globally, soils and sediments are affected by the bioturbation activities of benthic species. The consequences of these activities are particularly impactful in intertidal sediment, which is generally anoxic and nutrient-poor. Mangrove intertidal sediments are of particular interest because, as the most productive forests and one of the most important stores of blue carbon, they provide global-scale ecosystem services. The mangrove sediment microbiome is fundamental for ecosystem functioning, influencing the efficiency of nutrient cycling and the abundance and distribution of key biological elements. Redox reactions in bioturbated sediment can be extremely complex, with one reaction creating a cascade effect on the succession of respiration pathways. This facilitates the overlap of different respiratory metabolisms important in the element cycles of the mangrove sediment, including carbon, nitrogen, sulphur and iron cycles, among others. Considering that all ecological functions and services provided by mangrove environments involve microorganisms, this work reviews the microbial roles in nutrient cycling in relation to bioturbation by animals and plants, the main mangrove ecosystem engineers. We highlight the diversity of bioturbating organisms and explore the diversity, dynamics and functions of the sediment microbiome, considering both the impacts of bioturbation. Finally, we review the growing evidence that bioturbation, through altering the sediment microbiome and environment, determining a 'halo effect', can ameliorate conditions for plant growth, highlighting the potential of the mangrove microbiome as a nature-based solution to sustain mangrove development and support the role of this ecosystem to deliver essential ecological services.
Collapse
Affiliation(s)
- Jenny M Booth
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- Joint Nature Conservation Committee, Peterborough, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
83
|
Zhang H, Ma L, Kim E, Yi J, Huang H, Kim H, Raza MA, Park S, Jang S, Kim K, Kim SH, Lee Y, Kim E, Ryoo ZY, Kim MO. Rhein Induces Oral Cancer Cell Apoptosis and ROS via Suppresse AKT/mTOR Signaling Pathway In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24108507. [PMID: 37239855 DOI: 10.3390/ijms24108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lei Ma
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science, Hankyung National University, Anseong 17579, Republic of Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Muhammad Atif Raza
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kirim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Republic of Korea
| | - Youngkyun Lee
- School of Dentistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunkyong Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Biotechnology, Research Center for Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
84
|
Pardo-Rodriguez D, Cifuentes-López A, Bravo-Espejo J, Romero I, Robles J, Cuervo C, Mejía SM, Tellez J. Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Trop Med Infect Dis 2023; 8:tropicalmed8050263. [PMID: 37235311 DOI: 10.3390/tropicalmed8050263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease's treatment. METHODS A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. RESULTS Molecular docking analyses revealed energy ranges from -10.5 to -4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS-ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme's active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 μg/mL). AMIR's selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 μg/mL). CONCLUSIONS The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima 730006299, Colombia
| | | | - Juan Bravo-Espejo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ibeth Romero
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| | - Jorge Robles
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sol M Mejía
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Jair Tellez
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| |
Collapse
|
85
|
Vesaghhamedani S, Mazloumi Kiapey SS, Gowhari Shabgah A, Amiresmaili S, Jahanara A, Oveisee M, Shekarchi A, Gheibihayat SM, Jadidi-Niaragh F, Gholizadeh Navashenaq J. Scutellarin, a promising flavonoid in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:19-27. [PMID: 37080435 DOI: 10.1016/j.pbiomolbio.2023.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Natural substances are increasingly being used as cancer treatments. Scutellarin, as a flavonoid, recently has been identified in a Chinese herbal extract called Erigeron breviscapus (Vant.). Scutellarin is being researched for its potential benefits due to the discovery that it possesses a variety of biological effects, such as neuroprotective, anti-coagulant, and anti-viral. In addition to these biological functions, scutellarin has also been found to have anti-tumor properties. Scutellarin first inhibits the activity of tumor cells by altering cancer cell signaling pathways such as Jak/STAT, ERK/AMPK, and Wnt/β-catenin. Additionally, scutellarin activates intrinsic and extrinsic apoptotic pathways, which causes the death of tumor cells, interrupts the cell cycle, and promotes its arrest. By limiting metastasis, angiogenesis, drug resistance, and other tumorigenic processes, scutellarin also reduces the aggressiveness of tumors. Utilizing scutellarin in combination with other anti-tumor therapies like 5-fluorouracil is another method to overcome tumor cell resistance. Moreover, it has been suggested that certain modifications, such as conjugation with cyclodextrin, aliphatic chains, and hybridization with nitric oxide, can enhance the pharmacogenetic capabilities of scutellarin to decrease its limited water solubility. It is believed that scutellarin may provide innovative chemotherapeutic treatments for cancer in the future.
Collapse
Affiliation(s)
- Shadi Vesaghhamedani
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | - Abbas Jahanara
- Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Maziyar Oveisee
- Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Aliakbar Shekarchi
- Department of Pathology and Genetics, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
86
|
Ilieva Y, Momekov G, Zaharieva MM, Marinov T, Kokanova-Nedialkova Z, Najdenski H, Nedialkov PT. Cytotoxic and Antibacterial Prenylated Acylphloroglucinols from Hypericum olympicum L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1500. [PMID: 37050127 PMCID: PMC10097024 DOI: 10.3390/plants12071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Two new bicyclo[3.3.1]nonane type bicyclic polyprenylated acylphloroglucinol derivatives (BPAPs), olympiforin A and B as well as three known prenylated phloroglucinols, were isolated from the aerial parts of Hypericum olympicum L. The structures of the isolated compounds were established by means of spectral techniques (HRESIMS and 1D and 2D NMR). All compounds were tested on a panel of human tumor (MDA-MB-231, EJ, K-562, HL-60 and HL-60/DOX) and non- tumorigenic (HEK-293 and EA.hy926) cell lines using the MTT assay. All tested compounds exerted significant in vitro cytotoxicity with IC50 values ranging from 1.2 to 24.9 μM and from 0.9 to 34 μM on tumor and non-cancerous cell lines, respectively. Most of the compounds had good selectivity and were more cytotoxic to the tumor cell lines than to the normal ones. A degradation of the precursor caspase 9 for some of the compounds was observed; therefore, the intrinsic pathway of apoptosis is the most likely mechanism of cytotoxic activity. The BPAPs were examined for antibacterial and antibiofilm activity through the broth microdilution method and the protocol of Stepanović. They showed a moderate effect against Enterococcus faecalis and Streptococcus pyogenes but a very profound activity against Staphylococcus aureus with minimum inhibitory concentrations (MIC) in the range of 0.78-2 mg/L. Olympiforin B also had a great effect against methicillin-resistant S. aureus (MRSA) with an MIC value of 1 mg/L and a very significant antibiofilm activity on that strain with a minimum biofilm inhibition concentration (MBIC) value of 0.5 mg/L. The structures of the isolated compounds were in silico evaluated using ADME and drug likeness tests.
Collapse
Affiliation(s)
- Yana Ilieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.)
| | - Georgi Momekov
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.)
| | - Teodor Marinov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.)
| | - Paraskev T. Nedialkov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
87
|
Decrypting the programming of β-methylation in virginiamycin M biosynthesis. Nat Commun 2023; 14:1327. [PMID: 36899003 PMCID: PMC10006238 DOI: 10.1038/s41467-023-36974-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
During biosynthesis by multi-modular trans-AT polyketide synthases, polyketide structural space can be expanded by conversion of initially-formed electrophilic β-ketones into β-alkyl groups. These multi-step transformations are catalysed by 3-hydroxy-3-methylgluratryl synthase cassettes of enzymes. While mechanistic aspects of these reactions have been delineated, little information is available concerning how the cassettes select the specific polyketide intermediate(s) to target. Here we use integrative structural biology to identify the basis for substrate choice in module 5 of the virginiamycin M trans-AT polyketide synthase. Additionally, we show in vitro that module 7, at minimum, is a potential additional site for β-methylation. Indeed, analysis by HPLC-MS coupled with isotopic labelling and pathway inactivation identifies a metabolite bearing a second β-methyl at the expected position. Collectively, our results demonstrate that several control mechanisms acting in concert underpin β-branching programming. Furthermore, variations in this control - whether natural or by design - open up avenues for diversifying polyketide structures towards high-value derivatives.
Collapse
|
88
|
El-Sayed ASA, George NM, Abou-Elnour A, El-Mekkawy RM, El-Demerdash MM. Production and bioprocessing of camptothecin from Aspergillus terreus, an endophyte of Cestrum parqui, restoring their biosynthetic potency by Citrus limonum peel extracts. Microb Cell Fact 2023; 22:4. [PMID: 36609265 PMCID: PMC9824926 DOI: 10.1186/s12934-022-02012-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
The metabolic potency of fungi as camptothecin producer elevates their prospective use as an industrial platform for commercial production, however, the loss of camptothecin productivity by fungi with the storage and subculturing are the major obstacle. Thus, screening for endophytic fungal isolates inhabiting ethnopharmacological plants with an obvious metabolic stability and sustainability for camptothecin biosynthesis could be one of the most feasible paradigms. Aspergillus terreus ON908494.1, an endophyte of Cestrum parqui was morphologically and molecularly verified, displaying the most potent camptothecin biosynthetic potency. The chemical identity of A. terreus camptothecin was confirmed from the HPLC, FTIR and LC-MS/MS analyses, gave the same molecular structure and mass fragmentation patterns of authentic one. The purified putative camptothecin displayed a strong anticancer activity towards HepG-2 and MCF-7 with IC50 values 0.96 and 1.4 µM, respectively, with no toxicity to OEC normal cells. As well as, the purified camptothecin displayed a significant antifungal activity towards fungal human pathogen Candida albicans, Aspergillus flavus, and A. parasiticus, ensuring the unique structural activity relationships of A. terreus camptothecin, as a powerful dually active anticancer and antimicrobial agent. The camptothecin productivity of A. terreus was maximized by bioprocessing with Plackett-Burman design, with an overall 1.5 folds increment (170.5 µg/L), comparing to control culture. So, the optimal medium components for maximum yield of camptothecin by A. terreus was acid why (2.0 mL/L), Diaion HP20 (2.0 g/L), Amberlite XAD (2.0 g/L), dextrin (5.0 g/L), glucose (10.0 g/L), salicylic acid (2.0 g/L), serine (4.0 g/L), cysteine (4.0 g/L) and glutamate (10.0 g/L), at pH 6 for 15 days incubation. By the 5th generation of A. terreus, the camptothecin yield was reduced by 60%, comparing to zero culture. Interestingly, the productivity of camptothecin by A. terreus has been completely restored and over increased (210 µg/L), comparing to the 3rd generation A. terreus (90 µg/L) upon addition of methanolic extracts of Citrus limonum peels, revealing the presence of some chemical signals that triggers the camptothecin biosynthetic machinery. The feasibility of complete restoring of camptothecin biosynthetic-machinery of A. terreus for stable and sustainable production of camptothecin, pave the way for using this fungal isolate as new platform for scaling-up the camptothecin production.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Nelly M. George
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Amira Abou-Elnour
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. El-Mekkawy
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marwa M. El-Demerdash
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
89
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
90
|
Tawfik MM, Galal B, Nafie MS, El Bous MM, El-Bana MI. Cytotoxic, apoptotic activities and chemical profiling of dimorphic forms of Egyptian halophyte Cakile maritima scop. J Biomol Struct Dyn 2023; 41:147-160. [PMID: 34854366 DOI: 10.1080/07391102.2021.2004231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cakile maritima ssp. aegyptiaca (Wild.) Nyman is growing with dimorphic leaf forms (entire or pinnatifid lamina) along the Mediterranean coast of Egypt. The cytotoxic activities of dried shoot systems of the two morphological forms were evaluated by testing and comparing the effects of ethanolic and aqueous extracts on the viability of five human cell lines. GC-MS analysis was performed to identify the bioactive and anticancer compounds present in the most active extracts. MTT assay indicated that both aqueous and ethanolic extracts have selective cytotoxic activities against cancer cell lines with no inhibitory activities against normal Wi38 or Vero cell lines. The underlying mechanism of cytotoxicity involved the induction of G2/M phase arrest in targeted cells MCF-7 and HCT-116 associated with inducing apoptosis in both cell lines, as indicated by Annexin-V assay. Apoptosis investigation in MCF-7 and HCT-116 cells treated with ethanolic extracts, was further investigated through RT-PCR, which exhibited elevation of proapoptotic genes of P53, BAX, Capase-3,6,7,8,9, and downregulation of antiapoptotic gene (BCL-2) upon treatment. The GC-MS analysis of ethanolic extracts of pinnatifid and entire forms revealed the existence of 18 and 13 compounds, respectively, with eleven compounds that were detected in pinnatifid form only and seven compounds were identified exclusively in the entire form. Molecular Docking study revealed that the identified compounds exhibited good binding affinity towards BCL-2 inhibition, and this agreed with the suggested apoptotic mechanism. To the best of authors' knowledge, this is the first scientific evidence underline the variability in the chemical composition associated with variable anticancer activities of dimorphic forms of C. maritima.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Bassant Galal
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mona M El Bous
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Magdy I El-Bana
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
91
|
Alam MM, Elbehairi SEI, Shati AA, Hussien RA, Alfaifi MY, Malebari AM, Asad M, Elhenawy AA, Asiri AM, Mahzari AM, Alshehri RF, Nazreen S. Design, synthesis and biological evaluation of new eugenol derivatives containing 1,3,4-oxadiazole as novel inhibitors of thymidylate synthase. NEW J CHEM 2023. [DOI: 10.1039/d2nj05711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We report the preparation and cytotoxicity of two new eugenol derivatives that contain 1,3,4-oxadiazole, as novel inhibitors of thymidylate synthase; these derivatives are shown to be promising chemotherapeutic agents.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Rania A. Hussien
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali M. Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Al Baha, Saudi Arabia
| | - Reem F. Alshehri
- Chemistry Department, Faculty of Science and Art, Al Ula, Taibah University, Al Madinah, Kingdom of Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| |
Collapse
|
92
|
Sahoo A, Mandal AK, Kumar M, Dwivedi K, Singh D. Prospective Challenges for Patenting and Clinical Trials of Anticancer Compounds from Natural Products: Coherent Review. Recent Pat Anticancer Drug Discov 2023; 18:470-494. [PMID: 36336805 DOI: 10.2174/1574892818666221104113703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Each year, millions of people worldwide are diagnosed with cancer, and more than half of them die. Various conventional therapies for cancer, including chemotherapy and radiotherapy, have extreme side effects. Therefore, to minimize the global burden of lethal diseases like cancer, an effective and novel drug must be discovered. Its patent should be acquired to secure the novel medicament. The pharmacological potential of different natural products has made them popular in the healthcare and pharmaceutical industries. Various anticancer compounds are obtained from natural sources such as plants, microbes, and marine and terrestrial animals, including alkaloids, terpenoids, biophenols, enzymes, glycosides, etc. The term "natural products" is defined as the product of secondary or non-essential metabolic processes produced by living organisms (such as plants, invertebrates, and microorganisms). Although more precise definitions of NPs exist, they do not always meet consensus. Others define NPs as small molecules (excluding biomolecules) that emerge from the metabolic reaction. A handful of effective compounds are used currently from natural or analog moieties, and many more are in clinical studies. There is an excellent need for patenting molecules from natural products as the hit lead molecules are derived, isolated, and synthesized from natural products. However, these naturally occurring products may not be patentable under the law because they come from nature. This review highlights why natural products and compounds are hard to patent, under what patent law criteria we can patent these natural products and compounds, patent procedural guideline sources and why researchers prefer publication rather than a patent. Here, various patent scenarios of natural products and compounds for cancer have been given.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Natural Product Research Laboratory, Thapathali, Kathmandu, Nepal, 44600
| | - Mayank Kumar
- Department of Pharmaceutical Chemistry, Aryakul College of Pharmacy and Research, Natkur, Lucknow, Uttar Pradesh-226002, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| |
Collapse
|
93
|
Malik P, Bernela M, Seth M, Kaushal P, Mukherjee TK. Recent Progress in the Hesperetin Delivery Regimes: Significance of Pleiotropic Actions and Synergistic Anticancer Efficacy. Curr Pharm Des 2023; 29:2954-2976. [PMID: 38173051 DOI: 10.2174/0113816128253609231030070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In the plant kingdom, flavonoids are widely distributed with multifunctional immunomodulatory actions. Hesperetin (HST) remains one of the well-studied compounds in this domain, initially perceived in citrus plants as an aglycone derivative of hesperidin (HDN). OBSERVATIONS Natural origin, low in vivo toxicity, and pleiotropic functional essence are the foremost fascinations for HST use as an anticancer drug. However, low aqueous solubility accompanied with a prompt degradation by intestinal and hepatocellular enzymes impairs HST physiological absorption. MOTIVATION Remedies attempted herein comprise the synthesis of derivatives and nanocarrier (NC)-mediated delivery. As the derivative synthesis aggravates the structural complexity, NC-driven HST delivery has emerged as a sustainable approach for its sustained release. Recent interest in HST has been due to its significant anticancer potential, characterized via inhibited cell division (proliferation), new blood vessel formation (angiogenesis), forceful occupation of neighboring cell's space (invasion), migration to erstwhile physiological locations (metastasis) and apoptotic induction. The sensitization of chemotherapeutic drugs (CDs) by HST is driven via stoichiometrically regulated synergistic actions. Purpose and Conclusion: This article sheds light on HST structure-function correlation and pleiotropic anticancer mechanisms, in unaided and NC-administered delivery in singular and with CDs synergy. The discussion could streamline the HST usefulness and long-term anticancer efficacy.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143001, India
| | - Mahima Seth
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | - Priya Kaushal
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
94
|
Raman Spectroscopy and Imaging Studies of Human Digestive Tract Cells and Tissues-Impact of Vitamin C and E Supplementation. Molecules 2022; 28:molecules28010137. [PMID: 36615330 PMCID: PMC9822473 DOI: 10.3390/molecules28010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022] Open
Abstract
Cancers of digestive tract such as colorectal cancer (CRC) and gastric cancer (GC) are the most commonly detected types of cancer worldwide and their origin can be associated with oxidative stress conditions. Commonly known and followed antioxidants, such as vitamin C and E, are widely considered as potential anti-cancer agents. Raman spectra have great potential in the biochemical characterization of matter based on the fact that each molecule has its own unique vibrational properties. Raman spectroscopy allows to precisely characterize components (proteins, lipids, nucleic acids). The paper presents the application of the Raman spectroscopy technique for the analysis of tissue samples and cells of the human colon and stomach. The main goal of this study is to show the differences between healthy and cancerous tissues from the human digestive tract and human normal and cancer colon and gastric cell lines. The paper presents the spectroscopic characterization of normal colon cells, CCD-18 Co, in physiological and oxidative conditions and effect of oxidative injury of normal colon cells upon supplementation with vitamin C at various concentrations based on Raman spectra. The obtained results were related to the Raman spectra recorded for human colon cancer cells-CaCo-2. In addition, the effect of the antioxidant in the form of vitamin E on gastric cancer cells, HTB-135, is presented and compared with normal gastric cells-CRL-7869. All measured gastric samples were biochemically and structurally characterized by means of Raman spectroscopy and imaging. Statistically assisted analysis has shown that normal, ROS injured and cancerous human gastrointestinal cells can be distinguished based on their unique vibrational properties. ANOVA tests, PCA (Principal Component Analysis) and PLSDA (Partial Least Squares Discriminant Analysis) have confirmed the main role of nucleic acids, proteins and lipids in differentiation of human colon and stomach normal and cancer tissues and cells. The conducted research based on Raman spectra proved that antioxidants in the form of vitamin C and E exhibit anti-cancer properties. In consequence, conducted studies proved that label-free Raman spectroscopy may play an important role in clinical diagnostic differentiation of human normal and cancerous gastrointestinal tissues and may be a source of intraoperative information supporting histopathological analysis.
Collapse
|
95
|
Gupta VK, Bakshi U, Chang D, Lee AR, Davis JM, Chandrasekaran S, Jin YS, Freeman MF, Sung J. TaxiBGC: a Taxonomy-Guided Approach for Profiling Experimentally Characterized Microbial Biosynthetic Gene Clusters and Secondary Metabolite Production Potential in Metagenomes. mSystems 2022; 7:e0092522. [PMID: 36378489 PMCID: PMC9765181 DOI: 10.1128/msystems.00925-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) in microbial genomes encode bioactive secondary metabolites (SMs), which can play important roles in microbe-microbe and host-microbe interactions. Given the biological significance of SMs and the current profound interest in the metabolic functions of microbiomes, the unbiased identification of BGCs from high-throughput metagenomic data could offer novel insights into the complex chemical ecology of microbial communities. Currently available tools for predicting BGCs from shotgun metagenomes have several limitations, including the need for computationally demanding read assembly, predicting a narrow breadth of BGC classes, and not providing the SM product. To overcome these limitations, we developed taxonomy-guided identification of biosynthetic gene clusters (TaxiBGC), a command-line tool for predicting experimentally characterized BGCs (and inferring their known SMs) in metagenomes by first pinpointing the microbial species likely to harbor them. We benchmarked TaxiBGC on various simulated metagenomes, showing that our taxonomy-guided approach could predict BGCs with much-improved performance (mean F1 score, 0.56; mean PPV score, 0.80) compared with directly identifying BGCs by mapping sequencing reads onto the BGC genes (mean F1 score, 0.49; mean PPV score, 0.41). Next, by applying TaxiBGC on 2,650 metagenomes from the Human Microbiome Project and various case-control gut microbiome studies, we were able to associate BGCs (and their SMs) with different human body sites and with multiple diseases, including Crohn's disease and liver cirrhosis. In all, TaxiBGC provides an in silico platform to predict experimentally characterized BGCs and their SM production potential in metagenomic data while demonstrating important advantages over existing techniques. IMPORTANCE Currently available bioinformatics tools to identify BGCs from metagenomic sequencing data are limited in their predictive capability or ease of use to even computationally oriented researchers. We present an automated computational pipeline called TaxiBGC, which predicts experimentally characterized BGCs (and infers their known SMs) in shotgun metagenomes by first considering the microbial species source. Through rigorous benchmarking techniques on simulated metagenomes, we show that TaxiBGC provides a significant advantage over existing methods. When demonstrating TaxiBGC on thousands of human microbiome samples, we associate BGCs encoding bacteriocins with different human body sites and diseases, thereby elucidating a possible novel role of this antibiotic class in maintaining the stability of microbial ecosystems throughout the human body. Furthermore, we report for the first time gut microbial BGC associations shared among multiple pathologies. Ultimately, we expect our tool to facilitate future investigations into the chemical ecology of microbial communities across diverse niches and pathologies.
Collapse
Affiliation(s)
- Vinod K. Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Utpal Bakshi
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Daniel Chang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aileen R. Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - John M. Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
96
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
97
|
El-Sherbiny MM, Elekhtiar RS, El-Hefnawy ME, Mahrous H, Alhayyani S, Al-Goul ST, Orif MI, Tayel AA. Fabrication and assessment of potent anticancer nanoconjugates from chitosan nanoparticles, curcumin, and eugenol. Front Bioeng Biotechnol 2022; 10:1030936. [PMID: 36568301 PMCID: PMC9773392 DOI: 10.3389/fbioe.2022.1030936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
In cancer management and control, the most challenging difficulties are the complications resulting from customized therapies. The constitution of bioactive anticancer nanoconjugates from natural derivatives, e.g., chitosan (Ct), curcumin (Cur), and eugenol (Eug), was investigated for potential alternatives to cancer cells' treatment. Ct was extracted from Erugosquilla massavensis (mantis shrimp); then, Ct nanoparticles (NCt) was fabricated and loaded with Cur and/or Eug using crosslinking emulsion/ionic-gelation protocol and evaluated as anticancer composites against CaCo2 "colorectal adenocarcinoma" and MCF7 "breast adenocarcinoma" cells. Ct had 42.6 kDa molecular weight and 90.7% deacetylation percentage. The conjugation of fabricated molecules/composites and their interactions were validated via infrared analysis. The generated nanoparticles (NCt, NCt/Cur, NCt/Eug, and NCt/Cur/Eug composites) had mean particle size diameters of 268.5, 314.9, 296.4, and 364.7 nm, respectively; the entire nanoparticles carried positive charges nearby ≥30 mV. The scanning imaging of synthesized nanoconjugates (NCt/Cur, NCt/Eug, and NCt/Cur/Eug) emphasized their homogenous distributions and spherical shapes. The cytotoxic assessments of composited nanoconjugates using the MTT assay, toward CaCo2 and MCF7 cells, revealed elevated anti-proliferative and dose-dependent activities of all nanocomposites against treated cells. The combined nanocomposites (NCt/Eug/Cur) emphasized the highest activity against CaCo2 cells (IC50 = 11.13 μg/ml), followed by Cur/Eug then NCt/Cur. The exposure of CaCo2 cells to the nanocomposites exhibited serious DNA damages and fragmentation in exposed cancerous cells using the comet assay; the NCt/Eug/Cur nanocomposite was the most forceful with 9.54 nm tail length and 77.94 tail moment. The anticancer effectuality of innovatively combined NCt/Cur/Eug nanocomposites is greatly recommended for such biosafe, natural, biocompatible, and powerful anticancer materials, especially for combating colorectal adenocarcinoma cells, with elevated applicability, efficiency, and biosafety.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt,*Correspondence: Mohsen M. El-Sherbiny, ; Ahmed A. Tayel, ,
| |
Collapse
|
98
|
Chen H, Sun R, Zeng T, Zheng J, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise photothermal therapy and chemotherapy by composite scaffolds of gold nanoparticles, BP nanosheets and gelatin immobilized with doxorubicin-loaded thermosensitive liposomes. Biomater Sci 2022; 10:7042-7054. [PMID: 36310532 DOI: 10.1039/d2bm01155g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the synergistic effect of photothermal therapy (PTT) and chemotherapy has been recognized as an effective strategy for cancer treatment. Controlling the PTT temperature and drug release profile is desirable for minimizing the unexpected damage to normal cells. In this study, a smart platform of stepwise PTT and chemotherapy has been developed by using composite porous scaffolds of biodegradable black phosphorus (BP) nanosheets, gold nanorods(AuNRs), doxorubicin (Dox)-encapsulated thermosensitive liposomes and biodegradable polymers. Under near-infrared (NIR) laser irradiation, the composite scaffolds could attain high and low local temperatures before and after BP degradation, respectively. Dox release from the composite scaffolds could be controlled by the temperature change. In vitro cell culture and in vivo animal experiments indicated that a strong synergistic effect of PTT and chemotherapy could be achieved at an early stage of treatment before BP degradation, and a mild hyperthermia effect was shown for chemotherapy in the late stage after BP degradation. Moreover, the composite scaffolds after the complete release of Dox could support the proliferation of mesenchymal stem cells. The composite scaffolds showed a synergistic effect of stepwise PTT and chemotherapy for breast cancer elimination and promoted stem cell activities after killing cancer cells.
Collapse
Affiliation(s)
- Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
99
|
Anifowose SO, Alqahtani WSN, Al-Dahmash BA, Sasse F, Jalouli M, Aboul-Soud MAM, Badjah-Hadj-Ahmed AY, Elnakady YA. Efforts in Bioprospecting Research: A Survey of Novel Anticancer Phytochemicals Reported in the Last Decade. Molecules 2022; 27:molecules27238307. [PMID: 36500400 PMCID: PMC9738008 DOI: 10.3390/molecules27238307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are important for a species to survive in the hostile environment of its respective ecosystem. The kingdom of Plantae has been an important source of traditional medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies, especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available. Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies. Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the clinical relevance of these compounds are required to achieve safer chemotherapy.
Collapse
Affiliation(s)
- Saheed O. Anifowose
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Wejdan S. N. Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Badr A. Al-Dahmash
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Florenz Sasse
- Institute for Pharmaceutical Biology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | | | - Yasser A. Elnakady
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
- Correspondence:
| |
Collapse
|
100
|
Lim JS, Bae J, Lee S, Lee DY, Yao L, Cho N, Bach TT, Yun N, Park SJ, Cho YC. In Vitro Anti-Inflammatory Effects of Symplocos sumuntia Buch.-Ham. Ex D. Don Extract via Blockage of the NF-κB/JNK Signaling Pathways in LPS-Activated Microglial Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3095. [PMID: 36432823 PMCID: PMC9693526 DOI: 10.3390/plants11223095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Symplocos sumuntia Buch.-Ham. ex D. Don (S. sumuntia) is a traditional medicinal herb used in Asia to treat various pathologies, including cough, stomachache, tonsillitis, hypertension, and hyperlipidemia. Although the anti-inflammatory activity of S. sumuntia has been reported, little is known about its anti-inflammatory activity and molecular mechanisms in microglial cells. Therefore, we investigated the inhibitory effects of S. sumuntia methanol extract (SSME) on the inflammatory responses in lipopolysaccharide (LPS)-treated BV2 cells. The SSME significantly inhibited the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as the production of nitric oxide (NO), a proinflammatory mediator. The production of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β, was suppressed by the SSME in the LPS-induced BV2 cells. The mechanism underlying the anti-inflammatory effects of SSME involves the suppression of the LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) such as JNK. Moreover, we showed that the LPS-stimulated nuclear translocation of the nuclear factor-κB (NF-κB)/p65 protein, followed by IκB degradation, was decreased by the SSME treatment. Collectively, these results showed that the SSME induced anti-inflammatory effects via the suppression of the MAPK signaling pathways, accompanied by changes in the NF-κB translocation into the nucleus. Therefore, SSME may be employed as a potential therapeutic candidate for various inflammatory diseases.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Jaehoon Bae
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Seoyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Department of Research, Lab Technology System Co., Ltd., Daejeon 35365, Republic of Korea
| | - Lulu Yao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam
| | - Narae Yun
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| |
Collapse
|